粒子群优化算法及其应用研究【精品文档】(完整版)
粒子群算法 (1)【精品文档】(完整版)
中文翻译用于电磁运用的量子粒子群优化算法摘要---一种新的用于电磁运用的粒子群优化(PSO)的技术被提出来了,该技术是基于量子力学提出的,而不是以前版本中我们所指的经典粒子群算法的假设的牛顿定律。
提出一个通用的程序是衍生许多不同版本的量子粒子群优化算法(算法)。
粒子群算法首次运用于线性排列和阵列天线的合体。
这是在天线工程师使用以前的一个标准难题,该粒子群算法性能和优化版的经典算法进行比较,优于经典算法的地方体现在收敛速度的时间上和更好的取得成本花费。
作为另一个应用程序,该算法用于寻找一个集合中的无穷小的介质,制造出相同远近不同的领域循环介质谐振器天线(DRA)。
此外采用粒子群算法的方法是要为DRA找到一种等效电路模型,这个DRA,可以用来预测一些如同Q-factor一样的有趣参数。
粒子群算法只包含一个控制参数,这个参数很容易随着反复试验或者简单的线性变异而调整。
基于我们对物理知识的理解,不同算法理论方面的阐释呈现出来。
索引词---天线阵列、电介质指数,粒子群优化,量子力学。
一介绍粒子群算法的进化是一种全局搜索策略,它能有效地处理任意的优化问题。
在1995年,肯尼迪和埃伯哈特首次介绍了粒子群优化算法。
后来,它引起了相当大的反响并且证明能够处理困难的优化问题。
粒子群算法的基本思想是模拟生物群之间的相互作用。
能阐明这个概念的一个很好的例子就是一大群蜜蜂的类比。
蜜蜂(候选方案)允许在一个特定的领域飞行寻找食物,人们相信经过一段时间(世代沿袭,更替),蜜蜂会聚集在食物集中的地区(总体最优值)。
在每一代中,每一只蜜蜂都会通过采集局部和全局中好的信息来跟新自己目前的住所,达到目前,达到所有蜜蜂中名列前茅的位置。
如此的相互作用和连续的更新会保证达到全局最优!这个方法由于在全局优化困难中简单和高能力的搜索通过电磁团体得到了相当高的重视。
经典粒子群算法最近被用于电磁学上,而且证明,相对于其他得到认可了的进化技术算法是相当有竞争力的。
粒子群优化算法的改进及应用研究
粒子群优化算法的改进及应用研究粒子群优化算法的改进及应用研究摘要:随着计算机技术的广泛应用,优化算法的研究和应用也越来越受到关注。
粒子群优化算法(PSO)作为一种新兴的优化算法,具有较高的收敛速度和全局搜索能力。
然而,传统的PSO算法在处理复杂问题时容易陷入局部最优解的问题。
本文基于传统PSO算法,提出了一种改进的粒子群优化算法,并将其应用于实际问题中,取得了良好的结果。
一、引言粒子群优化算法(PSO)是一种经典的启发式优化算法,最早由Eberhart和Kennedy于1995年提出。
其基本思想是模拟鸟群中鸟的行为,通过个体和社会信息的交流来寻找最优解。
在过去的几十年里,PSO算法取得了很多成功的应用,并在多个领域取得了良好的效果。
然而,传统的PSO算法存在局部最优解的问题,尤其在高维复杂问题中表现不佳,因此需要对其进行改进。
二、粒子群优化算法的原理和改进思路1. 粒子群优化算法的原理粒子群优化算法的基本原理是通过模拟鸟群中鸟的行为,每个粒子代表一个潜在解,在解空间中搜索最优解。
每个粒子根据历史最优解和邻域最优解进行位置更新,同时考虑个体和群体的信息。
通过迭代更新,粒子逐渐趋近于最优解。
2. 改进思路为了解决传统PSO算法局部最优解问题,本文提出了以下改进思路:(1)引入惯性权重:传统PSO算法的速度更新中只考虑历史最优解和邻域最优解,没有考虑到当前速度的影响。
为了引入速度的信息,本文在速度更新公式中引入了惯性权重。
惯性权重用于调节上一次速度对当前速度的影响程度,可以提高算法的全局搜索能力。
(2)引入自适应参数:传统PSO算法通常需要手动设置参数,对于不同问题,最优参数的选择可能不同。
为了克服这个问题,本文引入了自适应参数机制。
通过遗传算法等方法,自动调整PSO算法的参数,提高算法的鲁棒性和适应性。
三、实验设计与结果分析本文将改进的PSO算法应用于函数优化问题和组合优化问题中,并与传统PSO算法进行对比实验。
多目标优化的粒子群算法及其应用研究
多目标优化的粒子群算法及其应用研究多目标优化问题是指在优化问题中存在多个冲突的目标函数,需要找到一组解,使得所有目标函数能够达到最优或近似最优的解。
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,通过模拟鸟群觅食行为来寻找最优解。
多目标优化的粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)是对传统的PSO算法进行改进和扩展,以解决多目标优化问题。
MOPSO算法通过在空间中形成一组粒子,并根据自身的经验和全局信息进行位置的更新,逐步逼近Pareto最优解集,以找到多个最优解。
其基本步骤如下:1.初始化一组粒子,包括粒子的位置和速度,以及不同的目标函数权重。
2.对于每个粒子,计算其目标函数值和适应度值。
3.更新个体最优位置和全局最优位置,以及粒子的速度和位置。
更新方式可根据不同的算法变体而有所差异。
4.检查是否满足终止条件,如达到最大迭代次数或达到预设的精度要求。
5. 如果不满足终止条件,则返回第3步;否则,输出Pareto最优解集。
MOPSO算法在多目标优化中具有以下优点:-非依赖于目标函数的导数信息,适用于复杂、非线性、高维的优化问题。
-可以同时全局最优解和局部最优解,避免陷入局部最优点。
-通过自适应权重策略,得到一组不同的最优解,提供决策者进行选择。
MOPSO算法在许多领域都有广泛的应用-工程设计:多目标优化问题在工程设计中很常见,例如在汽车设计中优化油耗与性能的平衡。
-经济学:多目标优化可以用于投资组合优化问题,以平衡投资收益与风险。
-物流与运输:多目标优化问题可应用于货物分配与路线规划中,以实现最低成本与最短时间的平衡。
综上所述,多目标优化的粒子群算法(MOPSO)通过模拟鸟群觅食行为,以找到一组解,使得所有目标函数能够达到最优或近似最优的解。
MOPSO算法在工程设计、经济学、物流与运输等领域都有广泛的应用。
粒子群算法文档【精品文档】(完整版)
§6.4 粒子群优化算法人们提出了群搜索概念,利用它们来解决现实中所遇到的优化问题,并取得了良好的效果.粒子群优化算法就是群体智能中的一种算法.粒子群算法是一种演化计算技术,是一种基于迭代的优化工具,系统初始化为一组随机解,通过迭代搜寻最优值,将鸟群运动模型中栖息地类比为所求问题空间中可能解的位置,利用个体间的传递,导致整个群体向可能解的方向移动,逐步发现较好解.6.4.1 基本粒子群算法粒子群算法,其核心思想是对生物社会性行为的模拟.最初粒子群算法是用来模拟鸟群捕食的过程,假设一群鸟在捕食,其中的一只发现了食物,则其他一些鸟会跟随这只鸟飞向食物处,而另一些会去寻找更好的食物源.在捕食的整个过程中,鸟会利用自身的经验和群体的信息来寻找食物.粒子群算法从鸟群的这种行为得到启示,并将其用于优化问题的求解.若把在某个区域范围内寻找某个函数最优值的问题看作鸟群觅食行为,区域中的每个点看作一只鸟,现把它叫粒子(particle).每个粒子都有自己的位置和速度,还有一个由目标函数决定的适应度值.但每次迭代也并不是完全随机的,如果找到了新的更好的解,将会以此为依据来寻找下一个解.图6.21给出了粒子运动的思路图.图6.21粒子运动的路线图下面给出粒子群算法的数学描述.假设搜索空间是D维的,群中的第i个粒子能用如下D维矢量所表示:12(,,,)i i i iD X x x x '=(6.43)每个粒子代表一个潜在的解,这个解有D 个维度.每个粒子对应着D 维搜索空间上的一个点.粒子群优化算法的目的是按照预定目标函数找到使得目标函数达到极值的最优点.第i 个粒子的速度或位置的变化能用如下的D 维向量表示:12(,,,)i i i iD V v v v '= (6.44)为了更准确地模拟鸟群,在粒子群优化中引入了两个重要的参量.一个是第i 个粒子曾经发现过的自身历史最优点(Personal best ,pbest),可以表示为:12(,,,)i i i iD P p p p '= (6.45)另一个是整个种群所找到的最优点(Global best ,gbest),可以表示为:12(,,,)g g g gD P p p p '= (6.46)PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解.在每一次的迭代中,粒子通过跟踪两个“极值”(i P 和g P )来更新自己.在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置:1122(1)()()(()())()(()())id id id id gd id v t wv t c r t p t x t c r t p t x t +=+-+-,(速度更新公式)(6.46)(1)()(1)id id id x t x t v t +=++(位置更新公式) (6.47)其中w 称之为惯性因子,在一般情况下,取1w =,1,2,,t G = 代表迭代序号,G 是预先给出的最大迭代数;1,2,,d D = , 1,2,,i N = ,N 是群的大小;1c 和2c 是正的常数,分别称为自身认知因子和社会认知因子,用来调整i P 和g P 的影响强度.1r 和2r 是区间[0,1]内的随机数.由(6.46)和(6.47)构成的粒子群优化称为原始型粒子群优化.从社会学的角度来看,公式(6.47)的第一部分称为记忆项,表示上次优化中的速度的影响;公式第二部分称为自身认知项,可以认为是当前位置与粒子自身最优位置之间的偏差,表示粒子的下一次运动中来源于自己经验的部分;公式的第三部分称为社会认知项,是一个从当前位置指向种群最佳位置的矢量,反映了群内粒子的协作和知识共享.可见,粒子就是通过自己的经验和同伴中最好的经验来决定下一步的运动.随着迭代进化的不断进行,粒子群逐渐聚集到最优点处,图6.22 给出了某个优化过程中粒子逐渐聚集的示意图.图6.22 粒子群在优化过程聚集示意图 综上所述,我们得到如下基本粒子群算法流程:(1) 设定参数,初始化粒子群,包括随机位置和速度;(2) 评价每个粒子的适应度;(3) 对每个粒子,将其当前适应值与其曾经访问过的最好位置pbest 作比较,如果当前值更好,则用当前位置更新pbest ;(4) 对每个粒子,将其当前适应值与种群最佳位置gbest 作比较,如果当前值更好,则用当前位置更新gbest ;(5) 根据速度和位置更新公式更新粒子;(6)若未满足结束条件则转第二步;否则停止迭代.迭代终止条件根据具体问题一般选为迭代至最大迭代次数或粒子群搜索到的最优位置满足预定的精度阈值.6.4.2 粒子群算法的轨迹分析1998年,Ozcan 在文献[13]中首先对粒子在一维空间的轨迹进行了讨论,并在1999年将粒子运动的轨迹分析推广到多维空间的情形,2002年,文献[14]从矩阵代数的观点讨论了粒子的轨迹问题,本节采用[15]中的差分方程思想分别讨论单个粒子在一维以及二维空间的轨迹问题。
粒子群算法【精品文档】(完整版)
粒子群算法摘要:粒子群优化算法是由James Kennedy和 Russell Eberbart 设计的一种仿生优化计算方法。
PSO算法的基本设计思想来源于两个方面分别是人工生命和进化计算,设计者通过研究动物群体以及人类行为模式的计算机模拟,然后不断的试错、修改而逐渐的到算法的原型。
PSO算法的运行机理不是依靠个体的自然进化规律,而是对生物群体的社会行为进行模拟。
它最早源于对鸟群觅食行为的研究。
在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种相互作用和影响是通过信息共享机制体现的。
PSO算法就是对这种社会行为的模拟即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体朝着更好的方向发展。
关键词:粒子群优化算法;社会行为;鸟群觅食;信息共享1 粒子群算法设计思想粒子群算法的思想来源于对鸟捕食行为的模仿,虽让鸟群在捕食过程中会发生改变飞行方向、聚集等一系列不可预测的行为但整体还是呈现一种有序性,研究证明是因为鸟群中存在一种信息共享机制。
可以设想一群鸟在随机搜索食物,刚开始每只鸟均不知道食物在哪里,所以均无特定的目标进行飞行,但是它们知道哪只鸟距离食物最近,还有自己曾经离食物最近的位置,每只鸟开始通过试图通过这两个位置来确定自己往哪个方向飞行。
因此可以将鸟群觅食行为看做一个特定问题寻找解的过程。
如果我们把一个优化问题看做是空中觅食的鸟群,那么粒子群中每个优化问题的可行解就是搜索空间中的一只鸟,称为“粒子”,“食物”就是优化问题的最优解。
个体找到食物就相当于优化问题找到最优解。
当然这里的鸟群(粒子)是经过人工处理的,它们均有记忆功能,没有质量和体积,不占空间,每个粒子均有速度和位置两个属性,同时每个粒子都有一个由优化问题决定的适应度来评价粒子的“好坏”程度,显然,每个粒子的行为就是总追随者当前的最优粒子在解空间中搜索。
2 粒子群优化算法2.1 标准粒子群优化算法首先提出两个概念,(1)探索:是值粒子在一定程度上离开原先的搜索轨迹,向新的方向进行搜索,体现了向未知区域开拓的能力,可以理解为全局搜索。
多目标优化的粒子群算法及其应用研究共3篇
多目标优化的粒子群算法及其应用研究共3篇多目标优化的粒子群算法及其应用研究1多目标优化的粒子群算法及其应用研究随着科技的发展,人们对于优化问题的求解需求越来越高。
在工程实践中,很多问题都涉及到多个优化目标,比如说在物流方面,安全、效率、成本等指标都需要被考虑到。
传统的单目标优化算法已不能满足这些需求,因为单目标算法中只考虑单一的优化目标,在解决多目标问题时会失效。
因此,多目标优化算法应运而生。
其中,粒子群算法是一种被广泛应用的多目标优化算法,本文将对这种算法进行介绍,并展示其在实际应用中的成功案例。
1. 算法原理粒子群算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,源自对鸟群的群体行为的研究。
在算法中,将待优化的问题抽象成一个高维的空间,然后在空间中随机生成一定数量的粒子,每个粒子都代表了一个潜在解。
每个粒子在空间中移动,并根据适应度函数对自身位置进行优化,以期找到最好的解。
粒子的移动和优化过程可以通过以下公式表示:$$v_{i,j} = \omega v_{i,j} + c_1r_1(p_{i,j} - x_{i,j}) + c_2r_2(g_j - x_{i,j})$$$$x_{i,j} = x_{i,j} + v_{i,j}$$其中,$i$ 表示粒子的编号,$j$ 表示该粒子在搜索空间中的第 $j$ 个维度,$v_{i,j}$ 表示粒子在该维度上的速度,$x_{i,j}$ 表示粒子在该维度上的位置,$p_{i,j}$ 表示粒子当前的最佳位置,$g_j$ 表示整个种群中最好的位置,$\omega$ 表示惯性权重,$c_1$ 和 $c_2$ 分别为粒子向自己最优点和全局最优点移动的加速度系数,$r_1$ 和 $r_2$ 为两个 $[0,1]$ 之间的随机值。
通过粒子群的迭代过程,粒子逐渐找到最优解。
2. 多目标优化问题多目标优化问题的具体表述为:给出一个目标函数集 $f(x) = \{f_1(x), f_2(x),...,f_m(x)\}$,其中 $x$ 为决策向量,包含 $n$ 个变量,优化过程中需求出 $f(x)$ 的所有最佳解。
粒子群优化算法及其应用研究【精品文档】(完整版)
摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
改进的粒子群优化算法研究及其若干应用
改进的粒子群优化算法研究及其若干应用一、本文概述随着和计算智能的快速发展,群体智能优化算法已成为解决复杂优化问题的重要手段。
其中,粒子群优化(Particle Swarm Optimization, PSO)算法作为一种模拟鸟群、鱼群等生物群体行为的优化算法,因其简单易实现、参数少、搜索速度快等优点,被广泛应用于函数优化、神经网络训练、模式识别、工程设计等多个领域。
然而,传统的粒子群优化算法也存在易陷入局部最优、收敛速度慢、全局搜索能力弱等问题。
因此,对粒子群优化算法进行改进,提高其优化性能和应用范围,具有重要的理论价值和现实意义。
本文首先介绍了粒子群优化算法的基本原理和发展历程,分析了其优缺点及适用场景。
在此基础上,重点研究了几种改进的粒子群优化算法,包括引入惯性权重的PSO算法、基于社会心理学的PSO算法、基于混合策略的PSO算法等。
这些改进算法在保持PSO算法原有优点的同时,通过调整粒子运动规则、引入新的优化策略、结合其他优化算法等方式,提高了算法的收敛速度、全局搜索能力和优化精度。
本文还将探讨这些改进的粒子群优化算法在若干实际问题中的应用,如函数优化问题、神经网络训练问题、路径规划问题等。
通过实际应用案例的分析和比较,验证了改进算法的有效性和优越性,为粒子群优化算法在实际问题中的应用提供了有益的参考和借鉴。
本文旨在深入研究和改进粒子群优化算法,探索其在复杂优化问题中的应用潜力,为推动群体智能优化算法的发展和应用做出贡献。
二、粒子群优化算法的基本原理粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化搜索技术,由Eberhart和Kennedy于1995年提出。
该算法模拟了鸟群觅食过程中的社会行为,通过个体(粒子)之间的信息共享和协作,达到在搜索空间内寻找最优解的目的。
在PSO中,每个粒子代表问题解空间中的一个候选解,每个粒子都有一个适应度值,用于衡量其解的优劣。
粒子群优化算法研究及应用(周先东)
1 论文的创新之处
2)本文根据运输问题的特殊约束条件, 设计了一种产生初始可行解的方法,同时基 于遗传算法(GA)和PSO算法的思想,设计了 求解运输问题的GAPSO算法。 3)针对PSO算法收敛速度较慢和后期局 部搜索能力不强的问题,本文基于分层搜索 的思想,提出了一种分层PSO算法。
其中i=1,2,…,n, xi 1 x xi 则在整个区间[a, b]的可行函数y(x)的近似函数为:
H i ( x) H ( x) 0 ( xi 1 x xi )
其他
i 1, 2,
,n
本文主要工作
H(x)是一个分段三次多项式,对于各区间的一 阶导数Hi'(x)很容易得到。由于积分是线性算子,故 可以将变分问题(3.6)看成如下的近似问题:
体智能为特征,以求解连续变量优化问题为背景的 一种优化算法。
2.1 基本PSO算法的原理
PSO算法通过个体之间的协作来搜寻最优解,
它利用了生物群体中信息共享的思想,它采用的 是速度——位置搜索模型。 适应值 优化 问题 的解 搜索 空间 的鸟 粒子
速度
位置
2.1 基本PSO算法的原理
初始 化一 种群 跟 踪 个体 极值 全局 极值 迭 更新 速度 代 位置
误差为:4.176204068600461e-006 (*是准确值,□是近似值)
本文主要工作
例3.7结果(同差分法的比较)
xi yi(差分法结果) y(标准 ) PSO算法结果) y ( xi (准确值) i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.07048937725197 0.14268364827646 0.21830475578371 0.29910891084880 0.38690415502238 0.48356844074618 0.59106841087745 0.71147906511749 0.84700451000870 1 0 0.07046815731340 0.14264232077624 0.21824524945515 0.29903486176007 0.38682054346801 0.48348169007427 0.59098668994751 0.71141231144020 0.84696416450834 1 0 0.07046740687740 0.14264090885891 0.21824367622186 0.29903320048416 0.38681888397007 0.48348014891688 0.59098524736430 0.71141096008247 0.84696338169191 1
粒子群综述-【精品文档】(完整版)
粒子群优化算法综述第一章概述粒子群优化算法(PSO)是近年来被广为关注和研究的一种智能优化算法,源于对鸟群捕食系统的模拟。
它收敛速度快、易实现并且仅有少量参数需要调整,因而一经提出就成为智能优化与进化计算领域的一个新的研究热点,目前己经被广泛应用于目标函数优化、动态环境优化、神经网络训练、模糊控制系统等许多领域[1]。
其中最具应用前景的领域包括多目标问题的优化、系统设计、分类、模式识别、生物系统建模、规划、信号处理、决策和模拟等。
粒子群优化算法的理论背景是“人工生命”。
人工生命(artificial life)是用来研究具有某些生命基本特征的人工系统,其中一个重要部分是利用生物技术来研究计算问题。
粒子群优化算法的诞生来源于一种生物一社会系统,该生物一社会系统的研究集中于简单个体组成的群落与环境之间的关系,以及个体之间的互动行为。
群居个体以集体的力量进行觅食、御敌,单个个体只能完成简单的任务,而由单个个体组成的群体却能完成复杂的任务,这种群体所表现出来的“智能”,就称之为群体智能(Swarm Intelligence,SI)[2]。
而从群居昆虫互相合作进行工作中得到启迪,研究其中的原理,并以此原理来设计新的求解问题的算法被称为群智算法。
在计算智能领域主要有两种基于群智能的算法,一种是蚁群算法(Ant Colony Optimization,ACO),它是对蚂蚁群落食物采集过程的模拟,己经成功运用在很多离散优化问题上[3];另一种是粒子群优化算法,最初由Jim Kennedy于1995年提出并成功的用于函数优化,后来又进行了有效的拓展[4]。
但是,PSO的发展历史尚短,在理论基础与应用推广上都还存在一些问题有待解决。
当PSO应用于高维复杂问题优化时,往往会早熟收敛(premature),也就是种群在还没有找到全局最优点时已经聚集到一点停滞不动。
这些早熟收敛点,有可能是局部极小点,也有可能是局部极小点邻域中的一个点。
粒子群算法原理及在函数优化中的应用(附程序)【精品文档】(完整版)
粒子群算法原理及其在函数优化中的应用1 粒子群优化(PSO )算法基本原理1.1 标准粒子群算法假设在一个D 维的目标搜索空间中,有m 个代表问题潜在解的粒子组成一个种群12[,,...,]m =x x x x ,第i 个粒子的信息可用D 维向量表示为12[,,...,]T i i i iD x x x =x ,其速度为12[,,...,]T i i i iD v v v =v 。
算法首先初始化m 个随机粒子,然后通过迭代找到最优解。
每一次迭代中,粒子通过跟踪2个极值进行信息交流,一个是第i 个粒子本身找到的最优解,称之为个体极值,即12[,,...,]T i i i iD p p p =p ;另一个是所有粒子目前找到的最优解,称之为群体极值,即12[,,...,]T g g g gD p p p =p 。
粒子在更新上述2个极值后,根据式(1)和式(2)更新自己的速度和位置。
11122()()t t t t t t i i i i g i w c r c r +=+-+-v v p x p x(1)11t t t i i i ++=+x x v (2)式中,t 代表当前迭代次数,12,r r 是在[0,1]之间服从均匀分布的随机数,12,c c 称为学习因子,分别调节粒子向个体极值和群体极值方向飞行的步长,w 为惯性权重,一般在0.1~0.9之间取值。
在标准的PSO 算法中,惯性权重w 被设为常数,通常取0.5w =。
在实际应用中,x 需保证在一定的范围内,即x 的每一维的变化范围均为min max [,]X X ,这在函数优化问题中相当于自变量的定义域。
1.2 算法实现步骤步骤1:表示出PSO 算法中的适应度函数()fitness x ;(编程时最好以函数的形式保存,便于多次调用。
)步骤2:初始化PSO 算法中各个参数(如粒子个数,惯性权重,学习因子,最大迭代次数等),在自变量x 定义域内随机初始化x ,代入()fitness x 求得适应度值,通过比较确定起始个体极值i p 和全局极值g p 。
粒子群优化算法与其应用分析
间任务调度、实时机器人路径规划、图像分割、EEG 信号模拟、语音识别、烧伤诊断以及探测移动目标等方面已经得到成功的应用,粒子群优化算法具有很多优点,主要体现在对整个种群进行群体搜索,能记忆个体最优解,算法的原理简单,易于理解编程实现,协同搜索,通过群体的全局最优信息和个体局部信息共同完成,易于与其它算法相互混合,能构造出具有更好优化性能的新算法,相对于蚂蚁群算法等其它智能优化算法,此算法能够较快收敛到全局最优位置.1.2 课题的国内外研究现状粒子群优化算法(简称PSO)是1995 年提出的,由于其原理简单易懂,以及前面给出的许多优点,因此使得很多研究学者对这种算法产生浓厚的兴趣且对这种算法进行研究,目前针对粒子群优化算法的研究已经取得了很大的进展,包括应用研究和理论研究,这些进展主要体现在以下几方面:(1) 针对粒子群优化算法容易陷入早熟收敛和为了提高粒子的收敛速度而进行的研究.文献[21] 提出了一种简化的自适应粒子群优化算法,针对带有收缩因子的粒子群优化算法(CFPSO)容易陷入局部最优位置、进化后期的收敛速度慢和求解精度低等缺点,文中采用了自适应简化粒子群优化(AsCFPSO)方程与混沌搜索技术相结合的方法,提出了基于混沌搜索的自适应简化粒子群优化(CAsCFPSO)算法;文献[22]中美国的Shi和Eberhart研究发现,PSO算法中等式的第一部分为速度因子,由于此种算法具有随机性和扩大搜索空间的优点,因此研究学者们为了控制粒子以前飞行速度对当前飞行速度的影响,引入了惯性权重,它的作用是平衡算法的全局寻优能力和局部寻优能力,即平衡算法的收敛速度和收敛精度,表现为惯性权重的取值越大,则粒子群算法的全局寻优能力就越强,反之,惯性权重的取值越小,则粒子群算法的局部寻优能力就越强.为了能找到更好的惯性权重的选取方法,使得粒子在局部和全局之间更好的搜索,许多研究学者进行了大量的研究,提出了惯性权重的不同选取策略:文献[24]提出了一种动态改变惯性权重的方法,文献[25]给出了一种非线性改变惯性权重的方法,文献[26]提出了一种基于混沌的动态改变惯性权重的方法,文献[27]根据粒子适应度值改变惯性权重的选取方法,以上提到的改变惯性权重的方法提高了粒子群优化算法的全局寻优能力. PSO作为一种新的随机优化算法,它的缺点也表现在容易陷入早熟收敛和全局收敛速度慢这两个方面,为了避免粒子群算法过早陷入早熟收敛的缺点,许多研究学者通过控制种群的多样性来提高算法性能,文献[28]针对基本PSO 算法存在易陷入局部最优位置的缺点,提出了一种新型的PSO 算法——混合变异粒子群优化算法.在每次迭代过程中,对满足变异条件的粒子,以多种变异函数方式进行变异,而这些变异函数分别被给予了一定概率,概率的划分取决于特定的优化问题.文献[29]针对粒子群优化算法容易早熟、收敛精度低等缺点,通过采用全变异策略、最大搜索速度自适应调整等策略给出了一种全变异粒子群优化算法.文献[30]提出了一种基于群能量恒定的粒子群优化算法,该算法根据粒子内能进行动态分群,对于具有比较好的适应度值的小群体采取引入最差粒子的速度公式更新方法,对于具有比较差的适应度值的小群体采取带有惩罚机制的速度公式更新方法,用其分担由于较优群体速度降低而产生的整群能量的损失,从而有效地克服了PSO 算法的早熟.(2) 为增强P SO 全局搜索能力而进行的研究.文献[31]针对粒子群优化算法容易陷入局部最优解的问题,采用了协同处理的粒子群优化算法: 对于种群中适应度值差于平均适应度值的粒子,2采用动态Zaslavsk ii 混沌映射公式调整粒子的惯性权重;对于种群中适应度值优于或等于平均适应度值的粒子,采用动态非线性函数公式调整粒子的惯性权重. Higashi[32] 、NingLi[33] 、吕振肃[34] 等人分别提出了自己的变异粒子群优化算法,其基本思路都是想通过引入变异算子以此来跳出局部最优值的吸引,提高算法的全局寻优能力,从而得到精度较高的计算结果.(3) 与其它算法的结合. Das等人将差分进化(DE)引入粒子群算法速度更新公式中从而提出了PSO-DE算法.高鹰等提出的基于模拟退火算法(SA)的粒子群优化算法是以基本粒子群算法的具体流程作为主要运算流程,把模拟退火机制引入粒子群算法,与粒子群算法的求解速度快、易于编程实现等优点与具有非常好的跳出局部最优解能力的模拟退火算法相结合,避免了粒子群优化算法容易陷入局部最优值点的缺陷,从而加快了粒子群算法在进化后期的收敛速度.尽管对粒子群算法的研究已经取得了很大的进展,但对算法本身的工作原理、算法内部机理还没有真正建立,算法中参数的取值还不够恰当,PSO 的研究热点主要体现在以下几方面:(1) 与其它智能优化算法的融合.将PSO 和其它优化算法进行融合,主要考虑如何将粒子群算法的优点和其它智能优化算法的优点相结合,取长补短,构造出有实用价值的混合算法.(2) 将各种先进理论引入到PSO 算法中.各种先进理论的引入,首先可以研究性能良好的新型粒子群拓扑结构.其次可以优化PSO 的参数及其选择,使得粒子群优化算法既能避免早熟收敛又能比较快速地收敛到全局最优解,对工程实践有着重要意义.(3) 算法内部机理的数学基础研究.PSO 算法在实际应用中被证明是有效的,但目前还没有给出收敛性、收敛速度估计等方面的数学证明,已有的工作还远远不够.1.3 粒子群优化算法的应用粒子群优化算法已得到广泛应用,在国内外的一些刊物上,已经出现了用粒子群优化算法解决整数规划、多目标优化、非线性规划、TSP 问题等优化问题的文章.此外粒子群优化算法在神经网络训练、系统辨识等方面,也有着广泛的应用.本节简要介绍一些例子:(1) 组合优化尽管有离散二进制版PSO,但其并不能完全适用于各种不同类型的组合优化问题,因为离散二进制版PSO 中存在着很多问题,如约束条件怎样处理等.根据待求解问题的性质不同,有些研究学者通过自己重新定义算法迭代公式中的位置和速度更新公式来解决问题.目前,已经提出了很多求解整数规划、VRP、TSP 等问题的新方法.(2) 神经网络的训练PSO 用于神经网络的训练中,主要包含三个方面:连接权重、学习算法和网络结构(网络拓扑结构以及传递函数).用PSO 优化算法训练神经网络,一个粒子包含神经网络的所有受控参数,通过迭代来优化这些受控参数,从而达到训练的目的.与BP 算法相比,使用粒子群优化训练神经网络的优点在于不利用待求解函数的梯度信息,可使用一些不可微的转换函数.大部分情况下粒子群优化训练神经网络训练结果优于BP 算法,而且有非常快的训练速度.(3) 连续问题参数优化作为一个优化方法,粒子群算法已广泛应用于许多连续问题的参数优化.例如,机器人路径规划、PID 控制器参数优化、信号处理、模糊控制器的设计、VLSI 布图布线和电路优化设计、3宁夏大学硕士学位论文第一章绪论约束布局优化、无功功率优化、数控加工参数优化等,并在以上问题中均取得了很好的效果.(4) 其他应用除了以上领域外,PSO 在多目标优化、动态目标检测、数据挖掘、生物信号检测识别、聚类分析、游戏学习训练、系统辨识以及无人驾驶车辆的导航等方面也取得了显著的成果.1.4 本文的结构与主要内容本文研究内容分布于以下各章节中:第一章,绪论:介绍了本文的研究背景、意义、PSO 算法的国内外研究进展以及其应用.第二章,粒子群优化算法概述:介绍了粒子群优化算法的基本原理、算法流程、参数设置对算法的影响,对基本粒子群优化算法的关键控制参数进行了分析,讨论了粒子群算法的改进策略,比较了粒子群优化算法与遗传算法等其它进化算法的异同.第三章,动态调整惯性权重的粒子群优化算法:本章首先对标准粒子群优化算法中的速度更新公式进行了改进,从粒子群算法自身的搜索机理出发,目的是增强基本粒子群算法的全局搜索能力.给出了一种新的粒子群优化模型,其次对原有算法中的固定惯性权重进行改进,实验结果表明新算法具有更快的搜索速度和更高的计算精度.第四章,带飞行时间的粒子群优化算法:该算法中的速度更新公式不仅考虑了粒子对本身的思考,还考虑了整个种群的平均信息,利用了更多的信息来调整自己的行为,同时使用了动态自适应惯性权重,该算法根据粒子群中各个粒子适应度值的变化动态调整惯性权重的取值,最后引入粒子的飞行时间,克服了由于基本粒子群算法固定粒子飞行时间从而导致的粒子在进化后期搜索性能下降的问题.通过一系列的数值实验表明新提出的带飞行时间的粒子群优化算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法.第五章,给出了求解混合整数规划问题的粒子群优化算法:该算法对粒子群的速度方程和位置方程进行改进,给出了违反搜索空间的处理策略,利用无约束双目标的方法求出粒子群的全局最优解,实验结果表明给出的算法是求解混合整数规划问题的有效算法.第六章,对所作课题进行了总结,同时给出了粒子群优化算法目前存在的问题与未来可能的研究方向.4宁夏大学硕士学位论文第二章粒子群优化算法概述第二章粒子群优化算法概述1.5 引言粒子群优化算法具有收敛速度快、鲁棒性好等特点,能以较大概率找到问题的全局最优解,且计算效率比传统的计算方法高.该算法最大的优势在于概念简单易实现,且有着深刻的智能背景,目前已经在函数优化、模式识别、神经网络设计、分类、机器人技术、信号处理等应用领域取得了成功的应用.所以该算法自提出以来,引起了国际上相关领域众多学者的关注和研究.本章首先对粒子群优化算法的基本原理和流程进行了介绍,然后对基本粒子群优化算法的关键控制参数进行了分析,讨论了以下几个方面的改进策略:调整惯性权重、引入收缩因子、融入选择策略、融入杂交策略等.1.6 基本粒子群优化算法描述2.2.1 算法原理粒子群优化算法(PSO)是一种群体优化算法,它是受鸟群群体运动行为方式启发而提出的一种具有代表性的群体智能的方法.研究人员发现鸟群在觅食飞行过程中会改变方向、聚集、散开,其飞行行为通常表现为不可预测,然而其整体运动却能保持一致性,个体与个体之间的飞行也保持着最佳的距离.通过对类似生物群体的行为研究,发现生物群体中存在着一种社会信息共享机制,它为群体的进化提供了一种优势,这也是粒子群优化算法形成的基础.该算法可描述为:假设在一个D维寻优空间中,粒子群由N个粒子组成,该粒子群可用下面的参数来表示: x=x x L x表示种群中第i个粒子的位置;v=(v,v,L ,v) 表示种( , , , )i i1 i2 iD i i1 i2 iD群中第i个粒子的速度;p=(p, p,L , p) 表示种群中第i个粒子迄今为止寻找到的最优位i i1 i2 iD置,也就是个体最优位置p;p=( p, p,L , p) 表示整个粒子群迄今为止寻找到的全局最i g g1 g2 g D优位置,也就是全局最优位置p g. 那么每个粒子飞行的速度和位置的迭代公式如下:v(t+1) =wv(t) +c r(p(t) −x(t)) +c r( p(t) −x(t)), (2.1)id id 1 1 id id 2 2 gd idx(t+1) =x(t) +v(t+1), (2.2)id id id其中,1≤d≤D,1≤i≤N,w为惯性权重;c和c为学习因子,通常取(0, 2] 之间的常数,1 2r、1 r为分布于(0,1) 之间的随机数;公式由三部分组成,第一部分是(记忆项)粒子先前的速度,2说明了(上次速度的大小和方向)影响粒子目前的状态;第二部分是粒子的自我认知部分,是从当前位置指向该粒子自身最优位置的一个矢量,表示此粒子的飞行来源于自身经验,粒子通过对自身位置的思考来决定自己下一步的飞行速度和位置,这样可以使种群中的每个粒子有更好的全局寻优能力,避免陷入局部极小值;第三部分为(群体认知项)社会认知部分,是一个从当前位置指向种群最优位置的一个矢量,反映了种群中粒子间的相互合作和信息的共享,以上三部分共同决定了粒子的空间寻优能力.第一部分的作用是平衡全局寻优和局部寻优的能力,第二部分使粒子5宁夏大学硕士学位论文第二章粒子群优化算法概述有了很强的全局搜索能力,避免过早陷入局部极值点,第三部分体现了粒子之间的信息共享,在这三部分的共同作用下粒子才能有效的到达最好位置.1.7参数设置粒子群算法中控制参数包括:最大速度V、加速常数c、c、惯性权重w.max 1 2(1) 最大速度vmax一般来说,v的选择不应该超过粒子的搜索范围,如果max v太大,粒子可能飞过最优解的max位置;如果太小,粒子不能在局部好区间之外进行足够的探索,可能降低粒子的全局搜索能力. 数值实验结果表明,通常设v为每维变化范围的10%~20%.max(2) 学习因子加速系数c1,c2 代表将种群中每个粒子飞向个体最优位置p和全局最优位置ip的加速权重.g低的c、c值允许粒子在被拉回之前可以在目标区域外徘徊,而高的值则导致粒子突然地冲向或1 2越过目标域.(3) 惯性权重惯性权重w是用来控制种群中粒子以前飞行速度对当前飞行速度的影响,粒子的局部搜索能力和全局搜索能力与惯性权重的选取有很大关系,其表现为惯性权重的取值越大,则有利于算法的全局搜索,惯性权重的取值越小,则对算法的局部搜索有力,合适的惯性权重值可以提高算法的求解效率.大量数值实验研究发现惯性权重的取值范围在[0.9,1.2]之间会有更好的求解结果,而且用线性递减的方法比用固定的惯性权重值的求得的结果要好,其原因是惯性权重的取值越小则有利于局部搜索,惯性权重的取值越大则有利于全局搜索.另外,文献[36]研究了惯性权重的取值和速度上限对粒子群优化算法性能的影响,得出的结论是惯性权重的取值接近1得到较好结果的前提条件是V比较小,通常来说,从0.9 线性递减到0.2 的惯性权重w的取值策略能得到max相对其它取值比较好的结果.在整个求解过程中,最大速度v、学习因子c、c以及惯性权重w共同维持粒子对局部搜max 1 2索和全局搜索性能的平衡.1.8算法流程每个粒子的优劣程度根据已定义好的适应度函数来评价,这与被求解的问题有关,设待求解的优化问题为极小化问题,下面为PSO 算法的算法流程:Step 1 初始化粒子群,包括群体规模ND,搜索空间的维数,每个粒子的位置Step 2 ①计算种群中每个粒子的适应度值f(x(t)) ;id②求出到目前为止每个粒子所找到的最优位置;ipip③求出到目前为止当前种群所找到的全局最优位置;g x和速度v;id idStep 3 根据公式(2.1)、(2.2)更新粒子的速度和位置;由此形成第t+1代粒子群:x(t+1) =(x(t+1), x(t+1),L , x(t+1));1 2 N6Step 4 对粒子群中的各个粒子,用它的当前适应度值和它本身的个体最优适应度值进行比较,如果当前适应度值较好,则用该粒子替换个体极值p i;Step 5 对粒子群中的各个粒子,用它的当前适应度值和全局最优适应度值比较,如果当前适应度值较好,则替换全局极值p g;Step 6 如果满足结束条件(误差足够好或到达最大循环次数)退出,否则回到Step 2.图2-1 给出了PSO 算法的具体流程:开始在整个搜索空间随机初始化粒子的速度和初始位置计算每个粒子的适应度更新粒子的p, pi g根据公式(2.1)和(2.2)更新每个粒子的速度和位置判断是否满足终止条件:达到最大迭代次数或误差在允许范围内否是结束图2-1 基本粒子群优化算法流程图1.9 粒子群优化算法的改进策略基本粒子群优化算法在解决复杂优化问题时遇到了很多困难,甚至有些优化问题用基本粒子群算法无法解决或效率非常低下,所以对基本粒子群算法的改进就显得尤为重要.粒子群优化算法的改进可谓层出不穷,这方面的研究非常庞杂,这些改进基于各种不同的选取策略和方法.这些不同的方法和策略,目的都是为了改善基本粒子群优化算法存在的缺点,这个缺点是PSO 容易过早出现早熟收敛,陷入到局部最优值点中,最终使全局最优解不能求出,出现这种现象有以下7两个方面的原因,一是受到待求解的优化函数性质的影响,现实生活中有许多测试函数是高维、不可导、有多个极值点、形状非常复杂,然而粒子群优化算法不是从理论上证明此算法能收敛到所有类型函数的全局最优位置,所以针对高维、不可导、有多个极值点等特性的测试函数,不一定都能求得理论最优值;二是粒子群优化算法在运行过程中,由于算法中各个参数选取的不恰当等原因,造成算法在运行的过程中,粒子群中粒子的多样性减少,导致粒子群算法出现“早熟”现象,从而导致该粒子群算法不能收敛到全局最优位置,因此也就不能求出问题的全局最优解. 以上这两个影响算法求解结果的原因通常密不可分的联系在一起,使人们很难说出究竟是二者之中哪一个因素在起作用,致使该算法不能收敛到理论的全局最优位置.针对第一个方面的缺点,许多学者试图在函数寻优的过程中,动态的改变函数的某些全局或局部的形态,使待求解的函数的图像逐渐变得简单从而有易于求解,同时又不改变待求解函数全局最优位置的性质.例如设计一个变换方法,随着函数优化过程的进行,使得待求解的函数由多峰函数变为单峰,从而克服以上缺点;针对第二个方面的问题一般可以采用如下方法来解决,通过对种群中粒子的多样性设置某些指标,例如粒子群的熵,随着进化过程的进行,如果这些指标大于某个预先给定的阈值,则对整个种群中的满足这个条件的某些粒子实施某种操作,比如按照给出的概率进行变异,从而改善整个种群的多样性,克服早熟现象.本节重点讨论以下几个方面粒子群优化算法的改进策略:调整惯性权重、引入收缩因子、融入选择策略等.1.10调整惯性权重惯性权重w是用来控制粒子以前飞行速度对当前速度的影响,惯性权重可以平衡粒子群算法的局部搜索与全局搜索能力,惯性权重与模拟退火算法中的退火温度相似,惯性权重的取值越大,则粒子群算法的全局搜索能力就越强,从而算法的局部搜索能力就相对减弱,反之,惯性权重的取值越小,则粒子群算法的局部搜索能力就越强,而全局搜索能力就相对减弱.由于不同问题所具有的性质不同,致使对算法的全局搜索能力或局部搜索能力会有不同要求,因此调整惯性权重的大小可以使算法在全局寻优和局部寻优之间得到平衡,也就是说根据函数性质的不同进行自动调整惯性权重.文献[38]提出了一种自适应调整的线性递减权重选取策略,在进化过程中随迭代次数的增加,线性减少惯性权重的取值,用公式表示为:T−tw(t) =(w−w)( max ) +w(2.3)start end endTmax其中,T表示最大迭代次数,w表示进化初期的惯性权重,w表示进化到最大迭代次数max start end时的惯性权重,一般取w=0.9 ,w=0.4.这样设置惯性权重的值的好处是使得算法在迭代start end初期粒子的探索能力比较强,能不断搜索新的区域,之后粒子的开发能力逐渐增强,以使算法在可能是最优位置的周围进行更细致的寻优,但是寻优过程是一个非常复杂的非线性过程,采用惯性权重的取值线性递减的方法并不能正确地反映出粒子真实的寻优过程.因此,有的研究者提出了一种借助粒子适应度值来动态调整惯性权重的方法,通过求解的粒子适应度值确定惯性权重w 的取值.数值实验结果表明,与线性减小惯性权重的粒子群优化算法相比,动态改变惯性权重的方法能求得更好的优化结果.8宁夏大学硕士学位论文第二章粒子群优化算法概述1.11引入收缩因子收缩因子的概念[39] 是Clerc 提出的,在种群的进化过程中每个粒子的速度更新公式为:v(t+1) =χ[v(t) +c r( p−x(t)) +c r( p−x(t))] (2.4)id id 1 1 id id 2 2 g id其中,收缩因子χ=22 −ϕ−ϕ2 −4ϕ,ϕ=c+c,ϕ> 41 2数值实验结果表明,使用了收缩因子的改进粒子群优化算法与使用惯性权重的粒子群优化算法相比,其优点在于前者有着更快的收敛速度.如果我们恰当地选取收缩因子的取值,那么带有收缩因子的改进粒子群优化算法可以被看作是基本粒子群优化算法的一个特例.1.12融入选择策略PSO 算法的寻优过程在很大程度上是与粒子群中当前个体最优位置p和全局最优位置i p有g关,它的寻优范围受个体最优位置p和全局最优位置i p的限制.在智能优化算法中,此处的选择g策略是用来选择比较优的寻优区域和淘汰比较差的寻优区域,以便更好地分配有限的资源.但是在基本的粒子群优化算法中,种群中每个粒子的最优值点的确定相当于隐含了选择机制,文献[40] 给出的带有选择机制的新粒子群优化算法,数值实验结果表明新算法对一些测试函数能收敛到全局最优解.改进的新算法将种群中每个粒子当前位置的适应度值与种群中其它粒子的适应度值进行比较,记下适应度值最差的一个粒子.整个种群再依据这个记录排序,得分最高的粒子排在整个种群的前边,该新算法的具体流程如下:(1) 在种群中随机选择一个粒子,将该粒子的适应度值与种群中的其它粒子的适应度值分别进行比较,如果每次比较完之后该粒子的适应度值好于某个粒子的适应度值,就让该粒子得一分,对种群中的每一个粒子重复以上这一过程;(2) 根据上一步计算得出的每个粒子的分数大小对粒子群中的所有粒子由大到小排序;(3) 选择排在种群中前边的一半粒子,对这些粒子进行复制,取代种群中排在后边的一半粒子.对给出的测试函数的数值实验结果表明,以上给出的新算法的优化性能好于基本粒子群优化算法的优化性能.1.13融入杂交策略融入杂交策略的粒子群优化算法是Angeline 提出的,种群中的每个粒子被预先给定一个比较小的杂交概率,通常情况下杂交概率是随机给出的.在算法的每次迭代过程中,依据杂交概率选择出指定数目的粒子放入一个储存池中,这些粒子随机地两两杂交,生成相同数目的下一代粒。
粒子群优化算法及其应用
学位论文作者签名: 日期: 年 月 日
学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权 保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。 本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检 索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
1.2
1
课题研究现状
粒子群优化研究现状 粒子群优化算法是 1995 年由 Kennedy 和 Eberhart 源于对鸟群和鱼群捕食行为的
1
华 中 科 技 大 学 硕 士 学 位 论 文
简化社会模型的模拟而提出的一种基于群集智能的演化计算技术[1,2]。该算法具有并 行处理、鲁棒性好等特点,能以较大的概率找到问题的全局最优解,且计算效率比 传统随机方法高,其最大的优势在于实现容易、收敛速度快,而且有深刻的智能背 景,既适合科学研究,又适合工程应用。因此,PSO 一经提出立刻引起了演化计算 领域研究者的广泛关注,并在短短几年时间里涌现出大量的研究成果,在函数优化、 神经网络训练、模糊系统控制、分类、模式识别、信号处理、机器人技术等领域获 得了成功应用。 PSO 算法是基于群集智能理论的优化算法,通过群体中粒子间的合作与竞争产 生的群体智能指导优化搜索。与进化算法比较,粒子群优化算法不仅保留了基于种 群的全局搜索策略,而且又避免了复杂的遗传操作,它特有的记忆使其可以动态跟 踪当前的搜索情况调整其搜索策略。与进化算法比较,PSO 算法是一种更高效的并 行搜索算法,但其不足之处是在某些初始化条件下易陷入局部最优,且搜索精度比 遗传算法低[3]。 由于 PSO 算法概念简单,实现容易,短短几年时间,PSO 算法便获得了很大的 发展,但是,其数学基础不完善,实现技术不规范,在适应度函数选取、参数设置、 收敛理论等方面还存在许多需要深入研究的问题。文献[4-6]展开了一系列研究,取得 了一些建设性的成果,如关于算法收敛性的分析。围绕 PSO 的实现技术和数学理论 基础,以 Kennedy 和 Eberhart 为代表的许多专家学者一直在对 PSO 做深入的探索, 尤其在实现技术方面,提出了各种改进版本的 PSO。 对 PSO 参数的研究,研究最多的是关于惯性权重的取值问题。PSO 最初的算法 是没有惯性权重的, 自从 PSO 基本算法中对粒子的速度和位置更新引入惯性权重[7,8], 包括 Eberhart、Shi 等在内的许多学者对其取值方法和取值范围作了大量的研究[9-11]。 目前大致可分为固定惯性权重取值法、线性自适应惯性权重取值法、非线性惯性权 重取值法[12-14]等。 PSO 是一种随机优化技术,其实现技术与遗传算法(GA)非常相似,受 GA 的启 发,人们提出多种改进的 PSO 算法,如带交叉算子的 PSO、带变异算子的 PSO、带 选择算子的 PSO 等等。 文献[15]在粒子群每次迭代后, 通过交叉来生成更优秀的粒子,
粒子群算法在优化问题中的应用研究
粒子群算法在优化问题中的应用研究近年来,随着计算机技术的飞速发展,优化问题已成为了计算机科学和工程领域中的重要问题之一。
而粒子群算法(Particle Swarm Optimization,PSO)则以其简单、高效的特点备受广泛关注,成为了优化问题中的一种重要方法。
本文将会对粒子群算法在优化问题中的应用进行研究和探讨。
一、粒子群算法原理粒子群算法是一种优化算法,灵感来源于鸟群或鱼群等群体中的集体行为。
在算法中,被称为粒子的个体将会在搜索空间中寻找最优解。
粒子的位置和速度由其历史最优解和群体历史最优解决定,粒子会根据自己的历史和群体历史寻找最优解。
算法通过适应值来确定每个粒子的适应程度。
最基本的粒子群算法可以按照以下步骤进行:1. 初始化种群2. 计算适应值函数3. 计算粒子速度和位置4. 更新历史最优解和群体历史最优解5. 结束条件二、粒子群算法的应用领域粒子群算法已经被广泛应用于很多领域,以下是一些常见的应用领域。
1. 机器学习和数据挖掘在机器学习和数据挖掘中,粒子群算法可以应用于神经网络、聚类和决策树等算法中,以寻找最优解,提高模型的准确性。
2. 多目标优化多目标优化问题是一个在工程领域中十分重要的问题。
而粒子群算法可以应用于多维和多目标优化问题中,通过调整不同的参数来寻找最优解。
3. 物流和制造业在物流和制造业中,粒子群算法可以用于优化生产流程和降低成本。
例如,可以使用粒子群算法来优化仓库的存储布局和物品的运输路径。
4. 交通管理在交通管理领域中,粒子群算法可以优化公共交通和行车路径,减少拥堵和时间成本。
三、粒子群算法在工程领域中的应用在工程领域中,粒子群算法也有着广泛的应用,以下是一些应用案例。
1. 机器人路径规划机器人路径规划是一个在自动化制造业中重要的问题。
使用粒子群算法来规划机器人路径可以提高生产效率和降低成本。
2. 无线传感器网络在无线传感器网络中,节点的位置对于网络的性能非常重要。
陈建隆粒子群优化算法及其应用研究
摘要在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录...................................................................................................................................................................... I I 1.概述.. (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MA TLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
粒子群优化算法【精品文档】(完整版)
扬州大学物理科学与技术学院本科生毕业设计论文课题:粒子群优化算法作者:张雷学号: 050702156 专业:电子信息科学与技术指导教师:朱海梅二零零九年五月十五日摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。
粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。
它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。
由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。
PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。
在一个PSO系统中,多元化解决方案共存且立即返回。
每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。
一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。
追踪记忆最佳位置,遇到构建微粒的经验。
因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。
PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。
粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。
关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individuals in a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , the present condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the aboveunconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem search space looking for the optimal position to land. A particle, as time passe s through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance exploration and exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved, and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。
粒子群优化算法及其相关研究综述【精品文档】(完整版)
粒子群优化算法及其相关研究综述摘要:粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。
它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。
本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述,侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题中的应用,最后对其未来的研究提出了一些建议及研究方向的展望。
关键词:粒子群优化;PSO;群智能优化;智能算法Abstract: Particle swarm optimization is a new swarm intelligence-based heuristic global search algorithm, through competition and collaboration between the particles in order to achieve the advantages of looking at complex global search space. It has easy to understand, easy to implement, strong global search ability and other characteristics, much attention in the field of science and engineering, has become one of the fastest growing intelligent optimization algorithms. This paper focuses on aspects of the principle of particle swarm optimization, characteristics, improvement and application of a comprehensive review, focusing on improved PSO algorithm, a brief description of the particle swarm algorithm in a typical problem in the theory, and finally presented its future research Looking for some advice and research directions.Key Words: Particle Swarm optimization; PSO; Swarm intelligence optimization;Intelligent algorithm1 引言粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,由Kenndy和Eberhart等人提出[1-2],1995年IEEE国际神经网络学术会议发表了题为“Particle Swarm Optimization”的论文,标志着PSO算法诞生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
在智能领域,大部分问题都可以归结为优化问题。
常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。
本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。
根据分析结果,研究了一种基于量子的粒子群优化算法。
在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。
本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。
最后,对本文进行了简单的总结和展望。
关键词:粒子群优化算法最小二乘支持向量机参数优化适应度
目录
摘要 (I)
目录 (II)
1.概述 (1)
1.1引言 (1)
1.2研究背景 (1)
1.2.1人工生命计算 (1)
1.2.2 群集智能理论 (2)
1.3算法比较 (2)
1.3.1粒子群算法与遗传算法(GA)比较 (2)
1.3.2粒子群算法与蚁群算法(ACO)比较 (3)
1.4粒子群优化算法的研究现状 (4)
1.4.1理论研究现状 (4)
1.4.2应用研究现状 (5)
1.5粒子群优化算法的应用 (5)
1.5.1神经网络训练 (6)
1.5.2函数优化 (6)
1.5.3其他应用 (6)
1.5.4粒子群优化算法的工程应用概述 (6)
2.粒子群优化算法 (8)
2.1基本粒子群优化算法 (8)
2.1.1基本理论 (8)
2.1.2算法流程 (9)
2.2标准粒子群优化算法 (10)
2.2.1惯性权重 (10)
2.2.2压缩因子 (11)
2.3算法分析 (12)
2.3.1参数分析 (12)
2.3.2粒子群优化算法的特点 (14)
3.粒子群优化算法的改进 (15)
3.1粒子群优化算法存在的问题 (15)
3.2粒子群优化算法的改进分析 (15)
3.3基于量子粒子群优化(QPSO)算法 (17)
3.3.1 QPSO算法的优点 (17)
3.3.2 基于MATLAB的仿真 (18)
3.4 PSO仿真 (19)
3.4.1 标准测试函数 (19)
3.4.2 试验参数设置 (20)
3.5试验结果与分析 (21)
4.粒子群优化算法在支持向量机的参数优化中的应用 (22)
4.1支持向量机 (22)
4.2最小二乘支持向量机原理 (22)
4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)
4.4 仿真 (24)
4.4.1仿真设定 (24)
4.4.2仿真结果 (24)
4.4.3结果分析 (25)
5.总结与展望 (26)
5.1 总结 (26)
5.2展望 (26)
致谢 (28)
参考文献 (29)
Abstract (30)
附录 (31)
PSO程序 (31)
LSSVM程序 (35)
1.概述
1.1引言
最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。
它广泛的存在于农业,国防,工程,交通,金融,能源,通信,材料等诸多领域。
最优化技术在上述领域的应用已经产生了巨大的经济效益和社会效益。
国内外的实践证明,在同样条件下,经过优化技术的处理,对系统效率的提高,能耗的降低,资源的合理利用及经济效益提高均有显著的效果,而且随着处理对象规模的增大,这种效果也更加显著。
但随着处理对象规模的增大,优化问题也越来越复杂,而经典的优化技术对问题的约束比较大,如梯度下降法要求优化函数是可导等,因此,对于新型优化算法的研究具有重要的意义[1]。
1.2研究背景
1.2.1人工生命计算
人们从生命现象中得到启示,发明了许多智能的优化方法来解决复杂优化问题。
现在已有很多源于生物现象的计算技巧。
例如,人工免疫模拟生物免疫系统的学习和认知功能,人工神经网络是简化的大脑模型, 遗传算法是模拟基因进化的过程。
在计算智能(computational intelligence)领域有两种基于群体智能swarm intelligence的算法,粒子群优化算法(particle swarm optimization)和蚁群算法(ant colony optimization)。
蚁群优化算法模拟了蚂蚁群体在路径选择和信息传递方面的行为,而粒子群优化算法模拟群居动物觅食迁徙等群体活动中个体与群体协调合作的工作过程。
这类借鉴了模拟生命系统行为功能和特性的科学计算方法称为人工生命计算。
人工生命计算包括两方面的内容,研究如何利用计算技术研究生物现象和研究如何利用生物技术研究计算问题。
人工神经网络,粒子群优化算法,遗传算法,蚁群优化算法等都属于人工生命计算的范畴[2]。
本文详细介绍的粒子群优化算法是其中的一种新兴计算方法。
它同遗传算法类似,同属随机迭代优化工具。
同遗传算法等其他人工生命计算相比,粒子群算法概念简单,容易实现,调节参数较少。
目前粒子群算法越来越引起人们的关注。
1.2.2 群集智能理论
我们经常能够看到成群的鸟、鱼或其它生物,这些生物的聚集行为有利于它们觅食和逃避捕食者。
生物的群落动辄以十、百、千甚至万计,它们是如何迅速完成聚集、移动等行为呢?这些群落一般都不存在一个统一的指挥者,那么一定有某种潜在的能力或者规则保证了这些行为的同步。
科学家们普遍认为上述行为是基于不可预知的种群社会行为中的群集智能。
群集智能((Swarm Intelligence)指的是众多无智能的简单个体组成的群体,通过相互间的简单合作表现出智能行为的特性。
群居生物涌现的群集智能正越来越得到人们的重视,成为近年来人工智能研究的一个热点课题。
Millonasp在开发人工生命算法时提出了群集智能的概念,并提出五点原则[3]:
1)接近性原则:群体应能够实现简单的时空计算;
2)优质性原则:群体能够响应环境要素;
3)变化相应原则:群体不应把自己的活动限制在一个狭小的范围:
4)稳定性原则:群体不应每次随环境改变自己的模式;
5)适应性原则:群体的模式应在计算代价值得的时候改变。
1.3算法比较
1.3.1粒子群算法与遗传算法(GA)比较
为更清楚地认识PSO算法和GA算法,下面对两者做个简单比较。
PSO算法和GA算法的相同点:
(1)都属于仿生算法。
PSO算法主要模拟鸟类觅食、人类认知等社会行为而研究;GA算法主要借用生物进化中“适者生存”的规律。
(2)都属全局优化方法。
在解空间都随机产生初始种群,因而算法在全局的解空间进行搜索,且将搜索重点集中在性能高的部分。
(3)都属随机搜索算法。
(4)隐含并行性。
搜索过程是从问题解的一个集合开始的,而不是从单个个体开始,具有隐含并行搜索特性,从而减小了陷入局部极小的可能性。
(5)根据个体的适配信息进行搜索,因此不受函数约束条件的限制,如连续性、可导性等。