主变差动保护动作原因对策论文
某110kV变电站主变差动保护动作分析及处理
某110kV变电站主变差动保护动作分析及处理摘要:本文通过对某110kV变电站主变差动保护动作情况的介绍,分析主变差动保护动作的原因和检查处理,对分析主变差动保护动作提供了借鉴经验,对涉及变电站改造或者CT更换起到很好的警醒目的。
关键词:变电站;主变差动保护;CT极性;分析;处理一、事件发生前情况110kV变电站Ⅰ段母线由110kV苏功线供电运行,Ⅱ段母线由110kV永漕功线供电运行,1号主变运行,2号主变运行,母联112断路器检修。
二、异常事件分析(一)异常信号:14:50:39.870<110kV变电站>故障录波装置启动有效;14:50:39.885<110kV变电站>主变差动保护跳闸报警;14:50:39.918<110kV变电站>102断路器开关分位有效;14:50:39.937<110kV变电站>909断路器开关分位有效;14:50:43.883<110kV变电站>直流系统交流故障报警。
(二)保护装置动作报告:保护动作过程:故障发生后23ms,比率差动保护动作110kV2号主变高压侧102断路器、低压侧909断路器跳闸。
故障录波波形如下:主变高低压侧电流主变高低压侧电压波形(三)检查及分析过程:1.首先重点对变压器本体、瓦斯保护、母线槽盒外观进行详细检查,检查未发现异常。
2.对变压器绝缘油取样进行化验分析,试验数据如下:通过油化试验数据分析,油化试验结果满足规范要求,排除变压器内部故障。
3.对保护动作报告及故障录波波形进行分析:(1)故障录波波形显示:故障时,主变高压侧A、B、C三相均有故障电流,B相故障电流是A、C相2倍,方向与A、C相相反。
主变低压侧a、b相有故障电流,故障电流大小相等,方向相反。
主变接线方式为Yd11,根据故障特征分析判断故障类型为变压器低压侧a、b相间故障。
故障时主变高压侧电压波形未发生变化,仍为正弦波,三相之间相序相差120°。
主变压器差动保护动作的原因及处理
主变压器差动保护动作的原因及处理(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的安全管理制度,如通用安全、交通运输、矿山安全、石油化工、建筑安全、机械安全、电力安全、其他安全等等制度,想了解不同制度格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of safety management systems, such as general safety, transportation, mine safety, petrochemical, construction safety, machinery safety, electrical safety, other safety, etc. systems, I want to know the format and writing of different systems ,stay tuned!主变压器差动保护动作的原因及处理主变压器差动保护动作跳闸的原因是:(1)主变压器及其套管引出线发生短路故障。
浅议主变差动保护误动的成因及解决办法
浅议主变差动保护误动的成因及解决办法摘要:介绍了主变差动保护原理,从新建变电站、运行中变电站、改造变电站三个方面进行说明分析了主变差动保护误动的成因,并提出了相应的解决办法。
关键词:差动保护主变压器成因对策由于各种类型的差动继电器结构简单、动作可靠,所以广泛地应用在变压器差动保护上,但由于某些原因将会导致差动保护在外部故障时误动,在内部故障时拒动或灵敏度降低,给电力系统安全运行造成威胁。
分析主变差动保护误动成因,探讨解决措施,是保障电力系统安全运行的有力措施。
1.主变差动保护原理简介主变差动保护一般包括:差动速断保护、比率差动保护、二次谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过主变各侧电流的矢量和得到。
1.1比率差动的原理及动作特性(见图1)。
比率差动动作特性方程:式中:Iqd为差动电流起动定值;Id为差动电流动作值,I1、I2的矢量和;Izd为制动电流、K为比率制动系数;Ie为变压器的额定电流。
即:当IzdIe时,比率差动有较大的制动作用。
1.2差动速断的作用差动速断是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。
2.主变差动保护误动作原因分析下面按新建变电站、运行中变电站、改造变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于同行在分析问题时优先考虑现实问题。
2.1新建变电站主变差动误动作原因分析新建变电站的主变差动保护误动在主变差动保护误动中占了较大的比例,但这种情况的误动作绝大多数在主变投运带负荷试运行的72小时就会被发现。
根据现场经验大概可以总结为以下几个方面。
2.1.1定值的不合理造成主变差动保护误动作,具体包括以下几个方面。
(1)定值选择不正确造成误动作差动速断是取变压器的励磁涌流和最大运行方式下穿越性故障引起的不平衡电流两者中的较大者。
定值计算部门往往根据运行经验将差动速断定值取为5~6Ie。
这样,就会造成主变在空载合闸时出现误跳闸。
浅谈变电站主变差动保护误动的原因
浅谈变电站主变差动保护误动的原因摘要:电力变压器的主保护不正确动作,将对变压器、系统正常运行及用户带来很大的影响,本文主要阐述了主变差动保护的原理以及造成差动保护误动作和拒动的部分原因。
关键词:变压器;差动保护;故障切除;误动0 引言目前江门新会供电局有33个变电站共有62台主变,新会区用电负荷已突破700MW大关,全区经济的飞速发展,特别是新会区一批重点工业项目的投产、扩产,用电需求增势强劲,使我区用电负荷不断刷新历史新高。
在当前电网负荷紧张的形势下,新会电网的负荷缺口非常大,那么如何保证电网运行的稳定性、可靠性是供电局关心的核心问题,而变压器安全运行与否直接影响到电网能否安全稳定运行,因此如何完善主变差动保护,做到保护正确动作,则是调度中心和变电部最迫切关心的问题。
本文主要阐述了主变差动保护的原理以及造成差动保护误动作和拒动的部分原因。
1、变压器差动保护的原理差动保护原理于1904年由C. H. Merz和B.Price在英国提出, 其基本原理沿用至今,它主要是反应被保护变压器各端流入和流出电流的相量差。
其单线原理图如图1所示。
变压器在正常运行或外部故障时,理想情况下流过继电器KD的电流=1-2=0,继电器KD不动作。
内部故障时,=1+2(双侧电源)或=1(单侧电源),继电器KD动作。
图1 变压器差动保护接线图及工作原理(a)正常运行及外部故障:(b)内部故障(双侧电源)(c)内部故障(单侧电源)随着技术的不断进步,现在主变的差动保护从以前只需要差动电流作为动作电流,到现在还引入外部短路电流作为制动电流,从而形成比率差动保护,此保护能很好地克服因区外故障短路电流在差动回路里产生的不平衡电流的影响。
以下为南京南瑞RCS-978主变保护的比率差动保护跳闸回路逻辑图。
稳态比率差动的逻辑框图2、差动保护误动的原因分析2.1 励磁涌流引起变压器差动保护误动正常运行时变压器的励磁电流只通过变压器接有电源的一侧,无法被平衡而形成不平衡电流。
主变压器差动保护动作的原因及处理
主变压器差动保护动作的原因及处理一、变压器差动保护范围:变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障:1、变压器引出线及内部绕组线圈的相间短路。
2、变压器绕组严重的匝间短路故障。
3、大电流接地系统中,线圈及引出线的接地故障。
4、变压器CT故障。
二、差动保护动作跳闸原因:1、主变压器及其套管引出线发生短路故障。
2、保护二次线发生故障。
3、电流互感器短路或开路。
4、主变压器内部故障。
5、保护装置误动三、主变压器差动保护动作跳闸处理的原则有以下几点:1、检查主变压器外部套管及引线有无故障痕迹和异常现象。
2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。
如果有,则应及时消除短路点,然后对变压器重新送电。
差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。
瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
?差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。
而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。
四、变压器差动保护动作检查项目:1、记录保护动作情况、打印故障录波报告。
2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。
3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。
4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。
主变送电差动保护动作分析
主变送电差动保护动作分析摘要:电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。
因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。
但由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于众多方面的原因。
如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。
此外,部分工作人员业务素质不高、技术水平不够或违章作业等,都会造成事故或导致事故的扩大,从而危及电力系统的安全运行。
关键词:主变;差动保护;励磁涌流跳闸某电站于机组大修后复投主变并先进行冲击合闸试验,运行人员用500kV侧5011(0ABQ11)开关对1BAT10送电时,5011开关跳闸。
在合闸送电瞬间,监视人员发现主变A、B两相油箱外壳有感应放电现象,位置大约在高压出线升高座下部与油箱顶部之间,电弧长度约500mm。
经检查1CHA01柜第一套F610主变差动保护动作掉牌,1CHA02柜第二套F611主变差动保护动作;5011开关断路器保护REB551仅失灵重跳(来自发变组保护)和负序启动,本身保护没有动作。
经判断开关跳闸系主变差动保护动作引起。
事后,运行人员进行检查,结果如下:经检查瓦斯继电器轻、重瓦斯均未动作,瓦斯继电器内无气体,油透明无浑浊,结果无异常;变压器本体外观检查,结果无异常;经油样色谱分析,油中未检测出C2H2和其他烃类气体含水量及其他组分没超标,与送电前检测结果无差别,结果无异常;主变送电开关5011外观检查,结果无异常;1BAT10高压侧至500kV GIS的GIB外观检查,结果无异常;1BAT10差动保护继电器F610、F611较验、检查,结果继电器无异常、保护定值正确;对主变高压侧电流和500kV开关站线路电压故障录波分析,最大峰值电流为7500A,波形中除励磁涌流波形外,未见故障电流波形。
主变差动保护动作的原因及对策分析
主变差动保护动作的原因及对策分析黄胜【摘要】本文分析了主变压器差动保护动作跳闸的原因,针对变压器差动保护在设计、安装、整定过程中可能出现的各种问题,结合变压器差动保护原理,提出了带负荷测试的内容及分析、判断方法。
【关键词】带负荷测试;测试内容;测试数据分析0.引言差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。
下面就针对这些问题做些讨论。
1.变压器差动保护的简要原理差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
2.变压器差动保护带负荷测试的重要性变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。
比如许继公司的微机变压器差动保护计算Y-△接线变压器Y型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。
这些细小的差别,设计、安装、整定人员很容易疏忽、混淆,从而造成保护误动、拒动。
为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。
3.变压器差动保护带负荷测试内容要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。
3.1差流(或差压)变压器差动保护是靠各侧CT二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。
电流平衡补偿的差动继电器(如LCD-4、LFP-972、CST-31A型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出A相、B相、C相差流,并记录;磁平衡补偿的差动继电器(如BCH-1、BCH-2、DCD-5型差动继电器),用0.5级交流电压表依次测出A相、B相、C相差压,并记录。
CT修试引起500kV主变差动保护动作分析及对策
5He a n a o r u pyCo, t, a k o He n n4 5 0 ) . n nLa k oP we p l .L d L n a , n a 7 3 0 S
A b t a t Th s p g e c i e h 0 k an Tr n f r e if r n i lp o e to r c s r m sr c i a e d s rb d t e 5 0 v M i a s o m rd fe e ta r t ci n p o e s fo r s e t epr t c i n o e m e s ge a l e o d r CT e tpr c s n e urt a g m e e p c soft o e to ft s a ,f u tr c r e , h h t s o e sa d s c iy m na e nt. ti I s c ncu d t a t f h tn o lde h t sa s ori g CT e m i a o s c us d t ph s u r n ic i o w ic ng t tr n lf r 2 a e he C- a e c re tcr ut f s thi wo po n s g o n ng h n t e m a n Tr n f r e r t ci n a t By a ayzn h o r cne s o e iy n i t r u di ,t e h i a s o m rp o e to c . n l i g t e c re t s fv rf i g r a o s o a l r ,k y p e n i e m e s r sw e e pr po e h c i l y a g e tr l n p o o i g e s n f f iu e e r ve tv a u e r o s d w i h w l p a r a o e i r m tn l s f t od c i a a e e ta d t c no o y m a g m e ft ep w e u ty. a e ypr u tonm n g m n n e h l g na e nto o ri h nd sr
变压器差动保护动作原因分析及预防措施
变压器差动保护动作原因分析及预防措施摘要:现阶段,我国对变压器的应用越来越广泛,变压器的差动保护工作也越来越受到重视。
变压器差动保护作为变压器内部故障的主保护之一,其保护范围包括变压器本身、电流互感器与变压器的引出线等,变压器保护误动作跳闸会严重影响供电可靠性,造成停电面积增大。
本文首先分析了变压器纵差动保护的原理,其次探讨了变压器差动保护动作原因,最后就变压器差动保护预防措施进行研究,以供参考。
关键词:差动保护;接线错误;保护配置引言电力网中联结组别为YNyn0d11的变压器分相电流纵差动数字式继电保护,考虑到变压器各侧电压等级、励磁涌流、电流互感器变比等影响因素,各继电保护装置生产厂家采取了不同的电流相位补偿方式和比率制动方法,正确地检验变压器电流纵差动保护装置成为工程实践中的难题。
1变压器纵差动保护的原理变压器电流纵差动保护作为电气量主保护被广泛地应用于电力网中,不需要与电力系统中其他元件的继电保护相配合,能正确地判别保护范围内故障和保护范围外故障,可以无延时地作用于断路器跳闸来切除保护范围内各种类型的故障。
2变压器差动保护动作原因分析44低压侧发生短路事故,短路点未在主变差动保护范围。
通过分析,现场测验检查,是由于16LH互感器接线极性接反,造成短路电流方向相反,流向主变低压侧,引起差动保护动作。
44B事故电流5.376A,由于16LH接线极性相反,相当于2倍电流(10.752A)流人差动保护回路,远超过差动保护动作电流1.301A,造成差动保护快速动作,跳开2201DL、11DL,同时发出机组跳闸信号,切除故障。
后对电流互感器接线调整,电流互感器极性正确,经发电机对高圧回路进行递升加压,电流互感器电流指示一切正常。
3变压器差动保护预防措施3.1 5G通道数据安全为了保证5G通道的数据安全,提出了数据安全处理策略。
1)数据订阅机制。
仅当接收数据的IP地址、Appid、SVID、ConfRev版本号、ASDU数目、通道数、接收端口号信息与订阅一致时,才认为是有效数据。
造成主变差动保护误动作原因的探讨
2 主变压器差动保护误动作有以下几种原 因
2 . 1 c T 二次回路未短接造成开路运行
及各种性能测试等工作 , 避免插件接触不 良, 芯片损坏 , 接线错 误或电流端 子接 触不 良等情况。
. 5加强保护装置定值核算管理。 防止 保护误动 造成电流互感器二次 回路短接不好 的原因其中有: 施 工人 2 各 保护装置 定值 的整定可能会存在不同之处, 故在 整定时 员在短接过程 中, 短接不紧松动, 接 触不 良, 导致运行中因为负
ห้องสมุดไป่ตู้
2 . 2 电流 互感 器变 比错 误 电流互感 器在安装前要经过校验 , 以 保证T A  ̄L L 及特性 的
( 5 ~6 ) I e 。 但是在变 压器空载投入和外部故障切 除恢复时, 由
这将 造成变 压器的非正常停 运, 影响 电力系统 的发供 电, 甚 至 基准 , B 相应超前A 相1 2 0 。 , c 相应滞后A 相1 2 0 。 。 如果变压器任 因此对 新建或设备更 新改造 的发电厂和变 电站的变压器 差动 导致变压器差动保护误动作 。 电流互 感器 中性 线没有按照一点 保 护 误动原 因进行 分析, 并 提 出了防止变 压器 差动 误动 的对 接地 原则接 线导致误动作 。 差动保 护的二次 电流回路接地 时,
策。
包括各侧 电流互 感器的二次电流 回路, 必须通过一点可靠 接于 接地 网, 因此习惯性 我们把 差动组 的各侧c T 在保护屏处进行并
主变压器差动保护动作原因及处理
主变压器差动保护动作原因及处理1. 引言主变压器作为电力系统中的重要设备之一,承担着电流转换和电压变换的任务。
在主变压器的运行过程中,差动保护系统起着至关重要的作用。
差动保护是保护主变压器的一种常用方法。
然而,由于各种原因,差动保护系统有时会出现误动作的情况。
本文将分析主变压器差动保护系统误动作的原因,并提出相应的解决方案。
2. 主变压器差动保护动作原因主变压器差动保护动作的原因可以分为外部原因和内部原因两类。
2.1 外部原因外部原因是指与主变压器相邻的其他设备或系统产生的故障或异常情况,导致差动保护系统误动作。
2.1.1 相邻设备故障相邻电缆、开关设备等的故障可能导致主变压器差动保护系统误动作。
例如,一条相邻电缆的短路故障可能会引起差动保护系统误判为主变压器故障,从而导致误动作。
2.1.2 瞬时电压扰动电力系统中存在着各种电压扰动,如雷击、电弧接触等,这些瞬时电压扰动也可能引起差动保护系统的误动作。
2.2 内部原因内部原因是指主变压器本身存在的故障或异常情况,导致差动保护系统误动作。
2.2.1 主变压器绝缘损坏主变压器绝缘损坏是导致主变压器差动保护系统误动作的常见原因之一。
当主变压器的绝缘损坏后,会导致差动保护系统误判为主变压器内部发生故障,从而触发保护动作。
2.2.2 主变压器接线错误主变压器接线错误也是导致主变压器差动保护系统误动作的原因之一。
接线错误可能会导致差动保护系统无法正确判断主变压器的状态,从而误判为发生故障。
3. 主变压器差动保护动作处理方法针对主变压器差动保护系统误动作的问题,可以采取以下方法进行处理。
3.1 外部原因处理方法对于由于相邻设备故障引起的差动保护系统误动作,应及时排除相邻设备的故障,修复或更换故障设备。
此外,可以采用隔离装置或过电压保护装置等手段,在主变压器与相邻设备之间设置屏蔽,以避免相邻设备的故障干扰差动保护系统。
3.2 内部原因处理方法对于主变压器绝缘损坏引起的差动保护系统误动作,可以通过定期进行绝缘电阻测试和局部放电检测来监测绝缘状态。
35kV接地故障引起主变差动保护动作的分析
35kV接地故障引起主变差动保护动作的分析摘要:针对一起110kV变电站主变差动保护动作的分析,通过故障波形并辅之以电流回路图分析,展现故障全过程,最终确定故障点。
为不接地系统下主变差动保护异常动作提供经验参考。
关键词:主变、差动保护、动作分析、故障录波前言变压器作为电力系统中的主要元件,承担着改变电压、传递电能的使命,是保障电网安全、稳定运行的基础。
其运作的可靠性关乎变电站的整体安全,一旦出现故障,将严重影响供电可靠性和电网稳定性。
变压器差动保护作为保护变压器本体的主保护,为保障变压器设备安全、电网安全发挥着重要作用。
本文结合一起主变差动保护动作的案例,通过检查现场的电力一、二次设备和故障录波,分析变压器差动保护跳闸的原因,为类似事故提供参考与借鉴。
1 故障经过2019年10月15日13时28分,110kV 蓝口站#2主变差动保护动作,#2主变变高1102开关、变中302开关发生跳闸。
事故前,110kV蓝口站#1、#2主变变高并列运行,#1变变高、变低在运行,变中热备用,#1变带10kV全部负荷;#2变变高、变中在运行,变低热备用,#2变带35kV全部负荷,如图1所示。
图1 110kV蓝口站事故前运行方式2 现场初步检查事故发生后,当值调度立马通知相关运维单位,组织运维人员到现场检查一、二次设备状态,分析动作原因,查找故障点。
运维人员到现场后发现#2主变变中302开关A相有明显故障点,#2主变保护及操作箱运行灯正常,动作值达到相关定值。
2.1 一次设备检查情况现场检查#2主变变中302开关A相真空断路器本体,发现下端支持瓷套和上端灭弧室瓷套外观完好无异常,位于中间的支架即上下瓷套连接部分孔封板已脱落,支持瓷套内部的CT绝缘脂从此处喷出,可见场地存在绝缘脂散落现象,B、C两相真空断路器本体整体外观均完好。
2.2 二次设备检查情况(1)#2主变差动保护“运行”绿灯常亮,表示装置运行正常。
保护动作红灯常亮,表示#2主变保护动作。
一起300MW机组主变差动保护误动作原因分析及处理
一
工 程 技 术
起 30 0 MW 栅组主变差动保护误动作原 因分析及处理
安徽省皖能股份有限公 司 俞 民 孙 涛
[ 摘 要] 针对一起在 区外故障冲击的情况 下, 变压器差动保 护误 动作 的事故 , 从保护原理和技 术原因给予 了 细的分析 , 出区外 详 指
非 同期 合 闸 引起 的 不 平衡 电流 , 出差 动 电 流 整 定值 , 成 主 变 差动 保 护 误 动作 , 过 采取 调 整 差 动 保 护 定值 等 相 应 防 范措 施 , 超 造 通 以提 高保 护 可靠 性 。
# 2发 变组 及 主 变 差 动保 护 整 定 情 况 见 表 1 : 表 1# 2发变组及主变差动保护整定值
保护 比率 谐波 启动 拐点 速断 解除 额定 断线 名称 系数 系数 电流 电流 倍数 闭锁 电流 投入
Kz I q I g I s It e I n C T
、 …
M
, V V —一
懿 1.日 ^ ’ 黜 & : o8
八 八. \
V 、 V V
有效擅 : i 蚀 舱^
黑黜噘 。 3 ㈣
暑 .
图 1 压 器 差 动 保护 接 线 方 式 变 变 压 器差 动 保 护 虽 然 基本 原 理 与发 电机 纵 联 差 动 保 护 相 同 ,但 由 于变压器 内部结构 、 运行 方式 、 电量特征均有其特点 , 产生 了一系列 特 有的技术问题 ,因此其差 动保护在构成上与发电机纵联保护有较 大的 不同。 例如 , 需要根据变压器各侧绕组 的连接组别的不同来确定多侧差 动接线方式 ;又如必须妥善处理励磁涌流引起差动保护误 动的问题等 等。如果这些特有的技术 问题不能得到妥善处理 , 在极端 的情况下 , 变 压器差 动保护易发生误动作 , 会给企业造成不必要的损失 。 2事 故 经过 . 6月 2 7日, 某发 电公司接省调令“ l # 机组启动 ,8日上午并 网” 2 。6
220KV主变差动保护动作原理及应用
220KV主变差动保护动作原理及应用摘要:220KV主变压器价格高、故障影响大,是变电站核心设备之一。
因此,220KV主变压器都装设差动保护,以快速切除220KV主变内部故障。
220KV主变差动保护动作后,快速确定故障点位置对消除故障并恢复供电具有重要意义。
关键词:变压器;RCS978变压器主保护原理;调度处理原则引言1设备概况1.1设备参数某变电站2号220KV主变压器为山东泰开变压器有限公司生产的SSZ11-40000/110变压器,采用油浸式三绕组自冷,额定电压220kV,额定容量40000kVA,阻抗18.22%,于2013-05-30投入运行。
2.2行方式2号220KV主变压器220kV单母分段并列运行,带全站负荷运行,1号220KV 主变压器热备用,电网负荷为28.37MW,220kV侧电压为111.65kV,35kV侧电压为37.17kV,10kV侧电压为10.25kV。
变电站系统图见图1。
图1变电站系统图2故障经过及分析2.1故障经过故障发生时,天气晴朗、有微风,设备无外部故障及异常,运行值班人员对2号220KV主变压器进行远方调档操作,由9档调至10档,切换失败,2号220KV主变压器保护屏保护装置比率差动动作,TA断线闭锁差动,U相电流为0.58A,V相电流为0.03A,W相电流为0.57A,其他保护未动作。
比率差动定值为1.73A。
随即2号220KV主变压器差动保护比率差动动作,U、W相故障,U相电流为7.38A,W相电流为7.39A。
三侧断路器跳闸。
故障发生后,1号220KV主变压器由热备用投入运行,带全站负荷运行;2号220KV主变压器转检修。
2.2故障分析2.2.1设备检查故障发生后,对2号220KV主变压器进行有载分接开关吊芯检查,未见转换开关有明显异常;检测过渡电阻为3Ω,未见异常;油中含碳末,且有乙炔存在。
该变电站送电可靠性降低,电量损失81000kWh。
相邻设备外观无损坏。
35kV主变压器投运差动保护动作原因
35kV主变压器投运差动保护动作原因摘要:在电路系统当中,电气设备具有流入节点的电流总和为零这一特点,而由于电气设备作为系统中的重要节点,能够实现流入节点和流出节点的电流为等值,因此可以通过设置整定值的方式进行故障时的断路跳开预设,使电气设备得到安全保护。
这种保护措施被称为差动保护。
但是在实际的应用过程中,由于电气设备所处的电路环境不同,受到环境变化影响,同样会出现差动保护动作。
因此为了规避风险,需要对其原因进行判断。
关键词:主变压器;差动保护;保护动作;验收管理一、主变压器差动保护原理1.1差动保护现象电力企业拥有两台35kV主变压器,主体器材由新疆特变生产,差动保护设施由阿哈尔滨自动化公司生产。
开关柜与变压器连接过程中采取空投试验,并未发生异常现象,当整体安装结束之后,维护人员开展投运试验活动,期间反复出现差动保护现象,且检查并未发现其他异常。
复位电力系统故障报警器,反复投运,仍出现差动保护现象。
1.2差动保护动作原理本文研究一种接线方式,具体如图1所示。
A、B、C为变压器高压侧电流,a、b、c为低压侧电流。
当设备在正常运转状态下,高压侧IA值与IA与IB之间的差值相同,IC值与IC和IA之间的差值相同。
主变压器连接组别为Ydll,低压侧电流相位超前30°,回流平衡性会受到影响。
消除不平衡电流需要对整个线路进行补偿,改变接线值,确保回流的流入电流与流出电流值相同,向量之和为0,在设备正常运转期间,不会出现差动保护现象。
二、主变压器差动保护动作原因2.1不平衡电流影响投运35kV主变压器,理想变压器设备运行期间流入电流与流出电流之间处于平衡状态。
但主变压器经常会出现不平衡电流,造成变压器电流不平衡因素比较多,其中包括传变误差、励磁电流涌动、档位变动等。
档位变化引起的电流不平衡现象是指有计划对变压器进行有载调压,按照分接头位置变化调整接入电流,变压器CT始终稳定,变比发生改变,流入电流与流出电流之间出现差额,继而造成电流之间的不平衡。
南昆线主变差动保护动作的原因与改进措施
关 键 词 :南 昆线 ;牵 引 供 电系 统 ;牵 月 l 0日至 2 0 0 7年 8月 5日田林 、 百 色牵引 变 电所 因主变差 动保 护动作 造成 全所 停 电共 3次 , 计 停 电 4 i , 重 干扰 了铁 路运 输 秩 序 。 累 3m n 严 20 0 5年 5月南 昆线牵 引 变 电所 扩 能改 造 以前 , 引 牵
1 原 因 分 析
11 设 计 不 合理 新 增 的增 压 变设 计 上 将 其 直接 .
保护 的二次 电缆 出现绝 缘 老化击 穿 ,造 成主 变差 动
保护 的二次 回路 多点 接地 ,产生 多点接 地后 二次 回 路 的电流被 地 网分流 , 导致 了主变 差动 保护 的动作 。 20 0 7年 1 1 月 0日,田林 牵 引变 电所 1 主变 差动保 护 的二次 回路 多点接 地后 产生 动作 。 串接在 2 . k 的软 母线 上 ,又 因各种 原 因没 有 给 75 V
12 增 压 变调 压 动 作频 繁 由 于 电力 系统 的能 力 . 不足 , 引变 电所 的网压 波动剧烈 , 成增 压变调 压 牵 造 频 繁动作 。增 压变 分接开 关容 易 因绝 缘油 老化造 成 击 穿形成 高压 接地 ,再加 上供 电段 对增压 变 的运行 检修 缺 乏经验 , 导致 增压 变设备 本身 性能不 稳定 。 增 压 变分 接 开关 绝缘 油 老化 击 穿 形成 高 压 接地 后 . 直 接 启动 主变差 动保 护动作 。 0 7 8月 5日百 色牵 20 年 引变 电所 2 主 变 差 动保 护 动 作 是 由于 增 压 变分 接 开关绝 缘油 老化击 穿形 成高 压接地 后造 成的 。
广 西铁 道
主变压器差动保护动作原因分析及解决
主变压器差动保护动作原因分析及解决作者:赵军来源:《山东工业技术》2018年第05期摘要:变压器作为电力系统中的重要元件,在电网中的地位非常重要,因此需要给变压器安装可靠的保护装置,随着微机保护的不断应用,数字变压器保护在电力系统中的应用日益广泛,许多电厂将保护改在为微机综保,在保护器的改造过程中由于设计及施工厂家的失误造成变压器保护误动作的事故频繁发生。
由变压器差动保护引起的保护误动频频出现。
当变压器发生区外短路故障时,穿越性故障电流比正常运行时要大的多,尤其短路电流中含有较大的非周期分量,如果有一侧TA严重饱和或两侧TA饱和程度不一样,就可能产生较大的不平衡电流,容易引起差动保护误动[1]。
关键词:主变;差动保护;误动作DOI:10.16640/ki.37-1222/t.2018.05.1371 系统结构及事故概况某电厂变压器差动保护动作后主要概况。
7月25日16:40分电气车间主控室事故报警器报警,#1主变差动保护动作,#1发电机出口001开关、灭磁开关跳闸,#1发电机所有表计到零,厂用段后台机全部黑屏,紧接着#2发电机有功负荷到零,这时厂用系统已经全部失电,正在运行的#1、#2汽轮发电机停机,#1、#3锅炉灭火。
值长立即安排电气值班员检查厂用段6KV备用电源603开关状态,发现603开关没有自投,即刻抢合603成功,厂用段全部带电并恢复运行系统用电。
送电后,锅炉车间值班干部安排操作工启动#1锅炉风机,并逐步投入煤粉升压,同时组织#3锅炉点火。
17:30分,#1锅炉主汽压力升至3.0兆帕,17:40分#3锅炉并入蒸汽系统。
为确保蒸汽系统快速恢复,#1、#2汽轮机没有启动,在初步原因查明问题集中在#1主变,21:01分#2汽轮机开机并入系统发电。
2 事故原因分析热电厂全厂失电后,在与上级供电公司联系中得知,在#1主变发生差动保护动作的同时,电网与电炼线同一条母线电百线零序动作(A向瓷瓶击穿,保护动作,一次重合闸成功),电网出现大的波动。
发电机差动保护动作原因分析及预防措施
发电机差动保护动作原因分析及预防措施摘要:在整个电力系统中,发电机是非常关键的一部分,对整个电力系统的运行有着很大的影响,而差动保护在预防发电机内部短路故障有着关键作用。
但就近几年的实际情况来看,发电机差动保护动作事故频频出现,对整个工作系统都有着很大的影响。
鉴于此,本文就结合具体案例,对发电机差动保护动作的原因进行分析,针对实际情况,提出了一些预防措施,尽可能的将此类事故发生的可能降至最低。
关键词:发电机;差动保护动作;原因;预防在电厂工作中,发电机故障是非常关键的问题,对整个工作流程都有着很大的影响。
因此,本文选取XX发电厂进行研究,该电厂的总装机容量为135MW,发电机利用南瑞继保RCS-985RS/SS装置,主要为二分支,发电机关键部位配置电流互感器。
2020年10月,XX电厂发电机运行过程中,1#机组出现机端短路的情况,发电机进行差动保护动作。
为了深入了解发电机运行过程中出现的具体故障,预防不良事件的发生,笔者对发电厂此次事故的具体情况进行了进一步的调查和研究,明确原因,提出预防措施。
1 XX发电厂发电机差动保护动作事故经过2020年10月,XX发电厂1#机组带30MW正常运行,当时0#和2#机组处于正常的备用状态。
1#机组当天上午运行过程中,发电机的监控系统发出警报,并提示发电机出现故障问题,警报系统显示“比率差动动作”,同时,发电机的保护装置开始启动运行。
2事故后的检查情况在发现发电机出现故障问题后,发电厂立即停止了1#机组的运行,并找到检修维护人员,对发电机以及差动保护的各项指标进行了全方面的检查和分析。
在检测发电厂故障录波器和保护定值后发现,保护定值处于正常状态,设备动作正确,未出现过失误情况。
当检测上述设备无误后,检修人员在确保绝对安全的情况下,又对发电机的出口各部位、励磁变压器以及中性点相关设备进行了进一步的检测,对发电机各部位的短路情况以及出口绝缘情况进行检测,测试结果均显示未出现故障问题[1]。
主变压器差动保护动作原因分析及解决
主变压器差动保护动作原因分析及解决摘要:由于主变压器差动保护误动作导致主变压器故障跳闸,原因是主变压器保护装置生产厂家未考虑中性点经小电阻接地情况,没有及时修改PST-1202A装置差动保护内部定值,从而导致保护装置误动作。
采用更改差动保护内部定值实现四侧差动通道任意屏蔽的方法消除了故障。
针对故障情况,提出了保护装置生产厂家对装置软件版本进行全面升级、风电场在春检预试中重新对保护装置定值进行校验以及加强对运行人员的技能培训等改进建议。
关键词:风电场;主变压器;中性点;小电阻接地;差动保护;零序电流;保护定值1风电场概况及运行情况1.1风电场概况某风电场规划容量250MW,一期工程安装1台50MVA两卷主变压器(带平衡线圈),二期工程安装2台100MVA主变压器。
1号主变压器35kV侧为经小电阻接地方式,单母线接线形式,Ⅰ段与Ⅱ段母线、Ⅱ段与Ⅲ段母线之间装设母线分段断路器,线路共计15回,通过220kV单母线送至某电网。
风电场电气接线图见图1所示。
1.2故障前系统运行方式1号主变压器高压侧201断路器合位,低压侧301断路器合位,35kVⅠ段母线连接的1号SVC391断路器分位,319TV小车式开关在工作位置。
35kVⅠ段母线所连接集电线路的351、352、353断路器均在合位,站用变压器由35kV300断路器接带。
风电场实时风速10.3m/s,1号主变压器实时负荷15.2MW。
352集电线路连接19台风电机组,全部运行正常。
352线路实时负荷6.6MW,实时电流11A。
2故障发生及处理过程2013-01-23T15:56:16,当值值班员发现352、201、301断路器变位,现场检查发现352断路器保护装置零序Ⅰ段保护动作,动作电流6.81A,时间0s,352断路器跳闸。
1号主变压器保护A柜(PST-1202A)比率差动保护动作,动作差流1.845A,随即1号主变压器高压侧201断路器、低压侧301断路器跳闸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主变差动保护动作的原因及对策分析【摘要】本文分析了主变压器差动保护动作跳闸的原因,针对变压器差动保护在设计、安装、整定过程中可能出现的各种问题,结合变压器差动保护原理,提出了带负荷测试的内容及分析、判断方法。
【关键词】带负荷测试;测试内容;测试数据分析
0.引言
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护,其运行情况直接关系到变压器的安危。
下面就针对这些问题做些讨论。
1.变压器差动保护的简要原理
差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。
当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。
2.变压器差动保护带负荷测试的重要性
变压器差动保护原理简单,但实现方式复杂,加上各种差动保护在实现方式细节上的各不相同,更增加了其在具体使用中的复杂性,使人为出错机率增大,正确动作率降低。
比如许继公司的微机变压器差动保护计算y-△接线变压器y型侧额定二次电流时不乘以,而南瑞公司的保护要乘以。
这些细小的差别,设计、安装、整
定人员很容易疏忽、混淆,从而造成保护误动、拒动。
为了防范于未然,就必需在变压器差动保护投运时进行带负荷测试。
3.变压器差动保护带负荷测试内容
要排除设计、安装、整定过程中的疏漏(如线接错、极性弄反、平衡系数算错等等),就要收集充足、完备的测试数据。
3.1差流(或差压)
变压器差动保护是靠各侧ct二次电流和——差流——工作的,所以,差流(或差压)是差动保护带负荷测试的重要内容。
电流平衡补偿的差动继电器(如lcd-4、lfp-972、cst-31a型差动继电器),用钳形相位表或通过微机保护液晶显示屏依次测出a相、b相、c
相差流,并记录;磁平衡补偿的差动继电器(如bch-1、bch-2、dcd-5型差动继电器),用0.5级交流电压表依次测出a相、b相、c相差压,并记录。
3.2各侧电流的幅值和相位
只凭借差流判断差动保护正确性是不充分的,因为一些接线或变比的小错误,往往不会产生明显的差流,且差流随负荷电流变化,负荷小,差流跟着变小,所以,除测试差流外,还要用钳形相位表在保护屏端子排依次测出变压器各侧a相、b相、c相电流的幅值和相位(相位以一相pt二次电压做参考),并记录。
此处不推荐通过微机保护液晶显示屏测量电流幅值和相位。
3.3变压器潮流
通过控制屏上的电流、有功、无功功率表,或者监控显示器上
的电流、有功、无功功率数据,或者调度端的电流、有功、无功功率遥测数据,记录变压器各侧电流大小,有功、无功功率大小和流向,为ct变比、极性分析奠定基础。
4.变压器差动保护带负荷测试数据分析
数据收集完后,便是对数据的分析、判断。
数据分析是带负荷测试最关键的一步,如果马虎,或对变压器差动保护原理和实现方式把握不够,就会让一个个错误溜走,得出错误的结论。
那么对于测得的数据我们应从哪些方面着手呢?
4.1看电流相序
正确接线下,各侧电流都是正序:a相超前b相,b相超前c相,c相超前a相。
若与此不符,则有可能:
a.在端子箱的二次电流回路相别和一次电流相别不对应,比如端子箱内定义为a相电流回路的电缆芯接在了c相ct上,这种情况在一次设备倒换相别时最容易发生。
b.从端子箱到保护屏的电缆芯接反,比如一根电缆芯在端子箱接a相电流回路,在保护屏上却接b相电流输入端子,这种情况一般由安装人员的马虎造成。
4.2看电流的对称性
每侧a相、b相、c相电流幅值基本相等,相位互差120°,即a相电流超前b相120°,b相电流超前c相120°,c相电流超前a相120°。
若一相幅值偏差大于10%,则有可能:
a.变压器负荷三相不对称,一相电流偏大或一相电流偏小。
b.变压器负荷三相对称,但波动较大,造成测量一相电流幅值时负荷大,而测另一相时负荷小。
c.某一相ct变比接错,比如该相ct二次绕组抽头接错。
d.某一相电流存在寄生回路,比如某一根电缆芯在剥电缆皮时绝缘损伤,对电缆屏蔽层形成漏电流,造成流入保护屏的电流减小。
若某两相相位偏差大于10%,则有可能:
a.变压器负荷功率因数波动较大,造成测量一相电流相位时功率因数大,而测另一相时功率因数小。
b.某一相电流存在寄生回路,造成该相电流相位偏移。
4.3看各侧电流幅值,核实ct变比
用变压器各侧一次电流除以二次电流,得到实际ct变比,该变比应和整定变比基本一致。
如果偏差大于10%,则有可能:
a.ct的一次线未按整定变比进行串联或并联。
b.ct的二次线未按整定变比接在相应的抽头上。
4.4看两(或三)侧同名相电流相位,检查差动保护电流回路极性组合的正确性。
4.5看差流(或差压)大小,检查整定值的正确性
对励磁电流和改变分接头引起的差流,变压器差动保护一般不进行补偿,而采用带动作门槛和制动特性来克服,所以,测得的差流(或差压)不会等于零。
那用什么标准来衡量差流(或差压)合格呢?对于差流,我们不妨用变压器励磁电流产生的差流值为标准。
比如一台变压器的励磁电流(空载电流)为1.2%,基本侧额
定二次电流为5a,则由励磁电流产生的差流等于1.2%×5=0.06a,0.06a便是我们衡量差流合格的标准。
对于差压,我们引用《新编保护继电器校验》中的规定:差压不能大于150mv。
如果变压器差流不大于励磁电流产生的差流值(或者差压不大于150mv),则该台变压器整定值正确;否则,有可能是:
a.变压器实际分接头位置和计算分接头位置不一致。
对此,我们有以下证实方法:根据实际分接头位置对应的额定电压或运行变压器各侧母线电压,重新计算变压器各侧额定二次电流,再由额定二次电流计算各侧平衡系数或平衡线圈匝数,再将计算出的各侧平衡系数或平衡线圈匝数摆放在差动保护上,再次测量差流(或差压),如果差流(或差压)满足要求,则说明差流(或差压)偏大是由变压器实际分接头位置和计算分接头位置不一致引起,变压器整定值仍正确,如果差流(或差压)不满足要求,则整定值还存在其它问题。
b.变压器y型侧额定二次电流算错。
由于微机变压器差动保护在“计算y型侧额定二次电流乘不乘”问题上没有统一,所以,整定人员容易将y型侧额定二次电流算错,从而,造成平衡系数整定错。
c.平衡系数算错。
计算平衡系数时,通常是先将基本侧平衡系数整定为1,再用基本侧额定二次电流除以另侧电流得到另侧平衡系数,如果误用另侧额定二次电流除以基本侧电流,平衡系数就会算错。
d.5.1-5.4中列举的各种因素,都会最终造成差流(或差压)不满足要求,但我们只要按照5.1-5.4依次检查,就会将这些因素一个个排除,此处就不再赘述。
5.结束语
带负荷测试对变压器差动保护的安全运行起着至关重要的作用,对其我们要有足够的重视。
带负荷测试前,要深入了解变压器差动保护原理、实现方式和定值意义,熟悉现场接线;带负荷测试中,要按照带负荷测试内容,认真、仔细、全面收集数据;带负荷测试后,要对照上述5条分析方法,逐一检查、逐一判断。
只要切实做到了这三点,变压器差动保护就万无一失了。