5.2随机变量序列的两种收敛
随机变量序列的两种收敛
概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
则n n P , (n )
nn P , (n )
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2
与
n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
1, x c F(x) 0, x c
即
n P c
Fn (x) W F (x)
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),
茆诗松《概率论与数理统计教程》(第2版)(课后习题 大数定律与中心极限定理)【圣才出品】
是直线上的连续函数,试证:
证:若 g(x)是 m 次多项式函数,即 下证一般情况,对任意的 又选取 N1 充分大,使当
,则由上一题知有
,取 M 充分大,使有
时,有
,于是有
对取定的 M,因为 g(x)是连续函数,所以可以用多项式函数去逼近 g(x),并且在任意
有限区间上还可以是一致的,因而存在 m 次多项式
,于是有
,因为
,故存在充分
由 的任意性知,当
时,有
结论得证.
6.设 D(x)为退化分布: 试问下列分布函数列的极限函数是否仍是分布函数?(其中 n=1,2,…)
(1)
(2)
(3)
解:(1)因为此时的极限函数为
性质: lim F x=0 ,所以不是分布函数. x-
,不满足分布函数的基本
4 / 42
圣才电子书
有
故当
时,
即
成立,进一步由
可得
,所以又有
1 / 42
圣才电子书
成立.
十万种考研考证电子书、题库视频学习平 台
(2)先证明
对任意的
,取 M 足够大(譬如
),使有
成立,对取定的 M,存在 N,当 n>N 时,有
这时有
从而有
由 的任意性知
,同理可证
由上面(1)得
即
成立.
3.如果
3 / 42
圣才电子书
十万种考研考证电子书、题库视频学习
证:先证充分性,令
,则
,
故 f(x)是 x 的严格单调增函数,因而对任意的
,有
于是对任意的
,当
时,有参见 2.3 第 12 题.
充分性得证.
随机变量序列的两种收敛性
§4.2随机变量序列的两种收敛性在上一节中,我们从频率的稳定性出发,引入了n η=∑=n i i n 11ξ−→−p a (n ∞→) 即随机变量序列{}n η依概率收敛于常数a 这么一个概念。
我们自然可以把所讨论的问题推广到a 不是一个常数,而是一个随机变量这样的情形,于是需要引入下面的定义。
定义4.2 设有一列随机变量1η,2η,3η,…,n η,如果对任意的ε>0,都有 lim ∞→n P ()εηη<-n (4.6)则称随机变量序列{}n η依概率收敛于η,并记作lim ∞→n r η−→−p η 或n η−→−p η (n ∞→) 由此可知,前一节中讨论过的大数定律只是上述依概率收敛的一种特殊情况。
我们已经知道分布函数全面地描述了随机变量的统计规律,如果已知n η−→−p η(n ∞→),那么它们相应的分布函数n F (x )与F (x )之间的关系会有什么样的关系呢?一个猜测是,对所有的x ,都有n F (x )→ F (x )(n ∞→)成立,这个猜测对不对呢?让我们看一个很简单的例子。
例4.2 设η,n η都是服从退化分布的随机变量,且P (η=0)=1,P (n η=-n 1)=1,n=1,2,… 于是对任给的ε>0,当n>ε1时有 P (ηη-n ≥ε)=P (n η≥ε)=0所以n η−→−p η (n ∞→) 成立。
又设η,n η的分布函数分别为F (x ),n F (x ),则F (x )=⎩⎨⎧≤>0,20,1x xF (x )=⎪⎩⎪⎨⎧-≤->n x n x 1,21,1 显然,当x ≠0时,lim ∞→n n F (x )= F (x )成立,当x=0时,lim ∞→n n F (0)=lim ∞→n 1=1≠0= F (0) 这个简单的例子表明,一个随机变量序列依概率收敛于某一个随机变量,相应的分布函数列不一定是在每一点上都收敛于这个随机变量的分布函数的。
随机变量序列的几种收敛性及其关系000
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:***指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 1 2.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系. 2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is asequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship. This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows: 1. Convergence of random variables the concept of theory; 2. the convergence of several random variables between; From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: 41 几种收敛性定义 42 依概率收敛与依分布收敛的关系 53 r阶收敛与几乎处处收敛的关系 114 依概率收敛与r阶收敛的关系 135 几乎处处收敛与依概率收敛和依分布收敛的关系 17总结 19四种收敛性 19四种收敛蕴涵关系 19致谢 21参考文献 22引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b
②
1 / 167
圣才电子书
十万种考研考证电子书、题库视频学习平台
P
X n Yn a b
③
P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果
5.2随机变量序列的两种收敛
(n )
i 1
根据定义即证 例1、设 n 是独立同分布的随机变量序列,且 2 lim P ( k a ) 0 2 E a , D n ( n 1 ) 1 1
n n
n 2 P (n ) k a 试证: n k ( n 1 ) k 1 n 2 n 2 n 2 k E a k a kk 证: E k ( n 1 ) n ( n 1 ) ) k1 n k 1 k 1 n(n1
随机变量序列依概率收敛与函数序列收敛也不一样.
P 0 , lim P ( ) 1 n n n n
i列 n 服从大 n n 1 1 数定律就可以表达为 0 , lim P ( E ) 1 i i n n n
0,有 如果
n
lim P ( ) 0 或 lim P ( ) 1 n n
n
P
则称随机变量序列 n 依概率收敛于 ,记作
lim n
n
,或
P , ( n ) n
由定义可知,
P n
0 , ( n )
W
证明 :略。
3.依概率收敛与按分布收敛间的关系
(1)
( n ) n
P
( n ) n
L
(2)
P c n n
L n
c n
分布函数列的弱收敛是一个很有用的概念,但要判 断一个分布函数序列是否弱收敛,有时很麻烦,而判 定相应的特征函数序列的收敛性却往往比较容易。
第三节 两种收敛性ppt
L
这两个定义的实质一样,要求F(x)的连续点收敛。对分布函数 列称弱收敛;对随机变量序列称按分布收敛。
下面对依概率收敛和按分布收敛进行比较:
定 理 4 .3 .2
n Fn ( x ) F ( x )
n
则称
Yn依 概 率 收 敛 于 Y .
记为
Yn Y
p
例 如 : Y 1 t (1)
则有
Y 2 t ( 2 ) ...........Y n t ( n ) ...... , Y N ( 0 , 1)
Yn Y
p
提 问 : Y 1, F1 ( x ) ,
Y 2, . . . . Y F 2 ( x )......... F ( x )
P
3、 若 X
若 X
n
a
P
,则 X
2 n
a
P P
2
n
a
P 2
X n a 0,
n 2
( X n a ) 0 , 2 a( X ( X n a ) 2 a( X n a )= X
2 2 n
P( 由 1 )
a) 0 0
n n
而
0 Fn ( x ) 1
n
x x
1 n 1 n 0 F (x) 1 x 0 x 0
当
x 0 时 , lim F n ( x ) F ( x )
F (0 ) 1
n
当 x 0 时 , lim F n ( 0 ) 0
依分布收敛与依概率收敛
依分布收敛与依概率收敛
依分布收敛与依概率收敛是概率论和统计学中的两个重要概念,常
用于描述随机变量序列的收敛性质。
下面分别介绍这两种收敛的定义
和特点。
依分布收敛:
所谓依分布收敛,是指随机变量序列逐渐趋向于某个分布的过程。
具
体而言,对于一组随机变量序列{Xi}和分布函数F(x),如果对于任意
的x,当n趋向于无穷大时,有Fn(x)都趋向于F(x),则称{Xi}依分布
收敛于分布函数F(x),记作Xi~F(x)。
依分布收敛的特点是:
1. 收敛的结果是一个分布函数,可以通过累加分布函数来计算概率值。
2. 收敛的充分条件是连续的性质,具有普遍性。
3. 各种随机变量均可以进行依分布收敛。
依概率收敛:
依概率收敛是指随机变量序列以大概率趋近于某一常数的过程。
具体
而言,对于一组随机变量序列{Xi}和常数a,如果对于任意的小于等于ε(ε>0),有lim P(|Xi-a|>ε)=0,则称{Xi}依概率收敛于a,记作Xi→a (p)。
依概率收敛的特点是:
1. 收敛的结果是一个确定值,其概率趋向于1。
2. 收敛的充分条件是可测性的性质,具有更弱的条件限制。
3. 仅限于实数的随机变量序列(也可以进行有限维的推广)。
以上是依分布收敛与依概率收敛的定义和特点,两者之间存在差异,但都是表示随机变量序列逐渐趋向于某一结果的重要方法。
在实际应用中,需要根据具体问题和需求选择适合的方法进行处理。
随机变量序列的几种收敛性注记
科教论坛科技风2020年10月DOC10.19392/ki.1671-7341.202028033随机变量序列的几种收敛性注记杨元启三峡大学理学院湖北宜昌443002摘要:随机变量序列的收敛性理论主要源自测度论中可测函数序列的收敛性理论,但由于概率测度的特殊性,使得随机变量序列的敛散性有自己的特点。
这些理论既是概率论的重点,也是难点。
本文准备详细介绍随机变量序列的各种收敛性概念,讨论他们之间的联系,并以适当的例题来说明收敛的性质。
关键词:几乎必然收敛;依概率收敛;完全收敛;一致可积性本科教材中关于随机变量序列的收敛概念一般只有两种:依概率收敛和依分布收敛,分别关联大数定律和中心极限定理。
但根据序列收敛的强弱,有多种强弱不同的收敛概念,它们的侧重点不一样,相互之间也有联系,讨论如下。
设79,9,”=1,2,3}是概率空间(*,,p)上的随机变量序列,随机变量9的分布函数记作F(0=p(X<x+,x(R,X n 的分布函数记作F(0#以下是几种常用的收敛性:(1)若对F(0)的每个连续点0,有0)=F(0),则称随机变量序列{X”}依分布收敛于X,记作X”厶X;(2)若对任意&>0,li rn P(X…-X|'&)=0,则称随机变P量序列{X”}依概率收敛于随机变量X,记作X”一X;(3)设r>0,=X”存在,且”X”-X|'=0,则称随机变量序列{X”}r阶收敛于随机变量X,记作X”二X,这时易知=X>也存在;(4)若P(”im X…=X)=1,则称随机变量序列{X”}几乎必然收敛于随机变量X,记作X”上$X;(5)若对任意的&>0,都有lim-P(|X»-X|'&)=0称随”$"7=”c机变量序列{X”}完全收敛于随机变量X,记作X”一X#下面几个概念与随机变量序列的收敛性关系密切:(1)对任给的&>0,存在(使得对任一"(F,当P(")d 时,便有spf j X”|$p<&,则称随机变量列{X”}是一致绝对连续的;(2)若epJj X”|$P<",则称随机变量列{X”}积分一致 有界;(3)若sp|X”|$P=0,则称随机变量列{X”}是一致可积的;由测度论的理论,有下列结论:(1){X”}是一致可积的充要条件是{X”}是一致绝对连续的且积分一致有界;(2)X”上$X当且仅当对于任意的&>0,^{*”7X”-X丨'&}}=0以及X”上$x当且仅当对于任意的&>0,P(/*7X m-X|'&})=0;”=1>=”P(3)X…-$X当且仅当对{X”}的任一子序列{X”?,均存在子序列7X”》}0{X”?,使得X”7上$x;“、a・s.,、,P(4)X”一X时必有X”一X;r P(5)X”---------$X时必有X”----------$X;P<(6)X”---------$X时必有X”----------$X;C., a.s.(7)X”---------$X时必有X”----------$X;(8)”F"IX-XI=0的充要条件是{X”}是一致可积且PX”$X上述部分结论的证明可以从本文所列文献中找到,这里就不赘述了#我们只证(2)和(7)#先介绍一个引理#"8888弓【理如果-P("”)<8,则P(/U"”)=0,P(*/"”.)=1,即事件序列{"”}中有无穷多个"”发生的概率为0,或者说事件序列{"”}中至多有有限个"”发生的概率为1;如果P("”)=8,而{"”}是两两独立的事件序列,则P8888(/*"”)=1,P(*/"”.)=0,即事件序列{"”}中有无穷多个"”发生的概率为1,或者说事件序列{"”}中至多有有限个"”发生的概率为0#这是著名的波雷尔-康特立引理#(2)的证明:若X”上$X,即*中除了某个概率测度为零的集合8以外的所有点)对于任何&>0,当”>”0(&,)时就有t”_X I<&,也就是说,满足对任意的”,总存在>'”,使得X”-X的点)必属于零测度集8,亦即/*7X”-X'”一1>—”&}08,因此P(/*7|X>-X|'&})=0;”=1>=”所以说X”上$X当且仅当对于任意的&>0,P (/*7X m-X|'&})=0;”=1>=”66科技风2020年10月另外,根据概率的连续性,显然有P(/*i19-91>&!)=+=17=+0i U/P{U7丨9”-9|'&}=0,反之,若对于任意的&>0, >=+有U m:{U79”-9|'&}=0,则由于/U79”-9|'&8 +$">=++=1>=+"880U7X m-9|'&,有0!:(/U7X m-9|)!Um:>=++=1>=++$8 {U+7.|9>-9|}=0综上有:as889—」9%对于任意的&>0,P(/U7丨9”-9|)=0+=1>—+%对于任意的&>0,fm P{U7丨9”-9|}=0#+—8>—+C8(7)的证明:因为9―$9,即任意的&>0,Um-:+$87=+ (9,,-9'&)—0,因此Um:{U7丨9”-9|}<Um-:+$8>=++$8>=+ (9m-9|'&)=0,即|=9#以下通过几个例子进一步讨论随机变量序列的性质#例1设{9”}为相互独立的随机变量序列,若9…上$证明:设9…上$0,则对任意的&>0,有:(/U79-0)=0”=17=+即:(limyp7I9t1>&)=0,由{9…}相互独立及波雷尔-康特立引理,知-:(9>'&)<8,因此Um-:>=1”$8>=+ (9”|'&)=0,此即9 0注:(1)显然,此结论可改为:若{9…}相互独立,则9…上$0等价于9…亠0'或者,若{9…}相互独立,则9…上$0等价于2&>0,-:7(191>&)!<8#+=1(2)若{9}独立,{,”}为常数列,则9上$0等价于2&>0,-:7(19<8#”—1例2设{9”}为以概率1单调的随机变量序列,且9…: a.s.—9,则9”一9#:证明:不妨设2)(*,{9”}为单调递增,由于9…-$9,因此对{9”}的任一子序列{9”?,均存在子序列{9”?0 79…7!,使得9”7上$9,而{9”}为单调递增,故2)(*,9”$ 9,因此9”9#例3设随机变量序列{9+}依分布收敛于常数,,则9”:-----,#「1久',证明:常数,的分布函数;(0)=匸,{9”}依分布0x<<收敛于,,对任意的&>0,:(丨9”-|'&)=:(9”<,-&+:(9”'a+&)<;”(a-&)+—:(9”«+£&二;”(Q-&)+—;”(a+&:-0)=0+1-1二0,所以9”---a#例4设{9”}是独立同分布的随机变量序列,二阶矩有2”:界,则十*-@@―”(”+1)@12”证明:记=91=#,A91=*2,则*2<8,=(,2八-忑)—”(”1)@=1 )”乔17=( -9心A含9)=心-2”2”川-弘予,A(»-9)=4*2亍-==232”+11*2$0,(”$8)2=13”(”+1)2”由契贝雪夫不等式有2&>0,P(I十丁--=91I'&)”(”1)=12”<”(”&)@——$0,(+$»),亦即尸石-9厶=91# &”(”+1)=1例5设{9”}为独立同分布的随机变量序列,密度函数「2-0a)兀'a</(0=L,记B”=m/791,…9”!,则B”—a# 050<af1-2"(0"a)兀'a 证明:容易算得公共分布函数;(0)-,0050<a'a时,:(B”>0)=:(m/791,…9”!>0)=:(/{9=>0)=1=(1-F(0))”=2一0-)2&>0,P(I”-a l'&)=:(B”'a+&)+P(B”<a-&)=2兀+:(*79=<a-&!)=1=2^+-:(9=<a-&)=1—e-&+0$0,”$8:<所以B”$a,因此,B”$a#例6设{9”}为独立同分布的随机变量序列,P(9”=1)1”9»=:(9”=0)=*,B”=-出”=1,2,3,则B”的分布收敛于27=12[0,1]上的均匀分布#证明:9»的特征函数为/()=*(1+e")—as寺2“,;的特征函数为+()-寺(1+e")=cos2)71“,7=1,2,3,由于97独立同分布,7=1,2,3,故B”的特征函数为,”(-=3(cos7=1tsin命抽')=丁-----------eM-,由于”/0”(-=〒Cn寺=Sm2”+丄(2“-1),而[0,1]上的均匀分布的特征函数恰为丄*2“-1), It It由逆极限定理知B”的分布收敛于[0,1]上的均匀分布#参考文献:[1]王寿仁.概率论基础与随机过程[M&.北京:科学出版社,1997.[2]严家安.测度论讲义.北京:科学出版社,2000.[3]周民强.实变函数论.北京:北京大学出版社,2003.[4]严士健,王隽骧,刘秀芳.概率论基础.北京:科技出版社,$982.67。
概率论课件 第4章第2讲随机变量序列的两种收敛性
0,当( x a)2 ( y b)2 2时有
| f ( x, y) f (a, b) |
于是 {| f (k ,k ) f (a, b) | } {( a)2 ( b)2 2 }
辛钦k 1n Nhomakorabeak
a | } 1
证明: {n } 同分布, 它们有相同的特征函数, 这个相同的特征函数记为 (t )
1 n 记 n k n k 1
a E ( k )
(0)
i
(t ) (0) (0)t o(t ) 1 iat o(t )
的分布函数Fn ( x) F ( x).
显然有 lim Fn ( x) F ( x)
n
L Xn Y
但对任意的0<ε<2,恒有
P{| n | } P{2 | | } 1
即不可能有{n }依概率收敛于
所以:依分布收敛依概率收敛不真
定理:随机变量序列依概率收敛于常数C 的充要条件是依分布收敛于常数C 证明:必要性已证,下面只证充分性
§4.2 随机变量序列的两种收敛性 上一节我们由大数定理可得,在贝努里试验中, 事件发生的频率稳定于概率,即
lim P{
n
n
n
P } 1
自然想到的是, 随机变量序列是否依 这种方式能稳定于一个随机变量呢 ?
这就是我们要讲的依概率收敛问题.
1
依概率收敛 定义:设{ n }是随机变量序列,若存在随机 变量 (或常数),对于任意ε>0,有
x x
令y x, z x,由x为F ( x)的连续点, 有
五章随机变量的收敛
例2:依分布收敛
考虑随机序列 X1,X2...,Xn ,其中 Xn~N0,1n
直观:X n 集中在0处,X n 收敛到0
但
Xn0
Xn 2
(Chebyshev不等式)
1n 0
2
4
两种收敛的定义
5.1 定义:令 X1,X2...,Xn为随机变量序列,X为另 一随机变量,用Fn表示Xn的CDF,用F表示X的 CDF
Quadratic mean (L2)
Point-mass distribution
probability
distribution
L1
反过来不成立!
almost surely
9
例:伯努利大数定律
设在一次观测中事件A发生的概率为 p A ,如果观
测了n次,事件A发生了n A 次,则当n充分大时,A在次观
np<5)或
n不1大 ,p则可用Poisson分布来近似计算
nP o isso n,n p
Cnkpk
1pnk
x
e
x!
21
中心极限定理的应用之一 —二项概率的近似计算(续)
当p不太接近于0或1时,可根据CLT,用正态分布来近似
计算
X i~ B ne r n o u l l ip ,X n n 1 i n 1 X i, X n p , X n p 1 p n
n Xn
Zn
Z
其中Z为标准正态分布或 ln i m Z nz z z
也记为 XnN,2 n
1ex22dx
2
无论随机变量X为何种类型的分布,只要满足定理条件, 其样本均值就近似服从正态分布。正态分布很重要
但近似的程度与原分布有关
概率与数理统计 5.2 随机变量的收敛性与强大的数定律.ppt
一、概率收敛与分布收敛
Def.
1.
设随机变量序列{X
}
n n1
与随机变量X
0, lim n
P{|
Xn
X
|
}
0
则称随机变量序列
{
X
n
} n 1
依概率收敛于X,记作
P
Xn X
例 1. 设 X ,{Xn} 均为退化分布的随机变量,且
P( X 0) 1, P{X n 1/ n} 1, n 1, 2,L
P{|Xn-c|}= P{Xn c+ }+P{Xnc - }
=1-Fn(c+ -0)+ Fn(c-)
1-1+0=0
定理4. (连续性定理)分布函数列{Fn(x)}弱收敛于 分布函数{F(x)}的充分必要条件为:
{Fn(x)}的特征函数列 n (t) 收敛于F(x)的特征函数 (t).
N 1 nN
:|
Xn ()
X
()
|
1}} k
0
P{ I U { :| Xn () X () | }} 0, 0 N 1 nN
N
P{ U { :| Xn () X () | }} 0, 0
nN
概率的上连续性
N
P{Xn+Yn x} P{Xn x-c+}+P{|Yn-c|>} (1)
P{Xn+Yn x} P{Xn+Yn x,|Yn-c| } P{Xn x-c-,|Yn-c| }
P{Xn x-c-}- P{Xn x-c-,|Yn-c| >}
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解(大数定律与中心极限定理)【圣才出品
设{Xn}是独立同分布的随机变量序列,且 E(Xi)=μ,Var(Xi)=σ2>0 存在,若记
Y n
X1 X2 X n n n
,则对任意实数 y,有
lim
n
P(Yn
y)
(
y)
1 2
y t2 e 2dt
2.棣莫弗—拉普拉斯中心极限定理 设 n 重伯努利试验中,事件 A 在每次试验中出现的概率为 p(0<p<1),记 Sn 为 n
3 / 53
圣才电子书 十万种考研考证电子书、题库视频学习平台
Var(Xi)≤c,i=1,2,…,则{Xn}服从大数定律,即对任意的ε>0,,nlim P(
Sn n
p
)
1
成立。
(2)马尔可夫大数定律
对随机变量序列{Xn},若
1 n2
Var (
n i1
Xi)
0
,成立,则{Xn}服从大数定律,即对任意
即 X n Yn P X Y 成立。
(2)先证
X
2 n
P
X
2
,∀ε>0,δ>0,取
M
足够大(譬如ε/M≤1),使有
P{|X|
>(M-1)/2}<δ成立,对于选择的 M,∃N,当 n>N 时,有
P{|Xn-X|≥1}≤P{|Xn-X|≥ε/M}<δ
此时
P{| X n X | M } P{| X n X | | 2X | M } P({| X n X | | 2X | M } I {| X n X | 1}) P({| X n X | | 2X | M }I | X n X | 1) P{| 2X | M 1} P{| X n X | 1} 2
U P( X
Y)
随机变量序列的几种收敛性
本科毕业论文题目:随机变量序列的几种收敛性及其关系学院:数学与计算机学院班级:数学与应用数学2008级八班姓名:薛永丽指导教师:丁平仁职称:副教授完成日期:2012 年5月10 日随机变量序列的几种收敛性及其关系摘要:本文主要对随机变量序列的四种收敛性:a.e.收敛、依概率收敛、依分布收敛、r—阶收敛的概念、性质进行阐述;并结合具体实例讨论了它们之间的关系,进一步对概率论中依分布收敛的等价条件和一些依概率收敛的弱大数定律进行了具体的研究.关键字:随机变量序列收敛分布函数目录1.引言 .................................................................... 12.a.e.收敛、依概率收敛、依分布收敛、r —阶收敛的概念、性质以及它们之间的关系.2.1 a.e.收敛的概念及性质 ................................................................................................... 1 2.2 依概率收敛的概念及性质 .............................................................................................. 2 2.3依分布收敛的概念及性质 ............................................................................................... 3 2.4 r —阶收敛的概念及性质 .................................................................................................. 5 3.随机变量序列依分布收敛的等价条件. (6)4.随机变量∑=nk k n 11ξ依概率收敛的一些结果 (9)5.小结. .................................................................. 12 6.参考文献 (12)1.引言:在数学分析和实变函数中“收敛性”极为重要,特别在实变函数中对可测函数列收敛性的讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这表明,若将两个以概率为1相等的随机变量看作 相等时,依概率收敛的极限是唯一的。
概率论与数理统计
2)、设 n ,n 是两个随机变量序列, a,b为常数,
若 n P a,n Pb 且在g(x,y)在点(a,b)处连续, 则 g(n ,n ) P g(a,b), (n ). 证明略,方法类似于1) 3)、若 n P ,n P,
这个猜测对不对?
概率论与数理统计
例2、设 ,n 都是服从退化分布的随机变量,且 P 0 1
于是对
Pn
0,当n
1 1,
1
n
时有
n
1,2,
P(n ) Pn 0
所以
n P, (n )
成立。
概率论与数理统计
又设 ,n 的分布函数分别为F (x), Fn (x),
则
F ( x)
式中以随机变量 代替 a 以便得到新的收敛概念。本
节假定所得到的随机变量都是定义在同一概率空间
( , F ,P)上的。
定义5.2
概率论与数理统计
设 1,2 , ,n 为一列随机变量, 为一随机变量,
如果 0 ,有
lim
n
P(
n
)
0或
lim
n
P(
n
)
1
则称随机变量序列n 依概率收敛于 ,记作
E1 a, D1 2
lim
n
P(
2 n(n 1)
n k 1
k k
a
)
0
试证:
2 n(n 1)
n
k k
k 1
P a
(n )
证:Q
E
2
n(n
1)
n k 1
kk
2 n(n 1)
n
kEk
k 1
2 a n(n 1)
n
k
k 1
a
0 ,由切比雪夫不等式 2 n
P( E
)
D 2
1, x c F(x) 0, x c
P
lni mn ,或 n P, (n )
由定义可知,
n P n P 0, (n )
概率论与数理统计
随机变量序列 n 依概率收敛和数学分析中的序列
收敛有很大的不同.
当我们说随机变量序列 n 依概率收敛于 ,
是指对 0, 如下事件
n
发生的概率,当n无限增大时,它无限接近于0.
1
而当我们说序列
1 n
趋于0,是指当n无限增大时,
n 无限接近于0.
随机变量序列依概率收敛与函数序列收敛也不一样.
0,
lim
n
P(n
)
1 概n率论P与数理n统计
有了依概率收敛的概念,随机变量序列n 服从大
数定律就可以表达为
0,lim P( n
1 n
n i1
i
1 n
n i1
Ei
)
1
1
n
n
i
i1
证明 :略。
注意:这个定理的逆命题不一定成立,即不能从分布 函数列的弱收敛肯定相应的随机变量序列依概率收敛, 但在特殊情况下,它却是成立的。
概率论与数理统计
定理5.6 随机变量序列 n P c(c为常数)
的充要条件为 Fn (x) W F (x)
这里 F(x)是 c 的分布函数,也就是退化分布
P 1 n
n i1
Ei (n )
特别地,
0,lim P( n
n p ) 1
n
伯努利大数定律可以描述为
n P p
n
(n )
0, lim P( n
1 n
n
i
i1
a)
1
辛钦大数定律描述为
1
n
n
i
i 1
P a
(n )
概率论与数理统计
例1、设 n
是独立同分布的随机变量序根列据定,义即且证
概率论与数理统计
第 五章
§5.2随机变量序列的两种收敛性
概率论与数理统计
主要内容
一、依概率收敛 二、依分布收敛
一、依概率收敛
概率论与数理统计
1、定义
在上一节上,我们从频率的稳定性出发,得出下面
的极限关系式:
lim
n
P(
n
a
)
0
其中
n
1 n
n
k
k 1
或等价于
lim
n
P(n
a
)
1
这与数学分析中通常的函数收敛的意义不同。在上
n L, (n ).
概率论与数理统计
2.依概率收敛与弱收敛之间的关系
定理4.若随机变量列1 ,2 ,依概率收敛于随机变量
,即 n P(n ) 则相对应的分布函数列
F1 (x), F2 (x) 弱收敛于分布函数F(x)即
Fn (x) W F (x)(n )
即 n P(n )
Fn (x) W F (x)(n )
1, 0,
x0 x0
1, Fn (x) Байду номын сангаас
0,
x1 n
x1 n
显然,当
x0
时,有
lim
n
Fn
(x)
F
(x)
而当 x 0 时,有
成立。
lim
n
Fn
(0)
lim
n
0
0
1
F
(0)
概率论与数理统计
这个简单的例子表明,一个随机变量序列依概率 收敛于某个随机变量,相应的分布函数不一定在每一 点上都收敛于这个随机变量的分布函数的.
0
P(
2 n(n 1)
n
kk
k 1
a
)
D(n(n 1)
2
kk )
k 1
14
2 n2 (n 1)2
n
k 2Dk
k 1
4
2
1 n2 (n 1)2
n(n 1)(2n 1) 2
6
2 2 3 2
2n 1 n(n 1)
0(n )
故
lim P(
n
2 n(n 1)
n
k k
k 1
a
)
0
即
2
n(n 1)
n k 1
k k
P a(n
)
概率论与数理统计
2、性质
1)、若 n P ,n P, 则P ( ) 1
证: n n
0
,由
则 n
2
与
n
2
中至
少有一个成立,即
n
2
n
2
于是
P(
) P(n
2
)
P(
n
) 0(n )
2
即 0,有P( ) 1,从而P( ) 1
则n n P , (n )
nn P , (n )
二、依分布收敛
概率论与数理统计
上面我们讨论了随机序列依概率收敛的概念及有 关性质,现在我们要问:
如果已知 n P(n ), 那么它们相应的分布
函数 Fn (x)与F(x) 之间有什么关系呢?
是否对 x R 都有
Fn (x) F (x)(n ) 成立。
但是,如果再仔细观察一下这个例子,就可以 发现收敛关系不成立的点:x=0,恰好是F(x)的不连 续点.
在F(x)的连续点.
当n P, (n ) 时,它们的分布函数之间就有
lim
n
Fn
(
x)
F
(
x)
成立.
1.定义
定义5.3
概率论与数理统计
设 Fx, F1(x), F2 (x), 是一列分布函数,如果对
F(x)的每一个连续点x,
都有
lim
n
Fn (x)
F ( x)
成立,
则称分布函数列 Fn (x) 弱收敛于分布函数F(x),
并记作 Fn (x) w F (x), (n ).
若随机变量序列n (n 1,2 ) 的分布函数 Fn (x)
弱收敛于随机变量 的分布函数F(x), 也称 n
按分布收敛于 ,并记作