埋弧焊焊接参数选择标准(参考模板)
埋弧焊焊接参数
1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。
埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。
本节主要讨论平焊位置的情况。
(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。
1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。
电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。
图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。
如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。
电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。
埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。
图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
焊接速度对焊缝断面形状的影响,如图 5 所示。
焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。
实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。
3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
埋弧焊不锈钢的焊接参数表
埋弧焊不锈钢的焊接参数表以埋弧焊不锈钢的焊接参数表为标题,写一篇文章。
埋弧焊是一种常用的焊接方法,适用于不锈钢等金属材料的焊接。
在进行埋弧焊不锈钢时,需要根据具体的焊接要求和材料特性,设置合适的焊接参数。
下面是一份常见的埋弧焊不锈钢的焊接参数表。
焊接参数表:材质:不锈钢焊接方式:埋弧焊焊接电流:100-250A焊接电压:20-30V焊接速度:50-100cm/min焊丝直径:1.2-2.0mm焊接极性:直流电源,直流电极负极焊接气体:保护气体为纯净的氩气气体流量:8-12L/min焊接角度:30-45度根据上述焊接参数表,我们可以根据不同的焊接要求和工件材料,进行合理的参数选择,以确保焊接质量和效率。
焊接电流和电压是影响焊接质量和熔化金属的主要参数。
一般来说,焊接电流越大,熔化金属的深度越大,但是过大的电流会导致焊缝过宽,焊接变形增大。
电压的选择要根据电流来确定,通常电压在20-30V之间。
焊接速度也是影响焊接质量的重要参数。
焊接速度过快会导致熔化金属不充分,焊缝质量下降;焊接速度过慢则容易产生过大的热影响区,引起焊缝变形。
一般来说,焊接速度在50-100cm/min之间。
焊丝直径的选择要根据焊缝的宽度和所需的焊接电流来确定。
一般来说,焊丝直径选择在1.2-2.0mm之间。
焊接极性一般选择直流电源,电极负极连接焊丝。
这样可以保证焊缝质量和电弧稳定性。
保护气体在不锈钢焊接中起到保护熔化金属和焊缝的作用,一般选择纯净的氩气,气体流量在8-12L/min之间。
焊接角度要根据工件的形状和焊接要求来确定。
一般来说,焊接角度选择在30-45度之间。
通过合理选择和调整上述焊接参数,可以实现不锈钢的高质量焊接。
在实际应用中,还需要根据具体情况进行适当的调整和优化。
总结起来,埋弧焊不锈钢的焊接参数表提供了一些常见的焊接参数范围,供焊接操作人员参考。
根据具体的焊接要求和工件材料,合理选择和调整焊接参数,可以实现高效、高质量的不锈钢焊接。
16mm板埋弧焊焊接参数
16mm板埋弧焊焊接参数16mm板埋弧焊是一种常见的焊接工艺,它广泛应用于钢结构、压力容器、管道、桥梁和船舶等领域。
在进行板埋弧焊时,需要确定适当的焊接参数,以确保焊接质量和工作效率。
下面是16mm板埋弧焊的相关参考内容。
1. 焊接电流:板埋弧焊的焊接电流是焊接参数中最重要的指标之一。
焊接电流的选择应根据所焊接的材料、板厚和焊接位置来确定。
通常情况下,16mm板的埋弧焊电流范围为200-400安培。
较高的电流可以提高焊接速度和熔深,但也会增加热输入和变形的风险。
因此,应根据具体情况选择适当的焊接电流。
2. 焊接电压:焊接电压是控制焊接电弧稳定性和熔池形状的关键参数。
对于16mm板的埋弧焊,一般选择焊接电压为24-30伏。
较低的电压可以使焊接电弧更稳定,但同时会降低焊接速度和熔池形成能力。
较高的电压可以提高焊接速度,但会增加飞溅和热应力的风险。
因此,应根据具体情况选择适当的焊接电压。
3. 焊接速度:焊接速度是确定焊接参数的重要因素之一。
焊接速度的选择应根据焊接电流和焊接电压来确定。
一般情况下,16mm板的埋弧焊焊接速度为10-20cm/min。
较低的焊接速度可以提高焊接熔深和焊缝强度,但会增加工作时间和成本。
较高的焊接速度可以提高生产效率,但焊接熔深会减小。
因此,应根据具体情况选择适当的焊接速度。
4. 焊接极性:埋弧焊的电极可使用直流极性(DC+)或直流反极性(DC-),选择合适的焊接极性是保证焊接质量的关键。
对于16mm板的埋弧焊,一般采用直流反极性。
直流反极性可以提高焊接速度和焊缝质量,同时减小喷溅现象。
而直流极性则更适用于焊接较厚的板材。
因此,应根据具体情况选择合适的焊接极性。
5. 焊接工艺:在进行16mm板的埋弧焊时,还需选确定适当的焊接工艺,如焊接电弧长度、焊接角度和焊接时机等。
通常情况下,焊接电弧长度应保持在10-15mm,焊接角度应保持在20-45度范围内。
此外,焊接板材的准备工作、预热温度等也会对焊接质量产生影响,应根据具体情况进行调整。
焊接参数表
焊层
焊接方法
焊接电流A
电弧电压V
焊接速度cm/min
气体流量L/min
极性
打底
CO2气保焊
130~150
25~28
32~35
20~25
直流反接
填充
埋弧焊
650~680
32~34
36~38
/
直流反接
盖面
埋弧焊
600~620
30~32
33~36
/
直流反接
背面盖面
埋弧焊
680~720
35~37
32~34
/
直流反接
气保焊、手工电弧焊焊接参数表
CO2气体保护焊
手工电弧焊
焊丝直径mm
焊条直径mm
焊接电流A
150~220
焊接电流A
100~130
160~180
焊接电压V
25~38
焊接电压V
20~26
22~28
焊接速度cm/min
28~33
焊接速度cm/min
25~28
29~34
气体流量L/min
20~25
/
/
/
焊缝外观质量
焊缝质量等级
检验项目
一级
二级
裂纹
不允许
不允许
焊瘤
不允许
不允许
未焊满
不允许
≤+ 且≤1mm,每100mm 长度焊缝内未焊满累积长度≤25mm
咬边
不允许
≤ 且≤,连续长度≤100mm,且焊缝两侧咬边总长≤10%焊缝全长
气孔
不允许
不允许
夹渣
不Hale Waihona Puke 许不允许
埋弧焊电流电压对照表
埋弧焊电压电流与板厚对照表
埋弧焊是一种常用的电弧焊接方法,通过电极的电弧燃烧和金属填充物来连接工件。
在埋弧焊中,电压和电流是两个重要的参数,对焊接质量和焊缝形态有直接影响。
埋弧焊电压电流与板厚对照表是根据不同板厚和焊接材料,为焊工提供合适的电压和电流参考范围,以获得理想的焊接结果。
通常,随着板厚的增加,埋弧焊的电流和电压也需要相应调整。
一般来说,板厚增加,所需的电流也会增加,而电压可能会略微降低。
这是因为较厚的板材需要更多的热量来完成焊接,因此需要更大的电流来提供足够的能量。
以下是一个示例的埋弧焊电压电流与板厚对照表:
需要注意的是,以上表格仅为示例,实际的电压和电流取决于具体的焊接工艺、焊接材料和设备。
在实际应用中,焊工应根据具体情况进行调整,以确保获得最佳的焊接效果。
此外,为了保证焊接质量,
还应遵循焊接材料和设备制造商的建议,并严格按照焊接规程操作。
半自动埋弧焊工艺参数
半自动埋弧焊工艺参数1.电流和电压电流和电压是半自动埋弧焊中最基本的焊接参数。
电流的大小决定焊丝熔化速度和热输入量,而电压的高低则决定着焊丝进出电弧的稳定性。
一般来说,焊接厚板时所需的电流较大,焊接细密部件时所需的电流较小。
电压的选择要根据焊接工件的材质和厚度来确定,一般较大电压适用于焊接较厚的工件,较小电压适用于焊接较薄的工件。
2.电弧长度电弧长度指的是焊丝露出焊枪嘴外部的长度。
电弧长度的大小会影响焊丝的熔化速度和热输入量。
一般来说,焊接厚板时所需的电弧长度较大,焊接细密部件时所需的电弧长度较小。
然而,过长的电弧长度容易导致焊缝过宽,过短的电弧长度则容易导致焊缝不深。
3.电弧稳定性电弧稳定性是半自动埋弧焊中一个非常重要的参数。
电弧不稳定会导致焊缝质量下降以及焊接速度变慢。
为了保持电弧的稳定性,可以适当增大电流或电压,或者采用较为稳定的焊丝。
4.焊接速度焊接速度是指焊接过程中焊接焊缝的移动速度。
焊接速度的选择要根据焊接工件的材质和厚度来确定。
一般来说,焊接厚板时所需的焊接速度较慢,焊接细密部件时所需的焊接速度较快。
焊接速度的选择应该使焊接焊缝质量最佳,并且能够保持焊接过程的稳定性。
5.焊丝直径和种类焊丝的直径和种类对焊接质量有很大影响。
一般来说,焊接厚板时所需的焊丝直径较大,焊接细密部件时所需的焊丝直径较小。
焊丝的种类可以根据工件的材质来选择,一般有碳钢焊丝、不锈钢焊丝、铝焊丝等。
6.保护气体保护气体在半自动埋弧焊中起到保护焊缝免受氧化的作用。
常用的保护气体有纯CO2气体和混合气体。
纯CO2气体适用于焊接碳钢工件,而混合气体适用于焊接不锈钢和铝合金工件。
保护气体的流量要适中,不能过大或过小。
总的来说,半自动埋弧焊的参数选择要根据具体情况来确定。
在实际操作中,需要根据焊接工件的材质、厚度以及焊接要求来选择合适的焊接参数,以保证焊接质量和焊接效率的最佳平衡。
自动埋弧焊焊丝直径的参数表
自动埋弧焊焊丝直径的参数表1. 引言自动埋弧焊(Submerged Arc Welding,简称SAW)是一种常见的焊接方法,广泛应用于制造业中。
在自动埋弧焊中,焊丝直径是一个重要的参数,它直接影响焊接速度、焊缝质量以及焊接成本等方面。
本文将详细介绍自动埋弧焊焊丝直径的参数表,帮助焊接操作者选择合适的焊丝直径,以获得最佳的焊接效果。
2. 焊丝直径的选择焊丝直径是自动埋弧焊中的一个关键参数,它通常由焊接操作者根据焊接要求和工件材料来选择。
一般来说,焊丝直径越大,焊接速度越快,但焊缝质量可能会降低;焊丝直径越小,焊接速度越慢,但焊缝质量可能会提高。
因此,在选择焊丝直径时,需要综合考虑焊接速度和焊缝质量的要求。
3. 焊丝直径参数表下表是一个自动埋弧焊焊丝直径的参数表,供焊接操作者参考:焊丝直径(mm)焊接速度(cm/min)焊缝质量1.2 50-100 优良1.6 100-150 良好2.0 150-200 中等2.4 200-250 中等3.2 250-300 良好4.0 300-350 优良在上述参数表中,列出了不同焊丝直径下的焊接速度范围和对应的焊缝质量评价。
焊接速度的范围是根据实际经验得出的,可以根据具体情况进行微调。
焊缝质量评价分为优良、良好和中等三个等级,根据焊缝的外观、焊缝几何形状、焊缝内部缺陷等方面进行评估。
4. 参数表的应用焊接操作者可以根据实际情况,通过对参数表的参考,选择合适的焊丝直径。
下面是一个应用参数表的示例:假设需要焊接一条长度为1米的钢管,材料为碳钢,焊缝质量要求良好。
根据参数表,焊丝直径选择1.6mm,焊接速度选择100-150cm/min。
当进行焊接时,焊接操作者可以根据焊丝直径和焊接速度的选择,调整焊接电流和电压等参数,以获得最佳的焊接效果。
同时,焊接操作者还需要注意焊接过程中的焊接电弧稳定性、焊缝形状等方面的控制,以确保焊接质量符合要求。
5. 结论自动埋弧焊焊丝直径的参数表是一个重要的参考工具,可以帮助焊接操作者选择合适的焊丝直径,以获得最佳的焊接效果。
12mm不锈钢板埋弧焊参数
12mm不锈钢板埋弧焊参数12mm不锈钢板埋弧焊参数是进行焊接作业时必不可少的一部分。
正确的焊接参数可以确保焊接质量,提高工作效率,并延长设备的使用寿命。
本文将介绍适用于12mm不锈钢板埋弧焊的参数设置,并探讨其重要性。
焊接电流是决定焊缝质量的重要因素之一。
对于12mm不锈钢板,适宜的焊接电流范围在150-200安培之间。
电流过高会导致焊接熔渣不易清除,焊缝出现气孔或夹杂物;电流过低则焊接不牢固,焊缝质量不达标。
因此,合理调整焊接电流至适宜范围,能够保证焊接质量。
焊接电压也是十分重要的参数之一。
对于12mm不锈钢板,适宜的焊接电压一般在30-35伏之间。
电压过高会导致电弧不稳定,焊接质量下降;电压过低则电弧容易熄灭,焊接效果不佳。
因此,合理调整焊接电压至适宜范围,能够保证焊接质量。
焊接速度也是影响焊缝质量的关键因素之一。
对于12mm不锈钢板,适宜的焊接速度在50-70厘米/分钟之间。
焊接速度过快会导致焊缝不充分,焊接质量下降;焊接速度过慢则焊接过程中易产生烧透现象,影响焊缝质量。
因此,合理调整焊接速度至适宜范围,能够保证焊接质量。
除了上述参数外,还有一些其他的参数也需要注意。
例如,焊接电极直径、焊接角度、焊接电源功率等都会对焊接质量产生影响。
合理选择电极直径、调整焊接角度以及控制电源功率,都是确保焊接质量的关键。
12mm不锈钢板埋弧焊参数的合理设置对于焊接质量至关重要。
通过调整焊接电流、焊接电压、焊接速度等参数,能够保证焊接质量稳定可靠。
因此,在进行12mm不锈钢板埋弧焊时,务必认真调整参数,确保焊接质量达标。
自动埋弧堆焊焊接参数
自动埋弧堆焊焊接参数
自动埋弧焊(SAW)是一种高效的焊接方法,在堆焊领域应用广泛。
以下是一些常用的自动埋弧堆焊焊接参数:
1. 电流: 自动埋弧焊接的电流通常较大,可根据堆焊材料的厚度和类型来确定。
一般来说,电流范围在200-500安培之间。
2. 电压: 电压也是一个重要的参数,通常在30-40伏特之间。
3. 送丝速度: 这是指焊丝进给速度。
送丝速度直接影响焊接的速度和质量。
送丝速度的选择应根据焊接材料的类型和堆焊层厚度来确定。
4. 焊接速度: 焊接速度是指每分钟焊接的长度。
焊接速度的选择要根据堆焊材料的类型和厚度来确定。
5. 电极间距: 电极间距是指焊接极间的距离,影响焊接弧的形状和稳定性。
一般来说,电极间距应保持在4-8毫米之间。
6. 焊接角度: 焊接角度是指焊接枪与堆焊表面之间的夹角。
一般来说,焊接角度应保持在30-45度之间。
7. 焊接气氛: 自动埋弧焊接通常在保护气氛下进行,以防止氧化和污染。
常用的保护气体包括CO2和混合气体。
值得注意的是,以上参数只是一些常规参考值,实际的焊接参
数会根据具体的焊接要求和材料类型而有所不同。
为了获得最佳的堆焊效果,应根据具体情况进行调整和优化。
埋弧焊焊接参数范文
埋弧焊焊接参数范文埋弧焊是一种常用的电弧焊接方法,它通过在焊接区域形成一个保护层来提供保护和稳定的电弧,并使用焊丝作为填充材料。
埋弧焊具有高效、高质量和广泛适用的优点,被广泛应用于船舶、桥梁、石油和化工等领域。
1.电流:电流是埋弧焊中最重要的参数之一,它直接影响焊接速度和焊缝质量。
选择适当的电流可确保焊缝的熔深和焊缝的质量。
一般来说,焊接厚度越大,需要使用更大的电流。
电流的选择应根据焊接材料的类型、规格和焊接件的要求进行。
2.电压:电压是埋弧焊中另一个重要的参数。
它直接影响焊接电弧长度和焊接速度。
适当的电压可以保持稳定的电弧形态,防止电弧抖动和飞溅。
一般来说,焊接厚度越大,需要使用更高的电压。
电压的选择应根据焊接材料的类型、规格和焊接件的要求进行。
3.保护气体流量:埋弧焊中使用保护气体来保护焊缝和焊丝,防止氧化和污染。
保护气体流量的大小应根据焊接材料的类型、规格和焊接件的要求进行选择。
一般来说,焊接厚度越大,需要使用更大的保护气体流量。
保护气体流量的选择应确保能够有效地覆盖焊接区域,并防止气体逃逸。
4.焊接速度:焊接速度是埋弧焊中另一个重要的参数。
焊接速度的快慢直接影响焊缝的形成和焊缝的质量。
一般来说,焊接厚度越大,焊接速度越慢。
焊接速度的选择应根据焊接材料的类型、规格和焊接件的要求进行。
5.间隙:焊接间隙是指两个焊接接头之间的距离。
焊接间隙的大小影响焊缝的形成和焊缝的质量。
一般来说,焊接间隙越小,焊接质量越好。
焊接间隙的选择应根据焊接材料的类型、规格和焊接件的要求进行。
6.焊丝直径:焊丝直径是埋弧焊中另一个重要的参数。
焊丝直径的选择应根据焊接材料的类型、规格和焊接件的要求进行。
一般来说,焊接厚度越大,焊丝直径越大。
7.焊接角度:焊接角度是指焊接枪与焊接面之间的夹角。
焊接角度的选择应根据焊接材料的类型、规格和焊接件的要求进行。
一般来说,焊接厚度越大,焊接角度越大。
以上是埋弧焊焊接参数选择和调整的一些基本内容。
【埋弧焊焊接参数选择标准】埋弧焊焊接参数
【埋弧焊焊接参数选择标准】埋弧焊焊接参数本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。
2.1执行技术规范与标准2.1.1 GB50205-xx 《钢结构工程施工及验收规范》 2.1.2GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》 2.1.3 JGJ81-xx 《建筑钢结构焊接技术规程》 2.1.4 GB50205-xx 《钢结构工程施工质量验收规范》 2.1.5 GB5293 《碳素钢埋弧焊用焊剂》 2.2参考技术规范与标准 2.2.1 《钢结构制作安装手册》 2.2.2 《建筑钢结构施工手册》 2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。
气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。
焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。
随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。
熔渣凝固成渣壳,覆盖在焊缝金属表面上。
在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。
3.2埋弧焊焊接施工工艺流程3.3 焊前准备工作 3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.1类别适用母材焊丝牌号焊剂牌号备注——低碳钢——薄板不开坡口对接Q345SJ101、HJ431中厚板开坡口对接δs=340Mpa级低合金钢3.3.2焊接材料的保管和使用3.3.2.1焊剂的烘焙埋弧焊用焊剂的烘焙温度如下表:表3.2焊剂类型烘陪温度(℃)烘焙时间(h )约1 约1熔炼焊剂烧结焊剂3.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h ;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h ;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h 。
埋弧焊焊接参数
1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。
埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。
本节主要讨论平焊位置的情况。
(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。
1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。
电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。
图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。
如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。
电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。
埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。
图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
焊接速度对焊缝断面形状的影响,如图 5 所示。
焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。
实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。
3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
埋弧焊焊接参数选择标准
本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分2.1 执行技术规范与标准2.1.1GB50205-2002《钢结构工程施工及验收规范》2.1.2GB986-88《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3JGJ81-2002《建筑钢结构焊接技术规程》2.1.4GB50205-2001《钢结构工程施工质量验收规范》2.1.5GB5293《碳素钢埋弧焊用焊剂》2.2 参考技术规范与标准2.2.1《钢结构制作安装手册》2.2.2《建筑钢结构施工手册》2.2.3《焊接手册》2.2.4《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1 焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。
气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。
焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。
随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。
熔渣凝固成渣壳,覆盖在焊缝金属表面上。
在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。
3.2 埋弧焊焊接施工工艺流程3.3焊前准备工作331焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.13.3.2焊接材料的保管和使用3.3.2.1焊剂的烘焙表3.2焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150C的低温保温箱中存放,从保温箱中取出时间不超过4h。
埋弧焊焊接参数
1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。
埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。
本节主要讨论平焊位置的情况。
(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。
1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。
电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。
图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。
如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。
电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。
埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。
图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
焊接速度对焊缝断面形状的影响,如图 5 所示。
焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。
实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。
3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
埋弧焊的参数标准
本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。
2.1执行技术规范与标准2.1.1 GB50205-2002 《钢结构工程施工及验收规范》2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》2.1.4 GB50205-2001 《钢结构工程施工质量验收规范》2.1.5 GB5293 《碳素钢埋弧焊用焊剂》2.2参考技术规范与标准2.2.1 《钢结构制作安装手册》2.2.2 《建筑钢结构施工手册》2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。
气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。
焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。
随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。
熔渣凝固成渣壳,覆盖在焊缝金属表面上。
在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。
3.2埋弧焊焊接施工工艺流程3.3 焊前准备工作 3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.1类别适用母材焊丝牌号焊剂牌号备注H08A HJ431 ——低碳钢 Q235H08MnA HJ431 —— H08A HJ431H08MnA HJ431H10Mn2 SJ101、HJ431薄板不开坡口对接H08MnA HJ431 δs=340Mpa级低合金钢Q345H10Mn2 SJ101中厚板开坡口对接 3.3.2焊接材料的保管和使用 3.3.2.1焊剂的烘焙埋弧焊用焊剂的烘焙温度如下表: 表3.2焊剂类型烘陪温度(℃)烘焙时间(h)熔炼焊剂 150~350 约1烧结焊剂 200~400 约13.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h。
埋弧焊焊接参数范文
埋弧焊焊接参数范文埋弧焊是一种半自动电弧焊接方法,相比手工焊接更高效且质量更稳定。
它主要适用于钢结构的大体积和重型焊接物件,如桥梁、壳体、表面板等。
埋弧焊的焊接参数主要包括焊接电流、焊接电压、焊接速度以及焊接送丝速度等。
下面将对这些参数进行详细的介绍。
1.焊接电流:焊接电流是埋弧焊最主要的焊接参数之一,它直接影响到焊接接头的熔透和均匀度。
一般来说,焊接电流要根据焊接接头的材料和厚度进行调整。
比如,焊接低碳钢时,焊接电流可设置在150-300A之间。
2.焊接电压:焊接电压是指焊接电弧之间的电压差,它也会影响到焊接接头的质量和形状。
一般来说,焊接电压要根据焊接电流和焊接材料的特点进行调整。
在一定范围内,提高焊接电压可增大焊接速度,但同时也要注意不要过高以免导致焊接过深。
3.焊接速度:焊接速度是指焊接焊缝的进给速度,它会直接影响到焊接接头的凝固组织和焊缝形状。
焊接速度的选择要根据焊接电流、焊接电压和焊接材料的相应参数进行调整。
通常情况下,焊接速度越快,焊接接头的熔透性就越低,焊缝的宽度就越窄。
4.焊接送丝速度:焊接送丝速度是指焊丝通过焊枪的速度,它主要用于控制焊丝的用量。
一般来说,焊接送丝速度要根据焊接电流、焊接电压、焊接速度和焊丝直径进行选择。
如果焊接送丝速度过快,可能导致焊丝烧断;如果焊接送丝速度过慢,可能会造成焊丝积灰。
除了上述主要的焊接参数外,埋弧焊接还需要考虑其他一些因素,如焊接极性、焊接电弧长度、电弧稳定度等。
这些因素的合理选择和控制,可以使焊接接头达到理想的质量要求。
总之,埋弧焊焊接参数是进行埋弧焊接时需要考虑和设置的一系列工艺参数和焊接条件。
它们的选择和控制将直接影响到焊接接头的质量和强度。
因此,在进行埋弧焊接时,需要根据具体情况和要求,合理确定焊接参数,并进行严格的操作控制。
(整理)埋弧焊焊接参数
1.3 埋弧焊工艺参数及焊接技术1.3.1 影响焊缝形状、性能的因素埋弧焊主要适用于平焊位置焊接,如果采用一定工装辅具也可以实现角焊和横焊位置的焊接。
埋弧焊时影响焊缝形状和性能的因素主要是焊接工艺参数、工艺条件等。
本节主要讨论平焊位置的情况。
(1) 焊接工艺参数的影响影响埋弧焊焊缝形状和尺寸的焊接工艺参数有焊接电流、电弧电压、焊接速度和焊丝直径等。
1)焊接电流当其他条件不变时,增加焊接电流对焊缝熔深的影响(如图1所示),无论是Y 形坡口还是I 形坡口,正常焊接条件下,熔深与焊接电流变化成正比,即状的影响,如图2所示。
电流小,熔深浅,余高和宽度不足;电流过大,熔深大,余高过大,易产生高温裂纹。
图1 焊接电流与熔深的关系(φ4.8mm)图2 焊接电流对焊缝断面形状的影响a)I形接头b)Y形接头2)电弧电压电弧电压和电弧长度成正比,在相同的电弧电压和焊接电流时,如果选用的焊剂不同,电弧空间电场强度不同,则电弧长度不同。
如果其他条件不变,改变电弧电压对焊缝形状的影响如图3所示。
电弧电压低,熔深大,焊缝宽度窄,易产生热裂纹:电弧电压高时,焊缝宽度增加,余高不够。
埋弧焊时,电弧电压是依据焊接电流调整的,即一定焊接电流要保持一定的弧长才可能保证焊接电弧的稳定燃烧,所以电弧电压的变化范围是有限的。
图3电弧电压对焊缝断面形状的影响a)I形接头b)Y形接头焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
焊接速度对焊缝断面形状的影响,如图 5 所示。
焊接速度过小,熔化金属量多,焊缝成形差:焊接速度较大时,熔化金属量不足,容易产生咬边。
实际焊接时,为了提高生产率,在增加焊接速度的同时必须加大电弧功率,才能保证焊缝质量。
3)焊接速度焊接速度对熔深和熔宽都有影响,通常焊接速度小,焊接熔池大,焊缝熔深和熔宽均较大,随着焊接速度增加,焊缝熔深和熔都将减小,即熔深和熔宽与焊接速度成反比,如图4 所示。
埋弧焊参数经验
我说一下我的经验,(我以前用的焊机MZ-1-1000弧压反馈变速送丝;电源ZXG-1500直流的)焊丝H08A,4毫米.焊剂HJ431.反接.气孔主要是焊剂没烘干或不干净.电弧外露也产生气孔.20毫米的主要是电流太小,造成熔池太小,液态金属停留时间不够造成的. 另外焊剂的熔渣黏度过大也造成上面两种情况.焊剂垫(铜垫)6mm 600A 30V 60cm/min8mm 750A 34V 55cm/min10mm 800A 38V 45cm/min12mm 900A 40V 40cm/min14mm 900A 40V 35cm/min以上不开坡口焊丝4mm 单面焊14mm 正850A 38V 42cm/min反600A 36V 75cm/min16mm 正850A 38V 35cm/min反600A 36V 75cm/min18mm 正850A 38V 35cm/min反600A 36V 75cm/min22mm 正1000A 40V 30cm/min 焊丝6毫米反650A 37V 75cm/min以上开单V坡口焊丝5毫米双面焊参数不是绝对的,还要根据实际情况调整.H型钢应该是角焊缝吧.我以前是焊锅炉的汽包,直缝和环缝占绝大多数.当然会烧穿的,所以背面要用焊剂垫强制成型.两面焊,第一面就基本焊透,第二面只是快速的走一便而已.角焊缝参数船形焊焊脚6mm ,焊丝直径2mm,450A,35V,65cm/min焊脚8mm ,焊丝直径3mm,550A,35V,50cm/min焊脚8mm ,焊丝直径4mm,600A,35V,50cm/min焊脚10mm ,焊丝直径4mm,650A,35V,40cm/min焊脚12mm ,焊丝直径4mm,750A,36V,35cm/min焊脚12mm ,焊丝直径5mm,800A,38V,35cm/min斜角焊焊脚2mm ,焊丝直径2mm,200A,25-28V,100cm/min 焊脚4mm ,焊丝直径3mm,350A,30V,90cm/min焊脚5mm ,焊丝直径3mm,400A,30V,90cm/min焊脚7mm ,焊丝直径3mm,450A,30V,45cm/min焊脚7mm ,焊丝直径4mm,500A,30V,50cm/min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埋弧焊焊接参数选择标准本标准所引用的技术规范与标准分为“执行技术规范与标准”和“参考技术规范与标准”两部分。
2.1执行技术规范与标准2.1.1 GB50205-2002 《钢结构工程施工及验收规范》2.1.2 GB986-88 《埋弧焊焊缝坡口的基本形式和尺寸》2.1.3 JGJ81-2002 《建筑钢结构焊接技术规程》2.1.4 GB50205-2001 《钢结构工程施工质量验收规范》2.1.5 GB5293 《碳素钢埋弧焊用焊剂》2.2参考技术规范与标准2.2.1 《钢结构制作安装手册》2.2.2 《建筑钢结构施工手册》2.2.3 《焊接手册》2.2.4 《钢结构工程施工工艺标准》三部分:埋弧自动焊接技术3.1焊接原理:焊接电弧是在焊剂层下的焊丝与母材之间产生,电弧热使其周围的母材、焊丝和焊剂熔化以致部分蒸发,金属和焊剂的蒸发气体形成一个气泡,电弧就在这个气泡内燃烧。
气泡上部被一层熔化了的焊剂——熔渣构成的外膜所包围,这层外膜以及覆盖在上面的未熔化的焊剂共同对焊接起隔离空气、绝热、和屏蔽光辐射作用。
焊丝熔化的熔滴落下与已局部熔化的母材混合而构成金属熔池,部分熔渣因密度小而浮在熔池表面。
随着焊丝向前移动,电弧力将熔池中熔化金属推向熔池后方,在随后的冷却过程中,这部分熔化金属凝固成焊缝。
熔渣凝固成渣壳,覆盖在焊缝金属表面上。
在焊接过程中,熔渣除了对熔池和焊缝金属起机械保护作用外,还与熔化金属发生冶金反应(如脱氧、去杂质、渗合金等),从而影响焊缝金属的化学成分。
3.2埋弧焊焊接施工工艺流程ZGGY-0920-20043.3 焊前准备工作 3.3.1焊剂及焊丝的选择根据目前钢结构的钢材类型,常用埋弧焊丝和焊剂的选择如下表:表3.13.3.2焊接材料的保管和使用1ZGGY-0920-20043.3.2.1焊剂的烘焙埋弧焊用焊剂的烘焙温度如下表:表3.23.3.2.2焊剂的保存焊接低碳钢的熔炼焊剂在使用中放置时间不超过24h;焊接低合金钢的熔炼焊剂在使用中放置时间不超过8h;烧结焊剂经高温烘焙后,应转入100~150℃的低温保温箱中存放,从保温箱中取出时间不超过4h。
3.3.2.3焊剂的领用和使用焊接所用的埋弧焊焊剂必须在二级库领取;埋弧焊过程中,未熔化的焊剂可以反复使用,但一般不超过10次。
3.3.3埋弧自动焊焊接方式的选择根据工厂的设备情况,埋弧自动焊主要有小车式埋弧自动焊和门型埋弧自动焊,根据产品类型的不同选择相应的焊接方式,通常钢板的拼接采用小车式埋弧自动焊,箱型梁(柱)、工字梁(柱)等工件采用门型埋弧自动焊。
3.3.4焊接前对设备的检查焊接前,先检查整个焊接系统的设备和工具全部运转正常,并确保安全的条件下才能运行,而且在焊接过程中应注意保持。
主要检验指标如下: a.焊接的电压电流表和焊接速度调节钮上的刻度,应与焊接速度与刻度关系曲线相对应;b.焊剂要完全覆盖熔池,不能露出弧光;c.机体行走平稳,使用轨道时要保证平直和无振动;d.焊丝传送正常,无时快时慢现象;e.焊咀的角度和位置准确。
3.3.5埋弧自动焊坡口的制备根据钢板厚度和技术要求制备坡口,坡口尺寸符合工艺标准,要求使用半自动切割坡口。
坡口加工完毕后,应对坡口面及周围50mm的范围内进行打磨,去除铁锈、氧化 2ZGGY-0920-2004皮及焊点等杂物。
3.3.6组装和定位焊 3.3.6.1接头的组装接头的组装是指组合件或者分组件的装配,它直接影响焊缝质量、强度和变形。
应严格控制错边和间隙的允差,参照下表、当出现局部间隙过大时,可用性能相近的电弧焊进行修补。
不允许随便塞入金属垫片或焊条头。
3.3.6.2定位焊定位焊是为了装配和固定焊件接头的位置而进行的焊接。
使用与母材性能相近而抗裂性能好的焊条。
定位焊焊缝尺寸要求如下表:表3-43.3.7引弧板和引出板通常始焊和终焊处最易产生焊接缺陷,例如焊瘤、弧坑等,避免这些缺陷落在接头的始末端,从而保证焊缝质量均匀。
引弧板材质应与母材相同,其坡口尺寸形状也应与母材相同。
埋弧焊焊缝引出长度应大于60mm,其引弧、引出板的板宽不小于100mm,长度不小于150mm;引弧板及熄弧板的设置形式及点焊位置如下示意图所示:3ZGGY-0920-20043.3.8埋弧焊的焊接衬垫和打底焊焊接衬垫是为了防止烧穿,保证接头根部焊透和焊缝背面成形。
垫板的厚度视母材的板厚而定,一般在5~10mm之间,其宽度在20~50mm之间。
打底焊就是焊接有坡口的接头时,在接头根部焊接的第一条焊道。
其目的是使埋弧焊能焊透而不至于烧穿。
埋弧自动焊接的打底焊可以采用手工电弧焊和CO2气体保护焊,焊条和焊丝的选择要与母材相匹配,焊完打底焊道后,须打磨或刨削接头根部,以保证在无缺陷的清洁金属上熔敷第一道正面埋弧焊缝。
3.4埋弧焊焊接规范的选择3.4.1焊接规范与焊缝形状的关系焊接规范是决定焊缝截面形状的重要参数,也是控制焊缝质量的重要手段。
焊接规范参数主要是指焊接电流、焊接电压、焊接速度、焊丝直径和送丝速度等。
所谓焊缝截面形状,一般是指对接焊缝宽度b、熔透深度h和余高e;角接焊缝的焊脚K、喉深H、凹凸度C和下陷等见图3-1:图3-1焊缝截面形状3.4.1.1焊接电流对焊缝形状的影响焊接电流是决定熔深的主要参数,一般情况下,电流越大,熔深越深。
随着电4ZGGY-0920-2004流的增加,由于电弧潜入熔池的深度增加,使电弧缩短,电弧摆动能力减弱,因此,这时熔宽增加不明显,若继续增加电流,电弧产生的热量大,焊丝熔化量增加,这时,熔深反倒不再增加。
当焊接电流较高时,由于熔深增大,熔宽变化不大,这时焊缝截面的形状系数变小,这样的焊缝结晶方向不利于气体和杂质上浮逸出,容易产生气孔、夹渣和裂纹,为了改善这一情况,在增加焊接电流的同时,还必须相应的提高电弧电压,以利于得到较为合适的焊缝形状。
当采用直流电源时,由于电弧较为稳定,电弧对母材的加热较为集中,因此,其熔深在采用相同电流值的情况下比交流电源要深,另外,在直流电源时采用反极性(工件接负)接法要比正极性接法要深,它与手工电弧焊时相反。
焊接电流对焊缝截面形状的影响规律见图3-2b-焊缝宽度; h-焊缝深度; e-余高;I-电流图3-2 焊接电流对焊缝截面形状的影响3.4.1.2电弧电压对焊缝形状的影响随着电弧电压的增加,焊缝的宽度将明显增加,而熔深和余高则有所下降。
电弧电压的增加,实际上就是电弧长度的增加,这样母材加热面积增加,从而焊缝的熔宽也增加。
当电弧拉长后,焊剂的熔化量也会相应的增加,而焊缝余高和熔深反而会有所减小,因此,单一的过份增加电弧电压,容易造成未焊透,焊播粗糙,脱渣困难,严重时还会造成焊缝咬边。
电弧电压对焊缝宽度、熔深和余高的影响规律见图35ZGGY-0920-2004b-焊缝宽度 ; h-焊缝深度; e-余高; v-电弧电压图3-3 电弧电压对焊缝截面的影响3.4.1.3焊接速度的影响增加焊接速度时,焊缝的线能量将减小,焊缝宽度明显变窄,而余高则稍有增加。
当焊接速度过快时(如每小时超过40米左右),由于电弧对母材加热时间缩短,故熔深会逐渐减小。
不适当的提高焊接速度,有发生母材未焊透和边缘未熔合的危险,但适当的提高焊接速度,对减小焊接变形是有利的。
焊接速度与熔深,熔宽的关系见图3-4:b-焊缝宽度;h-焊缝深度;Vc-焊接速度(米/小时)图3-4 焊接速度与熔深、熔宽的关系3.4.1.4焊丝直径的影响随着焊丝直径的减小,电流密度则增加,母材的熔深增大,成形系数提高,因此生产效率也将随之提高。
由于增加了熔深,因此可以降低对母材的开槽要求,这样不但可以节省人工和焊丝消耗量,同时,还可节省电能和减小工件变形。
焊丝直径与电流密度,熔深的关系见表:6ZGGY-0920-2004表3.5焊接电流应在规定的范围内,不能为增大熔深过分的增加电流。
埋弧自动焊焊丝直径与电流、电压的范围见表3-6:表3.6电弧电压要与焊接电流相匹配,采用φ4.8mm焊丝时,电弧电压与焊接电流的配合关系可参考下表:3.4.1.5焊剂类型和颗粒度的影响:目前常用的焊剂有熔炼型焊剂和烧结型焊剂二类,由于前者的熔点低于后者,因此在相同焊接规范参数下,前者的熔深也低于后者。
由于烧结型焊剂的熔点高,因此焊剂的消耗量应相应的减少,焊缝成型和脱渣性比熔炼焊剂要好,但烧结型焊剂的吸潮性比较强,所以在使用过程中应严格执行焊剂烘培制度。
此外,焊剂的颗粒度越细,焊件的熔透深度也相应增加。
3.4.1.6焊丝伸出长度的影响:焊丝伸出长度增加,焊丝产生的电阻热便随之增加,焊丝被预热,熔化速度加快,熔深和熔合比将稍有减小。
当电流密度较大时,焊丝伸出长度的影响更为明显。
3.4.7焊丝和工件倾斜度的影响焊丝倾斜角越大,则焊缝宽度增加,而熔深及余高减小,若焊丝顺焊接方向倾斜,则焊件熔深增加,而逆焊接方向倾斜,焊件的熔深会减小。
在焊接有斜坡的焊件时,顺斜坡方向向上的焊缝余高呈凸型,而逆斜坡方向向下焊接的焊缝余高趋于凹型。
3.4.1.8焊剂的堆放高度7ZGGY-0920-2004焊接时,焊剂的堆放高度对焊接熔池表面的压力成正比。
焊剂堆放过高,焊缝表面波纹粗大,凹凸不平,有“麻点”。
一般使用玻璃状焊剂的堆放高度以25~45mm为佳,高速焊时宜堆放低些,但不能太低,否则电弧外露,焊缝表面变得粗糙。
3.4.1.9工件间隙和定位焊的影响工件的间隙大小,对熔深的影响明显,间隙越大,熔深也越深,所以,过大的间隙会造成焊穿。
在封底焊时由于无间隙,若规范选择不当,焊缝的余高过凸,这也是不允许的。
定位焊的焊脚大小,对角焊缝的成型将产生影响,若焊接规范选择不当,在主焊缝上便会凸现定位焊缝的痕迹,影响焊缝的外型,因此,若定位焊缝焊后需要覆盖埋弧焊的焊件,定位焊脚的尺寸应控制在4~5mm。
在进行箱型柱(梁)的焊接时,对于坡口焊缝在进行气保焊打底埋弧焊盖面时,应注意气保焊打底的质量,气保焊焊缝不应超过焊缝的坡口面。
3.5埋弧焊焊接参考规范 3.5.1H型钢船型位置自动埋弧焊3.5.2厚板H型钢船型位置自动埋弧焊:焊件的坡口形式在考虑施焊和坡口加工条件下,尽量减小焊接变形,提高劳动生产率,降低成本,通常在坡口形式的选择上主要按以下坡口形式进行选择:8ZGGY-0920-2004在焊接工艺上主要采取气保焊打底,埋弧自动焊填充及盖面,在船形位置施焊,过程中应着重注意以下几点:⑴. 焊接顺序应为:大坡口面打底焊一道,打底厚度根据板厚为10-20mm;反面碳弧气刨清根后,打底焊一道,打底厚度根据板厚为15-30mm,然后,填充、盖面;翻身后进行正面焊缝的填充、盖面。
⑵. 在具体的施焊过程中,根据实际焊缝的高度、构件的变形情况,加强构件翻身的次数,防止扭曲变形。