圆锥曲线+导数及其应用测试题___含答案
上海上海中学东校选修1-1第二章《圆锥曲线与方程》测试题(答案解析)
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D .22.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .53.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与圆()2239x y -+=相交于A 、B 两点,若2AB =,则该双曲线的离心率为( )A .5B .2C .3D .44.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若AB =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1B C .2D .46.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(1,C .5,43⎡⎤⎢⎥⎣⎦D .7.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( )A B .2C D8.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PF PQ的最小值是( )A .12B .27C .23D9.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且213PF PF =,则双曲线离心率的取值范围是( ) A .(1,2]B .5(1,]3C .[2,)+∞D .4[,)3+∞10.已知椭圆2221(02)4x y b b+=<<,直线1x y +=与椭圆交于,P Q 两点,若OP OQ ⊥,则椭圆的离心率为( )A.7B.7C.7D.711.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .812.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆上,则双曲线的离心率的值为( )A.1BC.1D二、填空题13.已知椭圆22221(0)x y a b a b+=>>的短轴长为8,上顶点为A ,左顶点为B ,12,F F 分别是椭圆的左、右焦点,且1F AB 的面积为4,点P 为椭圆上的任意一点,则1211PF PF +的取值范围为___________. 14.已知点()1,2A 在抛物线()2:20C y px p =>上,过点()2,2B -的直线交抛物线C 于P ,Q 两点,若直线AP ,AQ 的斜率分别为1k ,2k ,则12k k ⨯等于___________. 15.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.16.若M ,P 是椭圆2214x y +=两动点,点M 关于x 轴的对称点为N ,若直线PM ,PN 分别与x 轴相交于不同的两点A (m ,0),B (n ,0),则mn =_________.17.在平面直角坐标系xOy 中,设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若双曲线的右支上存在一点P ,使得△OPF 是以P 为直角顶点的等腰直角三角形,则双曲线C 的离心率为__________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.已知椭圆2212x y +=上存在相异两点关于直线y x t =+对称,则实数t 的取值范围是______.20.直线AB 过抛物线24y x =的焦点F ,且与抛物线交于A 、B 两点,且线段AB 的中点的横坐标是3,则直线AB 的斜率是_____________.三、解答题21.已知抛物线C :22y px =(0)p >的焦点为F ,点(4,)A m 在抛物线C 上,且OAF △的面积为212p (O 为坐标原点). (1)求抛物线C 的方程;(2)直线l :1y kx =+与抛物线C 交于M ,N 两点,若OM ON ⊥,求直线l 的方程.22.已知椭圆()2222:10x y C a b a b +=>>3,22⎛ ⎝⎭.(1)求椭圆C 的方程;(2)经过点()0,2M 的直线l 与椭圆C 交于不同的两点A ,B ,O 为坐标原点,若OAB l 的方程.23.已知点1F 、2F 分别是椭圆C 的左、右焦点,离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=.(1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.24.已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭,离心率为3(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值.25.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别是12(1,0),(1,0)F F -,过点1F 的直线l 与椭圆相交于AB 、两点,且2ABF 的周长为42 (1)求椭圆C 的标准方程;(2)在椭圆中有这样一个结论“已知000(,)P x y 在椭圆22221x y a b +=外 ,过0P 作椭圆的两条切线,切点分别为12,P P ,则直线12PP 的方程为00221x x y ya b+=”.现已知M 是圆223x y +=上的任意点,,MA MB 分别与椭圆C 相切于,A B ,求OAB 面积的取值范围.26.已知抛物线()2:20E y px p =>的焦点F ,抛物线E 上一点()3,t 到焦点的距离为4.(1)求抛物线E 的方程;(2)过点F 作直线l ,交抛物线E 于,A B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6cea . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.C解析:C 【分析】由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=. 设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==,121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.3.C解析:C 【分析】设双曲线的渐近线方程为y kx =,其中bk a=±,利用勾股定理可求得k 的值,即可求得b a,再由双曲线的离心率公式e =即可求得双曲线的离心率. 【详解】设双曲线的渐近线方程为y kx =,其中bk a=±, 圆()2239x y -+=的圆心为()3,0C ,半径为3r =,圆心C 到直线y kx =的距离为d =,2AB =,由勾股定理可得2222AB r d ⎛⎫=+ ⎪⎝⎭,即2219+=,解得k =±ba∴=因此,该双曲线的离心率为3c e a ====. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y px p y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k, 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N k k ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ==,∵AB =,∴222(1)p k k += 整理得23k =,∵0k >,∴k =∴倾斜角为60︒. 故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =, 故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 2m 2 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.6.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).7. B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③. ②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=c a x c,于是()22222200233-=-=b a c y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以51022e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.8.B解析:B 【分析】作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ的最小值.【详解】 如下图所示:在椭圆22:11612x y C +=中,4a =,23b =222c a b -,圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤,由圆的几何性质可得1PQ PT QT PT ≤+=+, 所以,899211111617PF PF PT PQPT PT PT -≥==-≥-=++++. 故选:B. 【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.9.A解析:A 【分析】根据题中条件,由双曲线的定义,得到2PF a =,13PF a =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又213PF PF =,所以222PF a =,即2PF a =,则13PF a =, 因为双曲线中,1212+≥PF PF F F ,即42a c ≥,则2ca≤,即2e ≤, 又双曲线的离心率大于1,所以12e <≤.故选:A. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可.10.C解析:C 【分析】设1122(,),(,)P x y Q x y ,把直线1x y +=与椭圆2221(02)4x yb b+=<<,联立,根据OP OQ ⊥计算出b ,直接求出离心率.【详解】设1122(,),(,)P x y Q x y ,由222141x y b x y ⎧+=⎪⎨⎪+=⎩得222(4)8440b x x b +-+-=,所以12221228=444·=4x x b b x x b ⎧+⎪⎪+⎨-⎪⎪+⎩∵OP OQ ⊥,∴12121212=2()10OP OQ x x y y x x x x +=-++=,解得247b =.e ∴===故选:C 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.11.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty ay px=+⎧⎨=⎩,整理得2220y pty pa --=,所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.12.A解析:A 【分析】先由题意求出以AB 为直径的圆的半径为2b r a=和圆心坐标得到圆的方程,然后代入左焦点坐标,利用222c a b =+化简后可得答案. 【详解】将x c =代入22221x y a b-=可得2by a =±,所以以AB 为直径的圆的半径为2b r a=,圆心为(),0c ,圆的方程为()4222ab xc y -+=,左焦点为(),0c -,因为双曲线的左焦点在圆上,所以()2240b c ac +--=,整理得242460a c c c +=-,即42610e e -+=,解得23e =+23e =-所以1e =+ 故选:A . 【点睛】关键点点睛:本题考查直线和双曲线的位置关系、点和圆的位置关系,关键点是先求出以AB 为直径的圆的半径,再根据双曲线的左焦点在圆上,得到所要求的,,a b c 等量关系即可,考查了学生的运算求解能力,逻辑推理能力.二、填空题13.【分析】先根据的面积和短轴长得出abc 的值求得的范围再通分化简为关于的函数利用二次函数求得最值即得取值范围【详解】由已知得故∵的面积为∴∴又故∴∴又而即∴当时最大为;当或时最小为即∴即即的取值范围为解析:25,58⎡⎤⎢⎥⎣⎦【分析】先根据1F AB 的面积和短轴长得出a ,b ,c 的值,求得 1PF 的范围,再通分化简1211PF PF +为关于1PF 的函数,利用二次函数求得最值,即得取值范围. 【详解】由已知得28b =,故4b =,∵1F AB 的面积为4,∴()142a cb -=,∴2ac -=, 又()()22216a c a c a c b -=-+==,故8a c +=, ∴5a =,3c =, ∴12121211PF PF PF PF PF PF ++=()()()221111111210101021010525a PF a PF PF PF PF PF PF ====---+--+,又而1a c PF a c -≤≤+,即128PF ≤≤, ∴当15PF =时,()21525PF --+最大,为25;当12=PF 或8时,()21525PF --+最小,为16,即()211652525PF ≤--+≤,∴121011102516PF PF ≤+≤,即12211558PF PF ≤+≤. 即1211PF PF +的取值范围为25,58⎡⎤⎢⎥⎣⎦. 故答案为:25,58⎡⎤⎢⎥⎣⎦.【点睛】 关键点点睛:本题解题关键在于熟练掌握椭圆的性质1a c PF a c -≤≤+,结合椭圆定义和二次函数最值求法,即突破难点.14.【分析】由题意将的坐标代入抛物线的方程可得的值进而求出抛物线的方程设出直线的方程并与抛物线方程联立求出两根之和及两根之积求出直线的斜率之积化简可得定值【详解】由题意将的坐标代入抛物线的方程可得解得所 解析:4-【分析】由题意将()1,2A 的坐标代入抛物线的方程可得p 的值,进而求出抛物线的方程,设出直线PQ 的方程并与抛物线方程联立求出两根之和及两根之积,求出直线AP ,AQ 的斜率之积,化简可得定值4-. 【详解】由题意将()1,2A 的坐标代入抛物线的方程可得42p =,解得2p =, 所以抛物线的方程为24y x =; 由题意可得直线PQ 的斜率不为0,所以设直线PQ 的方程为:(2)2x m y =++,设1(P x ,1)y ,2(Q x ,2)y ,联立直线与抛物线的方程:2(2)24x m y y x =++⎧⎨=⎩,整理可得:24880y my m ---=,则124y y m +=,1288y y m =--, 由题意可得1212122212122222111144y y y y k k y y x x ----=⋅=⋅---- 1212121616164(2)(2)2()488244y y y y y y m m ====-+++++--+⨯+,所以124k k =-. 故答案为:4-. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.15.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解解析:2【分析】 设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t=,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.16.4【分析】设出的坐标写出坐标满足的关系式根据题意写出直线的方程求出的横坐标计算得出的值【详解】解:设则则所以直线的方程为令可得同理有直线的方程为令可得则故答案为:【点睛】圆锥曲线中求定值问题常见的方解析:4 【分析】设出,,M N P 的坐标,写出坐标满足的关系式.根据题意,写出直线PM ,PN 的方程,求出,A B 的横坐标,计算得出mn 的值. 【详解】解:设(),M a b ,则(),N a b -,(),P c d ,则2214a b +=,2214c d +=所以PM d bk c a-=- 直线PM 的方程为()d b y b x a c a --=--,令0y =可得ad bcm d b-=- 同理有PM d b k c a+=- 直线PN 的方程为()d b y b x a c a ++=--,令0y =可得ad bcn d b+=+ 则222222ad bc ad bc a d b c mn d b d b d b -+-⎛⎫⎛⎫== ⎪⎪-+-⎝⎭⎝⎭222222111144111144a c c a c a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=⎛⎫--- ⎪⎝⎭ ()2222414a c a c -==-故答案为:4 【点睛】圆锥曲线中求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.17.(或)【分析】先根据的形状先确定出点坐标然后将点坐标代入双曲线方程根据的齐次式求解出离心率的值【详解】因为是以为直角顶点的等腰直角三角形不妨假设在第一象限所以所以所以所以所以所以所以所以又因为所以故或2) 【分析】先根据OPF △的形状先确定出P 点坐标,然后将P 点坐标代入双曲线方程,根据,a c 的齐次式求解出离心率的值. 【详解】因为OPF △是以P 为直角顶点的等腰直角三角形, 不妨假设P 在第一象限,所以122P P F c x y x ===,所以,22c c P ⎛⎫ ⎪⎝⎭, 所以2222144c c a b-=,所以2222224c b c a a b -=,所以()()222222224cca c a a c a --=-,所以4224640c a c a -+=,所以42640e e -+=,所以23e ==又因为1e >,所以e ===). 【点睛】思路点睛:利用齐次式求解椭圆或双曲线的离心率的一般步骤: (1)根据已知条件,先得到关于,,a b c 的方程;(2)结合222a b c =+或222c a b =+将方程中的b 替换为,a c 的形式;(3)方程的左右两边同除以a 的对应次方,由此得到关于离心率e 的方程,从而求解出离心率e 的值.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c+=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.【分析】设对称的两点为直线的方程为与联立可得利用根与系数的关系以及中点坐标公式可求的中点利用判别式以及在直线上即可求解【详解】设椭圆存在关于直线对称的两点为根据对称性可知线段被直线直平分且的中点在直解析:33⎛ ⎝⎭【分析】设对称的两点为()11,A x y ,()22,B x y ,直线AB 的方程为y x b =-+与2212x y +=联立可得利用根与系数的关系以及中点坐标公式可求AB 的中点()00,M x y ,利用判别式0∆>以及()00,M x y 在直线y x t =+上即可求解.【详解】设椭圆2212x y +=存在关于直线y x t =+对称的两点为()11,A x y ,()22,B x y ,根据对称性可知线段AB 被直线y x t =+直平分, 且AB 的中点()00,M x y 在直线y x t =+上,且1AB k =-, 故可设直线AB 的方程为y x b =-+, 联立方程2222y x bx y =-+⎧⎨+=⎩,整理可得2234220x bx b -+-=, ∴1243b x x +=,()1212223b y y b x x +=-+=,由()221612220b b ∆=-->,可得b <,∴120223x x b x +==,12023y y by +==, ∵AB 的中点2,33b b M ⎛⎫⎪⎝⎭在直线y x t =+上,∴233b b t =+,可得3b t =-,33t -<<.故答案为:⎛ ⎝⎭. 【点睛】关键点点睛:本题的关键点是利用直线AB 与直线y x t =+垂直可得直线AB 的斜率为1-,可设直线AB 的方程为y x b =-+,代入2212x y +=可得关于x 的一元二次方程,利用判别式0∆>,可以求出b 的范围,利用韦达定理可得AB 的中点()00,M x y 再代入y x t =+即可t 与b 的关系,即可求解.20.1或【分析】根据抛物线方程得到设直线方程为与抛物线方程联立得:再根据线段的中点的横坐标为3求得即可得到直线斜率【详解】因为直线AB 过抛物线的焦点F 且与抛物线交于AB 两点所以斜率不为0设直线AB 方程为解析:1或1- 【分析】根据抛物线方程,得到()1,0F ,设直线方程为1x my =+,与抛物线方程联立得:2440y my --=,再根据线段AB 的中点的横坐标为3,126x x +=,求得m ,即可得到直线斜率. 【详解】因为直线AB 过抛物线24y x =的焦点F (1,0)且与抛物线交于A 、B 两点, 所以斜率不为0,设直线AB 方程为1x my =+,与抛物线方程联立得:2440y my --=, 由韦达定理得:12124,4y y m y y +=⋅=-, 所以()21212424223x x m y y m +=++=+=⨯,解得1m =±所以直线的方程为1x y =±+, 所以1AB k =±. 故答案为:1或1-三、解答题21.(1)24y x =;(2)114y x =-+. 【分析】(1)分析题意,列方程组,用待定系数法求抛物线C 的方程;(2)用“设而不求法”联立方程组,把OM ON ⊥转化为12120x x y y +=,求出斜率k ,得到直线方程 【详解】解:(1)由题意可得228,11,222m p p m p ⎧=⎪⎨⨯⋅=⎪⎩解得2p =.故抛物线C 的方程为24y x =. (2)设()11,M x y ,()22,N x y . 联立21,4,y kx y x =+⎧⎨=⎩整理得22(24)10k x k x +-+=. 由题意可知0k ≠,则12224k x x k -+=-,1221x x k =. 因为OM ON ⊥,所以12120OM ON x x y y ⋅=+=, 则()()()()21212121211110x x kx kx k x x k x x +++=++++=,即()222124110k k k k k -⎛⎫+⋅+⋅-+= ⎪⎝⎭,整理得2140k k +=, 解得14k =-. 故直线l 的方程为114y x =-+. 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.22.(1)22132x y +=;(2)2y x =+或2y =+.【分析】(1)由离心率公式、将点32⎛ ⎝⎭代入椭圆方程得出椭圆C 的方程;(2)联立椭圆和直线l 的方程,由判别式得出k 的范围,再由韦达定理结合三角形面积公式得出S ==,求出k 的值得出直线l 的方程.【详解】解:(1)因为椭圆的离心率为3,所以222213b a =-=⎝⎭.①又因为椭圆经过点3,22⎛⎝⎭,所以有2291142a b+=.② 联立①②可得,23a =,22b =,所以椭圆C 的方程为22132x y +=.(2)由题意可知,直线l 的斜率k 存在,设直线l 的方程为2y kx =+.由222,132y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得,()22231260+++=k x kx .因为直线l 与椭圆C 交于不同的两点A ,B 所以()()()22212242324320k kk∆=-+=->,即2320k ->,所以223k >. 设()11,A x y ,()22,B x y ,则1221223k x x k -+=+,122623x x k =+. 由题意得,OAB 的面积1212S OM x x =⨯⨯-12x x =-=,即S == 因为OAB=()2232k =+.化简得,42491660k k -+=,即()()2243220k k --=,解得234k =或222k =,均满足0∆>,所以2k =±或k = 所以直线l 的方程为22y x =±+或2y =+. 【点睛】关键点睛:在第二问中,关键是由韦达定理建立12,x x 的关系,结合三角形面积公式求出斜率,得出直线l 的方程.23.(1)22121x y +=;(2)证明见解析,(-2,0).【分析】(1)根据离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=,可用待定系数法求椭圆的标准方程;(2)先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0).【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b +=由题意可得2222221(,)(,)0c a x y x c y x c y b c a⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+ 则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=, 所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线, 所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mkk m k m k k--+++=++ 整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0). 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.24.(1)22194x y +=;(2)最大值为【分析】(1)将P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点P ⎛ ⎝⎭, 所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛⎫- ⎪ ⎪⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)2212x y +=;(2)2[3.【分析】(1)由焦点三角形的周长得a 值,结合焦点坐标可求得b ,从而得椭圆方程; (2)设00(,)M x y ,1122(,),(,)A x y B x y ,由已知得切线AB 方程,与椭圆方程联立消去y 得x 的二次方程,应用韦达定理得1212,x x x x +,由弦长公式求得弦长AB ,再求得原点到直线AB 的距离d ,,从而可得12OAB S AB d =△,用换元法(设t =得OAB S的范围,再求出00y =时三角形面积,从而可得结论.【详解】(1)由已知1c =,4a =,所以1a b ==所以椭圆C 的标准方程为2212x y +=(2)设00(,)M x y ,1122(,),(,)A x y B x y ,22003x y +=,由已知可得直线AB 方程为0012x xy y += 当00y ≠时,将直线AB 方程与椭圆C 的方程联立,消去y 整理得222000(3)4440y x x x y +--+=.所以0122043x x x y +=+,21220443y x x y -=+ .因此0||AB == 又原点O 到直线AB的距离d ==所以01||2OABS AB d ∆=⋅=.令(1,2]t =,得到21222(,2232OAB tS t t t∆=⋅=⋅∈++当00y =时,易得23OAB S ∆=. 综上:OAB面积的取值范围为2[,32. 【点睛】方法点睛:本题考查求椭圆方程,考查直线与椭圆相交中的三角形面积问题,解题方法是设而不求的思想方法,即直线与椭圆交点为1122(,),(,)x y x y ,直线方程与椭圆方程联立消元后应用韦达定理得1212,x x x x +,由此可计算弦长,然后求出原点到直线的距离后可计算三角形面积.这样可把面积用一个参数表示,求出取值范围. 26.(1)24y x =;(2)220x y +-=. 【分析】(1)抛物线的定义可得342p ⎛⎫--= ⎪⎝⎭,即可求出p 得值,进而可得抛物线E 的方程; (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,利用点差法可求直线l 的斜率,再求出点()1,0F ,利用点斜式即可求出直线l 的方程. 【详解】(1)由抛物线()2:20E y px p =>可得准线方程为:2p x =-, 由抛物线的定义可得:342p ⎛⎫--= ⎪⎝⎭,解得:2p =, 所以抛物线E 的方程为24y x =, (2)设()11,A x y 、()22,B x y ,则21122244y x y x ⎧=⎨=⎩,两式相减可得()2212124y y x x -=-, 所以()()()1212124y y y y x x -+=-,因为线段AB 中点的纵坐标为1-,所以122y y +=-, 所以直线l 的斜率1212124422y y k x x y y -====--+-, 因为()1,0F ,所以直线l 的方程为:()21y x =--, 即220x y +-=. 【点睛】思路点睛:对于中点弦问题,多采用设而不求的方法,利用整体代入的思想求出直线的斜率,再结合直线所过的点即可得直线的方程.。
高二数学上学期第二次(12月)月考试题 文(含解析)
2019学年高二上学期第二次(12月)月考数学(文)试题考试范围:圆锥曲线与方程、导数及其应用、统计案例;考试时间:120分钟第1卷一.选择题1.已知存在性命题,则命题的否定是()A. B. 对C. D. 对【答案】B【解析】存在性命题,则命题的否定是故选:B2.下列命题中:①线性回归方程至少经过点(x1,y1),(x2,y2),…,(x n ,y n)中的一个点;②若变量和之间的相关系数为,则变量和之间的负相关很强;③在回归分析中,相关指数为0.80的模型比相关指数为0.98的模型拟合的效果要好;④在回归直线中,变量时,变量的值一定是-7。
其中假命题的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】利用回归直线方程的有关知识逐一判断即可.【详解】对于①,回归直线直线y=x+是由最小二乘法计算出来的,它不一定经过其样本数据点,一定经过(),所以①不正确;对于②,由相关系数的作用,当|r|越接近1,表示变量y与x之间的线性相关关系越强;变量y和x之间的相关系数为r=﹣0.9362,则变量y和x之间具有线性相关关系,所以②正确;对于③,用相关指数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,所以③不正确;对于④,在回归直线中,变量x=2时,变量y的预报值是-7,但实际观测值可能不是-7,所以④不正确;故选:C.【点睛】本题考查变量间的相关关系,本题解题的关键是正确理解相关变量的意义,考查命题的真假性,要求对各个章节的知识点有比较扎实,比较全面的掌握.3.双曲线的渐近线方程是( )A. B. C. D.【答案】B【解析】已知双曲线,根据双曲线的渐近线的方程的特点得到:令即得到渐近线方程为:y=±x故选:B.4.已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A. 在(﹣∞,0)上为减函数B. 在x=0处取极小值C. 在(4,+∞)上为减函数D. 在x=2处取极大值【答案】C【解析】【分析】根据函数f(x)的导函数f′(x)的图象可知f′(0)=0,f′(2)=0,f′(4)=0,然后根据单调性与导数的关系以及极值的定义可进行判定即可.【详解】根据函数f(x)的导函数f′(x)的图象可知f′(0)=0,f′(2)=0,f′(4)=0 当x<0时,f′(x)>0,f(x)递增;当0<x2时,f′(x)<0,f(x)递减;当2<x<4时,f′(x)>0,f(x)递增;当x>4时,f′(x)<0,f(x)递减.可知C正确,A错误.由极值的定义可知,f(x)在x=0处函数f(x)取到极大值,x=2处函数f(x)的极小值点,可知B、D错误.故选:C.【点睛】本题主要考查了函数在某点取得极值的条件,以及导函数图象与原函数的性质的关系,属于中档题.5.若抛物线的焦点与椭圆的右焦点重合,则的值为( )A. -2B. 2C. -4D. 4【答案】D【解析】因为椭圆的右焦点坐标为,又的焦点为所以,即6.已知椭圆的两个焦点为,且,弦过点,则的周长为( )A. B. C. D.【答案】D【解析】【分析】求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【详解】由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故选:D.【点睛】本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.7.若抛物线上有一条过焦点且长为6的动弦,则的中点到轴的距离为()A. 2B. 3C. 4D. 6【答案】A【解析】由抛物线的焦点弦公式可得:,则的中点到轴的距离为 .本题选择A选项.点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式,若不过焦点,则必须用一般弦长公式.8.已知函数f(x)=x3+3ax2+bx+a2在x=-1处有极值0,则a的值为()A. 1B. 2C. 1或2D. 3【答案】B【解析】【分析】求导函数,利用函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,建立方程组,求得a,b的值,再验证,即可得到结论.【详解】∵函数f(x)=x3+3ax2+bx+a2,∴f'(x)=3x2+6ax+b,又∵函数f(x)=x3+3ax2+bx+a2在x=﹣1处有极值0,∴,∴或,当时,f'(x)=3x2+6ax+b=3(x+1)2=0,方程有两个相等的实数根,不满足题意;当时,f'(x)=3x2+6ax+b=3(x+1)(x+3)=0,方程有两个不等的实数根,满足题意;∴a=2故选:B.【点睛】本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.9.若函数f(x)在R上可导,且f(x)=x2+2f′(2)x+m,则( )A. f(0)<f(5)B. f(0)=f(5)C. f(0)>f(5)D. f(0)≥f(5)【答案】C【解析】【分析】由于f(x)=x2+2f′(2)x+m,(m∈R),只要求出2f′(2)的值,可先求f′(x),再令x=2即可.利用二次函数的单调性即可解决问题.【详解】∵f(x)=x2+2f′(2)x+m,∴f′(x)=2x+2f′(2),∴f′(2)=2×2+2f′(2),∴f′(2)=﹣4.∴f(x)=x2﹣8x+m,其对称轴方程为:x=4,∴f(0)=m,f(5)=25﹣40+m=﹣15+m,∴f(0)>f(5).故选:C.【点睛】本题考查二次函数的单调性,求出2f′(2)的值是关键,属于中档题.10.已知是R上的单调增函数,则的取值范围是()A. B. C. D.【答案】D【解析】函数在上单增,只需恒成立,,则,,则,选D.11.已知f'(x)为f(x)的导函数,若f(x)=ln,且b dx=2f'(a)+﹣1,则a+b 的最小值为()A. B. C. D.【答案】C【解析】【分析】首先由已知的等式得到a,b的关系式,将所求转化为利用基本不等式求最小值.【详解】由b dx=2f'(a)+﹣1,得到b(﹣x﹣2)|=+﹣1,即=1,且a,b>0,所以a+b=(a+b)()=;当且仅当时等号成立;故选:C.【点睛】本题考查了定积分、导数的计算及利用基本不等式求代数式的最小值,属于中档题.12.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是( )A. B. C. D.【答案】A【解析】【分析】构造函数g(x)=,利用g(x)的导数判断函数g(x)的单调性与奇偶性,再画出函数g(x)的大致图象,结合图形求出不等式f(x)>0的解集.【详解】设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,又∵g(﹣1)==0,∴函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)>0等价于x•g(x)>0,即或,解得0<x<1或x<﹣1.∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).故选:A.【点睛】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题.二.填空题13.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单元:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每年增加1万元,年饮食支出平均增加______万元.【答案】【解析】当变为时,=0.245(x+1)+0.321=0.245x+0.321+0.245,而0.245x+0.321+0.245-(0.245x+0.321)=0.245.因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元,本题填写0.245.视频14.曲线在点处的切线与坐标轴所围三角形的面积为 .【答案】【解析】解析:依题意得y′=e x,因此曲线y=e x在点A(2,e2)处的切线的斜率等于e2,相应的切线方程是y-e2=e2(x-2),当x=0时,y=-e2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:15.设抛物线y2=16x上一点P到x轴的距离为12,则点P与焦点F的距离|PF|= .【答案】16【解析】试题分析:由抛物线方程可知,所以P到准线的距离为16,由定义可知点P 与焦点F的距离|PF|=16考点:抛物线方程及性质16.设双曲线的半焦距为,直线经过双曲线的右顶点和虚轴的上端点.已知原点到直线的距离为,双曲线的离心率为______.【答案】【解析】【分析】先求出直线l的方程,利用原点到直线l的距离为,及又c2=a2+b2,求出离心率.【详解】∵直线l过(a,0),(0,b)两点,∴直线l的方程为:+=1,即bx+ay﹣ab=0,∵原点到直线l的距离为,∴=.又c2=a2+b2,∴a2+b2﹣ab=0,即(a﹣b)(a﹣b)=0;∴a=b或a=b;又因为b>a>0,∴a=b,c=2a;故离心率为e==2;故答案为2.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程,得到a,c的关系式是解得的关键,对于双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c 的齐次式,转化为a,c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e (e的取值范围).三.解答题17.某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中优秀的人数是30人.(1)请完成上面的列联表;优秀非优秀合计甲班10乙班30合计110(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;参考公式与临界值表 .0.100 0.050 0.025 0.010 0.0012.7063.841 5.024 6.635 10.828【答案】(1)见解析;(2)不能认为“成绩与班级有关系”.【解析】【分析】(1)由于从甲、乙两个理科班全部110人中随机抽取人为优秀的概率为,可得两个班优秀的人数,乙班优秀的人数=30﹣10=20,甲班非优秀的人数=110﹣(10+20+30)=50.即可完成表格.(2)假设成绩与班级无关,根据列联表中的数据可得:K2,和临界值表比对后即可得到答案.【详解】(1)优秀非优秀合计甲班10 50 60乙班20 30 50合计30 80 110(2)根据列联表中的数据,计算得到.因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.【点睛】本题考查了列联表、独立性检验,独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式K2,计算出k 值,然后代入离散系数表,比较即可得到答案.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(x吨)与相应的生产能耗y(吨)标准煤的几组对照数据:(1)请画出上表数据的散点图;1 2 3 4 52 3 6 9 10(2)请根据上表提供的数据,求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)已知该厂技术改造前100吨甲产品能耗为220吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?注:【答案】(1)详见解析;(2);(3)0.6吨.【解析】【分析】(1)描点作图即可;(2)由题意求出,,,,代入公式求值,从而得到回归直线方程;(3)代入x=100.求解改造后消耗,即可知道比技术改造前降低多少吨标准煤【详解】(1)散点图如图:(2),,,,;,所求的回归方程为;(9分)注意:回归直线方程必过(3,6)点且纵截距为负;(3),,预测生产100吨甲产品的生产能耗比技改前降低了(吨).【点睛】独立性检验的一般步骤:(I)根据样本数据制成列联表;(II)根据公式计算的值;(III)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)19.已知函数在与时都取得极值.⑴求的值与函数的单调区间;⑵若,求的最大值.【答案】(1)的递增区间是与,递减区间是;(2).【解析】【分析】(1)求出f′(x),因为函数在x=﹣与x=1时都取得极值,所以得到f′(﹣)=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间;(2)根据(1)函数的单调性,由求出函数的最大值为f(2).【详解】(1),,由,得,,所以函数的递增区间是与递减区间是。
导数与圆锥曲线内容总结
高二下学期期中复习一、导数1.导数的概念:f ′(x )= 0lim→∆x xx f x x f ∆-∆+)()(,导函数也简称导数.2.导数的几何意义和物理意义几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线斜率. ⑴函数f(x)在点x 0处有导数,则函数f(x)的曲线在该点处必有切线,且导数值是该切线的斜率;但函数f(x)的曲线在点x 0处有切线,函数f(x)在该点处不一定可导。
如f(x)=x 在x=0有切线,但不可导。
⑵函数y=f(x)在点x 0处的导数的几何意义是指:曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率,即曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率是f ′(x 0),切线方程为y -f(x 0)=f ′(x 0)(x -x 0)如:①(2004年湖南,13)过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是______.(2x -y +4=0).②点P 在曲线y =x 3-x +32上移动,设点P 处切线的倾斜角为α,求α的范围. 解:∵tan α=3x 2-1, ∴tan α∈[-1,+∞). 当tan α∈[0,+∞)时,α∈[0,2π); 当tan α∈[-1,0)时,α∈[43π,π).∴α∈[0,2π)∪[43π,π).3.求导公式:C ′=0(C 为常数);(x n )′=nx n -1;(sin x )′=cos x ;(cos x )′=-sin x ;(e x)′=e x; (a x)′=a xln a ;(ln x )′=x 1;(log a x )′=x1log a e.. 4.运算法则如果f (x )、g (x )有导数,那么[f (x )±g (x )]'=f '(x )±g ′(x ),[c ·f (x )]'=c f '(x ). ;(uv )′=u ′v +uv ′;(v u )′=2vv u v u '-' (v ≠0). 5.导数的应用:(一).用导数求函数单调区间的一般步骤. ⑴确定函数f(x)的定义区间; ⑵求函数f(x)的导数f ′(x);⑶令f ′(x)>0,或者“0≥”所得x 的范围(区间)为函数f(x)的单调增区间; 令f ′(x)<0,或者“0≤”得单调减区间.特别注意:已知函数式求其单调性与已知单调区间求参数的范围的区别。
高二数学圆锥曲线试题答案及解析
高二数学圆锥曲线试题答案及解析1.已知动圆过定点F(0,2),且与定直线L:y=-2相切.求动圆圆心的轨迹C的方程。
【答案】【解析】动圆圆心到定点的距离与到定直线(切线)的距离相等(等于半径),由抛物线的定义可知动点的轨迹是抛物线,易得方程为.试题解析:依题意,圆心的轨迹是以F(0,2)为焦点,L:y=-2为准线的抛物线上因为抛物线焦点到准线距离等于4, 所以圆心的轨迹方程是x2=8y.【考点】抛物线的定义与方程2.已知椭圆上的点到左右两焦点的距离之和为,离心率为. (1)求椭圆的方程;(2)过右焦点的直线交椭圆于两点,若轴上一点满足,求直线的斜率的值.【答案】(1);(2).【解析】(1)根据与离心率可求得a,b,c的值,从而就得到椭圆的方程;(2)设出直线的方程,并与椭圆方程联立消去y可得到关于x的一元二次方程,然后利用中点坐标公式与分类讨论的思想进行解决.试题解析:(1),∴,,∴,∴,椭圆的标准方程为.(2)已知,设直线的方程为,-,联立直线与椭圆的方程,化简得:,∴,,∴的中点坐标为.①当时,的中垂线方程为,∵,∴点在的中垂线上,将点的坐标代入直线方程得:,即,解得或.②当时,的中垂线方程为,满足题意,∴斜率的取值为.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.3.已知曲线,求曲线过点的切线方程。
【答案】【解析】因为点不在曲线上,故先设所求切线的切点为,再求的导数则,由点斜式写出所求切线方程,再将切线上的已知点代入切线方程可求出,从而所求出切线方程.试题解析:,点不在曲线上,设所求切线的切点为,则切线的斜率,故所求的切线方程为.将及代入上式得解得:所以切点为或.从而所求切线方程为【考点】1、过曲线外一点求曲线的切线方程;2、导数的几何意义.4.已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】根据题意,由于点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点(x,y),直线方程为,与联立方程组,并且有,,解得双曲线的离心率是,故选D.【考点】双曲线的性质点评:主要是考查了双曲线与抛物线的几何性质的运用,属于基础题。
高三数学圆锥曲线综合试题答案及解析
高三数学圆锥曲线综合试题答案及解析1.已知圆经过椭圆的右焦点和上顶点.(1)求椭圆的方程;(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为,为的中点,求的最大值.【答案】(1);(2).【解析】本题考查直线、圆、椭圆、平面向量、分式函数等基础知识,考查直线与圆锥曲线的位置关系;考查运算求解能力、推理论证能力;考查数形结合、化归与转化及函数与方程等数学思想.第一问,数形结合,令y=0,x=0即可分别求出c和b的值,从而得到椭圆的标准方程;第二问,设出直线方程和P、Q点坐标,令直线与椭圆联立得到Q点横坐标,利用向量的数量积,将P、Q点坐标代入,得到关于k的表达式,利用导数求函数的最值;法二,将进行转化,变成,再利用配方法求最值.试题解析:(1)在中,令得,即,令,得,即, 2分由,∴椭圆:. 4分(2)法一:依题意射线的斜率存在,设,设 -5分得:,∴. 6分得:,∴, 7分∴. 9分.设,,令,得.又,∴在单调递增,在单调递减. 11分∴当时,,即的最大值为. 13分法二:依题意射线的斜率存在,设,设 5分得:,∴. 6分= 9分.设,则.当且仅当即.法三:设点,,6分= . 7分又,设与联立得: . 9分令. 11分又点在第一象限,∴当时,取最大值. 13分【考点】直线、圆、椭圆、平面向量、分式函数.2.(本小题满分12分)已知曲线上的点到点的距离比它到直线的距离小2.(1)求曲线的方程;(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为.由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,.所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.【考点】抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.3.已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.(1)求抛物线C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.【答案】(1);(2)x-y-1=0或x+y-1=0.【解析】(1)设Q(x0,4),代入由中得x=,在根据抛物线的性质可得,解出p即可(2)设直线l的方程为,(m≠0)代入中得,直线的方程为,将上式代入中,并整理得.A(x1,y1),B(x2,y2),M(x3,y3),N(x4,y4),根据二次函数根与系数的关系可得y1+y2=4m,y1y2=-4,.然后求出MN的中点为E和AB的中点为D坐标的表达式,计算的表达式,根据求出m即可.试题解析:(1)设Q(x0,4),代入由中得x=,所以,由题设得,解得p=-2(舍去)或p=2.所以C的方程为.(2)依题意知直线l与坐标轴不垂直,故可设直线l的方程为,(m≠0)代入中得,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=-4,故AB的中点为D(2m2+1,2m),,有直线的斜率为-m,所以直线的方程为,将上式代入中,并整理得.设M(x3,y3),N(x4,y4),则.故MN的中点为E().由于MN垂直平分AB,故A,M,B,N四点在同一个圆上等价于,从而,即,化简得m2-1=0,解得m=1或m=-1,所以所求直线l的方程为x-y-1=0或x+y-1=0.【考点】1.抛物线的性质和方程;2.直线方程以及直线与曲线的位置关系.4.如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程;(2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.【答案】(1)或;(2).【解析】(1)因为是圆的直径,所以当圆过原点时,一定有,由此可确定点的位置并进一步求出圆的标准方程;(2)设圆M的半径为,连结,显然有根据椭圆的标准方程知,所以,从而找到符合条件的定圆.解:(1)解法一:因为圆过原点,所以,所以是椭圆的短轴顶点,的坐标是或,于是点的坐标为或,易求圆的半径为所以圆的方程为或 6分解法二:设,因为圆过原点,所以所以,所以,所以点于是点的坐标为或,易求圆的半径所以圆的方程为或 6分(2)以原点为圆心,5为半径的定圆始终与圆相内切,定圆的方程为 8分探究过程为:设圆的半径为,定圆的半径为,因为,所以当原点为定圆圆心,半径时,定圆始终与圆相内切.(13分)【考点】1、椭圆的定义与标准方程;2、圆的定义与标准方程.5.已知,是双曲线的左,右焦点,若双曲线左支上存在一点与点关于直线对称,则该双曲线的离心率为A.B.C.D.【答案】【解析】即双曲线的一条渐近线方程.过焦点且垂直渐近线的直线方程为:,与联立,解之可得故对称中心的点坐标为();由中点坐标公式可得对称点的坐标为,将其代入双曲线的方程可得结合化简可得,故.故选.【考点】双曲线的几何性质,直线方程,两直线的位置关系.6.已知F1、F2为双曲线=1(a>0,b>0)的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足||=3||,则此双曲线的渐近线方程为________.【答案】y=±x【解析】由双曲线的性质可推得||=b,则||=3b,在△MF1O中,||=a,||=c,cos∠F1OM=-,由余弦定理可知=-,又c2=a2+b2,可得a2=2b2,即=,因此渐近线方程为y=±x.7.抛物线y=﹣x2上的点到直线4x+3y﹣8=0距离的最小值是()A.B.C.D.3【答案】B【解析】设抛物线y=﹣x2上一点为(m,﹣m2),该点到直线4x+3y﹣8=0的距离为,分析可得,当m=时,取得最小值为,故选B.8.已知椭圆和椭圆的离心率相同,且点在椭圆上.(1)求椭圆的方程;(2)设为椭圆上一点,过点作直线交椭圆于、两点,且恰为弦的中点。
高二数学圆锥曲线与方程试题答案及解析
高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。
解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。
3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。
利用“点差法”求弦的斜率,由点斜式写出方程。
故选B。
4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
高二数学函数与导数试题答案及解析
高二数学函数与导数试题答案及解析1. f(x)=x5+ax3+bx-8且f(-2)=0,则f(2)等于()A.-16B.-18C.-10D.10【答案】A【解析】略2.;若..【答案】4【解析】略3.函数,的最大值是()A.B.-1C.0D.1【答案】D【解析】,所以当时;当时,所以函数在上单调递增,在上单调递减.所以.故D正确.【考点】用导数求最值.4.已知曲线f(x)=ln x在点(x0,f(x))处的切线经过点(0,-1),则x的值为()A.B.1C.e D.10【答案】B【解析】【考点】函数导数的几何意义5.函数的定义域为.【答案】【解析】函数的定义域为即函数的定义域为【考点】函数的定义域6.(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:在会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?【答案】该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元.【解析】设每天生产甲种产品x吨,乙种产品y吨,建立目标函数和约束条件,利用线性规划,即可求出结果.试题解析:解:设每天生产甲种产品吨,乙种产品吨. 1分依题意可得线性约束条件4分目标函数为, 5分作出线性约束条件所表示的平面区域如图所示8分将变形为当直线在纵轴上的截距达到最大值时, 9分即直线经过点M时,也达到最大值. 10分由得点的坐标为 12分所以当时, 13分因此,该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元. 14分【考点】简单的线性规划.7.(本题满分12分)已知函数(为实数).(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;(Ⅲ)已知,求证:.【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)详见解析.【解析】(1)先求导,利用导数的几何意义,再求进行求解;(2)求导,求极值点,根据函数在区间上不存在极值,得到的取值范围,根据条件存在满足,所以,所以求函数的最大值,因为含参,所以讨论对称轴于定义域的关系,求二次函数的最值,得到关于的不等式,再进行求解;(3)先判定函数的单调性,并求其最大值,得到,再进行换元,令,则,即,再代入裂项向消法求和,证明不等式.试题解析:(Ⅰ)当时,,,则,函数的图象在点的切线方程为:,即(Ⅱ),由由于函数在区间上不存在极值,所以或由于存在满足,所以对于函数,对称轴①当或,即或时,,由,结合或可得:或②当,即时,,由,结合可知:不存在;③当,即时,;由,结合可知:综上可知:或(Ⅲ)当时,,当时,,单调递增;当时,,单调递减,∴在处取得最大值即,∴,令,则,即,∴.故.【考点】1.导数的几何意义;2.函数的单调性;3.函数的极值;4.放缩法.8.设,那么()A.B.C.D.【答案】C【解析】根据指数函数的性质,可知,根据指数函数的单调性,可知,根据幂函数的单调性,可知,从而有,故C是正确的.【考点】利用指数函数的性质、幂函数的性质比较大小.9.(本小题满分10分)已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)过点作曲线的切线,求此切线方程.【答案】(Ⅰ)(Ⅱ)【解析】第一问根据题中所给的条件,函数在处取得极值,得到函数在处的导数为零,从而得出实数的值,再带入验证,满足条件,第二问根据第一问的结果,从而确定出函数的解析式,根据过某点的曲线的切线方程的求解方法,首先设出切点的坐标,应用导数的几何意义,确定出切线的斜率,从而应用点斜式方程,写出切线方程,将带入切线方程,从而解得切点的横坐标的值,带入求得切线方程.试题解析:(Ⅰ) 1分,即解得, 4分此时在两边(附近)符号相反,所以处函数取得极值,同理,在处函数取得极值. 5分(Ⅱ)设切点坐标为.则切线方程为 7分化简,得,即, 9分所求的切线方程为:.10分【考点】函数的极值,导数的应用,切线的方程.10.设函数,.(1)判断函数在上的单调性;(2)证明:对任意正数a,存在正数x,使不等式成立.【答案】(1)上是增函数;(2)证明详见解析.【解析】本题主要考查了函数单调性的判断方法、导数在最大值、最小值问题中的应用、利用导数判断函数的单调性常用的方法,考查了学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用导数的办法,通过导数大于或小于0判断函数的单调性;第二问,先将化为,从而原不等式化为,即,令,利用导数研究它的单调性和最值,最后得到存在正数,使原不等式成立.试题解析:(1),令,则,当时,,∴是上的增函数,∴,故,即函数是上的增函数.(2),当时,令,则故,∴,原不等式化为,即,令,则,由得:,解得,当时,;当时,.故当时,取最小值,令,则.故,即.因此,存在正数,使原不等式成立.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.11.(本题满分14分)已知函数有最小值.(1)求实数的取值范围;(2)设为定义在上的奇函数,且时,,求的解析式.【答案】(1);(2).【解析】(1)分类讨论将表达式中的绝对值号去掉成为有两个一次函数的分段函数,从而问题可转化于在每个分段上存在最小值,即可求解;(2)利用奇函数的性质可知,当时,,再由结合已知条件即可求解.试题解析:(1),要使函数有最小值,需,即时,有最小值;(2)∵是上的奇函数,∴,设,则,∴,即.【考点】1.分段函数;2.奇函数的性质;3.分类讨论的数学思想.12.若直线与曲线有两个不同的交点,则实数的取值范围是()A.B.C.D.【答案】B【解析】数形结合法如上图.直线:是过定点P(-2,4)的动直线,曲线是以原点为圆心,2为半径的上半圆.当直线在PA位置时,即与圆相切时,由圆心到直线距离等于半径得,;当在PB位置时,.由图像知,当直线在PA与PB之间时,有两个交点,所以.故选B.【考点】直线与圆的相交问题.【方法点睛】直线与圆的位置关系常有两种方法研究:一、利用圆心到直线的距离与半径的关系判断交点个数,或由交点个数求参数范围;二、将直线代入圆的方程,利用判别式研究交点个数,或由交点个数求参数范围.但当直线与半圆或四分之一圆等相交问题,常借助图像属性结合去研究交点问题.例如本题,因研究的圆是半圆,所以数形结合方法比较好.13.已知,符号表示不超过的最大整数,若函数有且仅有个零点,则的取值范围是A.B.C.D.【答案】C【解析】,构造函数,在同一坐标系内作出函数与函数的图象,由图象可知,当时,与的图象有三个公共点,故选C.【考点】1.函数与方程;2.数形结合思想;3.新定义函数问题.【方法点睛】本题主要考查学生接受新知识的能力以及数学中的数学结合思想、函数与方程思想等思想方法,属难题.解决此类问题的关键是将函数的零点问题通过等价转化,将问题转化为两个函数交点的个数问题,再正确画出两个函数的图象,由数形结合进行求解.14.函数的极小值为.【答案】【解析】, 令得;令得.所以函数在上单调递减;在上单调递增.所以在处函数取的极小值为.【考点】用导数求极值.15.若定义在上的函数满足,其导函数满足,则下列结论中一定正确的有①,②,③,④.【答案】①③【解析】令,,,恒成立.在上单调递增. ,,,即恒成立;,即.恒成立.故正确的有①③.【考点】用导数研究函数的性质.16.已知,,,则的大小关系是()A.B.C.D.【答案】B【解析】,,又,,故选B.【考点】1、对数式的运算;2、对数式的比较大小.【方法点睛】纵观历年数学高考试题,几乎每套题都有指数式和对数式大小比较的客观题目,结合近年来的数学高考试题,总结归纳指数式和对数式比较大小的六种解题方法.(1)单调函数法同底的指数式和对数式比较大小,就是利用指数函数和对数函数的单调性来比较;(2)中间桥梁法底不同的指数式和对数式比较大小,如果不能直接利用指数函数和对数函数的单调性来比较,可利用特殊数值(如0 或1)作为中间桥梁,进而可比较出大小;(3)特值代入法对于在给定的区间上比较指数式和对数式的大小的问题,可在这个区间上取满足条件的特殊值,代入后通过计算简化或避免复杂的变形与讨论,使问题简捷获解;(4)估值计算法估值计算是指通过估值、合理猜想等手段,准确、迅速地选出答案;(5)数形结合法画出指数函数和对数函数的图象,利用直观的图象往往能得到更简捷的解法.特征构造法对于含有几何背景的指数式和对数式的大小问题,可根据题目特点,构造函数或利用其他几何特征进行解题.17.已知函数,那么f (1)等于10C.1D.0A.2B.log3【答案】A【解析】【考点】函数求值18.若直线与曲线恰有一个公共点,则实数k的取值范围是______________.【答案】或【解析】曲线,即(x≥0),表示一个半圆(单位圆位于x轴及x轴右侧的部分).如图,A(0,1)、B(1,0)、C(0,-1),当直线y=x+k经过点A时,1=0+k,求得k=1;当直线y=x+k经过点B、点C时,0=1+k,求得k=-1;当直线y=x+k和半圆相切时,由圆心到直线的距离等于半径,可得,求得,或(舍去),故要求的实数k的范围为(-1,1]∪{-2},【考点】直线与圆的位置关系19.已知函数其中为参数.(1)记函数,讨论函数的单调性;(2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.【答案】(1)当时,函数在定义域上单调递增.当时,在上单调递增,在单调递减,在上单调递增;(2)证明见解析.【解析】第(1)小题设计为分类讨论函数的单调性.首先化简g(x),然后对g(x)求导化简得,注意到,所以就找到的临界点,然后对和进行分类讨论求解;第(2)小题设计为证明题,实质转化为求函数的最值.先求,然后构造函数,通过求导求函数H(x)的极值,从而得函数H(x)的最小值,命题得证.试题解析:(1)证明:函数的定义域是.,,当时,则,所以,所以函数在定义域上单调递增.当时,令,则可知函数在上单调递增,在单调递减,在上单调递增.(2)令则或若曲线与轴正半轴有交点,则且交点坐标为又则所以曲线在点处的切线方程为,即令函数在区间上单调递增,在区间上单调递减,所以当时,有最小值,所以,则【考点】导数,导数的几何意义,函数的单调性,函数的极值,函数的最值.【方法点睛】本题以三次为背景,第(1)小题设计为分类讨论函数的单调性,其中讨论的标准就是导函数的正负性,需要一定的运算能力.第(2)小题设计为证明题,其实就是函数的恒成立问题,可以转化为函数的最值问题,求函数的最值,需转化为求函数的极值,需转化为求函数的单调性,解题思路清晰,需要有一定的运算能力.20.已知动点与平面上两定点连线的斜率的积为定值-2.(1)试求动点的轨迹方程;(2)设直线与曲线交于两点,求.【答案】(1)();(2).【解析】(1)设,表示两直线的斜率,利用斜率乘积为,建立方程化简即可得到点的轨迹方程;(2)将直线代入曲线,整理得,可求出方程的根,进而利用弦长公式可求.试题解析:(1)设点,则依题意有整理得由于,求得的曲线的方程为();(2)由消去得:,设,则【考点】直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.【方法点晴】本题主要考查了轨迹方程的求解及直线与圆锥曲线的弦长的计算,属于中档试题,本题解答中,第1问中,以斜率为载体,考查了曲线方程的求解,关键在于利用斜率公式,根据题设条件建立关于的关系式,化简整理得曲线的轨迹方程;第2问题中,熟记弦长公式,利用弦长公式求解直线与圆锥曲线的弦长,准确、仔细计算是解答的关键.21.若函数在处取得极值.(1)求的值;(2)求函数的单调区间及极值.【答案】(1)(2)单调递增区间是,单调递减区间是,极小值为,极大值为.【解析】(1)求出原函数的导函数,由函数在x=1时的导数为0列式求得a的值;(2)把(1)中求出的a值代入,求其导函数,得到导函数的零点,由导函数的零点对定义域分段,利用导函数在不同区间段内的符号求单调期间,进一步求得极值点,代入原函数求得极值.试题解析:(1),由,得.(2),.由,得或.当时;②当时或.当变化时,的变化情况如下表:-+-因此,的单调递增区间是,单调递减区间是.函数的极小值为,极大值为.【考点】利用导数求过曲线上某点处的切线方程;利用导数研究函数的单调性22.(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【答案】(Ⅰ)f(x)在x=1处取极大值.满足题意.(Ⅱ)见解析;(Ⅲ)见解析【解析】(Ⅰ)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.23.某校内有一块以为圆心,(为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售,已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.(1)设(单位:弧度),用表示弓形的面积;(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.(参考公式:扇形面积公式,表示扇形的弧长)【答案】(1) ;(2),.【解析】(1)由,利用扇形及三角形面积公式即得;(2)先由题意将利润表示成关于的函数关系式,再利用导数判断函数单调性求得最大值即可.试题解析:(1)因为,,所以.(2)设总利润为元,种植草皮利润为元,种植花卉利润为元,种植学校观赏植物成本为元,,,,∴,设,,,,,在上为减函数;,,在上为增函数;当时,取到最小值,此时总利润最大:.答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值.【考点】1、数学建模能力;2、利用导数研究函数的单调性及最值.24.设点是函数图象上的任意一点,点,则的最小值为()A.B.C.D.【答案】A【解析】函数变形为表示圆的下半部分,点在直线上,圆心到直线的距离,圆的半径为2,则的最小值为【考点】1.直线和圆的位置关系;2.数形结合法25.已知a为实数,f(x)=(x2﹣4)(x﹣a).(1)求导数f′(x);(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2)和(2,+∞)上都是递增的,求a的取值范围.【答案】(1)3x2﹣2ax﹣4.(2)最大值为,最小值为.(3)[﹣2,2].【解析】(1)按导数的求导法则求解(2)由f′(﹣1)=0代入可得f(x),先求导数,研究函数的极值点,通过比较极值点与端点的大小从而确定出最值(3)(法一)由题意可得f′(2)≥0,f′(﹣2)≥0联立可得a的范围(法二)求出f′(x),再求单调区增间(﹣∞,x1)和[x2,+∞),依题意有(﹣∞,﹣2)⊆(﹣∞,x1)[2,+∞]⊆[x2,+∞)解:(1)由原式得f(x)=x3﹣ax2﹣4x+4a,∴f'(x)=3x2﹣2ax﹣4.(2)由f'(﹣1)=0得,此时有.由f'(x)=0得或x=﹣1,又,所以f(x)在[﹣2,2]上的最大值为,最小值为.(3)解法一:f'(x)=3x2﹣2ax﹣4的图象为开口向上且过点(0,﹣4)的抛物线,由条件得f'(﹣2)≥0,f'(2)≥0,∴﹣2≤a≤2.所以a的取值范围为[﹣2,2].解法二:令f'(x)=0即3x2﹣2ax﹣4=0,由求根公式得:所以f'(x)=3x2﹣2ax﹣4.在(﹣∞,x1]和[x2,+∞)上非负.由题意可知,当x≤﹣2或x≥2时,f'(x)≥0,从而x1≥﹣2,x2≤2,即解不等式组得﹣2≤a≤2.∴a的取值范围是[﹣2,2].【考点】利用导数求闭区间上函数的最值;导数的运算;利用导数研究函数的单调性.26.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1);(2)直线的方程为,切点坐标为.【解析】(1)第一步,先求函数的导数,第二步,再求,根据导数的几何意义,,最后代入直线方程,就是所求的切线方程;(2)设切点,首先求在切点处的切线方程,即求和,然后因为切线过点,所以将原点代入切线方程,转化为关于的方程,求出切点,最后再整理切线方程. 试题解析:(1)在点处的切线的斜率,切线的方程为;(2)设切点为,则直线的斜率为,直线的方程为:.又直线过点,,整理,得,,,的斜率,直线的方程为,切点坐标为.【考点】本题主要考查导数的几何意义,直线方程的点斜式。
圆锥曲线全国卷高考真题解答题(含解析))
圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。
圆锥曲线的七种常考题型详解【高考必备】
圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。
在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。
适用条件需要注意。
例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。
例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。
对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。
例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。
PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。
例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。
例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。
题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。
在解题时需要注重数形结合思想和不等式解法。
例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。
题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。
例1:求椭圆x^2/4+y^2/9=1的参数方程。
例2:求双曲线x^2/9-y^2/4=1的参数方程。
题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。
2024年全国一卷数学新高考题型细分S13圆锥曲线解答题3
2024年全国一卷新高考题型细分S13——圆锥曲线 大题31、试卷主要是2024年全国一卷新高考地区真题、模拟题,合计202套。
其中全国高考真题4套,广东47套,山东22套,江苏18套,浙江27套,福建15套,河北23套,湖北19套,湖南27套。
2、题目设置有尾注答案,复制题干的时候,答案也会被复制过去,显示在文档的后面,双击尾注编号可以查看。
方便老师备课选题。
3、题型纯粹按照个人经验进行分类,没有固定的标准。
4、《圆锥曲线——大题》题目主要按长短顺序排版,具体有:短,中,长,涉后导数等,大概206道题。
每道题目后面标注有类型和难度,方便老师备课选题。
1. (2024年冀J12大数据应用调研)19. 已知圆()()22:4,1,0,1,0O x y B C +=-.点M 在圆O 上,延长CM 到A ,使CM MA =,点P 在线段AB 上,满足()0PA PC AC +⋅=.(1)求点P 的轨迹E 的方程;(①)(2)设Q 点在直线1x =上运动,()()122,0,2,0D D -.直线1QD 与2QD 与轨迹E 分别交于G H ,两点,求OGH 面积的最大值.(椭圆,中下;面积,最值,中档;)2. (2024年冀J16邯郸三调)18. 已知椭圆2222:1(0,0)x y E a b a b +=>>经过2P ⎛⎫- ⎪⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭两点.(1)求E 的方程;(②)(2)若圆221x y +=的两条相互垂直的切线12,l l 均不与坐标轴垂直,且直线12,l l 分别与E 相交于点A ,C 和B ,D ,求四边形ABCD 面积的最小值. (椭圆,基础;面积,最值,中档;)3. (2024年冀J11衡水一模)17. 已知椭圆2222:1(0)x y C a b a b+=>>过31,2⎛⎫ ⎪⎝⎭和⎭两点.12,F F 分别为椭圆的左、右焦点,P 为椭圆上的点(P 不在x 轴上),过椭圆右焦点2F 的直线l 与椭圆交于A B 、两点.(1)求椭圆的标准方程;(③)(2)求AB 的范围.(椭圆,基础;长度,范围,中档;)4. (2024年粤J105湛江二模)18. 双曲线2222:1(0,0)x y C a b a b-=>>上一点(D 到左、右焦点的距离之差为6,(1)求双曲线C 的方程,(④)(2)已知()(),3,03,0A B -,过点()5,0的直线l 与C 交于,M N (异于,A B )两点,直线MA 与NB 交于点P ,试问点P 到直线2x =-的距离是否为定值?若是,求出该定值;若不是,请说明理由, (双曲线,易;距离,定值,中档;)5. (2024年粤J104名校一联考)16. 现有一“v ”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A 点.物件可绕A 点在平面内旋转.AP 间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP 间距离最短为多少;(⑤)(2)为了使椭圆物件能自由绕A 点自由转动,AP 间距离最短为多少.求出最短距离并证明其可行性. (椭圆,距离最值,中档;距离最值,中档;)6. (2024年闽J13厦门二检)17.(15分)双曲线C :()222210,0x y a b a b-=>>,点T在C 上.(1)求C 的方程;(⑥)(2)设圆O :222x y +=上任意一点P 处的切线交C 于M 、N 两点,证明:以MN 为直径的圆过定点.(双曲线,基础;圆切线,定点,中档;)7. (2024年湘J42岳阳三检)18.已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(⑦)(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=; (2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹Γ交于不同于F 的三点C 、D 、G ,求证:CDG 的重心的横坐标为定值. (斜率,中下;中点,定值,中档;)8.(2024年湘J47长沙雅礼二模)17.已知椭圆2222:1(0)x y G a b a b +=>>右焦点为(),斜率为1的直线l 与椭圆G 交于,A B 两点,以AB 为底边作等腰三角形,顶点为(3,2)P -. (1)求椭圆G 的方程;(⑧) (2)求PAB 的面积. (椭圆,易;面积,中下;)9. (2024年鲁J46烟台二模)19.已知椭圆()222103x y a a Γ+=>:的右焦点为()1,0F ,过点F 且不垂直于坐标轴的直线交Γ于,A B 两点,Γ在,A B 两点处的切线交于点Q . (1)求证:点Q 在定直线上,并求出该直线方程;(⑨)(2)设点M 为直线OQ 上一点,且AB AM ⊥,求AM 的最小值. (椭圆,定直线,中档;长度,中档;)10. (2024年鲁J38济宁三模)18.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,上顶点为B ,离心率2e =,直线FB 过点(1,2)P . (1)求椭圆E 的标准方程;(⑩)(2)过点F 的直线l 与椭圆E 相交于M ,N 两点(M 、N 都不在坐标轴上),若MPF NPF =∠∠,求直线l 的方程.(椭圆,基础;角度,直线,中档;)11. (2024年鲁J42青岛二适)16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E的离心率为12,椭圆E 上的点到右焦点的最小距离为1. (1)求椭圆E 的方程;(11)(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程. (椭圆,中下;直线,中档;)12. (2024年浙J40台州二评)18.已知椭圆C :229881x y +=,直线l :=1x -交椭圆于M ,N 两点,T为椭圆的右顶点,TMN △的内切圆为圆Q . (1)求椭圆C 的焦点坐标;(12) (2)求圆Q 的方程;(3)设点()1,3P ,过P 作圆Q 的两条切线分别交椭圆C 于点A ,B ,求PAB 的周长. (椭圆,易;圆,中下;圆切线,周长,中档;)13. (2024年浙J31五校联考)16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离11. (1)求该椭圆的方程;(13)(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+; (3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值. (椭圆,中下;椭圆,基础;面积最值,中档;)14. (2024年苏J35南京二模)18.已知抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,且4p b =.过F 的直线1与抛物线C 交于A ,B 两点,与E 的两条近线交于P ,Q 两点(均位于y 轴右侧). (1)求E 的渐近线方程;(14)(2)若实数λ满足1111||||||||OP OQ AF BF λ⎛⎫+=- ⎪⎝⎭,求λ的取值范围. (双曲线,基础;范围分析,中档;)15. (2024年粤J138汕头金南三模)19.已知动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切.(1)求动圆圆心M 的轨迹方程;(15)(2)设过点P 且斜率为1)中的曲线交于A 、B 两点,求AOBS ;(3)设点(,0)N a 是x 轴上一定点,求M 、N 两点间距离的最小值()d a . (抛物线,中下;面积,中下;距离最值,中档;)16. (2024年粤J137梅州二模)15.已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,且经过点31,2T ⎛⎫ ⎪⎝⎭.(1)求椭圆C 的方程:(16)(2)求椭圆C 上的点到直线l :2y x =的距离的最大值. (椭圆,基础;最值,中下;)17. (2024年粤J136茂名高州一模)21.已知抛物线()2:20C y px p =>,F 为抛物线的焦点,,P Q 其为准线上的两个动点,且PF QF ⊥.当2PF QF =时,5PQ =. (1)求抛物线C 的标准方程;(17)(2)若线段,PF QF 分别交抛物线C 于点,A B ,记PQF △的面积为1S ,ABF △的面积为2S ,当129S S =时,求PQ 的长.(抛物线,基础;面积,长度,中档;)18. (2024年粤J135茂名二测)17.已知椭圆22:12x C y +=,右焦点为F ,过点F 的直线l 交C 于,A B 两点.(1)若直线l 的倾斜角为π4,求AB ;(18)(2)记线段AB 的垂直平分线交直线=1x -于点M ,当AMB ∠最大时,求直线l 的方程. (椭圆,常规,基础;最值求直线,中档)19. (2024年粤J133江门开平忠源)18.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y =. (1)求双曲线C 的方程;(19)(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.(双曲线,常规,基础;直线中点,斜率,中下)20. (2024年冀J47唐山二模)18.已知椭圆C 的右焦点为()1,0F ,其四个顶点的连线围成的四边形面积为ABDE 内接于椭圆C . (1)求椭圆C 的标准方程;(20)(2)(ⅰ)坐标原点O 在边AB 上的投影为点P ,求点P 的轨迹方程; (ⅰ)求菱形ABDE 面积的取值范围.(椭圆,基础;轨迹,中档;面积范围,中上)①【答案】(1)22143x y +=(2【解析】【分析】(1)由题意可得PA PC =,再根据M 为AC 的中点,可得12OM AB =,再根据PB PC PB PA AB +=+=,结合椭圆的定义即可得解;(2)设()()()011221,,,,,Q y G x y H x y ,根据1,,Q G D 三点共线,2,,Q H D 三点共线,求出,G H 两点坐标的关系,设GH 的方程为ty x m =+,联立方程,利用韦达定理求得1212,y y y y +,再根据弦长公式及点到直线的距离公式分析即可得解. 【小问1详解】因为()0PA PC AC +⋅=,所以()()0PA PC PC PA +⋅-=, 所以22PA PC =,所以PA PC =, 因为CM MA =,所以M 为AC 的中点, 又因O 为BC 的中点,所以122OM AB ==,所以AB 4=,则4PB PC PB PA AB BC +=+==>,所以点P 的轨迹是以,B C 为焦点的椭圆,而22213-=,所以点P 的轨迹E 的方程为22143x y +=;【小问2详解】由(1)得()()122,0,2,0D D -是椭圆E 的左右顶点, 设()()()011221,,,,,Q y G x y H x y ,由1,,Q G D 三点共线,得11//D Q D G ,而()()101113,,2,D Q y D G x y ==+, 所以()10132y y x =+,所以10132y y x =+, 由2,,Q H D 三点共线,得22//D Q D H ,而()()101221,,2,DQ y DG x y =-=-, 所以()1012y y x -=-,所以2022y y x =--, 所以1212322y y x x =-+-,即()()12213220y x y x -++=, 设GH 的方程为ty x m =+,联立22143ty x m x y =+⎧⎪⎨+=⎪⎩,得()2223463120t y tmy m +-+-=,则()()()222222Δ3643431248340t m t m t m =-+-=-+>,21212226312,3434tm m y y y y t t -+==++,所以()2121242m ty y y y m-=+,由()()12213220y x y x -++=,得()()12213220y ty m y ty m --+-+=, 即()()122142320ty y m y m y ---+=, 所以()()()()21221242320m y y m ym y m-+---+=,所以()()()214220m m y m y ⎡⎤+--+=⎣⎦恒成立,所以4m =-, 则()2Δ483120t =->,所以24t >, 则21221234243634,t y y y y t t ==++-+,GH 的方程为4ty x =-,所以GH ==,原点O 到直线GH 的距离d =则12424323416OGHSGH d t ====-++≤===t =时取等号,所以OGH【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.②【答案】(1)22143x y +=.(2)24049. 【解析】【分析】(1)依据椭圆经过两点,将点的坐标代入椭圆方程,待定系数法解方程即可;(2)设其中一条的斜截式方程,首先由直线与圆相切,得出直线的斜率与截距关系;再设而不求,用韦达定理表示出两条直线与椭圆相交的弦长,再利用条件知两弦垂直,故四边形ABCD 的面积1||||2S AC BD =⋅,利用弦长将面积表示成其中一条直线斜率的函数,利用函数求最值. 【小问1详解】因为E过点P ⎛ ⎝⎭,31,2Q ⎛⎫- ⎪⎝⎭, 所以2222231,2191,4a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩解得224,3.a b ⎧=⎨=⎩ 故E 的方程为22143x y +=.【小问2详解】由题知12,l l 的斜率存在且不为0. 设1:(0)l y kx m k =+≠. 因为1l 与圆221x y +=1=,得221m k =+.联立1l 与E 的方程,可得()2223484120kxkmx m +++-=,设()11,A x y ,()22,C x y ,则122834km x x k -+=+,212241234m x x k-=+.所以12AC x =-==,将221m k =+代入,可得AC =.用1k-替换k,可得BD =四边形ABCD 的面积123434S AC BD k k =⋅=++令21t k=+,则(1,)t ∈+∞,可得212S t t==+-, 再令u =(1,)t ∈+∞,则52u ⎤∈⎥⎦,可得2242424240652649625u S u u u ==≥=+++⨯,即四边形ABCD 面积的最小值为24049.③【答案】(1)22143x y +=(2)[]3,4 【解析】【分析】(1)将点3(1,2代入椭圆方程,即可求出椭圆C 的标准方程;(2)分类讨论直线斜率是否为0,从而假设直线方程,与椭圆方程联立,利用韦达定理与弦长公式得到关于m 的关系式,再分析即可得解; 【小问1详解】由题意可知,将点3(1,2代入椭圆方程,得222291416241a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得224,3a b ==,所以椭圆的标准方程为22143x y +=.【小问2详解】由(1)知()11,0F -,()21,0F , 当直线l 的斜率为0时,24AB a ==,当直线l 的斜率不为0时,设直线l 的方程为1x my =+,()11,A x y ,()22,B x y ,联立221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,得22(34)690m y my ++-=, 易得()22Δ636(34)0m m =++>,则12122269,3434m y y y y m m --+==++, 所以AB ==2221212443434m m m +===-++, 因为20m ≥,所以2344m +≥,所以240134m <≤+,所以34AB ≤<,综上,34AB ≤≤,即AB 的范围是[]3,4.④【答案】(1)2219x y -=(2)是定值,定值为195【解析】【分析】(1)利用双曲线的定义与点在双曲线上得到关于,a b 的方程,解之即可得解;(2)假设直线l 方程5x my =+,联立双曲线方程得到1212,y y y y +,再由题设条件得到直线AM 与BN 的方程,推得两者的交点P 在定直线上,从而得解. 【小问1详解】依题意可得22222661a ab =⎧⎪⎨-=⎪⎩,解得23,1a b ==,故双曲线C 的方程为2219x y -=.【小问2详解】由题意可得直线l 的斜率不为0,设直线l 的方程为5x my =+,联立22519x my x y =+⎧⎪⎨-=⎪⎩,消去x ,得()22910160m y my -++=, 则290m -≠,()()()222Δ10416936160m m m =-⨯-=+>,设()()1122,,,M x y N x y ,则1212221016,99m y y y y m m -+==--, 又()()3,0,3,0A B -, 直线11:(3)3y AM y x x =++,直线22:(3)3y BN y x x =--, 联立1122(3)3(3)3y y x x y y x x ⎧=+⎪+⎪⎨⎪=-⎪-⎩,两式相除,得()()()()2121122121212138833322y x y my my y y x x y x y my my y y ++++===--++()1122212121121112216806488889994161622299m m my y my y y y y m m m m m my y y y y m m ----++----====-+++--, 即343x x +=--,解得95x =, 所以点P 在定直线95x =上,因为直线95x =与直线2x =-之间的距离为919255+=, 所以点P 到直线2x =-的距离为定值,且定值为195. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.⑤【答案】(1)13- (2)13+,证明见解析 【解析】【分析】(1)如图,设00(,)P x y 和过点P 的直线,切线,PM PN 的斜率分别为12,k k ,联立椭圆方程,利用韦达定理表示1212,k k k k +,进而可得121200tan 1k k MPN k k -∠==+,结合tan 0MPN ∠>或tan MPN ∠≤(2)当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点,则2163PB ≤,进而1R x >=.由(1)可得222012(320)(320)160R y R -+--≤或20320620R y -++≥,利用换元法,结合011R y R -≤≤+建立不等式组,化简可得2310R ≥+.【小问1详解】由题意,如图,该椭圆的方程为2214x y +=,(0,1)A ,,PM PN 分别为椭圆的2条切线,切点分别为,M N ,设直线,PM PN 的斜率分别为12,k k .设00(,)P x y ,当02x =±时,12,k k 其中1个不存在,另1个趋于∞; 当02x ≠±时,设过点P 的直线为00()y k x x y =-+(0)k ≠,00222200002()(14)8()4()4014y k x x y k x k y kx x y kx x y =-+⎧⎪⇒++-+--=⎨+=⎪⎩, 所以2222000064()16(14)[()1]0k y kx k y kx ∆=--+--=,整理,得220000(4)210x k x y k y --+-=,①由12,k k 是方程①的2个实根,得20001212220021,44x y y k k k k x x -+==--, 所以220002222200121212222012122021()444()4tan 11(1)(1)4x y y x x k k k k k k MPN y k k k k x -----+-∠===-+++- 2222222000000022222222000004()4(1)(4)(4)4(44)(4)(5)(5)x y y x x x y x x y x y ----+-=⨯=-+-+-, 又220014x y +>,所以2200440x y +->, 当220050x y +->时,点P 在圆225x y +=的外部,则tan 0MPN ∠>,此时00tan MPN ∠=;当220050x y +-<时,点P 在圆225x y +=的内部,则tan 0MPN ∠>,此时00tan MPN ∠=,所以00tan MPN ∠=.又tan 0MPN ∠>或tan tan120MPN ︒∠≤=,000>00≤整理,得220050x y +-≥或2222200004(44)3(5)x y x y +-≥+-.要求PA 的最小值,只需考虑MPN ∠为钝角的情况,即2222200004(44)3(5)x y x y +-≥+-且220050x y +-<,得22222220000003(5)4(44)4(444)x y x y x y +-≤+-≤+-.令2OP t =,则5t <且23(5)4(44)t t -≤-,即2346910t t -+≤,解得7133t ≤≤,所以OP ≥13PA OP OA ≥-=-,当且仅当,,P O A 三点共线时等号成立.故00tan MPN ∠=053=-,得120MPN ︒∠=. 综上,PA的最小值为13-. 【小问2详解】当PA 恒为正实数R 时,设11(,)B x y 1(11)y -≤≤为椭圆上任意一点, 则22222211111111216(1)213255333PB x y x y y y y =+-=+-+=--+≤-++=,当且仅当1113x y ==时等号成立,所以13R x >=. 由(1)知,2222200004(44)3(5)x y x y +-≥+-或220050x y +-≥,由22200(1)x y R +-=,得22222200004[(1)44]3[(1)5]R y y R y y --+-≥--+-或22200(1)50R y y --+-≥,即22220004(325)3(26)y y R R y ++-≥+-或20260R y +-≥,整理,得222012(320)(320)160R y R -+--≤或20320620R y -++≥,令2320u R =-,则4u >-,得2012160uy u +-≤或0620u y ++≥,011R y R -≤≤+.当2203R ≤即0u <时,201612u y u-≥或026u y --≥,令v u =-,则04v <<,得201612v y v -≥-或026v y -≥,又011y ≤得216112v v --或216v -≥,而12111136v -=<-<-<,所以216112v v--,整理,得010v <≤-10u ≥- 当0u ≥时,010u ≥>,符合题意.综上,10u ≥,则232010u R =-≥,即2310R ≥+解得1R ≥+,所以R1,即PA1.【点睛】方法点睛:解决圆锥曲线中范围问题的方法:一般题目中没有给出明确的不等关系,首先需要根据已知条件进行转化,利用圆锥曲线的几何性质及曲线 上点的坐标确定不等关系;然后构造目标函数,把原问题转化为求函数的值域或引入参数根据参数范围求解,解题时应注意挖掘题目中的隐含条件,寻找量与量之间的转化.⑥17. 方法一:(1)依题意:22222221a b c a b ca⎧-=⎪⎪=+⎨⎪⎪=⎩,……2分解得:21a =,22b =,……3分所以双曲线方程为2212y x -=.……4分 (2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222kmx x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 由对称性知,若以MN 为直径的圆过定点,则定点必为原点.……9分1212OM ON x x y y ⋅=+……10分()()()()22121212121x x kx m kx m k x x mk x x m =+++=++++……11分 ()2222222122m km kmk m k k--=+++-- 222222m k k --=-.……12分又2222m k =+,所以0OM ON ⋅=,所以OM ON ⊥,故以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分 方法二:(1)同方法一;(2)设()11,M x y ,()22,N x y ,①当切线斜率存在时,设直线方程为y kx m =+,=2222m k =+,……6分联立()22222122202y x k x kmx m y kx m ⎧-=⎪⇒----=⎨⎪=+⎩, 则12222km x x k+=-,212222m x x k --=-,()()()222222442282k m k m m k ∆=+-+=+-.……8分 以()11,M x y ,()22,N x y 为直径的圆的方程为()()()()12120x x x x y y y y --+--=, 即()()22121212120x x x x x x y y y y y y -+++-++=,……9分因为()()()()221212*********x x y y x x kx m kx m k x x km x x m +=+++=++++,所以()222221212222222210222m km m k x x y y k km m k k k ----+=+⋅+⋅+==---,……11分 且()121222242222km my y k x x m k m k k +=++=⋅+=--, 所以所求的圆的方程为222224022km m x x y y k k -+-=--,……12分所以MN 为直径的圆过原点.……13分②当直线斜率不存在时,直线方程x =(222x y ±+=,恒过原点.综上所述,以MN 为直径的圆过原点.……15分⑦18.(1)证明见解析;(2)证明见解析【分析】(1)先有两点间距离公式求出圆心的轨迹方程,再由斜率的定义表示出斜率,利用轨迹方程化简斜率之差即可证明;(2)先设直线MN 的方程为y kx b =+,直曲联立,用韦达定理表示出线段MN 中点坐标()22,21Q k k --+进而得到Q 的轨迹方程是222x y =-+,再与动圆P 的方程联立,得到C 、D 、G 的横坐标分别为c ,d ,g ,最后利用()()()0x c x d x g ---=的展开式系数与3(42)40x b x a +-+=相同,得到2x 系数为零即可. 【详解】(1)设点(,)P x y ,|3|y =-, 化简并整理成248x y =-+, 圆心P 的轨迹E 的方程为248x y =-+1211,22y y k k x x --==+-,122114(1)224y y y k k x x x -----=-=+--, 又248x y =-+, 所以24(1)4(1)1444y y x y ,所以121k k -=.(2)显然直线MN 的斜率存在,设直线MN 的方程为y kx b =+,由248x y y kx b ⎧=-+⎨=+⎩,消y 并整理成24480x kx b ++-=, 在判别式大于零时,1248x x b =-, 又124x x =-,所以1b =, 所以2440x kx +-=,1y kx =+,()21212124,242x x k y y k x x k +=-+=++=-+,所以线段MN 的中点坐标为()22,21Q k k --+,设(,)Q x y ,则2221x k y k =-⎧⎨=-+⎩,消k 得222x y =-+, 所以Q 的轨迹方程是222x y =-+,圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,由222(1)(1)022x y ax b y x y ⎧+-++-=⎨=-+⎩,得42(42)40x b x ax +-+=, 设C 、D 、G 的横坐标分别为c ,d ,g ,因为C 、D 、G 异于F ,所以c ,d ,g 都不为零, 故3(42)40x b x a +-+=的根为c ,d ,g , 令()()()0x c x d x g ---=,即有32()()0x c d g x cd dg gc x cdg -+++++-=, 所以0c d g ++=,故CDG 的重心的横坐标为定值.【点睛】关键点点睛:本题第二问关键是圆P 过定点(0,1)F ,设其方程为22(1)(1)0x y ax b y +-++-=,然后与Q 的轨迹方程联立,表示出重心横坐标的方程,然后利用待定系数法求出结果.⑧17.(1)221.124x y +=(2)92【分析】(1)根据椭圆的简单几何性质知a =2224b a c =-=,写出椭圆的方程;(2)先斜截式设出直线y x m =+,联立方程组,根据直线与圆锥曲线的位置关系,可得出AB 中点为00(,)E x y 的坐标,再根据ⅰPAB 为等腰三角形知PE AB ⊥,从而得PE 的斜率为241334mk m -==--+,求出2m =,写出AB :20x y -+=,并计算||AB = 【详解】(1)由已知得c =ca=a =2224b ac =-=, 所以椭圆G 的方程为221124x y +=.(2)设直线l 的方程为y x m =+,由22,{1124y x m x y ,=++=得22463120x mx m ++-=,ⅰ设A 、B 的坐标分别为11(,)x y ,22(,)x y (12x x <),AB 中点为00(,)E x y , 则120324x x m x +==-,004my x m =+=, 因为AB 是等腰ⅰPAB 的底边,所以PE AB ⊥.所以PE 的斜率为241334mk m-==--+,解得2m =,此时方程ⅰ为24120x x +=. 解得13x =-,20x =,所以11y =-,22y =,所以||AB =, 此时,点(3,2)P -到直线AB :20x y -+=的距离d =所以ⅰPAB 的面积1922S AB d =⋅=. 考点:1、椭圆的简单几何性质;2、直线和椭圆的位置关系;3、椭圆的标准方程;4、点到直线的距离. 【思路点晴】本题主要考查的是椭圆的方程,椭圆的简单几何性质,直线与椭圆的位置关系,点到直线的距离,属于难题.解决本类问题时,注意使用椭圆的几何性质,求得椭圆的标准方程;求三角形的面积需要求出底和高,在求解过程中要充分利用三角形是等腰三角形,进而知道定点与弦中点的连线垂直,这是解决问题的关键.⑨19.(1)证明见解析,4x =(2)12【分析】(1)由题得出椭圆方程,设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠,写出,A B 两点处的切线方程,由对称性得,点Q 处于与x 轴垂直的直线上,法一:两切线方程联立得Q x ,再代入()()1122=1,=1y k x y k x --即可证明;法二:由点(),Q Q Q x y 在两切线上得直线AB 的方程143Q Q x y x y +=,结合直线AB 过点()1,0F ,即可得出Q x ;(2)由(1)得出直线OQ 的方程,设直线AB 和OQ 交于点P ,得出P 为线段AB 的中点,由弦长公式得出AB 进而得出AP ,由两直线夹角公式得出tan APM ∠,得出243k AM AP k+=⋅,根据基本不等式求解即可.【详解】(1)由题意可知,231a -=, 所以24a =,所以椭圆方程为22143x y +=, 设直线AB 方程为()()()()112210,,,,y k x k A x y B x y =-≠, 联立()221431x y y k x ⎧+=⎪⎨⎪=-⎩,消y 可得,()22223484120k x k x k +-+-=, 所以221212228412,3434k k x x x x k k -+==++, 因为过点A 的切线为11143x x y y+=,过点B 的切线为22143x x y y +=, 由对称性可得,点Q 处于与x 轴垂直的直线上, 法一:联立1122143143x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 得,()2112214Q y y x x y x y -=-,将()()1122=1,=1y k x y k x --代入上式得()()()()212112211244411Q k x x k x x x kx x kx x kx kx --===----+,所以Q 点在直线4x =上.法二:因为点(),Q Q Q x y 在两切线上,所以1122114343Q QQ Q x x y y x x y y+=+=,, 所以直线AB 的方程为143Q Q x y x y +=,又直线AB 过点()1,0F ,所以10143QQ x y ⨯+⨯=,解得4Q x .(2)将4x =代入11143x x y y+=得,()()()1111313131Q x x y y k x k --===--,直线OQ 的方程为34y x k =-, 设直线AB 和OQ 交于点P ,联立()134y k x y x k ⎧=-⎪⎨=-⎪⎩,解得22434P kx k =+, 又221222418342342P k k x x x k k +==⋅=++,所以P 为线段AB 的中点,因为()212212134k AB x k +=-==+, 所以()226134k AP k +=+,又因为23434tan 314k AM k kAPM k AP k k ++∠===⎛⎫+⋅- ⎪⎝⎭,所以()2222614343161234k k k AM AP k k k k k +⎛⎫++=⋅=⋅=+≥ ⎪ ⎪+⎝⎭, 当且仅当1k =±时,等号成立, 故AM 的最小值为12.⑩18.(1)2212x y +=;(2)550x y ++=.【分析】(1)根据给定条件,求出,,a b c 即得椭圆E 的标准方程.(2)根据给定条件,借助倾斜角的关系可得1MP NP k k ⋅=,设出直线l 的方程,与椭圆方程联立,利用韦达定理结合斜率的坐标公式求解即得. 【详解】(1)令(,0)F c -,由c e a ==,得,a b c ==,则直线FB 的斜率1k =, 由直线FB 过点(1,2)P ,得直线FB 的方程为1y x =+,因此1,b c a ===所以椭圆C 的标准方程为2212x y +=.(2)设MPF NPF θ∠=∠=,直线MP 的倾斜角为β,直线NP 的倾斜角为α,由直线FP 的斜率1k =知直线FP 的倾斜角为π4,于是ππ,44αθβθ=+=+,即有π2αβ+=,显然,αβ均不等于π2, 则πsin()sin 2tan tan 1πcos cos()2αααβαα-=⋅=-,即直线,MP NP 的斜率满足1MP NP k k ⋅=, 由题设知,直线l 的斜率不为0,设直线l 的方程为1,1x my m =-≠,由22122x my x y =-⎧⎨+=⎩,消去x 并整理得,22(2)210m y my +--=,显然0∆>, 设1122(,),(,)M x y N x y ,则12122221,22m y y y y m m +==-++, 由1MP NP k k ⋅=,得121222111y y x x --⋅=--,即1212(1)(1)(2)(2)0x x y y -----=, 则1212(2)(2)(2)(2)0my my y y -----=,整理得21212(1)(22)(0)m y y m y y ---+=,即2221(22)2022m m m m m --⋅--=++,于是25410m m --=,而1m ≠,解得,15m =-, 所以直线l 的方程为115x y =--,即550x y ++=.【点睛】关键点点睛:本题第2问,由MPF NPF =∠∠,结合直线倾斜角及斜率的意义求得1MP NP k k ⋅=是解题之关键.1116.(1)22143x y +=(2)10x y -=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B、C坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121c a a c a b c⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=; (2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A == 所以122y y =-ⅰ设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=, 由韦达定理得()122122634934m y y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩, 把ⅰ式代入上式得222226349234m y m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++, 解得m =, 所以直线l 的方程为:10x y +-=或10x y -=.1218.(1)0,⎛ ⎝⎭(2)221924x y ⎛⎫-+= ⎪⎝⎭(3)【分析】(1)化简椭圆的标准方程,根据,,a b c 的关系即可求得焦点坐标;(2)先联立方程求得()1,3M -,()1,3N --,求出直线MT 的方程,然后利用待定系数法求得内切圆的方程;(3)设过P 作圆Q 的切线方程为()13y k x =-+,利用相切关系求得点A ,B 坐标,进而结合内切圆的半径利用三角形中等面积法求解即可.【详解】(1)椭圆的标准方程为2218198x y +=,因为819988-=,所以焦点坐标为0,⎛ ⎝⎭. (2)将=1x -代入椭圆方程229881x y +=得3=±y ,由对称性不妨设()1,3M -,()1,3N --, 直线MT 的方程为()3313y x =---,即3490x y +-=, 设圆Q 方程为()222x t y r -+=,由于内切圆Q 在TMN △的内部,所以1t >-, 则Q 到直线MN 和直线MT的距离相等,即1t r +=,解得12t =,32r =,所以圆Q 方程为221924x y ⎛⎫-+= ⎪⎝⎭.(3)显然直线PA 和直线PB 的斜率均存在, 设过P 作圆Q 的切线方程为()13y k x =-+,其中k 有两个不同的取值1k 和2k 分别为直线PA 和PB 的斜率. 由圆Q32=,化简得:2812270k k +-=,则121232278k k k k ⎧+=-⎪⎪⎨⎪=-⎪⎩,由()122139881y k x x y ⎧=-+⎨+=⎩得()()222111119816384890k x k k x k k ++-+--=, 可得21121848989A P A k k x x x k --==+,所以()221111112211848924182713138989A A k k k k y k x k k k ⎛⎫----+=-+=-+= ⎪++⎝⎭ ()()()111113271218271833271291232k k k k k ---+-===--+-.同理22222848989B k k x k --=+,32B y =-,所以直线AB 的方程为32y =-, 所以AB 与圆Q 相切,将32y =-代入229881x y +=得x =所以AB =P 到直线AB 的距离为92,设PAB 的周长为m ,则PAB的面积13192222ABC S m =⨯=⨯△,解得m =所以PAB的周长为.1316.(1)2212x y +=;(2)【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可. (2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【详解】(1)令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''(3)显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,12||y y -=因此12|1|||2ABFS QF y y =-=,令0t =>,于是ABFS=≤=,当且仅当2t =,即m =所以FAB1418.(1)y =(2)10,2⎡⎫⎪⎢⎣⎭【分析】(1)由两曲线有公共的焦点F ,且4p b =,得2c b =,3a b ,可求渐近线方程;(2)通过设直线方程,联立方程组,借助韦达定理,表示出11||||OP OQ +和11||||AF BF -,由1111OP OQ AF BF λ⎛⎫+=- ⎪⎪⎝⎭求λ的取值范围. 【详解】(1)抛物线2:2(0)C y px p =>与双曲线2222:1x y E a b-=(0a >,0b >)有公共的焦点F ,设双曲线E 的焦距为2c ,则有2pc =,又4p b =,则2c b =. 由222+=a b c ,得3ab ,所以E的渐近线的方程为y = (2)设:l x my c =+,()()1122,,,P x y Q x y ,1与E 的两条近线交于P ,Q 两点均位于y 轴右侧,有23m <,由x my cy x =+⎧⎪⎨=⎪⎩,解得1y =2y =,12111122OP OQ y y +=+===设()()3344,,,A x y B x y , 由22x my cy px=+⎧⎨=⎩,消去x 得2220y pmx p --=,则有234342,y y pm y y p +==-,343411y y AF BFy y --=3423422y y pm y y p p +== 由1111OP OQ AF BF λ⎛⎫+=- ⎪ ⎪⎝⎭,2pc =,有2p λ==由23m <⎡∈⎢⎣⎭,所以10,2λ⎡⎫∈⎪⎢⎣⎭.【点睛】方法点睛:解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,强化有关直线与圆锥曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.1519.(1)28y x =(3)4(),4a d a a a ≥=<⎪⎩【分析】(1)根据抛物线的定义即得动圆圆心M 的轨迹方程; (2)将直线方程与抛物线方程联立,求出交点坐标,再由12AOBA B SOP y y =-计算可得; (3)根据题设先求出MN 的解析式,可将距离最小值问题转化为二次函数最小值问题,分类讨论即得. 【详解】(1)因为动圆M (M 为圆心)过定点(2,0)P ,且与定直线:2l x =-相切,即点M 到定点(2,0)P 的距离与到直线:2l x =-的距离相等,且点(2,0)P 不在直线:2l x =-上, 所以由抛物线定义知:圆心M 的轨迹是以定点()2,0P 为焦点,定直线:2l x =-为准线的抛物线,抛物线方程形如()220y px p =>,又22p=,则4p =, 故圆心M 的轨迹方程为28y x =.(2)如图,由题知,直线AB的方程为)2y x =-,由)228y x y x ⎧=-⎪⎨=⎪⎩,解得6x y =⎧⎪⎨=-⎪⎩23x y ⎧=⎪⎪⎨⎪=⎪⎩23A ⎛ ⎝⎭,(6,B -, 所以()11222AOBA B SOP y y =-=⨯-=(3)设(),M x y ,则28y x =()0x ≥,又(,0)N a ,则MN ==)0x =≥,因二次函数()24816y x a a =-++-的对称轴为4x a =-,故当40a -≥,即4a ≥时,min 816y a =-,此时min ()MN d a =当40a -<,即4a <时,2min y a=,此时min ||()MN d a a ==.所以4(),4a d a a a ≥=⎨<⎪⎩.1615.(1)22143x y +=【分析】(1)由椭圆的离心率可得a ,b 的关系,设椭圆的方程,将点T 的坐标代入椭圆的方程,可得参数的值,即可得a ,b 的值,求出椭圆的方程;(2)设与2y x =平行的直线的方程,与椭圆的方程联立,由判别式为0,可得参数的值,进而求出两条直线的距离,即求出椭圆上的点到直线的最大距离.【详解】(1)由椭圆的离心率为12,可得12c e a=,可得2234a b =,设椭圆的方程为:2222143x y t t+=,20t >,又因为椭圆经过点3(1,)2T ,所以2213144t t +=,解得21t =,所以椭圆的方程为:22143x y +=;(2)设与直线2y x =平行的直线的方程为()20y x m m =+≠,联立222143y x mx y =+⎧⎪⎨+=⎪⎩,整理可得:2219164120x mx m ++-=,22216419(412)0m m ∆=-⨯⨯-=,可得219m =,则m =所以直线2y x m =+到直线2y x =的距离d ==所以椭圆C 上的点到直线:2l y x =1721.(1)24y x = (2)649【分析】(1)首先利用勾股定理求出QF ,PF ,再由等面积法求出p ,即可得解;(2)设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y ,联立直线与抛物线方程,消元、列出韦达定理,依题意0FA FB ⋅=,即可得到22614b b k -+=,再由129S S =得到线段的比例关系,从而求出b ,再计算出12y y -,最后根据P Q PQ y y =-及韦达定理计算可得. 【详解】(1)方法一:5PQ =,PF QF ⊥,2PF QF =,22225QF PF PQ ∴+==,解得QF =PF = ∴在PQF △中,根据等面积法1122PQ MF PF QF ⋅=⋅,5p ⨯=2p =,∴抛物线的标准方程为24y x =;方法二:设x 轴与准线的交点为M .,PF QF ⊥∴当2PF QF =时,tan 2tan PQF AFM ∠==∠,2PM MF ∴=,2MF MQ =.552PQ PM MQ MF ∴=+==,2MF p ∴==, ∴抛物线C 的标准方程为24y x =;(2)由(1)可得抛物线的焦点()1,0F ,准线为=1x -, 依题意,直线AB 的斜率不为0,∴设直线AB 的解析式为x ky b =+,()11,A x y ,()22,B x y .联立24y x x ky b⎧=⎨=+⎩,消去x 得2440y ky b --=,显然0∆>,124y y k ∴+=,124y y b =-.由PF QF ⊥,则0FA FB ⋅=,可得()()11221,1,0x y x y -⋅-=,()()1212110x x y y ∴--+=,整理得22614b b k -+=.ⅰ易知直线AF 的解析式为()1111y y x x =--,令=1x -,可得1121P y y x -=-, 同理可得2221Q y y x -=-. 129S S =,9PF QF AF BF ∴⋅=⋅,即9PF BFAFQF =⨯,219P Qy y y y ∴=.129P Q y y y y ∴=,12121222119y y x x y y --⋅--∴=,()()124911x x ∴=--,即1249y y -=,19b ∴=.12169y y ∴-=. 所以()()1212211212122222221111P Q y y x y x y y y PQ y y x x x x ---+-=-=-=---- ()121212121264249y y y y y y y y ⎛⎫-- ⎪⎝⎭==-=-.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.1817.(2)10x-=或10x -=【分析】(1)由椭圆方程,即可求出椭圆右焦点坐标,根据直线的点斜式,联立直线方程和椭圆方程,求得交点,A B 的坐标,根据两点之间距离公式可求得AB ;(2)联立直线方程和椭圆方程,根据椭圆的弦长公式可求得|AB |,计算AB 的中点,G MG ,利用AMB ∠最大求得直线方程【详解】(1)由题意可得()1,0F ,因为直线l 的倾斜角为π4,所以πtan 14k ==,因此,l 的方程为1y x =-,联立方程22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 得2340x x -=解得1240,3x x ==所以()410,1,,33A B ⎛⎫- ⎪⎝⎭因此,AB =(2)设()()1122,,,A x y B x y ,由题意得,直线l 的斜率不为0,故设l 为1x my =+, 联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩消去x 得,()222210m y my ++-=,0∆>,因此12122221,22m y y y y m m -+==-++, 所以)2212m AB m +==+,设线段AB 的中点为G , 则12222,1222G G G y y m y x my m m +==-=+=++,所以()22242122m MG m m +=-=++,所以12tan 2ABAMB MG∠==设t =,则tan 2AMB t t ∠===≤+,当且仅当t =m = 当2AMB∠最大时,AMB ∠也最大,此时直线l 的方程为1x =+, 即10x-=或10x -=1918.(1)2213x y -=(2)1【分析】(1)先求出焦点坐标,再根据渐近线方程可求基本量,从而可得双曲线的方程. (2)利用点差法可求直线的斜率,注意检验.【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y x =,故b a =1,b a == 故双曲线方程为:2213x y -=.(2)设()()1122,,,A x y B x y ,AB 的中点为M , 因为M 在直线1:3l y x =,故13M M y x =,而121231y x -=,222231y x -=,故()()()()1212121203x x x x y y y y -+--+=, 故()()121203M M x x xy y y ---=,由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M My y xx x y -==-, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =-+=-,由222333M x y x x y ⎧=-⎪⎨⎪-=⎩可得222333M x x x ⎛⎫--= ⎪⎝⎭,整理得到:22424303M M x x x x -++=, 当222416Δ168324033M M M x x x ⎛⎫=-+=-> ⎪⎝⎭即M x <M x >即当M x <M x >AB 存在且斜率为1.2018.(1)22143x y +=(2)(ⅰ)2212 7x y+=;(ⅰ)48,7⎡⎢⎣.【分析】(1)利用题意列出两个方程,联立求解得,a b的值,即得椭圆方程;(2)(ⅰ)设AB方程,与椭圆方程联立,写出韦达定理,利用菱形对角线互相垂直得到()221217km+=,再由题意推出22212||17mOPk==+,即得点P的轨迹方程;(ⅰ)利用弦长公式求出AB =算出AOB的面积表达式S=t的函数S=图象即可求其取值范围.【详解】(1)根据题意设椭圆C的标准方程为22221x ya b+=,由已知得,1222a b⨯⨯==ab1c=可得,221a b-=,联立解得,2a=,b=故椭圆C的标准方程为:22143x y+=.(2)ⅰ 如图,当直线AB的斜率存在时,设其方程为y kx m=+,由22143y kx mx y=+⎧⎪⎨+=⎪⎩,得()2223484120k x kmx m+++-=,由题意()()()222222Δ6443441248430k m k m k m=-+-=-+>,设1122(,),(,)A x yB x y,则122834kmx xk+=-+,212241234mx xk-=+,于是,()()2212121212()y y kx m kx m k x x km xx m=++=+++。
2011年高考试题数学圆锥曲线(理科)
2011年高考试题数学圆锥曲线(理科)解析数学一、选择题:1. (2011年高考山东卷理科8)已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为(A)22154x y -= (B) 22145x y -= (C) 22136x y -= (D) 22163x y -=3. (2011年高考全国新课标卷理科7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3 答案:B解析:由题意知,AB 为双曲线的通径,所以,AB a a b 422==,222=∴ab又3122=+=ab e ,故选B.点评:本题考查双曲线标准方程和简单几何性质,通过通经与长轴的4倍的关系可以计算出离心率的关键22ab 的值,从而的离心率。
4.(2011年高考浙江卷理科8)已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则 (A )2132a =(B )213a = (C )212b = (D )22b = 【答案】 C【解析】由1C 恰好将线段AB 三等分得133A A x x x x =⇒=,由222A y x x x y=⎧⇒=⎨+⎩,x ∴=y=) 在椭圆上,1=2211a b ⇒=又225,a b -=212b ∴=,故选C 5.(2011年高考安徽卷理科2)双曲线x y 222-=8的实轴长是(A )2 (B)【答案】A【命题意图】本题考查双曲线的标准方程,考查双曲线的性质.属容易题.【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C.6. (2011年高考湖南卷理科5)设双曲线()019222>=-a y ax 的渐近线方程为023=±y x ,则a 的值为A.4B. 3C. 2D. 18.(2011年高考陕西卷理科2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是(A )28y x =- (B )28y x = (C )24y x =- (D )24y x = 【答案】B【解析】:设抛物线方程为2y ax =,则准线方程为4a x =-于是24a-=-8a ⇒= 9. (2011年高考四川卷理科10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为( )(A )(2,9)-- (B )(0,5)- (C )(2,9)- (D )(1,6)-10. (2011年高考全国卷理科10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠= (A)45 (B)35 (C)35- (D)45- 【答案】D【解析】:24(1,0)y x F = 得,准线方程为1x =-,由24(1,2),(4,4)24y xA B y x ⎧=-⎨=-⎩得=,由抛物线的定义得2,5AF BF ==由余弦定理得4cos 5AFB ∠==- 故选D11.(2011年高考福建卷理科7)设圆锥曲线r 的两个焦点分别为F 1,F 2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A二、填空题:1.(2011年高考辽宁卷理科13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________.3. (2011年高考江西卷理科14)若椭圆22221x y a b +=的焦点在x 轴上,过点(1,12)作圆22+=1x y 的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是【答案】22154x y +=【解析】因为一条切线为x=1,且直线AB 恰好经过椭圆的右焦点和上顶点,所以椭圆的右焦点为(1,0),即1c =,设点P (1,12),连结OP,则OP ⊥AB,因为12OP k =,所以2AB k =-,又因为直线AB 过点(1,0),所以直线AB 的方程为220x y +-=,因为点(0,)b 在直线AB 上,所以2b =,又因为1c =,所以25a =,故椭圆方程是22154x y +=.4. (2011年高考全国新课标卷理科14) 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,。
(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测(含答案解析)(4)
一、选择题1.设O 为坐标原点,1F ,2F 是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且OP ,则该椭圆的离心率为( )A .12B .14C .12D .22.设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,直线20x y -=过点F 且与双曲线C 在第一象限的交点为P ,O 为坐标原点,||||OP OF =,则双曲线的离心率为( )A BC .2D 3.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 4.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,上顶点为A ,右顶点为B ,若FAB 为直角三角形,则椭圆C 的离心率为( )A B .12C D 5.已知12,F F 分别是双曲线2214x y -=的左、右焦点,P 为双曲线右支上异于顶点的任意一点,若12PF F △内切圆圆心为I ,则圆心I 到圆22(1)1y x +-=上任意一点的距离最小值为( )A .2B 1C .1D 26.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A 3B .2C 5D 27.已知1F 、2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左右焦点,点P 在双曲线右支上且不与顶点重合,过2F 作12F PF ∠的角平分线的垂线,垂足为A ,O 为坐标原点,若3OA b =,则该双曲线的离心率为( )A 2B .233C .2D 5 8.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .26⎝⎭C .222⎝⎭D .323⎫⎪⎪⎝⎭9.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .1102+ B .1222+ C 51 D 3110.设双曲线2214y x -=的左、右焦点分别为12,F F ,若点P 在双曲线上,且12F PF △为锐角三角形,则12PF PF +的取值范围是( ) A .(42,6)B .(6,8)C .(42,8)D .(6,10)11.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( ) A .4877B .2477C .48147D .2414712.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在y 轴上,抛物线顶点在坐标原点,已知抛物线方程是24x y =,圆的半径为r ,若圆的大小变化时,圆上的点无法触及抛物线的顶点O ,则圆的半径r 的取值范围是( )A .()2,+∞B .()1,+∞C .[)2,+∞D .[)1,+∞二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.15.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.16.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.17.在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b+=>>的焦距为6,直线l 与椭圆C 交于A ,B 两点,且OA OB ⊥,过O 作⊥OD AB 交AB 于点D ,点D 的坐标为()2,1,则椭圆C 的方程为_________.18.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______. 20.已知下列几个命题:①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=; ②“1x >”是“||0x >”的必要不充分条件;③已知命题:33p ≥,:34q >,则p q ∨为真,p q ∧为假,p ⌝为假;④双曲线221916x y -=-的离心率为54.其中正确的命题的序号为_____.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12F F 、,点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆C 的方程;(2)过点M 分别作直线MA 、MB 交椭圆于A B 、两点,设两直线MA 、MB 的斜率分别为12k k 、,且128k k +=,探究:直线AB 是否过定点,并说明理由.22.已知抛物线()2:20C y px p =>的焦点为F ,过点()2,0A 的直线l 交C 于M ,N两点,当MN 与x 轴垂直时,MNF 的周长为9. (1)求C 的方程:(2)在x 轴上是否存在点P ,使得OPM OPN ∠=∠恒成立(O 为坐标原点)?若存在求出坐标,若不存在说明理由.23.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率e =E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标, 24.已知点M 是圆222:(2)(2)C x y r r -+=>与x 轴负半轴的交点,过点M 作圆C 的弦MN ,并使弦MN 的中点恰好落在y 轴上. (1)求点N 的轨迹方程;(2)设点N 的轨迹为曲线E ,延长NO 交直线2x =-于点A ,延长NC 交曲线E 于点B ,曲线E 在点B 处的切线交y 轴于点D ,求证:AD BD ⊥.25.设命题:p 方程22137xy a a +=-+表示双曲线;命题:q 不等式10a x -<对01x <≤恒成立.(Ⅰ)若命题p q ∨为真,求实数a 的取值范围;(Ⅱ)若命题p q ∨为真,命题p q ∧为假,求实数a 的取值范围.26.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据中线向量可得()1212PO PF PF =+,平方后结合椭圆的定义可得212PF PF a ⋅=,在焦点三角形中再利用余弦定理可得224c a =,从而可求离心率. 【详解】因为O 为12F F 的中点,故()1212PO PF PF =+, 所以()2221212124PO PF PF PF PF =++⋅,故22212123112442a PF PF PF PF ⎛⎫=++⋅⋅ ⎪⎝⎭, 故()2222121212123a PF PF PF PF PF PF PF PF =++⋅=+-⋅,所以212PF PF a ⋅=,又22212121422c PF PF PF PF =+-⋅⋅, 故()2222212124343c PF PF PF PF a a a =+-⋅=-=,故12e =. 故选:A. 【点睛】方法点睛:与焦点三角形有关的计算问题,注意利用椭圆的定义来转化,还要注意利用余弦定理和向量的有关方法来计算长度、角度等.2.D解析:D 【分析】焦点三角形1PFF 满足||||OP OF =,可根据三角形一边的中线是该边的一半,可判断该三角形是直角三角形.算出该三角形的中位线OH ,可得到12PF=,根据双曲线定义和勾股定理计算出,a c 求解. 【详解】直线20x y -+=过点F ,可得()F 设右焦点为1F ,PF 的中点为H .因为O 是1FF 的中点,且||||OPOF =,故三角形1PFF 为直角三角形.1PF PF ⊥,故OH PF ⊥由点到直线距离公式有1OH ==故12PF =,12PF PF a -=,(2222112PF PFF F +==故()2222220a ++=. 可得1a =ce a == 故选:D 【点睛】 双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.C解析:C 【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k -+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以B C A D += 令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22t t =+-令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以13AB CD y ⎡+=∈⎢⎢⎣, 综上AB CD +的取值范围是⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.4.C解析:C 【分析】作出图形,可知FAB 是以FAB ∠为直角的直角三角形,可得出0AF AB ⋅=,可得出a 、b 、c 的齐次等式,进而可求得椭圆C 的离心率.【详解】如下图所示,可知AFB ∠、ABF ∠均为锐角, 所以,FAB 是以FAB ∠为直角的直角三角形,由题意可知,点(),0F c -、()0,A b 、(),0B a ,则(),AF c b =--,(),AB a b =-,20AF AB ac b ⋅=-+=,可得220a c ac --=,即220c ac a +-=,在等式220c ac a +-=的两边同时除以2a 可得210e e +-=,01e <<,解得512e =. 故选:C. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.5.C解析:C 【分析】设12PF F △内切圆与12PF F △的三边1PF 、2PF 、12F F 的切点分别为D 、N 、M ,根据圆的切线性质,可得2OM =,即可得答案. 【详解】设12PF F △的内切圆分别与12,PF PF 切于点,A B ,与12F F 切于点M ,则11||||,||||PA PB F A F M ==,22||||F B F M =.又点P 在双曲线右支上, 12||||2PF PF a ∴-=,即12(||||)(||||)2PA F A PB F B a +-+=, 12||||2F M F M a ∴-= ①,又12||||2F M F M c += ②, 由①+②,解得1||F M a c =+, 又1||OF c =,则(,0)M a ,因为双曲线2214x y -=的2a =,所以内切圆圆心I 与在直线2x =上,设0(2,)I y ,设圆22(1)1y x +-=的圆心为C ,则(0,1)C , 所以()220||21CI y =+-,当01y =时,min ||2CI =,此时圆22(1)1y x +-=上任意一点的距离最小值为min ||1211CI -=-=.故选: C .【点睛】本题考查双曲线的定义和性质,关键点是由定义和已知得到12||||2F M F M a -=和12||||2F M F M c +=,考查了学生分析问题、解决问题的能力,属于中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则16MF a =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=, 则222||MF b a b==+,2222||OM OF MF a =-=,166MF a =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有3==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.B解析:B 【分析】延长2F A 交1PF 于点Q ,可得1223QF OA b ==,结合双曲线的定义可得,a b 的关系,从而求得离心率. 【详解】延长2F A 交1PF 于点Q ,∵PA 是12F PF ∠的平分线,∴2AQ AF =,2PQ PF =, 又O 是12F F 中点,所以1//QF AO ,且1223QF OA b ==, 又11122QF PF PQ PF PF a =-=-=,∴223a b =,222233()a b c a ==-,∴23c e a ==. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的关系,解题方法是延长2F A 交1PF 于点Q ,利用等腰三角形的性质、平行线的性质得出123QF b =,然后由双曲线的定义得出关系式,从而求解.8.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=, 利用2112sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<21624πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是262⎛ ⎝⎭, 故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.9.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得101e +=(110-舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.10.D解析:D 【分析】由题意画出图形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值,可得12F PF △ 为锐角三角形时12PF PF +的取值范围. 【详解】12F PF △为锐角三角形,不妨设P 在第一象限,P 点在1P 与2P 之间运动,如图,当P 在1P 处,11290F PF∠=,又1,2,5a b c ===由222111212|||||20|PF PF F F =+=,1112||||2PF PF -=, 可得1112||||8PF PF ⋅=, 此时 1112||||6PF PF +=;当P 在2P 处,12290F F P ∠=,2P x = 易知24P y = 则224P F =此时12222222||||||2||10P F P F P F a P F +=++=∴12F PF △为锐角三角形,则12PF PF +的取值范围是()6,10, 故选:D . 【点晴】关键点点晴:本题的关键在于求出112F PF ∠和122F F P ∠ 为直角时12PF PF +的值.11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得7a =,则FAB的周长为47a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.A解析:A 【分析】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,求出2PQ ,当2PQ 的最小值在原点处取得时,圆P 过原点,可得此时圆半径的范围,半径不在这个范围内的圆不过原点. 【详解】设圆心为(0,)P a ,(0a >),半径为r ,(,)Q x y 是抛物线上任一点,22222()4()(2)44PQ x y a y y a y a a =+-=+-=-++-,若2PQ 的最小值不在(0,0)O 处取得,则圆P 不过原点, 所以20a ->,即2a >,此时圆半径为2r ==>.因此当2r >时,圆无法触及抛物线的顶点O .故选:A . 【点睛】关键点点睛:本题考查圆与抛物线的位置关系,题中圆不过原点,说明抛物线上的点到圆心距离的最小值不是在原点处取得,由此得到解法,即设圆心为(0,)P a ,抛物线上点的坐标为(,)Q x y ,求出PQ ,然后确定其最小值,由最小值点不是原点可得结论.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得3==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解解析:2【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t -=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t =-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴2t =.【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.15.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.16.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化解析:做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan b b BAO CFO a c ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFOa c BDC BAO CFOb bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有223b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.17.【分析】先利用点坐标和垂直关系求得直线的斜率并写出直线方程联立直线与椭圆利用韦达定理和垂直的向量关系得到的关系式再结合焦距的关系式解出即得方程【详解】依题意椭圆的焦距为即即由点的坐标为知直线OD 的斜解析:221306x y +=先利用点D 坐标和垂直关系求得直线l 的斜率,并写出直线方程,联立直线与椭圆,利用韦达定理和垂直的向量关系得到22,a b 的关系式,再结合焦距的关系式解出22,a b ,即得方程. 【详解】依题意,椭圆的焦距为46,即246c =,26c =,即2224a b -=,由点D 的坐标为()2,1,知直线OD 的斜率101202OD k -==-,又⊥OD AB ,知直线l 的斜率为2-,即直线l 的方程为12(2)y x -=--,即52y x =-.设()()1122,,,A x y B x y 联立方程2222152x y a b y x ⎧+=⎪⎨⎪=-⎩得()2222222420250ab x a x a a b +-+-=,故2222121222222025,44a a a b x x x x a b a b-+==++, 即()()()12121212525225104y y x x x x x x =--=-++2222222222222202525425104444a a a b b a b a b a b a b--=-⨯+⨯=+++, 由OA OB ⊥知,12120OA OB x x y y ⋅=+=,即222222222225254044a a b b a b a b a b--+=++, 所以222255a b a b +=,又2224a b -=,消去2a 得,42141200b b +-=,解得26b =或220b =-(舍去),故2230,6a b ==,椭圆C 的方程为221306x y +=.故答案为:221306x y +=.【点睛】 思路点睛:求解椭圆中的直线垂直问题时,一般利用直线的斜率之积为-1,或者直线上的向量的数量积为0来处理,再联立直线与椭圆方程,结合韦达定理,即可求出结果.18.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =, ∴3e = 3【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.③④【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断【详解】①的两个顶点为周长为18则C 点轨迹方程为当解析:③④ 【分析】根据椭圆定义可对①进行判断;根据必要不充分条件定义可对②进行判断;根据复合命题的真假可对③进行判断;根据双曲线的离心率公式可对④进行判断. 【详解】①ABC 的两个顶点为(4,0)A -,(4,0)B ,周长为18,则C 点轨迹方程为221259x y +=(5)x ≠±,当5x =±时,构不成三角形,错误; ②当0.1x =时,1x <,所以||0x >不一定有1x >,错误;③已知命题:33p ≥是真命题,:34q >是假命题,根据复合命题的真假判断,p q ∨为真,p q ∧为假,p ⌝为假,正确;④双曲线221916x y -=-,2216,9a b ==,所以22225c a b =+=,54c e a ==,正确.其中正确的命题的序号是③④, 故答案为:③④. 【点睛】本题考查了椭圆定义、双曲线离心率、必要不充分条件及复合命题真假的判断,属于基础题.三、解答题21.(1)22184x y +=;(2)直线AB 过定点1,22⎛⎫-- ⎪⎝⎭,理由见解析【分析】(1)通过点(0,2)M 是椭圆的一个顶点,12F MF △是等腰直角三角形,可求得,a b ,从而可求椭圆方程;(2)若直线AB 的斜率存在,设AB 方程代入椭圆方程,利用韦达定理及128k k +=,可得直线AB 的方程,从而可得直线AB 过定点;若直线AB 的斜率不存在,设AB 方程为0x x =,求出直线AB 的方程,即可得到结论.【详解】(1)由点(0,2)M 是椭圆的一个顶点,可知2b =, 又12F MF △是等腰直角三角形,可得a =,即a =28a =,24b =所以椭圆的标准方程为22184x y +=;(2)若直线AB 的斜率存在,设AB 方程为y kx m =+,依题意2m ≠±,联立22184y kx mx y =+⎧⎪⎨+=⎪⎩,得222(12)4280k x kmx m +++-=由已知0∆>,设1122(,),(,)A x y B x y ,由韦达定理得:2121222428,1212km m x x x x k k --+==++, 128k k +=12221211212222y y kx m k k k x m x x x x -+-+-=+=+-∴+ 12212121142(2)()2(2)2(2)828x x km k m k m k m x x x x m +-=+-+=+-=+-=- 42kmk m ∴-=+,整理得122m k =- 故直线AB 方程为122y kx k =+-,即122y k x ⎛⎫=+- ⎪⎝⎭,所以直线AB 过定点1,22⎛⎫-- ⎪⎝⎭; 若直线AB 的斜率不存在,设AB 方程为0x x =,设0000(,),(,)A x y B x y -,由已知得0000228y y x x ---+=,解得012x =-, 此时直线AB 方程为12x =-,显然过点1,22⎛⎫-- ⎪⎝⎭;综上,直线AB 过定点1,22⎛⎫-- ⎪⎝⎭. 【点睛】方法及易错点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和椭圆方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系对题目条件进行化简计算,从而可得出结论,另外设直线方程时常常不要忽略斜率是否存在的问题.22.(1)22y x =;(2)存在,P 点坐标为()2,0-. 【分析】(1)利用焦半径公式表示||||MF NF =,代入坐标2x =,求MN 的长度,并表示MNF 的周长,求p ;(2)假设存在点()0,0P x ,设:2l x my =+,与抛物线方程联立,利用根与系数的关系表示0MP NP k k +=,求定点0x 的值. 【详解】(1)当MN 与x 轴垂直时,||||22pMF NF ==+,||MN =,从而有49p ++= 解得1p =,所以C 的方程为22y x =;(2)设()0,0P x ,()11,M x y ,()22,N x y ,由题可知直线l 斜率不为零,设:2l x my =+,代入抛物线方程22y x =消去x ,得2240y my --=,从而122y y m +=,124y y =-,①由OPM OPN ∠=∠可得0MP NP k k +=, 而121020MP NP y y k k x x x x +=+--12102022y y my x my x =++-+-()()()()1201210202222my y x y y my x my x +-+=+-+-将①代入,从而得()()102042022m mx my x my x --=+-+-恒成立,所以02x =-, 因此存在点P 满足题意,P 点坐标为()2,0-. 【点睛】思路点睛:定点问题解决步骤:(1)设直线代入二次曲线方程,整理成一元二次方程; (2)韦达定理列出两根和及两根积;(3)写出定点满足的关系,整体代入两根和及两根积; (4)整理(3)所得表达式探求其恒成立的条件.23.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率。
圆锥曲线定点问题含详解
圆锥曲线定点问题一、求解圆锥曲线中定点问题的两种求法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关. (2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 变成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0,g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.二、[典例] (2020·高考全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a2 +y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG → ·GB →=8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)由题设得A (-a ,0),B (a ,0),G (0,1).则AG → =(a ,1),GB → =(a ,-1).由AG → ·GB → =8,得a 2-1=8,即a =3.所以E 的方程为x 29+y 2=1.(2)证明:设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 由于直线PA 的方程为y =t 9 (x +3),所以y 1=t9 (x 1+3).直线PB 的方程为y =t 3 (x -3),所以y 2=t3 (x 2-3). 可得3y 1(x 2-3)=y 2(x 1+3).由于x 22 9+y 22 =1,故y 22 =-(x 2+3)(x 2-3)9,可得27y 1y 2=-(x 1+3)(x 2+3),即(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.①将x =my +n 代入x 29+y 2=1得(m 2+9)y 2+2mny +n 2-9=0.所以y 1+y 2=-2mn m 2+9 ,y 1y 2=n 2-9m 2+9.2222解得n =-3(舍去)或n =32 .故直线CD 的方程为x =my +32,即直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0 . 综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0 . 三、好题对点训练1.设椭圆2222:1(0)x y E a b a b+=>>过M N ,两点,O 为坐标原点(1)求椭圆E 的方程;(2)设E 的右顶点为D ,若直线:l y kx m =+与椭圆E 交于A ,B 两点(A ,B 不是左右顶点)且满足DA DB DA DB +=-,证明:直线l 过定点,并求该定点坐标.2.已知抛物线2:2(0)C y px p =>的焦点F 到双曲线2213x y -=的渐近线的距离为1.(1)求抛物线C 的方程;(2)若抛物线C 上一点P 到F 的距离是4,求P 的坐标;(3)若不过原点O 的直线l 与抛物线C 交于A 、B 两点,且OA OB ⊥,求证:直线l 过定点.3.如图,已知抛物线()220y px p =>上一点()2,M m 到焦点F 的距离为3,直线l 与抛物线交于()11,A x y ,()22,B x y 两点,且10y >,20y <,12OA OB ⋅=(O 为坐标原点).(1)求抛物线的方程; (2)求证直线l 过定点;4.已知椭圆()222210x y a b a b+=>>的离心率e =,上顶点是P ,左、右焦点分别是1F ,2F ,若椭圆经过点⎭.(1)求椭圆的方程;(2)点A 和B 是椭圆上的两个动点,点A ,B ,P 不共线,直线PA 和PB 的斜率分别是1k 和2k ,若1223k k =,求证直线AB 经过定点,并求出该定点的坐标. 5.已知点P 到直线y =-3的距离比点P 到点A (0,1)的距离多2. (1)求点P 的轨迹方程;(2)经过点Q (0,2)的动直线l 与点P 的轨迹交于M ,N 两点,是否存在定点R 使得∠MRQ =∠NRQ ?若存在,求出点R 的坐标;若不存在,请说明理由.6.已知焦点在x 轴上的椭圆C :222210)x y a b a b+=>>(,短轴长为左焦点的距离为1.(1)求椭圆C 的标准方程;(2)如图,已知点2(,0)3P ,点A 是椭圆的右顶点,直线l 与椭圆C 交于不同的两点 ,E F ,,E F 两点都在x 轴上方,且APE OPF ∠=∠.证明直线l 过定点,并求出该定点坐标.7.已知经过圆2221:C x y r +=上点00(,)x y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点00(,)x y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,求证:直线AB 过定点.8.已知抛物线C :()220y px p =>的焦点F 是椭圆22143x y +=的一个焦点. (1)求抛物线C 的方程;(2)设P ,M ,N 为抛物线C 上的不同三点,点()1,2P ,且PM PN ⊥.求证:直线MN 过定点.9.已知椭圆E :22221(0)x y a b a b +=>>E 的长轴长为.(1)求椭圆E 的标准方程;(2)设()0,1A -,()0,2B ,过A 且斜率为1k 的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交☉C :()2211x y +-=于异于点B 的点P ,Q ,设直线PQ 的斜率为2k ,直线BM ,BN 的斜率分别为34,k k . ①求证:34k k ⋅为定值; ②求证:直线PQ 过定点.10.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点()0,1M -是椭圆的一个顶点,12F MF △是等腰直角三角形. (1)求椭圆的方程;(2)过点M 分别作直线,MA MB 交椭圆于,A B 两点,设两直线的斜率分别为12,k k ,且124k k +=,求证:直线AB 过定点1,12⎛⎫⎪⎝⎭.11.已知抛物线2:4C y x =上有一动点()()000,0P x y y >,过点P 作抛物线C 的切线l 交x 轴于点M .(1)判断线段MP 的中垂线是否过定点?若过,求出定点坐标;若不过,请说明理由; (2)过点P 作l 的垂线交抛物线C 于另一点N ,求PMN 的面积的最小值. 12.已知动点M 到点()1,0的距离比它到y 轴的距离大1. (1)求动点M 的轨迹W 的方程;(2)若点()()001,0P y y >、M 、N 在抛物线上,且12PM PN k k =-⋅,求证:直线MN 过定点.13.已知抛物线22(0)y px p =>的焦点为F ,点(1,)M m 为抛物线上一点,且2MF =. (1)求抛物线的标准方程;(2)直线l 交抛物线于不同的,A B 两点,O 为坐标原点,且4OA OB ⋅=-求证:直线l 恒过定点,并求出这个定点.14.过点(0,2)D 的任一直线l 与抛物线220C :x py(p )=>交于两点,A B ,且4OA OB =-. (1)求p 的值.(2)已知,M N 为抛物线C 上的两点,分别过,M N 作抛物线C 的切线12l l 和,且12l l ⊥,求证:直线MN 过定点.15.已知点P 与定点F 的距离和它到定直线x = (1)求点P 的轨迹方程C ;(2)点M ,N 在C 上,(2,1)A 且,AM AN AD MN ⊥⊥,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.16.已知点(0,2)A -,(0,2)B ,动点P 满足直线PA 与PB 的斜率之积为23-.记点P 的轨迹为曲线C . (1)求C 的方程;(2)过x 轴上一点Q 且不与坐标轴平行的直线与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于点R ,若|||MN QR =,求点Q 的坐标. 17.已知双曲线2214x y -=.(1)过(1,0)P -的直线1l 与双曲线有且只有一个公共点,求直线1l 的斜率;(2)若直线2:l y kx m =+与双曲线相交于,A B 两点(,A B 均异于左、右顶点),且以线段AB 为直径的圆过双曲线的左顶点C ,求证:直线2l 过定点.18.已知点P 是曲线C 上任意一点,点P 到点()1,0F 的距离与到直线y 轴的距离之差为1.(1)求曲线C 的方程;(2)设直线1l ,2l 为曲线C 的两条互相垂直切线,切点为A ,B ,交点为点M . (i )求点M 的轨迹方程;(ii )求证:直线AB 过定点,并求出定点坐标.19.1.双线曲2222:1x y C a b-=经过点(2,3),一条渐近线的倾斜角为3π,直线l 交双曲线于A 、B .(1)求双曲线C 的方程;(2)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB →→⋅=成立?若存在,求出M 的坐标,若不存在,请说明理由. 20.如图:已知抛物线C :2y x =与()1,2P ,Q 为不在抛物线上的一点,若过点Q 的直线的l 与抛物线C 相交于AB 两点,直线PA 与抛物线C 交于另一点M ,直线PB 与抛物线C 交于另一点N ,直线MB 与NA 交于点R .(1)已知点A 的坐标为(9,3),求点M 的坐标;(2)是否存在点Q ,使得对动直线l ,点R 是定点?若存在,求出所有点Q 组成的集合;若不存在,请说明理由.21.已知动点P 到点(的距离与到直线x =(1)求动点的轨迹C 的标准方程;(2)过点(4,0)A -的直线l 交C 于M ,N 两点,已知点(2,1)B --,直线BM ,BN 分别交x 轴于点E ,F .试问在轴上是否存在一点G ,使得0BE GF GE BF ⋅+⋅=?若存在,求出点G 的坐标;若不存在,请说明理由.参考答案1.(1)22184x y += (2)证明见解析, 【分析】(1)将椭圆上的两点代入椭圆方程中,再解方程即可;(2)先将DA DB DA DB +=-转化为DA DB ⊥,再直线与椭圆联立,建立方程后进一步化简直线方程即可获得解决. (1)因为椭圆E : 22221x y a b+=(a ,b >0)过M N ,两点,所以2222421611a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22118114a b⎧=⎪⎪⎨⎪=⎪⎩,得2284a b ⎧=⎨=⎩,所以椭圆E 的方程为22184x y +=. (2)由(1)知D ,设1122(,),(,)A x y B x y由DA DB DA DB +=-可知,DA DB ⊥,所以,0DA DB ⋅=即:1212(0x x y y --+=所以221212(1)()80k x x km x x m ++-+++= (※) 联立直线和椭圆方程,消去y ,得:222(12)4280k x kmx m +++-= 由22Δ0,84m k ><+得所以2121222428,1212km m x x x x k k -+=-=++0=,即得22380m k ++=所以,()(3)0m m ++=所以,m m =-=或 所以,直线l的方程为y kx y kx =-=或 所以,过定点0)或,根据题意,舍去0)所以,直线过定点 2.(1)28y x = (2)(2,)4± (3)证明见解析 【分析】(1)利用点到直线距离得到参数即可; (2)利用抛物线定义即可得到P 的坐标;(3)联立方程,利用韦达定理表示垂直关系,即可得到直线l 过定点. (1)抛物线的焦点F 为,02p ⎛⎫ ⎪⎝⎭,双曲线的渐近线方程为:y x =,即:0x =1=,解得4p =故抛物线C 的方程为:28y x =; (2)设()00,P x y ,由抛物线的定义可知:042p x +=,即0442x +=,解得:02x =将02x =代入方程28y x =得:04y =±,即P 的坐标为(2,)4±; (3)由题意可知直线l 不能与x 轴平行,故方程可设为(0)x my n n =+≠与抛物线方程联立得28x my ny x =+⎧⎨=⎩,消去x 得:2880y my n --=设()()1122,,A x y B x y ,则12128,8y y m y y n +==- 由OA OB ⊥可得:12120x x y y +=,即()21212064y y y y +=即:12121064y y y y ⎛⎫+= ⎪⎝⎭亦即:881064n n -⎛⎫-+= ⎪⎝⎭,又0n ≠,解得:8n =所以直线l 的方程为8x my =+,易得直线l 过定点(8,0).3.(1)24y x =;(2)证明见解析.【分析】(1)根据抛物线的焦半径公式,求p ,得到抛物线的方程;(2)首先设直线方程x my t =+,()0t >,与抛物线方程联立,利用韦达定理表示OA OB ⋅的坐标表示,求得t ,即可说明直线过定点. 【详解】(1)由题意可得232p+=,2p = 抛物线方程为24y x =(2)设直线l 方程为x my t =+,()0t >,代入抛物线方程24y x =中,消去x 得,2440y my t --= 124y y t ,()221212116x x y y t ==. 22212121212·41244y y OA OB x x y y y y t t ⋅=+=+=-=解得6t =或2t =-(舍去)直线l 方程为6x my =+,直线过定点()6,0Q . 4.(1)2213x y +=;(2)直线AB 过定点(0,3)-【分析】(1)因为椭圆的离心率e,椭圆经过点,列方程组,解得2a ,2b ,2c ,即可得出答案.(2)设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,结合韦达定理可得12x x +,12x x ,再计算1223k k ⋅=,解得b ,即可得出答案. 【详解】解:(1)因为椭圆的离心率e,椭圆经过点⎭,所以222231c e a a b ⎧==⎪⎪⎨⎪⎪+=⎩,又222a b c =+, 解得23a =,21b =,22c =, 所以椭圆的方程为2213x y +=.(2)证明:设直线AB 的方程为y kx b =+,1(A x ,1)y ,2(B x ,2)y ,联立2213x y y kx b ⎧+=⎪⎨⎪=+⎩,得222(13)6330k x kbx b +++-=,所以122613kb x x k +=-+,21223313b x x k -=+,所以1111y k x -=,2221y k x -=,所以222121212122121211(1)()(1)(1)23(1)3kx b kx b k x x k b x x b b k k x x x x b +-+-+-++--⋅=⋅===-, 解得3b =-,所以直线AB 过定点(0,3)-.5.(1)x 2=4y ;(2)存在,定点R (0,-2). 【分析】(1)由|PA |等于点P 到直线y =-1的距离,结合抛物线的定义得出点P 的轨迹方程; (2)由对称性确定点R 必在y 轴上,再由∠MRQ =∠NRQ 可得k MR +k NR =0,联立直线l 与抛物线方程,结合韦达定理求出定点R (0,-2). 【详解】(1)由题知,|PA |等于点P 到直线y =-1的距离,故P 点的轨迹是以A 为焦点,y =-1为准线的抛物线,所以其方程为x 2=4y .(2)根据图形的对称性知,若存在满足条件的定点R ,则点R 必在y 轴上,可设其坐标为(0,r )此时由∠MRQ =∠NRQ 可得k MR +k NR =0.设M (x 1,y 1),N (x 2,y 2),则11y rx -+22y r x -=0由题知直线l 的斜率存在,设其方程为y =kx +2,与x 2=4y 联立得x 2-4kx -8=0, 则x 1+x 2=4k ,x 1x 2=-811y r x -+22y r x -=112kx r x +-+222kx r x +-=2k +1212(2)()r x x x x -+=2k -(2)2k r -=0故r =-2,即存在满足条件的定点R (0,-2). 【点睛】关键点睛:解决问题一时,关键是由抛物线的定义得出轨迹方程;解决问题二时,关键是由对称性得出点R 必在y 轴上,进而设出其坐标. 6.(1)22143x y +=;(2)证明见解析,(6,0).【分析】(1)利用已知和,,a b c 的关系,列方程组可得椭圆C 的标准方程;(2)直线l 斜率存在时,设出直线方程与椭圆方程联立, APE OPF ∠=∠可得0PE PF k k +=,利用根与系数的关系代入化简,可得直线l 所过定点. 【详解】(1)由22221b a c a c b ⎧=⎪-=⎨⎪-=⎩得21b a c ⎧⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22143x y +=. (2)当直线l 斜率不存在时,直线l 与椭圆C 交于不同的两点分布在x 轴两侧,不合题意. 所以直线l 斜率存在,设直线l 的方程为y kx m =+. 设11(,)E x y 、22(,)F x y ,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩得222(34)84120k x kmx m +++-=, 所以122834km x x k -+=+,212241234m x x k -=+.因为APE OPF ∠=∠, 所以0PE PF k k +=,即121202233y y x x +=--,整理得1212242()()033mkx x m k x x +-+-= 化简得6m k =-,所以直线l 的方程为6(6)y kx k k x =-=-, 所以直线l 过定点(6,0). 7.(1)00221x x y ya b+=;(2)证明见解析. 【分析】(1)根据已知直接类比求解即可;(2)根据(1),根据题意,得到方程组,根据方程组的特征求出A 、B 两点坐标特征,最后可以求出直线AB 过定点. 【详解】(1)类比上述性质知:切线方程为00221x x y ya b+=.(2)设切点为1222(,),(,)A x y B x y ,点(3,)P t , 由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⋅⎧+⋅=⎪⎪⎨⋅⎪+⋅=⎪⎩,∴A ,B 满足方程:12xty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩,即直线AB 恒过点(2,0).8.(1)24y x =;(2)证明见解析. 【分析】(1)椭圆22143x y +=的焦点为()1,0±,由题意可知12p =,由此即可求出抛物线的方程;(2)设直线MN 的方程为x my n =+,与抛物线联立得,可得211244y y y y m n ==-+,,再根据PM PN ⊥,可得0PM PN ⋅=,列出方程代入211244y y y y m n ==-+,,化简可得2264850n n m m ---+=,再因式分解可得25n m =+或21n m =-+,再代入方程进行检验,即可求出结果. 【详解】(1)因为椭圆22143x y +=的焦点为()1,0±, 依题意,12p=,2p =,所以C :24y x =(2)设直线MN 的方程为x my n =+,与抛物线联立得2440y my n --=, 设()11,M x y ,()22,N x y , 则211244y y y y m n ==-+,,由PM PN ⊥,则0PM PN ⋅=,即()()11221,21,20x y x y --⋅--=, 所以()()()()121211+220x x y y ----=即()()()()121211+220my n my n y y +-+---=,整理得到()()()()22121212+140m y y mn m y y n ++--+-+=,所以()()()224142+140n m m mn m n -++---+=,化简得2264850n n m m ---+=即()()22341n m -=-, 解得25n m =+或21n m =-+.当25n m =+时,直线MN 的方程为25x my m =++,即为()52x m y -=+,即直线过定点()5,2-;当21n m =-+时,直线MN 的方程为21xmy m ,即为()12x m y -=-,即直线过定点()1,2,此时与点P 重合,故应舍去,所以直线MN 过定点()5,2-. 【点睛】本题考查抛物线的方程,考查直线与抛物线的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题. 9.(1)22164x y += (2)①证明见解析;②证明见解析 【分析】(1)由已知条件列出关于,,a b c 的方程组,解之可得;(2)设MN 的方程为11y k x =-,设11(,)M x y ,22(,)N x y ,直线方程代入椭圆方程,整理后由韦达定理得1212,x x x x +,然后计算34k k ⋅可得结论;②设PQ 的方程为2y k x t =+ ,设33(,)P x y ,44()Q x y ,,直线方程代入圆方程,整理后应用韦达定理得3434,x x x x +,由点的坐标求得BP BQ k k ⋅,利用它等于34k k ⋅可求得t 值,从而由直线方程得定点. (1)由题意2222a ca b c a⎧=⎪⎪=⎨⎪+=⎪⎩解得2b a c =⎧⎪=⎨⎪=⎩所以椭圆的标准方程为:22164x y +=;(2)① 设MN 的方程为11y k x =-,与22164x y +=联立得:2211(32)690k x k x +--=, 设11(,)M x y ,22(,)N x y ,则112212222111632932Δ72(21)0k x x k x x k k ⎧+=⎪+⎪⎪=-⎨+⎪⎪=+>⎪⎩,12111234121222(3)(3)y y k x k x k k x x x x ----⋅=⋅==2112112123()92k x x k x x x x -++=- ②设PQ 的方程为2,2y k x t t =+≠ ,与22(1)1y x +-=联立2222(1)2(1)(2)0k x k t x t t ++-+-=,设33(,)P x y ,44()Q x y ,,则23422342222222(1)1(2)1Δ4(2)0k t x x k t t x x k k t t =-⎧+-⎪+⎪-⎪=⎨+⎪⎪=-+>⎪⎩222232324422234342(2)(2)2(2)2(2)(1)(1)(2)(2)BP BQ y k x t k x t y k t t k t t k t k k x x x x t t -+-+------++-⋅=⋅==-2222222(1)(1)(2)2k t k t k t t t t--++--==由34BP BQ k k k k ⋅=⋅,即222,,3t t t -=-∴=此时22284()09k ∆=+>, 所以PQ 的方程为223y k x =+,故直线PQ 恒过定点2(0,)3.10.(1)2212x y +=(2)证明见解析 【分析】(1)根据题意列方程组求得,a b ,即可得到椭圆的标准方程;(2)设()()1122,,,A x y B x y ,分直线AB 斜率存在与不存在两种情况证明.当直线AB 的斜率存在时,设AB :y kx m =+,联立椭圆方程消元后利用韦达定理及判别式求得22212122242221,,2121km m k m x x x x k k -+>+=-⋅=++,由124k k +=求得12k m =-,代入直线方程可证得直线过定点1,12⎛⎫⎪⎝⎭,再考虑直线AB 的斜率不存在时情况,易证得结果.(1)由题意可得2221b c b a b c =⎧⎪=⎨⎪=+⎩,解得1,a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(2)设()()1122,,,A x y B x y .①当直线AB 斜率存在时,设直线AB 方程为y kx m =+, 联立2212y kx m x y =+⎧⎪⎨+=⎪⎩得()222214220k x kmx m +++-=. 由()()()222222Δ16421228210k m k m k m =-+-=-+>,得2221k m +>.所以2121222422,2121km m x x x x k k -+=-⋅=++.所以12121212121111y y kx m kx m k k x x x x +++++++=+=+()1212214x x k m x x +=++=, 即2241km k m -=-,所以21km k m =--,即()()2122km k m km k m =--=--+, 所以12k m =-,所以11122k y kx m kx k x ⎛⎫=+=+-=-+ ⎪⎝⎭,所以直线AB 过定点1,12⎛⎫⎪⎝⎭.②当直线AB 斜率不存在时,()()1111,,,A x y B x y -,则11121111124y y k k x x x +-++=+==,所以112x =,则直线AB 也过定点1,12⎛⎫⎪⎝⎭.综合①②,可得直线AB 过定点1,12⎛⎫⎪⎝⎭.11.(1)存在,过定点()1,0F (2【分析】(1)设直线MP 的方程为y kx b =+与抛物线方程联立方程组,消元后由判别式为0,得1kb =,这样可用k 表示出P 点坐标,从而也可得M 点坐标,然后求出MP 中垂线方程后可得定点;(2)由(1),求出PN 方程,与抛物线方程联立求得N 点坐标后,计算出PM ,PN ,从而得PMN 面积S 为k 的函数,其中0k >,利用导数可求得其最小值. (1)解:设直线MP 的方程为y kx b =+,和抛物线方程24y x =联立得:2440ky y b -+=, 由0k ≠,0∆=得1kb =,则2440ky y b -+=的解为2y k=, 由020y k =>得0k >,21y b x k k -==,得212,P k k ⎛⎫⎪⎝⎭, 在y kx b =+中,令0y =得21b x k k =-=-,所以21,0M k ⎛⎫- ⎪⎝⎭,MP 中点为1(0,)k ,所以线段MP 的中垂线方程为()11y x k=--,所以线段MP 的中垂线过定点()1,0F . (2)解:由(1)可知,直线NP 的方程为23112112y x x k k k k k k⎛⎫=--+=-++ ⎪⎝⎭将其与抛物线方程24y x =联立得:2311204y y k k k ⎛⎫+-+= ⎪⎝⎭,24,4N P N y y k y k k ⎛⎫∴+=-∴=-+ ⎪⎝⎭,22P M PM x k =-=,44N P PN y k k=-=-. 所以PMN 的面积为()()223410k S k k+=>,所以()()224413k k S k+-'=,当0k <<0S '<,S 单调递减,当k >0S '>,S 单调递增,所以k =min S =. 12.(1)24,00,0x x y x ≥⎧=⎨<⎩;(2)证明见解析. 【分析】(1)令(,)M x y ||1x =+,讨论0x ≥、0x <化简整理求轨迹方程.(2)由(1)得()1,2P ,设MN 为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立抛物线方程应用韦达定理得124y y m +=,124y y n =-,根据题设条件有()12122360y y y y +++=,进而可得,n m 的数量关系,即可证明结论. (1)由题设,(,)M x y 到点()1,0的距离比它到y 轴的距离大1,||1x =+,当0x ≥时,222(1)(1)x y x -+=+,整理得24y x =; 当0x <时,222(1)(1)x y x -+=-,整理得0y =;∴动点M 的轨迹W 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)证明:()()001,0P y y >,由(1)知:()1,2P ,设MN 的方程为x my n =+,2111,4M y y ⎛⎫ ⎪⎝⎭,2221,4N y y ⎛⎫⎪⎝⎭,联立24x my n y x =+⎧⎨=⎩,得2440y my n --=,∴124y y m +=,124y y n =-,由1211241214PM y k y y -==+-,同理242PN k y =+,又12PM PN k k =-⋅, ∴()()12161222y y =-++, ∴()12122360y y y y +++=,则290n m -++=,即29n m =+(满足Δ0>), 直线MN 的方程为()2929x my m m y =++=++, ∴直线MN 过定点()9,2-,得证. 13.(1)24y x =(2)直线过定点(2,0)【分析】(1)利用焦半径的定义可得P 的值,即可得到答案;(2)设()()1122,,,A x y B x y ,直线:l x my n =+,根据4OA OB ⋅=-可求得n 的值,即可得到答案; (1)2MF =,∴1222pp +=⇒=, ∴抛物线的标准方程为24y x =.(2)设()()1122,,,A x y B x y ,直线:l x my n =+代入抛物线24y x =得: 2440y my n --=,∴121244y y my y n +=⎧⎨⋅=-⎩,12124OA OB x x y y ⋅=+=-,①又22112244y x y x ==,,()2212121616x x y y n ∴==,∴212x x n =,∴①等价于22440(2)02n n n n -+=⇒-=⇒=, ∴直线l 恒过定点(2,0).14. (1)2p = (2)证明见解析 【分析】(1) 设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 可求1212,x x x x +⋅,由4OA OB =-列方程求p 的值;(2) 设3344(,),(,)M x y N x y 利用导数的几何意义求切线12l l 和的方程,根据12l l ⊥可得344x x =-,化简直线MN 的方程,证明直线MN 过定点.(1)设1122(,),(,)A x y B x y ,直线l 的方程为2y kx =+,与抛物线方程联立, 整理可得2240.x pkx p --= 所以,12122,4x x pk x x p +=⋅=-,所以,221212122444 4.4x x OA OB x x y y p p p ⋅=+=-=-=- 所以, 2.p = (2)抛物线C 的方程为24x y =,即24x y =,对该函数求导得2x y '=,设3344(,),(,)M x y N x y ,则抛物线在点M 处的切线方程为333()2xy y x x -=-,从而312x k =,同理422x k =, 因为12l l ⊥,所以121k k =-,即344x x =-, 又34343434223434()()4MN y y y y x x x x k x x x x --++===--, 从而直线MN 的方程为:3433()4x x y y x x +-=-, 将2334x y =,344x x =-带入化简得:3414x x y x +=+, 所以,直线MN 恒过定点(0,1). 15.(1)22163x y +=;(2)证明见解析. 【分析】(1)设(,)P x y ,利用两点距离公式及点线距,结合已知条件可得2226x y +=,即可写出P 的轨迹方程C .(2)由(1)易知A 在椭圆C 上,设1122(,),(,)M x y N x y ,讨论MN 斜率:存在时令MN 为y kx m =+,联立椭圆方程结合韦达定理及0AM AN ⋅=可得2310k m ++=,可知MN 过定点;斜率不存在时由0AM AN ⋅=求M 、N 的横坐标,判断是否过同一定点,最后根据AD MN ⊥确定D 的轨迹为圆,进而确定圆心即可证结论. (1)设(,)P x y ,由题设2222[(](x y x +=-,整理得:2226x y +=,∴P 的轨迹方程C 为22163x y +=.(2)由(1)知:A 在椭圆C 上,设1122(,),(,)M x y N x y ,当直线MN 斜率存在时,令MN 为y kx m =+,联立椭圆C 并整理得:222(21)4260k x kmx m +++-=,∴222222168(3)(21)488240k m m k k m ∆=--+=-+>,则122421km x x k +=-+,21222(3)21m x x k -=+,故121222()221m y y k x x m k +=++=+,222212121226()21m k y y k x x km x x m k -=+++=+, ∵AM AN ⊥,而11(2,1)AM x y =--,22(2,1)AN x y =--,∴121212121212(2)(2)(1)(1)2()()5AM AN x x y y x x x x y y y y ⋅=--+--=-++-++=0; ∴由上整理得:2234821(231)(21)0m k km m k m k m ++--=+++-=.由题设知:A 不在MN 上,即210k m +-≠,故2310k m ++=,则2133k m +=-,∴MN 过定点21(,)33E -,当直线MN 斜率不存在时,则11(,)N x y -,由2211(2)10AM AN x y ⋅=-+-=,又221126x y +=,可得2113840x x -+=,解得123x =或12x =(舍),∴此时MN 也过定点21(,)33E -,又AD MN ⊥,即90ADE ∠=︒,故D 在以AE 为直径的圆上且圆心为41(,)33.∴定点Q 41(,)33,使得||DQ 为定值,得证.【点睛】关键点点睛:第二问,讨论MN 斜率,联立椭圆方程及线段的垂直关系,利用向量垂直的坐标表示判断MN 所过的定点坐标,再由AD MN ⊥判断D 的轨迹为圆,找到圆心坐标,即为所要证的定点Q . 16.(1)221(2)64x y y +=≠±;(2)(Q . 【分析】(1)设(,)P x y ,应用斜率的两点式及已知条件可得222(2)3y y y x x +-⋅=-≠±,化简整理即可得C 的方程;(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y ,联立曲线C ,结合韦达定理求MN 的中点坐标,进而写出MN 垂直平分线方程即可得R 的坐标,根据弦长公式及|||MN QR =可得22(42)(23)0n m -+=,即可求Q 的坐标.(1)设(,)P x y ,则直线PA ,PB 的斜率之积为222(2)3y y y x x +-⋅=-≠±, ∴整理得222312+=x y ,即221(2)64x y y +=≠±,因此,点P 的轨迹曲线C 的方程为221(2)64x y y +=≠±.(2)设(,0)Q n ,:MN l x my n =+(0)m ≠,11(,)M x y ,22(,)N x y .由2223120x my nx y =+⎧⎨+-=⎩,得222(23)42120m y mny n +++-=, 当2224(46)0m n ∆=-+>时,122423mn y y m -+=+,212221223n y y m -=+,∴||MN =又线段MN 的中点为22222,2323m n mn n m m ⎛⎫--+ ⎪++⎝⎭,即2232,2323nmn m m -⎛⎫ ⎪++⎝⎭, ∴线段MN 的垂直平分线为22232323mn n y m x m m -⎛⎫-=-- ⎪++⎝⎭,令0y =,得223R n x m =+,故2,023n m R ⎛+⎫⎪⎝⎭.由|||MN QR =223nm -+,整理得|2n =∴22(42)(23)0n m -+=,则有n =(Q . 17.(1)11,22-(2)证明见解析 【分析】(1)设出直线方程,与双曲线联立,利用判别式可求;(2)联立直线2l 与双曲线方程,利用韦达定理结合0AC BC ⋅=求出m 和k 关系即可证明. (1)由题意得直线1l 的斜率必存在,设()1:1l y k x =+,联立()22114y k x x y ⎧=+⎪⎨-=⎪⎩,得()2222148440k x k x k ----= 若2140k -=,即12k =±时,满足题意; 若2140k -≠,即12k ≠±时,令()()()22228414440k k k ∆=-----=,解之得k = 综上,1l的斜率为11,22-(2)证明:设()11,A x y ,()22,B x y ,联立2214y kx mx y =+⎧⎪⎨-=⎪⎩,得()()222148410k x kmx m ---+=,则:()()221222122164108144114m k mk x x k m x x k ⎧⎪∆=-+>⎪⎪+=⎨-⎪⎪-+⎪=-⎩以线段AB 为直径的圆过双曲线的左顶点C ()2,0-,∴0AC BC ⋅=,即()121212240x x x x y y ++++=,由韦达定理知,()()()2222121212122414m k y y kx m kx m k x x mk x x m k -=++=+++=-.则()2222224141640141414m m k mk k k k -+-+++=---, 整理得22316200m mk k -+=, 解得2m k =或103km =(均满足0∆>). 当2m k =时,直线l :()+2+2y kx m kx k k x =+==,此时,直线过点()2,0-,不满足题意,故舍去; 当103k m =时,直线l :1010++33y kx m kx k k x ⎛⎫=+== ⎪⎝⎭,此时,直线恒过点10,03⎛⎫- ⎪⎝⎭,满足题意.所以原题得证,即直线2l 过定点10,03⎛⎫- ⎪⎝⎭.18.(1)24y x =或0(0)y x =<(2)(i)1x =-;(ii)证明见解析,定点为(1,0) 【分析】(1)设出P 点坐标,根据题意列式化简即可.(2) (i)设出切点,表示出切线方程,再联立两切线方程即可求出交点坐标;(ii)根据A 、B 两点坐标表示出直线AB 的点斜式方程,化简求出定点. (1)设(,)P x y ,则当0x ≥时,1PF x -=,1x =+,当x>0时化简得24y x =;当0x <时,由题意得0(0)y x =<,所以曲线C 的方程为:24y x =或0(0)y x =<.(2)(i)当0(0)y x =<时,不合题意,故设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,则过点A 的切线为:1122y y x y =+,同理可得过点B 的切线为:2222yy x y =+.根据12l l ⊥可得124y y =-. 所以联立两条切线方程11222222y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得1M x =-,所以M 的轨迹为1x =-(ii)由题意可得AB l 的直线方程为:()211211122221211444444y y y y y y y x x y y y y -⎛⎫--=-=+ ⎪---⎝⎭, 所以必过()1,0 【点睛】求曲线方程的题通常有两种做法,一种是直接根据题意列式化简即可,一种需要结合图像,先根据定义分析出曲线为何种曲线,再进行计算.证明直线过定点常用方法为设而不求,得出参数之间的关系即可求得定点. 19.(1)2213y x -=(2)存在;定点M 的坐标为(1,0)- 【分析】(1)根据倾斜角得出渐近线的倾斜角,求出渐近线方程,进而得到a ,b 的关系,再将点的坐标代入双曲线方程,最后解出a ,b 即可;(2)考虑直线的斜率存在和不存在两种情况,当直线斜率存在时,设出直线的点斜式方程并代入双曲线方程并化简,进而根据根与系数的关系与0MA MB →→⋅=得到答案. (1)双曲线的渐近线方程为by x a =±,因为两条渐近线的夹角为3π,故渐近线b y x a=的倾斜角为6π或3π,所以b a =b a =又22491a b -=,故22491b a b ⎧=⎪⎨-=⎪⎩或22491a a b ⎧⎪⎨-=⎪⎩(无解),故1a b =⎧⎪⎨=⎪⎩所以双曲线2213y x -=.(2)双曲线的右焦点为2(2,0)F ,当直线l 的斜率存在时,设直线l 的方程为:(2)y k x =-,设()11,A x y ,()22,B x y ,因为0MA MB →→⋅=,所以()()12120x m x m y y --+=,整理得到()()()222212121240k x x m k x x m k +-++++=…①,由22(2)33y k x x y =-⎧⎨-=⎩可以得到()222234430k x k x k -+--=, 因为直线l 与双由线有两个不同的交点,故()()422216434336450k k k k ∆=+-+=+>且230k -≠,所以k ≠由题设有①对任意的k ≠ 因22121222443,33k k x x x x k k ++=-=---, 所以①可转化为()()22222222434124033k k k m k m k k k+-+++++=--,整理得到()()22231540m m m k -++-=对任意的k ≠故2210540m m m ⎧-=⎨+-=⎩,故1m =-即所求的定点M 的坐标为(1,0)-. 当直线l 的斜率不存在时,则:2l x =,此时(2,3),(2,3)A B -或(2,3),(2,3)-B A , 此时330MA MB →→=-+=⋅. 综上,定点M 的坐标为(1,0)-. 【点睛】本题第(2)问是一道常规压轴题,根据向量数量积为0得到两点的坐标关系,然后结合根与系数的关系将式子化简,最后求出答案.20.(1)M (25,5);(2)存在,7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【分析】(1)设M (m 2,m ),因为A ,P ,M 三点共线,则斜率相等,代入计算可得m =5,从而求出点M 坐标;(2)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ),利用两点可求直线AM 的方程,代入P 点坐标,可解出212a m a -=-,同理解出212b n b -=-,联立直线AN 和BM ,解出R 的纵坐标,代入,m n ,得到(21)2(2)27R a b a y a b a --+=--+,直线AB 的方程过点Q (s ,t ),可通过代入Q 点建立,s t的关系,若R y 为定值,则得出比例关系为定值k ,从而找到,s t 的解的集合. 【详解】解:(1)设A (a 2,a ),B (b 2,b ),M (m 2,m ),N (n 2,n ), 因为A ,P ,M 三点共线, 所以2332991m m --=--,解得m =5, 所以点M (25,5).(2)直线AM 的方程为(a +m )y =x +am , 将点P 代入可得2(a +m )=1+am , 解得212a m a -=-,直线BM 的方程为:()b m y x bm +=+ 同理可得212b n b -=-,直线AN 的方程为:()a n y x an +=+ 再将直线AN 和BM 联立,得()()a n y x anb m y x bm+=+⎧⎨+=+⎩,解得n R a bmy a b n m-=-+-,代入得2121(2)(21)(2)(21)222121()(2)(2)(21)(2)(21)(2)22R b a a b a a b b n a b a y b a a b a b b a a b a b b a --⨯-⨯-------==-----+------+---2()2(21)2227(2)27ab a b a b a ab a b a b a -++--+==--+--+因为直线AB 的方程为(a +b )y =x +ab 过点Q (s ,t ), 则(a +b )t =s +ab , 解得at sb a t-=-, 代入上式得,22(21)2(21)(22)2(2)(7)27(2)27R at sa a t a s a s t a t y at s t a s a s t a a a t --⨯-+-+-+--==--+-+--⨯-+-为常数, 只需要212222727t s s tk t s s t---===---,即722212k s k k t k -⎧=⎪⎪-⎨-⎪=⎪-⎩(k ∈R 且k ≠2),所以存在点Q 满足的集合为7221(,),22k k x y x y k k --⎧⎫==⎨⎬--⎩⎭∣(k ∈R 且k ≠2).【点睛】知识点点睛:定点定值问题若出现ax by cx d +=+为定值,则会有a b c d=为定值,即系数比为定值.21.(1)22182x y +=;(2)存在,点(4,0)G -. 【分析】(1)由直译法列出方程化简即可;(2)设出直线l 方程4x ty =-,以及11(,)M x y ,()()223,,,0N x y E x ,4(,0)F x ,0(,0)G x ,通过代换用t 表示0x ,化简得到一个常数即可. 【详解】(1)设点(,)P x y化简得22182x y += 故动点P 的轨迹C 的标准方程为22182x y += (2)设直线l 的方程为4x ty =-联立方程组224182x ty x y =-⎧⎪⎨+=⎪⎩,得22(4)880t y ty +-+=,22226432(4)3212832(4)0,t t t t ∆=-+=-=-> 得: 2t >或2t <-12284ty y t +=+,12284y y t =+. 设 34(,0),(,0)E x F x ,定点G 存在,其坐标为0(,0)x()2,1B --,1112BM y k ty +∴=-,2212BN y k ty +=- 则121211:(2)1,:(2)121y y BM y x BN y x ty ty ++=+-=+--- 令0y =,求出与x 轴的交点,E F()()1122334411221212210,2,210,22121y ty y ty x x x x ty y ty y +-+-+-=+=+-=+=-+-+ ()32,1BE x =+, ()42,1BF x =+, ()40,0GF x x =-, ()30,0GE x x =- 0BE GF GE BF ⋅+⋅= 即有: 340430(2)()(2)()0,x x x x x x +-++-=即343434022()(4)0x x x x x x x ++-++= 343403422()4x x x x x x x ++=++3434340343422(4)828244x x x x x x x x x x x +++--==+++++∴343434342(224)441624x x x x x x x x +++---=+++3434342(2)(2)4(4)24x x x x x x ++-++=+++34342(2)(2)2(2)(2)x x x x ++=-+++()()()()()()12121221221121222222112222212111y t ty ty ty y y y t ty ty y ty y y y --⋅⋅--++=-=----++-++++ 21212121222()422(2)()4t y y t y y ty y t y y ⎡⎤-++⎣⎦=-+-+-()2222222228816248844428288424444t t t t t t t t t t t t t t -⋅-⋅+++++=-=--⋅+-+++222222168(4)83222484(4)416t t t t t t -++-+=-=-=--+- 即04x =-当直线l 与x轴重合时,00()(2)0,BE GF GE BF x x ⋅+⋅=-+-= 解得 0 4.x =-所以存在定点G ,G 的坐标为(4,0)-. 【点睛】 关键点点睛: 本题中3434343403434282(224)44162244x x x x x x x x x x x x x -+++---=+=+++++3434342(2)(2)4(4)24x x x x x x ++-++=+++这一步是为了凑出34(2),(2)x x ++,然后作整体替换.。
圆锥曲线中的弦长问题(含解析)
圆锥曲线中的弦长问题一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( )A .2B C .72D .42.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .83.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin EFP FEP ∠=∠,则||EP 的值是( )A .B .4C .2D .14.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .,3⎡⎢⎣B .3⎡⎢⎣C .,48⎣⎦D .816⎣⎦5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52二、填空题6.已知P 为椭圆221164x y +=上的一个动点,过点P 作圆()2211x y -+=的两条切线,切点分别是A ,B ,则AB 的最小值为_______.7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为2. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值11.已知椭圆222:1(1)x E y a a +=>的离心率为32,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB .12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值.14.已知椭圆2222:1x y E a b+=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c ,椭圆的长轴长为43.(1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB 15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点. (1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M . (1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.一、单选题1.椭圆2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2PF =( ) A .3 B .3C .72D .4【答案】C 【解析】 试题分析:,所以当时,,而,所以,故选C.考点:椭圆的性质2.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y ,()22,B x y .若12 3x x +=,则弦AB 的长是( )A .4B .5C .6D .8【答案】A 【分析】由题意得1p =,再结合抛物线的定义即可求解. 【详解】 由题意得1p =,由抛物线的定义知:121231422p pAB AF BF x x x x p =+=+++=++=+=, 故选:A 【点睛】本题主要考查了抛物线的几何性质,考查抛物线的定义,属于基础题.3.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在EFP △中,sin 2EFP FEP ∠=∠,则||EP 的值是( )A .2B .4C .2D .1【答案】A 【分析】过点P 作PH 垂直于准线于点H ,由双曲线的定义得cos PF PH m FEP ==∠,在EFP △中利用正弦定理可求出FEP ∠,带入所给等式即可推出2EFP π∠=,即可求得PE 的值. 【详解】如图所示,过点P 作PH 垂直于准线于点H ,设PE m =,则cos PF PH m FEP ==∠, 在EFP △中,由正弦定理知sin sin PF PEPEF EFP=∠∠,即cos sin 2sin m FEP FEP FEP∠=∠∠,所以2cos 2FEP ∠=,又()0,FEP π∠∈,所以4FEP π∠=,则sin 21EFP FEP ∠=∠=,又()0,EFP π∠∈,所以2EFP π∠=,在直角EFP △中,2EF =,4FEP π∠=,所以22PE =故选:A 【点睛】本题考查抛物线的定义与几何性质、正弦定理解三角形,属于中档题.4.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24e ⎡⎤∈⎢⎥⎣⎦,则线段AB 的长度的取值范围是( )A .45,253⎡⎢⎣B .85453⎡⎢⎣C .535,48⎣⎦D .535816⎣⎦【答案】B【分析】先利用等面积法可得:12114222a r c y y ⨯⋅=⨯⋅-,求解出12y y -的值,然后根据弦长公式12AB y =-的取值范围. 【详解】设内切圆半径为r ,由题意得12114222a r c y y ⨯⋅=⨯⋅-得1228,43y y e ⎡⎤-=∈⎢⎥⎣⎦,1212AB y y y =-=-∈⎣. 故选:B. 【点睛】本题考查椭圆焦点三角形问题,考查弦长的取值范围问题,难度一般.解答时,等面积法、弦长公式的运用是关键.5.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与抛物线C 的一个交点,若4PF FQ =,则QF =( ) A .3 B .52C .32D .32或52【答案】B 【分析】设点()1,P t -,利用4PF FQ =求得点Q 的横坐标,利用抛物线的定义可求得QF . 【详解】抛物线C 的焦点为()1,0F ,准线l 的方程为1x =-.设点()1,P t -、(),Q x y ,则()2,PF t =-,()1,FQ x y =-,4PF FQ =,可得()412x -=,解得32x =, 由抛物线的定义可得35122QF =+=. 故选:B. 【点睛】本题考查利用抛物线的定义求焦半径,求出点Q 的坐标是解题的关键,考查计算能力,属于中等题.二、填空题6.已知P为椭圆221 164xy+=上的一个动点,过点P作圆()2211x y-+=的两条切线,切点分别是A,B,则AB的最小值为_______..【答案】422.【分析】连接PC,交AB于H,可得H为AB中点,求得圆心和半径,连接AC,BC,可得,AC PA BC PB⊥⊥,运用勾股定理和三角形面积公式可得AB,设()4cos,2sinPθθ,[]0,2θπ∈,运用两点的距离公式和同角的平方关系,结合配方和二次函数的最值求法,可得所求最小值.【详解】如图,连接PC,交AB于H,可得H为AB中点,圆()2211x y-+=的圆心为()1,0C,半径1r=,连接AC,BC,可得,AC PA BC PB⊥⊥,则21PA PB PC==-又222121221PCPA ACAB AHPC PC PC-⋅====-设()4cos,2sinPθθ,[]0,2θπ∈,可得()()2 2222111 4cos12sin12cos8cos512cos33PCθθθθθ⎛⎫=-+=-+=-+⎪⎝⎭,当1cos 3θ=时,2PC 取得最小值为113,此时AB 取得最小值为11=.故答案为:11. 【点睛】本题考查椭圆中的最值问题,涉及圆的相切问题,属于中档题7.已知抛物线C :22x py =-()0p >的焦点F 与22184y x +=的一个焦点重合,过焦点F 的直线与C 交于A ,B 两不同点,抛物线C 在A ,B 两点处的切线相交于点M ,且M 的横坐标为2,则弦长AB =______. 【答案】10 【分析】首先根据已知条件得到抛物线方程为28xy ,设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,利用导数的几何意义得到两条切线分别为21148x x y x =-+和22248x x y x =-+,联立切线得到122M x x x +=,从而得到124x x +=,联立直线AB 与抛物线,利用韦达定理即可得到12k =-,再求焦点弦长即可. 【详解】由题意可得()0,2F -,则4p =,抛物线方程为28xy .设直线AB 方程为2y kx =-,()11,A x y ,()22,B x y ,其中2118x y =-,2228x y =-. 由28x y =-得4x y '=-,所以在点A 处的切线方程为()1114x y y x x -=--,化简得21148x x y x =-+①,同理可得在点B 处的切线方程为22248x x y x =-+②.联立①②得122M x x x +=,又M 的横坐标为2, 124x x ∴+=.将AB 方程代入抛物线得28160x kx +-=,1284x x k ∴+=-=,12k ∴=-,()1212144462y y k x x ∴+=+-=-⨯-=-,1210AB p y y ∴=--=.故答案为:10 【点睛】本题主要考查抛物线的焦点弦,同时考查导数的几何意义,属于中档题.8.已知1F ,2F 为椭圆221123x y+=的两个焦点,点P 在椭圆上,如果线段1PF 的中点在y 轴上,则1PF 的值为______.【分析】由题意可得PF 2平行y 轴,然后结合椭圆方程和椭圆的定义整理计算即可求得最终结果. 【详解】∵原点O 是F 1F 2的中点,∴PF 2平行y 轴,即PF 2垂直于x 轴, ∵c =3,∴|F 1F 2|=6,设|PF 1|=x,根据椭圆定义可知2PF x =,∴22)36x x +=,解得2x =.. 【点睛】本题主要考查椭圆的几何性质,方程的思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题9.如图,在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b +=和椭圆2C :22221x y c b+=,其中0a c b >>>,222a b c =+,1C ,2C 的离心率分别为1e ,2e ,且满足12:2:3e e =,A ,B 分别是椭圆2C 的右、下顶点,直线AB 与椭圆1C 的另一个交点为P ,且185PB =.(1)求椭圆1C 的方程;(2)与椭圆2C 相切的直线MN 交椭圆1C 与点M ,N ,求MN 的最大值.【答案】(1)22193x y +=;(232. 【分析】(1)由12:3e e =可得得42243840c a c a -+=,化为2232a c =,从而3a b ,2c b =, )2,0Ab ,()0,B b -,则直线AB 的方程为2y x b =-,与椭圆方程联立,利用弦长公式求得3b =(2)当直线MN 的斜率不存在时,易得2MN =,当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y ,利用韦达定理、弦长公式表示出弦长,结合配方法可得答案. 【详解】(1)由题意知1c e a =,222222c b c ae --==, 因为12:3e e =22232c c a a c-=⋅,222223a c a c -=,将等号两边同时平方,得42243840c a c a -+=,即()()22222230a cac --=,所以2232a c =,又222a b c =+,所以3a b,c =,所以),0A,()0,B b -,所以直线AB的方程为y x b =-, 与椭圆1C :222213x y b b +=联立并消去y,得222332x x b b ⎛⎫+-= ⎪ ⎪⎝⎭, 整理得10x =,25x =,所以,55b P ⎛⎫ ⎪ ⎪⎝⎭, 因为185PB =185=,得b =3a =,椭圆1C 的方程为22193x y +=.(2)当直线MN 的斜率不存在时,易得2MN =.当直线MN 的斜率存在时,设直线MN :()0y kx m k =+≠,与椭圆2C :22163x y +=联立并消去y , 得()222124260kxknx m +++-=,因为直线MN 与椭圆2C 相切,所以()()222216412260k m k m∆=-+-=,整理得()22630*k m +-=,将直线MN 与椭圆1C 方程联立并消去y ,得()222136390k x kmx m +++-=,由()*式可得()()()22222223641339129336k m kmk m k ∆=-+-=+-=.设(),M M M x y ,(),N N N x y ,则2613M N km x x k -+=+,223913M N m x x k-=+,所以M N MN x =-==设213k t +=,则1t >,2MN ==22<,所以当4t =,即1k =±时,MN 最大,且最大值为322. 【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.10.在平面直角坐标系上,已知动点P 到定点()11,0F -、()21,0F 的距离之和为22. (1)求动点P 的轨迹方程C .(2)若直线:l y x t =+与曲线C 交于A 、B 两点,423AB =.求t 的值 【答案】(1)2212x y +=;(2)1t =±.【分析】(1)求出,a b 可求椭圆的方程.(2)设点()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,消去y 后利用韦达定理和弦长公式公式可得关于t 的方程,解方程后可得t 的值.【详解】解:(1)因为1222PF PF +=P 轨迹为椭圆,并且长轴长222a =, 因为焦点坐标分别为()1,0-,()1,0,所以22c =,又因为222a b c =+,所以1b =,所以P 点运动轨迹椭圆C 的方程为2212x y +=.(2)设点()11,A x y ,()22,B x y ,因为22220x y y x t⎧+-=⎨=+⎩,消元化简得2234220x tx t ++-=,所以()2221612222480t t t ∆=--=->,1221243223t x x t x x ⎧+=-⎪⎪⎨-⎪=⎪⎩,所以3AB ==又因为3AB =3=, 解得1t =±,满足>0∆,所以1t =±. 【点睛】直线与圆锥曲线的位置关系,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为某一个变量的方程,解此方程即可.11.已知椭圆222:1(1)x E y a a +=>的离心率为2,右顶点为(,0)P a ,P 是抛物线2:2(0)C y px p =>的焦点.(1)求抛物线C 的标准方程;(2)若C 上存在两动点,A B (,A B 在x 轴两侧)满足20OA OB ⋅=(O 为坐标原点),且PAB △的周长为2||4AB +,求||AB . 【答案】(1)28y x =;(2)30. 【分析】(1)根据椭圆离心率的关系可得2a =,进而根据抛物线的性质求出方程即可. (2) 设直线:AB x my n =+,联立28y x =得出韦达定理,再结合抛物线的方程与20OA OB ⋅=化简可得10n =,再根据抛物线的焦半径公式以及弦长公式求得2m =±,进而求得||AB . 【详解】解析:(1)因为椭圆222:1x E y a +=22134a a -=, 解得24a =,所以2a =, 而22p=,所以4p =, 从而得抛物线C 的标准方程为28y x =.(2)由题意0AB k ≠,设直线:AB x my n =+, 联立28y x =得2880y my n --=, 设()()1122,,,A x y B x y (其中120y y <) 所以12128,8y y m y y n +=⋅=-,且0n >,因为20OA OB ⋅=,所以22121212122064y y OA OB x x y y y y ⋅=+=+=,2820n n -=,所以(10)(2)0n n -+=,故10n =或2n =-(舍), 直线:10AB x my =+, 因为PAB △的周长为2||4AB + 所以||||||2||4PA PB AB AB ++=+. 即||||||4PA PB AB +=+,因为()21212||||424824PA PB x x m y y m +=++=++=+.又12||AB y y =-=所以2820m +=解得2m =±,所以||30AB ==.【点睛】本题主要考查了联立直线与抛物线的方程,结合韦达定理与弦长公式、焦半径公式求解的问题,属于中档题.12.已知椭圆2222:1(0)x y G a b a b +=>>的离心率为1,2过椭圆G 右焦点2(1,0)F 的直线m :x =1与椭圆G 交于点M (点M 在第一象限) (1)求椭圆G 的方程;(2)连接点M 与左焦点并延长交椭圆于点N ,求线段MN 的长.【答案】(1)22143x y +=(2)257【分析】(1)由已知条件推导出1c =,12c a =,由此能求出椭圆的方程. (2)依题意可得直线1MF 的方程,联立直线与椭圆方程,消元,求出两交点的横坐标,再根据弦长公式计算可得; 【详解】 解:(1)椭圆2222:1(0)x y G a b a b+=>>的离心率为12,过椭圆G 右焦点2(1,0)F 的直线:1m x =与椭圆G 交于点M (点M 在第一象限),1c ∴=,12c a =,解得2a =, 2223b a c ∴=-=,∴椭圆的方程为22143x y +=.(2)依题意可得()11,0F -,31,2M ⎛⎫⎪⎝⎭,所以1MF :3344y x =+ 联立方程得223344143y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 整理得22118390x x +-=,则()()121390x x -+=解得11x =,2137x =-所以121325177MN x ⎤⎛⎫=-=--= ⎪⎥⎝⎭⎦【点睛】本题考查待定系数法求椭圆方程,直线与椭圆的综合应用,弦长公式的应用,属于中档题.13.已知抛物线21:2C y px =的焦点与椭圆222:198x y C +=的右焦点F 重合,过抛物线1C 的准线l 上一点P 作抛物线1C 的两条切线,切点为A ,B .(1)求证:直线AB 过焦点F ; (2)若8PA =,6PB =,求PF 的值. 【答案】(1)证明见解析;(2)245. 【分析】(1)求出椭圆的右集合,即抛物线的焦点,从而可得p 值,得抛物线方程,设点()11,A x y ,()22,B x y ,()1,P a -,由切点设出切线方程11:()PA y y k x x -=-,由相切求出斜率k ,得切线PA 方程,同理得PB 方程,代入P 点坐标后可得过,A B 两点的直线方程,得证其过焦点;(2)由(1)中直线AB 方程与抛物线方程联立后消元应用韦达定理,然后可证得PA PB ⊥,又可证得PF AB ⊥,这样由直角三角形性质可得PF【详解】(1)证明:因为椭圆222:198x y C +=的右焦点()1,0F ,所以12p=,即2p =.所以抛物线1C 的方程为24y x =. 设点()11,A x y ,()22,B x y ,()1,P a -,设()111:PA y y k x x -=-, 联立()1112,4,y y k x x y x ⎧-=-⎨=⎩消x 得211114440yy y x k k -+-=, 由0∆=得2111110k y k x -+=.又2114y x =,故2211111104k y k y -+=,故2111102k y ⎛⎫-= ⎪⎝⎭,故112PA k k y ==,故直线PA 的方程为()1112y y x x y -=-, 即1122yy x x =+.同理22PB k y =,直线PB 的方程为2222yy x x =+. 又点P 在直线PA ,PB 上,所以112222,22,ay x ay x =-+⎧⎨=-+⎩故()11,A x y ,()22,B x y 在直线22ay x =-+上,故直线AB 的方程为22ay x =-+,令0y =,得1x =,所以直线AB 过焦点F .(2)解:由(1)知联立222,4,ay x y x =-+⎧⎨=⎩消x 得2240y ay --=,故122y y a +=,124y y =-,故12221PA PB k k y y ⋅=⋅=-, 故直线PA 与直线PB垂直,从而10AB ==.因为2AB k a =,0112PF a ak -==---,所以1PF AB k k ⋅=-, 故PF AB ⊥,所以6824105PF ⨯==. 【点睛】本题主要考查直线与抛物线的位置关系,解题方法是设而不求的思想方法,本题中设出两切点坐标1122(,),(,)A x y B x y ,由直线AB 方程与抛物线方程联立方程组消元后应用韦达定理,然后代入PA PB k k ⋅可得垂直.这是直线与圆锥曲线相交问题常用的方法.14.已知椭圆2222:1x y E a b +=()0a b >>的半焦距为c ,原点O 到经过两点()(),0,0,c b 的直线的距离为12c,椭圆的长轴长为 (1)求椭圆E 的方程;(2)直线l 与椭圆交于,A B 两点,线段AB 的中点为()2,1M -,求弦长.AB【答案】(1)221123x y +=;(2)10. 【分析】(1)由点到直线的距离得12b a =,再由长轴长可求得,a b 得椭圆方程;(2)直线AB 的斜率一定存在,设方程为()12y k x +=-,代入椭圆方程整理,设()()1122,,,A x y B x y ,由韦达定理得1212,x x x x +,由中点坐标公式求得k ,再由弦长公式求得弦长. 【详解】解:(1)经过两点()(),0,0,c b 的直线为:1x yc b+=即0bx cy bc +-=.由已知:原点到直线的距离12bc d c a ===即12b a =因为2a =b =所以椭圆的标准方程为:221123x y +=(2)当直线l 斜率不存在时,线段AB 的中点在x 轴上,不合题意.所以直线l 的斜率存在,设为k ,则直线()12y k x +=-即为:21y kx k =-- 设()()1122,,,A x y B x y 联立22214120y kx k x y =--⎧⎨+-=⎩得:()()22214821161680k x k k x k k +++++-= ()()22214821161680k xk k x k k +-+++-=显然>0∆ 则()122821414k k x x k++==+,解得12k = 则212216168214k k x x k +-⋅==+所以12AB x =-==【点睛】本题考查求椭圆的标准方程,考查求直线与椭圆相交弦长,解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)x y x y ,设直线方程,代入椭圆方程应用韦达定理,得1212,x x x x +,由弦长公式得弦长.15.已知直线l 经过抛物线26y x =的焦点F ,且与抛物线交于A 、B 两点.(1)若直线l 的倾斜角为60,求线段AB 的长; (2)若2AF =,求BF 的长. 【答案】(1)8;(2)6. 【分析】(1)设点()11,A x y 、()22,B x y ,求出直线l 的方程,与抛物线方程联立,求出12x x +的值,再利用抛物线的焦点弦长公式可求得线段AB 的长; (2)设直线l 的方程为32x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线的方程联立,可得出129y y =-,由2AF =求得1x 的值,利用韦达定理以及抛物线的方程求得2x 的值,利用抛物线的定义可求得BF 的长. 【详解】(1)设点()11,A x y 、()22,B x y ,抛物线26y x =的焦点为3,02F ⎛⎫⎪⎝⎭, 由于直线l 过点F ,且该直线的倾斜角为60,则直线l的方程为32y x ⎫=-⎪⎭,联立2326y x y x⎧⎫=-⎪⎪⎭⎨⎪=⎩,消去y 并整理得29504x x -+=,259160∆=-=>, 由韦达定理可得125x x +=,由抛物线的焦点弦长公式可得123538AB x x =++=+=;(2)设点()11,A x y 、()22,B x y ,由题意可知,直线l 不可能与x 轴重合,设直线l 的方程为32x my =+, 联立2326x my y x⎧=+⎪⎨⎪=⎩,消去x 并整理得2690y my --=,()23610m ∆=+>,由韦达定理可得126y y m +=,129y y =-,1322AF x =+=,可得112x =,21163y x ∴==,129y y ∴=-,则22218127y y ==,222962y x ∴==,因此,2362BF x =+=.【点睛】有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式.16.已知圆上224x y +=上任取一点P ,过点P 作y 轴的垂线段PQ ,垂足为Q ,当P在圆上运动时,线段PQ 中点为M .(1)求点M 的轨迹方程;(2)若直线l 的方程为y =x -1,与点M 的轨迹交于A ,B 两点,求弦AB 的长.【答案】(1)2214y x +=;(2【分析】(1)设M 、P ,利用相关点法即可求解.(2)将直线与椭圆方程联立,利用弦长公式即可求解.【详解】(1)设(),M x y ,()00,P x y ,()00,Q y ∴,点M 是线段PQ 中点,002,x x y y ∴==,又()00,P x y 在圆224x y +=上,()2224x y +=, 即点M 的轨迹方程为2214y x +=. (2)联立22114y x y x =-⎧⎪⎨+=⎪⎩,消去y 可得,25230x x --=, ()22600∆=-+>,设()11,A x y ,()22,B x y , 则1225x x +=,1235x x =,12AB x ∴=-===. 【点睛】方法点睛:本题考查了轨迹问题、求弦长,求轨迹的常用方法如下:(1)定义法:利用圆锥曲线的定义求解. (2)相关点法:由已知点的轨迹进行求解. (3)直接法:根据题意,列出方程即可求解.。
圆锥曲线+导数及其应用测试题___含答案
导数及其应用、圆锥曲线测试题一、选择题1、双曲线1322=-y x 的离心率为 ( ) A .552 B .23C .332D .2 2、已知23)(23++=x ax x f 且4)1('=-f ,则实数a 的值等于 ( )A .193 B .163 C .133 D .1033、抛物线281x y -=的准线方程是( ).A. 321=xB. 2=yC. 321=y D. 2-=y4、函数x x x f +=3)(的单调递增区间是 ( )A .),0(∞+B .)1,(-∞C .),(∞+-∞D . ),1(∞+5、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( )A .1B .2C .3D .46、双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( ) A . a =2b B .a =5b C . b =2a D .b =5a 7、函数)22(9323<<---=x x x x y 有( )A . 极大值5,极小值27-B . 极大值5,极小值11-C . 极大值5,无极小值D . 极小值27-,无极大值8、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是9、已知动点M 的坐标满足方程|12-4y 3x |522+=+y x ,则动点M 的轨迹是( ) A . 椭圆 B .抛物线 C . 双曲线 D . 以上都不对 10、函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( )A .5 , —15B .18 , —15C .5 , —4D .5 , —1611、已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .3212、已知12F F 、是双曲线22221(0,0)x y a b a b-=>>的两焦点,以线段12F F 、为边作正三角形12MF F ,若1MF 的中点在双曲线上,则双曲线的离心率是( ) A.324+ B.13- C.213+ D. 13+二、填空题 13、=-+ii11 14、已知函数53123-++=ax x x y 若函数在R 总是单调函数,则a 的取值范围是 15、直线1-=kx y 与双曲线19422=-y x 有且只有一个交点,则k 为 16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'xx f x f x )(0>x ,则不等式0)(2>x f x 的解集是 .三、解答题17、已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为45,求该双曲线的标准方程。
高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc
专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。
设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。
解得。
∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN 的长为15. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4-【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值.【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+--()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k x k x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x k k x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=- ()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ;(2)求证: OA OB ⋅u u u v u u u v是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =- ()()1122,,,OA x y OB x y ==u u u v u u u v, ∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++u u u v u u u v,()212121222144143k y y k y y y y k k =++++=-++-=-, ∴OA OB ⋅u u u v u u u v是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的离心率为6,右焦点为(2,0).(1)求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 3【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 代入,得4 m 2=3 k 2+3原点到直线AB 的距离231m d k ==+ , 当AB 的斜率不存在时, 11x y = ,可得, 13x d == 依然成立.所以点O 到直线的距离为定值32. 点睛: 本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x y b a a b-=>>渐近线方程为3y x =, O 为坐标原点,点(3,3M 在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q 为双曲线上不同两点,点O 在以PQ 为直径的圆上,求2211OPOQ+的值.【答案】(Ⅰ)22126x y -=;(Ⅱ) 221113OP OQ+=. 【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M 的坐标求得参数即可;(2)由条件可得OP OQ ⊥,可设出直线,OP OQ 的方程,代入双曲线方程求得点,P Q 的坐标可求得221113OPOQ+=。
高考数学:圆锥曲线复习题附答案解析
圆锥曲线复习题1.已知抛物线C :y 2=4x 的焦点为F ,经过F 倾斜角为60°的直线l 与抛物线C 交于A ,B 两点.求弦AB 的长.【分析】根据已知条件,结合抛物线的性质,即可求解.【解答】解:∵抛物线C :y 2=4x ,∴抛物线的焦点F (1,0),p =2,设点A (x 1,y 1),B (x 2,y 2),∵直线l 经过F 倾斜角为60°,∴直线l 的方程为y =√3(x −1),联立方程{y =√3(x −1)y 2=4x,化简整理可得,3x 2﹣10x +3=0, 由韦达定理可得,x 1+x 2=103,∴|AB |=|AF|+|BF|=x 1+p 2+x 2+p 2=x 1+x 2+p =103+2=163. 【点评】本题主要考查抛物线的性质,考查计算能力,属于基础题.2.已知A(2,√2)为椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px 的交点,设椭圆的左右焦点为F 1,F 2,抛物线的焦点为F ,直线AF 将ΔAF 1F 2的面积分为9:7两部分.(1)求椭圆及抛物线的方程;(2)若直线l :y =kx +m 与椭圆x 2a 2+y 2b 2=1相交于P 、Q 两点,且△OPQ 的重心恰好在圆O :x 2+y 2=1上,求m 的取值范围.【分析】(1)利用点A 为椭圆和抛物线的交点,代入两个方程,即可求出抛物线的方程,再利用直线AF 将ΔAF 1F 2的面积分为9:7两部分,求出c 的值,由此得到a ,b 的值,从而得到椭圆的标准方程;(2)联立直线与椭圆的方程,得到韦达定理和判别式大于0,由△POQ 重心恰好在圆x 2+y 2=1上,得到(x 1+x 2)2+(y 1+y 2)2=9,利用韦达定理进行化简变形,表示出m 2的表达式,由基本不等式求解即可得到答案.【解答】解:(1)由题意可知,点A(2,√2)为椭圆与抛物线的交点,4a 2+2b 2=1且2=4p ,解得p =12,则y 2=x ;又直线AF 将ΔAF 1F 2的面积分为9:7两部分,所以c +14=97(c −14),解得c =2,则a 2﹣b 2=4,解得b =2,a =2√2,抛物线的方程为y 2=x ;椭圆的方程为x 28+y 24=1; (2)设P (x 1,y 1),Q (x 2,y 2),由{x 28+y 24=1y =kx +m,可得(1+2k 2)x 2+4kmx +2m 2﹣8=0, 由Δ>0,可得4(2k 2+1)>m 2(※),且x 1+x 2=−4km1+2k 2,由△POQ 重心恰好在圆x 2+y 2=1上,可得(x 1+x 2)2+(y 1+y 2)2=9,即(x 1+x 2)2+[k(x 1+x 2)+2m]2=9,即(1+k 2)(x 1+x 2)2+4km(x 1+x 2)+4m 2=9,所以16(1+k 2)k 2m 2(1+2k 2)2−16k 2m 21+2k 2+4m 2=9,化简得m 2=9(1+2k 2)24(4k 2+1),代入(※)中可得k ∈R ,设4k 2+1=t ⇒k 2=t−14(t ≥1),则m 2=9(1+2k 2)24(4k 2+1)=9(t 2+2t+1)16t =916(t +1t +2)≥94, 当且仅当t =1时取等号,故m 2≥94,则实数m 的取值范围为m ≤−32或m ≥32.【点评】本题考查了椭圆标准方程以及抛物线标准方程的求解、直线与椭圆位置关系的应用,在解决直线与圆锥曲线位置关系的问题时,一般会联立直线与圆锥曲线的方程,利用韦达定理和“设而不求”的方法进行研究,属于中档题.3.点P (x 0,y 0)为椭圆C :x 25+y 2=1上位于x 轴上方的动点,F 1,F 2分别为C 的左、右焦点.(1)若线段PF 1的垂直平分线经过椭圆C 的上顶点B ,求点P 的纵坐标y P ;(2)设点A (t ,0)为椭圆C 的长轴上的定点,当点P 在椭圆上运动时,求|P A |关于x 0的函数f (x 0)的解析式,并求出使f (x 0)为增函数的常数t 的取值范围;(3)延长PF 1、PF 2,分别交C 于点M 、N ,求点P 的坐标使得直线MN 的斜率等于−19.【分析】(1)根据题意,建立关于x 0,y 0的方程组,解出即可;(2)由两点间的距离公式表示出f (x 0),再由二次函数的性质可得出t 的取值范围;(3)设出点M ,N 的坐标及直线PF 1,直线PF 2的方程,分别与椭圆方程联立,进而可得到直线MN 的斜率,再结合题意可得到x 0=5y 0,代入椭圆方程即可得到答案.【解答】解:(1)由题意可知,B (0,1),|PB |=|BF 1|,则√x 02+(y 0−1)2=√5,即x 02+(y 0−1)2=5,而点P (x 0,y 0)在椭圆x 25+y 2=1上,则x 025+y 02=1,联立{ x 02+(y 0−1)2=5x 025+y 02=1y 0>0,解得y 0=√5−14, ∴点P 的纵坐标为y p =√5−14; (2)∵|PA|=√(x 0−t)2+y 02=√(x 0−t)2+1−x 025=√4x 025−2tx 0+t 2+1, ∴f(x 0)=√4x 025−2tx 0+t 2+1,x 0∈(−√5,√5),其对称轴为x 0=5t 4,要使f (x 0)为增函数,只需5t 4≤−√5, ∴−√5≤t ≤−4√55;(3)设M (x 1,y 1),N (x 2,y 2),直线PF 1的方程为x =my ﹣2,直线PF 2的方程为x=ny +2,则m =x 0+2y 0,n =x 0−2y 0, 由{x =my −2x 2+5y 2=5得(m 2+5)y 2﹣4my ﹣1=0, ∴y 1=4m m 2+5−y 0=−y 04x 0+9,x 1=my 1−2=−9x 0−204x 0+9, 同理,由{x =ny +2x 2+5y 2=5得(n 2+5)y 2+4ny ﹣1=0, ∴y 2=y 04x 0−9,x 2=9x 0−204x 0−9, ∴k MN =y 04x 0−9+y 04x 0+99x 0−204x 0−9+9x 0+204x 0+9=x 0y 09x 02−45=−19, ∴5−x 02=x 0y 0,则5y 02=x 0y 0,又y 0>0,∴x 0=5y 0,代入椭圆方程得y 0=5√66,∴x 0=5√66,∴P(5√66,√66).【点评】本题考查直线与椭圆的位置关系,考查化简变形及运算求解能力,特别是对运算能力要求较高,属于较难题目.4.过椭圆W :x 22+y 2=1的左焦点F 作直线l 1交椭圆于A ,B 两点,其中A (0,1),另一条过F 的直线l 2交椭圆于C ,D 两点(不与A ,B 重合),且D 点不与点(0,﹣1)重合,过F 做x 轴的垂线分别交直线AD ,BC 于E ,G .(Ⅰ)求椭圆W 的离心率和B 点坐标;(Ⅱ)求证:E ,G 两点关于x 轴对称.【分析】(I ) 由题意可得直线 l 1 的方程为y =x +1.与椭圆方程联立方程组,即可求解B 点坐标;(II ) 设 C (x 1,y 1),D (x 2,y 2),l 2的方程为y =k (x +1),联立方程组,根据根与系数的关系,求得x 1+x 2=−4k 22k 2+1x 1x 2=2k 2−22k 2+1,进而得出E ,G 点的纵坐标,化简即可证得,得到证明.【解答】解:(I )由椭圆的标准方程x 22+y 2=1,得a =√2,b =1,c =1,所以椭圆的离心率为e =c a =√22, 由题意可得l 1的方程为y =x +1,与椭圆方程联立得{y =x +1x 22+y 2=1., 解得x =0或−43,当x =−43时,y =−13,所以B(−43,−13).解:(2)当l 2斜率不存在时,C ,D 两点与E ,G 重合,因为椭圆W 关于x 轴对称,所以E ,G 两点关于x 轴对称;当l 2斜率存在时,设 C (x 1,y 1),(x 1≠−43),D (x 2,y 2),(x 2≠0),设l 2的方程为y =k (x +1)(k ≠1),y 1=k (x 1+1),y 2=k (x 2+1),A(0,1),B(−43,−13),所以直线BC 的方程为y +13=y 1+13x 1+43(x +43), 直线AD 的方程为y −1=y 2−1x 2x , 联立 {y +13=y 1+13x 1+43(x +43)x =−1,解得 y =y 1−x 1−13x 1+4=(k−1)(x 1+1)3x 1+4, 所以G(−1,(k−1)(x 1+1)3x 1+4), y =x 2−y 2+1x 2=(1−k)(x 2+1)x 2, 所以E(−1,(1−k)(x 2+1)x 2), 所以y G +y E =(1−k)(x 1+1)3x 1+4+(1−k)(x 2+1)x 2=(1−k)[2x 1x 2+3(x 1+x 2)+4]3x 1x 2+4x 2, 联立{x 22+y 2=1y =k(x +1),得(2k2+1)x2+4k2x+2k2﹣2=0,因为Δ=(4k2)2﹣4(2k2+1)(2k2﹣2)=8k2+8>0,所以x1+x2=−4k22k2+1,x1x2=2k2−22k2+1,所以y G+y E=(1−k)(2⋅2k2−22k2+1−3⋅4k22k2+1+4)3x1x2+4x2=0,所以y G=﹣y E,综上所述:E,G两点关于x轴对称.【点评】本题考查椭圆的离心率,椭圆与直线的综合应用,属于难题.5.作斜率为﹣1的直线l与抛物线C:y2=2px交于A,B两点(如图所示),点P(1,2)在抛物线C上且在直线l上方.(Ⅰ)求C的方程并证明:直线P A和PB的倾斜角互补;(Ⅱ)若直线P A的倾斜角为θ(π4<θ<π2),求△P AB的面积的最大值.【分析】(Ⅰ)利用点P在抛物线上,求出p的值,即可得到抛物线的方程,联立直线与抛物线方程,求出b的取值范围,利用两点间斜率公式以及韦达定理化简k P A+k PB=0,即可证明;(Ⅱ)先由倾斜角的范围确定直线P A斜率的范围,结合(Ⅰ)中的结论,进一步求解b 的取值范围,由弦长公式求出|AB|,点到直线的距离公式求出三角形的高,用b表示出三角形的面积,构造函数f(x)=(x+1)(3﹣x)2,x∈(﹣1,3),利用导数研究函数的单调性,求解函数的最值即可.【解答】解:(Ⅰ)因为点P(1,2)在抛物线C上,所以22=2p×1,解得p=2,因此抛物线C的方程为y2=4x,设直线l的方程为y=﹣x+b,因为直线l与抛物线C交于A,B两点,且点P(1,2)在直线l的上方,所以设A (x 1,y 1),B (x 2,y 2),且1+2﹣b >0,即b <3,由{y =−x +b y 2=4x,可得x 2﹣(2b +4)x +b 2=0, 而由Δ=[﹣(2b +4)]2﹣4b 2=16(b +1)>0,解得b >﹣1,因此﹣1<b <3,且x 1+x 2=2b +4,x 1x 2=b 2,所以k PA +k PB =y 1−2x 1−1+y 2−2x 2−1=−x 1−2+b x 1−1+−x 2−2+b x 2−1=−(x 1−1)−3+b x 1−1+−(x 2−1)−3+b x 2−1=−2+(b −3)(1x 1−1+1x 2−1) =−2+(b −3)×x 1+x 2−2x 1x 2−(x 1+x 2)+1=−2+(b −3)×2b+2b 2−2b−3=−2+2(b+1)(b−3)(b+1)(b−3)=0(−1<b <3),即k P A +k PB =0,所以直线P A 和直线PB 的倾斜角互补;(Ⅱ)因为直线P A 的倾斜角为θ(π4<θ<π2),所以k P A >1,又由(Ⅰ)可知,k P A +k PB =0,所以k PA k PB =−k PA 2<−1, 由(Ⅰ)可知,−(x 1−1)−3+b x 1−1⋅−(x 2−1)−3+b x 2−1<−1, 即x 1x 2+(2−b)(x 1+x 2)+(2−b)2x 1x 2−(x 1+x 2)+1<−1, 所以−4b+12b 2−2b−3<−1,解得﹣1<b <3,又因为|AB|=√2×√(x 1+x 2)2−4x 1x 2=4√2×√b +1,而点P 到直线l 的距离为√2,所以△P AB 的面积S =4√22×√b +1×√2=2√(b +1)(3−b)2, 设f (x )=(x +1)(3﹣x )2,x ∈(﹣1,3),则f '(x )=3x 2﹣10x +3=(3x ﹣1)(x ﹣3),当x ∈(−1,13)时,f '(x )>0,f (x )单调递增,当x ∈(13,3)时,f '(x )<0,f (x )单调递减, 故当x =13时,f (x )取得最大值为f(13)=25627,所以△P AB的面积的最大值为2√f(13)=32√39.【点评】本题考查了抛物线标准方程的求解、直线与抛物线位置关系的应用,两点间斜率公式的应用,弦长公式以及点到直线距离公式的应用,在解决直线与圆锥曲线位置关系的问题时,一般会联立直线与圆锥曲线的方程,利用韦达定理和“设而不求”的方法进行研究,属于中档题.。
2021 2021年高中数学新课标人教B版《选修一》《选修1 1》《第二章 圆锥曲线与方程》精选专题
2021 2021年高中数学新课标人教B版《选修一》《选修1 1》《第二章圆锥曲线与方程》精选专题----264b55f0-6ea1-11ec-bd8e-7cb59b590d7d2021-2021年高中数学新课标人教b版《选修一》《选修1-1》《第二章圆锥曲线与方程》精选专题2022-2022年高中数学新课程标准人民教育b版选修课1选修课1-1第二章圆锥曲线与方程选题论文[6]含答案考点及解析类别:_________________;分数:___________题号一二得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评分员3总分1,多项选择题1.已知命题a.c.【答案】d【解析】,然后()b.d.试题分析:根据全名命题的否定是一个特殊命题和无命题的特点,我们可以知道选择的D题:全名命题的否定。
2“点在曲线“向上”是“点”的坐标满足方程“关于()a.充分非必要条件c.充要条件【答案】b【解析】b、必要条件和不足条件d.既非充分也非必要条件问题分析:“m点的坐标满足方程”?“曲线上的m点”;“曲线上的点m”不一定满足“点m的坐标满足方程”。
因此,“曲线上的点m”是“点m的坐标满足方程”的必要条件和不足条件。
所以选择B.测试点:充分必要条件的判断方法。
3下列命题中正确的一个是()A.如果B“为真命题,则,“是的”,那么,使得“真理命题”的充要条件或”的逆否命题为“若,则,使得或,则”c.命题“若d、提议【答案】d【解析】试题分析:根据故a不正确,因为真命题要求,即有一个真即可,而同号,所以“,为真命题,要求“是的”两者都真,然后”的充分不必如果B不正确,则命题“If,then或”的反命题为“If and””,故c不正确,根据特称命题的否定形式,可知d是正确的,故选d.考点:复合命题的真值表,充要条件,逆否命题,特称命题的否定.4.命题“存在a.充要条件【答案】a【解析】试题分析:根据问题的含义,选择一个考点:充要条件的判断.5.下列命题中是假命题的是()a.b.函数c、关于方程D.函数和函数[answer]D[分析]试题分析:对应a,当什么时候是幂函数,且在向上递减;对于B函数,解决方案是或;,使是幂函数,在上递减或恒成立,即,解得“错误命题”是一个命题b.必要不充分条件“关于()c.充分不必要条件d、既不充分也不必要要条件,作为一个充要条件,至少有一个负根的充要条件是图像是关于一条直线对称的的值域为,则对于C,什么时候时,方程化为如果有根,那么;对于D,函数存在一个负根;当,即,若方程和功能,若关于的二次方程如果没有负根,那么至少有一个负根的充答案是对称的的图象关于直线所以,不存在关于要条件是为d.测试点:命题的真假6.给定两个命题p,q.若vp是q的必要而不充分条件,则p是vq的()a.充分而不必要条件c.充要条件b、必要条件和不充分条件D.既不充分也不必要条件【答案】a【解析】试题分析:由是的,必要条件,但不是充分条件是的充分而不必要条件,故选a.试验场地:必要和充分条件。
新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(2)
一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.若圆锥曲线C :221x my +=的离心率为2,则m =( ) A .3B 3C .13-D .134.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .235.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在右支上存在点A ,使得点2F 到直线1AF 的距离为2a ,则该双曲线的离心率的取值范围是( ) A .(2,)+∞B .2)C .(3,)+∞D .3)6.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .9167.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A 3B .23C 23D 438.设1F ,2F 分别为双曲线22134x y -=的左,右焦点,点P 为双曲线上的一点.若12120F PF ∠=︒,则点P 到x 轴的距离为( )A .2121B .22121C .42121D 219.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||3||QF PF ≥,则离心率的取值范围为( ) A .61⎛- ⎝⎦B .62]C .231⎤⎥⎝⎦D .31]10.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34π C .(625)π-D .54π 11.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[B .5[C .2[31] D .[31,1)12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B .32C .13D .233二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.15.过椭圆2222:1x y C a b+=(0)a b >>的左焦点F 作斜率为12的直线l 与C 交于A ,B 两点,若||||OF OA =,则椭圆C 的离心率为________.16.如图,直线3y x =-与抛物线24y x =交于A 、B 两点,过A 、B 两点向抛物线的准线作垂线,垂足分别为P 、Q ,则梯形APQB 的面积为________.17.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.18.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.19.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________20.双曲线221916x y -=的左焦点到渐近线的距离为________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.22.如图,直线:l x ty n =+与抛物线2:C y x =交于A ,B 两点,且l 与圆22:1O x y +=相切于点()00,P x y .(Ⅰ)证明:00ny t +=; (Ⅱ)求||||PA PB ⋅(用n 表示)23.在直角坐标系xOy 中,已知一动圆经过点()3,0,且在y 轴上截得的弦长为6,设动圆圆心的轨迹为曲线C . (1)求曲线C 的方程;(2)过点3(,0)2作相互垂直的两条直线1l ,2l ,直线1l 与曲线C 相交于A ,B 两点,直线2l 与曲线C 相交于E ,F 两点,线段AB ,EF 的中点分别为M 、N ,求证:直线MN 恒过定点,并求出该定点的坐标.24.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常25(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由. 25.已知双曲线C 过点(3,且渐近线方程为12y x =±,直线l 与曲线C 交于点M 、N 两点.(1)求双曲线C 的方程;(2)若直线l 过点()1,0,问在x 轴上是否存在定点Q ,使得QM QN ⋅为常数?若存在,求出点坐标及此常数的值;若不存在,说明理由.26.如图,过抛物线24y x =的焦点F 任作直线l ,与抛物线交于A ,B 两点,AB 与x 轴不垂直,且点A 位于x 轴上方.AB 的垂直平分线与x 轴交于D 点.(1)若2,AF FB =求AB 所在的直线方程; (2)求证:||||AB DF 为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由3c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯.∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-, 11()123m m +-=⇒=-, 故选C.4.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则334y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B.【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.5.A解析:A 【分析】由点()2,0F c 到直线1AF 的距离为2a ,可得出直线1AF 的方程为0ax by ac -+=,与双曲线联立,利用120x x <可建立关系求解. 【详解】设点A 的坐标为(,)m n ,则直线1AF 的方程为()()0m c y n x c +-+=, 点()2,0F c 到直线1AF 的距离为2a ,2a =,可得()a n m c b =+,则直线1AF 的方程化为0ax by ac -+=,与双曲线方程联立,可得()4424422420b a x a cx a c a b ----=,A 在右支上,4224440a c a b b a--∴<-,即440b a ->,即220b a ->,即2220c a ->,则可得e >故选:A. 【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.6.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立0034122x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.7.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x 可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k -⋅=-,所以3||3k =, 又||1OF =,所以OPQ △的面积S =121143||||18||223OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.8.C解析:C 【分析】如图,设1=PF m ,2=PF n ,由双曲线定义知=23m n -,平方得:22212m n mn +-=,在12F PF △中利用余弦定理可得:2228m n mn ++=,即可得到163mn =,再利用等面积法即可求得PD 【详解】由题意,双曲线22134x y -=中,2223,4,7a b c === 如图,设1=PF m ,2=PF n ,由双曲线定义知=223m n a -= 两边平方得:22212m n mn +-=在12F PF △中,由余弦定理可得:2222cos120428m n mn c +-==,即2228m n mn ++=两式相减得:316mn =,即163mn = 利用等面积法可知:11sin120222mn c PD =⨯⨯,即1632732PD ⨯=⨯ 解得42121PD = 故选:C.【点睛】关键点睛:本题考查双曲线的定义及焦点三角形的几何性质,解题的关键是熟悉焦点三角形的面积公式推导,也可以直接记住结论:(1)设1F ,2F 分别为椭圆22221x y a b+=的左,右焦点,点P 为椭圆上的一点,且12F PF θ∠=,则椭圆焦点三角形面积122tan2F PF Sb θ=(2)设1F ,2F 分别为双曲线22221x y a b-=的左,右焦点,点P 为双曲线上的一点,且12F PF θ∠=,则双曲线焦点三角形面积122tan2F PF b Sθ=9.C解析:C 【分析】根据2||2PQ OF =,可得四边形12PFQF 为矩形,设12,PFn PF m ==,根据椭圆的定义以及勾股定理可得()22242c m n n m a c =+-,再分析18m t n m =+的取值范围, 进而求得()222422c a c <≤-,再求离心率的范围即可【详解】设12,PF n PF m ==,由210,0x y >>,知m n <,因为()()1111,,,P x y Q x y --,在椭圆C 上,222PQ OP OF ==, 所以,四边形12PFQF 为矩形,12=QF PF ;由11QF PF ≥,可得13mn≤<, 由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-; 令=+m nt n m,令m v n ⎫=∈⎪⎪⎣⎭,所以,1t v v ⎛=+∈ ⎝⎦, 即()2224232c a c <≤-,所以,()22222a c c a c -<≤-,所以,()222113e e e -<≤-,所以,2142e <≤-解得12e <≤ 故选:C 【点睛】关键点睛:解题的关键在于运用椭圆的定义构造齐次式求椭圆的离心率, 即由椭圆定义可得2222,4m n a m n c +=+=①; 平方相减可得()222mn a c=-②;由①②得()2222242c m n m nmn n m a c +==+-,然后利用换元法得出()222113e e e -<≤-,进而求解 属于中档题10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为11225O l d -==,圆C 面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==. 【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解.【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB方程为3)34y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.15.【分析】作出示意图记右焦点根据长度和位置关系计算出的长度再根据的形状列出对应的等式即可求解出离心率的值【详解】如图所示的中点为右焦点为连接所以因为所以所以又因为所以且所以又因为所以所以所以故答案为:【分析】作出示意图,记右焦点2F ,根据长度和位置关系计算出2,AF AF 的长度,再根据2AFF 的形状列出对应的等式,即可求解出离心率e 的值. 【详解】如图所示,AF 的中点为M ,右焦点为2F ,连接2,MO AF ,所以2//MO AF , 因为OA OF=,所以OM AF ⊥,所以2AFAF ⊥,又因为12AF k =,所以212AF AF =且22AF AF a +=,所以242,33a aAF AF ==,又因为22222AF AF FF +=,所以222164499a a c +=,所以2259c a =,所以e =故答案为:53.【点睛】本题考查椭圆离心率的求解,难度一般.(1)涉及到利用图形求解椭圆的离心率时,注意借助几何图形的性质完成求解;(2)已知,,a b c 任意两个量之间的倍数关系即可求解出椭圆的离心率.16.【分析】设点将直线的方程与抛物线的方程联立求得点的坐标进而可得出的坐标由此可计算得出梯形的面积【详解】设点并设点在第一象限由图象可知联立消去得解得或所以点因此梯形的面积为故答案为:【点睛】本题考查抛 解析:48【分析】设点()11,A x y 、()22,B x y ,将直线AB 的方程与抛物线的方程联立,求得点A 、B 的坐标,进而可得出P 、Q 的坐标,由此可计算得出梯形APQB 的面积. 【详解】设点()11,A x y 、()22,B x y ,并设点A 在第一象限,由图象可知12x x >,联立234y x y x =-⎧⎨=⎩消去y ,得21090x x -+=,解得19x =,21x =,1196x y =⎧∴⎨=⎩或2212x y =⎧⎨=-⎩, 所以点()9,6A 、()1,2B -、()1,6P -、()1,2Q --,10AP ∴=,2BQ =,8PQ =,因此,梯形APQB 的面积为()()10284822AP BQ PQ S +⋅+⨯===.故答案为:48. 【点睛】本题考查抛物线中梯形面积的计算,解题的关键就是求出直线与抛物线的交点坐标,考查计算能力,属于中等题.17.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得0x =,则200143x y ==,所以,点M的坐标为13⎫⎪⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.18.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.19.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.20.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.三、解答题21.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.22.(Ⅰ)证明见解析;(Ⅱ)||||PA PB ⋅21n n =--,1n ≤-或1n ≥.【分析】(Ⅰ)利用圆心到直线的距离为半径可得221n t =+,结合00x ty n =+以及点P 在圆上可得01nx =,在00x nt y -=消去n 后可得所求证的关系式. (Ⅱ)设()11,A x y ,()22,B x y ,则||||PA PB ⋅可用前者的纵坐标表示,联立直线方程和抛物线方程,消去x 后利用韦达定理化简||||PA PB ⋅,则可得其表达式. 【详解】解:(Ⅰ)若00y =,则直线l 垂直于x 轴,此时0t =,故00ny t +=成立, 若00y ≠,因为直线:l x ty n =+1=,整理得到:221n t =+,又00x ty n =+,故()222022121x n nx n n y y --+=+=, 整理得到2200120nx n x -+=即01nx =,而2000000000011x x x n x x y t ny y y y x ---====-=-即00ny t +=. (Ⅱ)设()11,A x y ,()22,B x y .联立2x ty ny x=+⎧⎨=⎩,得20y ty n --=,∴12y y t +=,12y y n =-.由(Ⅰ)可得221n t =+,故1n ≤-或1n ≥,而240t n ∆=+>,故2410n n +->即2n <-2n >- 故1n ≤-或1n ≥.而1020||||PA PB y y ⋅=--()()221201201t y y y y y y =+-++()22222220021t t t t t n ty y n n t n n n n n n--⎛⎫=+--+=--⨯+=-++ ⎪⎝⎭222211n n n n n n--=-++21n n =--,其中1n ≤-或1n ≥. 【点睛】思路点睛:对于直线与抛物线、圆的位置关系的问题,前者可设而不求(即韦达定理)来处理,后者利用几何方法来处理,计算过程中注意判别式的隐含要求以及代数式非负对应范围的影响.23.(1)26y x =;(2)证明见解析,9(,0)2. 【分析】(1)设圆心(),C x y ,然后根据条件建立方程求解即可;(2)设直线1l 的方程为3()2y k x =-,然后算出22363(,)2k M k k +,236(,3)2k N k +-,然后表示出直线MN 的方程即可. 【详解】(1)设圆心(),C x y ,由题意得2229(3)x x y =-++,即26y x = 所以曲线C 的方程为26y x =(2)由题意可知,直线12,l l 的斜率均存在,设直线1l 的方程为3()2y k x =-,()11,A x y ,()22,B x y联立方程组2632y x y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得22224(1224)90k x k x k -++=, 所以212236k x x k ++=,12126(3)y y k x x k +=+-= 因为点M 是线段AB 的中点,所以22363(,)2k M k k +同理,将k 换成1k -得236(,3)2k N k +-,当222363622k k k ++≠,即1k ≠±时2222333636122MNkk k k k k k k +-==++--所以直线MN 的方程为22363()12k k y k x k -++=--即29()12k y x k -=--, 所以直线MN 恒过定点9(,0)2当1k =±时,直线MN 的方程为92x =,也过点9(,0)2所以直线MN 恒过定点9(,0)2【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.24.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =- 由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-=设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.25.(1)2214x y -=;(2)存在;23(,0)8Q ;27364QM QN ⋅=. 【分析】(1)由渐近线方程和点的坐标列出关于,a b 的方程组,解之可得;(2)设直线l 的方程为1x my =+,设定点(,0)Q t ,设()11,M x y ,()22,N x y ,直线方程代入双曲线方程得应用韦达定理得12y y +,12y y ,计算QM QN ⋅,并代入12y y +,12y y ,利用此式与m 无关可得t (如果得不出t 值,说明不存在).【详解】(1)∵双曲线C过点,且渐近线方程为12y x =±, ∴22163112a b b a ⎧-=⎪⎪⎨⎪=⎪⎩,解得221,4b a ==, ∴双曲线的方程为2214x y -=;(2)设直线l 的方程为1x my =+,设定点(,0)Q t联立方程组22141x y x my ⎧-=⎪⎨⎪=+⎩,消x 可得()224230m y my -+-=,∴240m -≠,且()2241240m m ∆=+->,解得23m >且24m ≠, 设()11,M x y ,()22,N x y , ∴12122223,44m y y y y m m +=-=---, ∴()2121222282244m x x m y y m m -+=++=-+=--, ()()()22221212121222232441111444m m m x x my my m y y m y y m m m +=++=+++=--+=---- 22044m =--- ∴()()()()11221212,,QM QN x t y x t y x t x t y y ⋅=--=--+()22212121222222083823444444t x x t x x t y y t t t m m m m -=-+++=--+⋅-+=-++----为常数,与m 无关. ∴8230t -=, 解得238t =.即23(,0)8Q ,此时27364QM QN ⋅=.【点睛】方法点睛:本题考查求双曲线的标准方程,考查直线民双曲线相交中定点问题.解题方法是设而不求的思想方法:即设直线方程,设交点坐标,直线方程与双曲线方程联立消元后应用韦达定理,然后计算QM QN ⋅(要求定值的量),利用它是关于参数m 的恒等式,求出定点坐标.26.(1)0y --=;(2)证明见解析. 【分析】(1)由于直线l 斜率不为0,(1,0)F ,所以设直线:1l x ty =+,设()()1122,,,A x y B x y ,由题意可得120,0y y ><,然后直线方程和抛物线方程联立,消去x ,再利用韦达定理结合2,AF FB =可求出t 的值,从而可得AB 所在的直线方程;(2)设AB 中点为(),N N N x y ,则由(1)可得2122,212N N y y y t x t +===+,从而可得AB 中垂线()2:221l y t t x t -=---',求出点()223,0D t +,进而可求出DF 的长,再利用两点间的距离公式可求出AB 的长,从而可求得||||AB DF 的值【详解】解:(1)直线l 斜率不为0,(1,0)F ,设直线:1l x ty =+, 设()()1122,,,A x y B x y ,因为A 点在x 轴上方,所以120,0y y ><由214x ty y x =+⎧⎨=⎩,得2440y ty --= 12124,4y y t y y ∴+==-()()11221221,21,2AF FB x y x y y y =⇒-=-∴-=由1211224824y y t y ty y y t ⎧+==⎧⎪⇒⎨⎨-==-⎪⎩⎩代入124y y =-因10y >,所以0t >,解得t =所以AB所在直线方程为0y --= (2)设AB 中点为(),N N N x y()22122,2121,22N N y y y t x t N t t +∴===+∴+ 所以AB 中垂线()()22:22123,0l y t t x t D t -=---+'∴22||23122DF t t ∴=+-=+(||AB ====244t =+22||442||22AB t DF t +∴==+(定值) 【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查韦达定理的应用,解题的关键是利用设而不求的方法,设出直线方程和交点坐标,然后将直线方程和抛物线的方程联立,消元,再利用韦达定理,然后结已知条件求解即可,考查计算能力,属于中档题。
高中数学选修1_1全册习题(答案详解)
目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用、圆锥曲线测试题一、选择题1、双曲线1322=-y x 的离心率为 ( ) A .552 B .23C .332D .2 2、已知23)(23++=x ax x f 且4)1('=-f ,则实数a 的值等于 ( )A .193 B .163 C .133 D .1033、抛物线281x y -=的准线方程是( ).A. 321=xB. 2=yC. 321=y D. 2-=y4、函数x x x f +=3)(的单调递增区间是 ( )A .),0(∞+B .)1,(-∞C .),(∞+-∞D . ),1(∞+5、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( )A .1B .2C .3D .46、双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e5x (e 为双曲线离心率),则有( )A . a =2bB .a =5bC . b =2aD .b =5a 7、函数)22(9323<<---=x x x x y 有( )A . 极大值5,极小值27-B . 极大值5,极小值11-C . 极大值5,无极小值D . 极小值27-,无极大值 8、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )9、已知动点M 的坐标满足方程|12-4y 3x |522+=+y x ,则动点M 的轨迹是( )A . 椭圆B .抛物线C . 双曲线D . 以上都不对 10、函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( )A .5 , —15B .18 , —15C .5 , —4D .5 , —16 11、已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .3212、已知12F F 、是双曲线22221(0,0)x y a b a b-=>>的两焦点,以线段12F F 、为边作正三角形12MF F ,若1MF 的中点在双曲线上,则双曲线的离心率是( ) A.324+ B. 13- C.213+ D. 13+二、填空题 13、=-+ii11 14、已知函数53123-++=ax x x y 若函数在R 总是单调函数,则a 的取值范围是 15、直线1-=kx y 与双曲线19422=-y x 有且只有一个交点,则k 为 16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'xx f x f x )(0>x ,则不等式0)(2>x f x 的解集是 . 三、解答题17、已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为45,求该双曲线的标准方程。
18、判断函数12432)(23+-+=x x x x f 的单调性,并求出单调区间。
20、函数4431)(3+-=x x x f . (1)求)(x f 的单调区间和极值;(2)当实数a 在什么范围内取值时,方程0)(=-a x f 有且只有三个零点。
21、已知过)23(-,T 的直线l 与抛物线x y 42=交于Q P ,两点,点)2,1(A (1)若直线l 的斜率为1,求弦PQ 的长(2)证明直线AP 与直线AQ 的斜率乘积恒为定值,并求出该定值。
22、设cx bx ax x f ++=23)(的极小值为8-,其导函数)(x f y ‘=的图象经过点),0,32(),0,2(-如图所示,(1)求)(x f 的解析式; (2)求函数的单调区间和极值;(3)若对[]3,3-∈x 都有()m m x f 142-≥恒成立,求实数m 的取值范围.文科答案13、 i 14、),1[∞+ 15、23210±=±=k k 或 16、()()1,01,-+∞17、因为已知顶点在x 轴上的双曲线满足两顶点间距离为8,离心率为45所以4582===a c e a 而222b a c += 即91622==b a 所以双曲线的标准方程为191622=-y x18、因为12432)(23+-+=x x x x f 所以 2466)(2'-+=x x x f 当02466)(2'>-+=x x x f 时,即21712171--<+->x x 或时,函数递增 当02466)(2'<-+=x x x f 时,即21712171+-<<--x 时,函数递减 所以,函数的增区间为),2171[,]2171,(∞++----∞ 函数的减增区间为]2171,2171[+---。
19、(1)由听到炮弹爆炸声的时间相差3s 可知,PB PA 与的距离之差的绝对值为一个定值3403⨯,且该定值||140010203403AB =<=⨯ 由双曲线的定义知爆炸点在一条双曲线上。
(2)以AB 所在的直线为x 轴,以线段AB 的垂直平分线为y 轴建立直角坐标系,则由(1)知 1400210202==c a22990026010051022222=-===a c b a所以,双曲线的标准方程为122990026010022=-y x 20、解:⑴因为4431)(3+-=x x x f 所以)2)(2(4)(2'+-=-=x x x x f 令0)(=x f ‘ 解得2221-==x x220)(-<>>x x x f 或时,当‘ 220)(<<-<x x f 时,当‘当变化时,的变化情况如下表:x)2,(--∞2- )2,2(-2 ),2(+∞)('x f+—+)(x f↑单调递增328↓单调递减34-↑单调递增单调增区间为)2,(--∞,),2(+∞ 单调减区间为)2,2(- 因此当2-=x 时,)(x f 有极大值,且极大值为328)2-(=f 当2=x 时,)(x f 有极小值,且极小值为34)2(-=f(2)由(1)知函数)(1x f y =的图像为右图所示 方程0)(=-a x f 只且只有三个零点等价于函数)(1x f y = 与函数a y =2的图像有且只有三个交点。
所以a 的取值范围是 32834<<-a 。
21、由已知得,直线l 的方程为32-=+x y 即5-=x y联立方程,⎩⎨⎧=-=x y x y 452 化简求解知025142=+-x x设),(11y x P ),(22y x Q 所以1421=+x x 2521=x x 所以382541411||2=⨯-+=PQ(2)当直线l 的斜率存在时,设斜率为k l 的方程为)3(2-=+x k y联立方程,⎩⎨⎧=--=x y k kx y 4232 化简的04129)446(2222=+++++-k k x k k x k设),(11y x P ),(22y x Q所以 2221446k k k x x ++=+ 22214129kk k x x ++= 同理知 k y y 421=+ kk y y 81221--=⋅ 所以直线AP 与直线AQ 的斜率乘积为1)(4)(21212212121212211++-++-=--⋅--=x x x x y y y y x y x y m 所以2-=m当直线l 的斜率不存在时,l 的方程为3=x 联立 ⎩⎨⎧==xy x 432)32,3(P )32,3(-Q 所以直线AP 与直线AQ 的斜率乘积为21323213232-=---⋅--=m 证明直线AP 与直线AQ 的斜率乘积恒为定值,该定值为—2。
22、)),0,32(),0,2()(',23)('2-=++=的图像经过点且x f y c bx ax x f⎩⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧=⨯--=+-∴a c a b a ca b 42332232322 ,42)(23ax ax ax x f -+=∴由图象可知函数)32,2(,)2,()(---∞=在上单调递减在x f y 上单调递增,在),32(+∞上单调递减,1,8)2(4)2(2)2()2()(23-=-=---+-=-=a a a a f x f 解得由极小值x x x x f 42)(23+--=∴)2)(23(443)('12-+-=+--=x x x x x f )得由(。
,极大值是极小值是,,单调递增在区间是和的单调递减区间是函数27408-)32,2(),32()2,()(-+∞--∞∴x f(3)要使对m m x f x 14)(]3,3[2-≥-∈都有恒成立,只需.14)(2min 即可m m x f -≥由(1)可知]3,32(,)32,2(,)2,3[)(在上单调递增在上单调递减在函数---=x f y 上单调递减83334323)3(,8)2(23-<-=⨯+⨯--=-=-f f 且33)3()(min -==∴f x f11314332≤≤⇒-≥-m m m故所求的实数m 的取值范围为}.113|{≤≤m m322,0)('=-==∴x x x f 或则。