高等数学——6.1平面图形的面积
《平面图形的面积》课件
contents
目录
• 引言 • 平面图形的面积基础知识 • 矩形面积的计算 • 三角形面积的计算 • 圆形面积的计算 • 多边形面积的计算 • 总结与回顾
01
引言
课程简介
平面图形面积的概念
介绍平面图形面积的基本概念,包括长方形、正方形、三角形、圆形等。
面积计算的意义
实际应用案例分析
通过分析一些实际应用案例,让学生更好地理解 平面图形面积在现实生活中的应用,并培养他们 解决实际问题的能力。
感谢形面积的计算公式
三角形面积的计算公式
面积 = (底 × 高) ÷ 2。
公式推导
通过将三角形划分为两个直角三角形,利用直角三角形的面积公式 推导得出。
适用范围
适用于所有三角形,无论是直角三角形、锐角三角形还是钝角三角 形。
计算三角形的面积
01
02
03
确定底和高
根据题目或图形信息,确 定三角形的底和高。
总结词
准确、权威
详细描述
在国际单位制中,面积的单位是平方米,符号为m²。其他常用的面积单位还有平方厘米、平方分米、公顷、平方 千米等。
面积的计算公式
总结词
全面、准确
详细描述
对于不同的平面图形,有不同的面积计算公式。例如,矩形面积 = 长 × 宽,圆形面积 = π × r²(其 中r为半径),三角形面积 = 0.5 × 底 × 高。这些公式是计算平面图形面积的基础。
在给定的圆中,确定半径的长度 。
代入公式
将半径的长度代入圆的面积公式中 ,计算出圆的面积。
结果表示
将计算出的面积值表示在相应的位 置上。
圆形面积的应用
计算圆的周长
高等数学上册教材目录
高等数学上册教材目录1. 微积分导论1.1. 实数与数集1.1.1. 实数的概念与性质1.1.2. 数集的分类与运算1.1.3. 上确界与下确界1.2. 极限与连续性1.2.1. 函数极限的定义1.2.2. 极限的性质1.2.3. 无穷小量与无穷大量1.2.4. 连续性的定义与性质2. 函数与极限2.1. 函数的基本概念2.1.1. 函数的定义与表示2.1.2. 函数的图像与性质2.2. 函数的极限2.2.1. 函数极限的计算方法2.2.2. 无穷小量对函数极限的影响2.3. 极限存在与连续性2.3.1. 极限存在的条件2.3.2. 连续函数与间断点3. 导数与微分3.1. 导数的概念与性质3.1.1. 导数的定义3.1.2. 导数的运算法则3.1.3. 高阶导数与导数的应用3.2. 微分的概念与应用3.2.1. 微分的定义与计算3.2.2. 微分中值定理与导数的应用3.3. 函数的凸性与最值3.3.1. 函数的单调性与凸性3.3.2. 最值问题与应用4. 微分中值定理与导数应用4.1. 罗尔中值定理与拉格朗日中值定理4.2. 柯西中值定理与洛必达法则4.3. 震荡定理与不等式的应用4.4. 张贴问题与曲线追踪5. 积分与不定积分5.1. 积分的概念与性质5.1.1. 不定积分的定义5.1.2. 积分运算法则5.2. 牛顿-莱布尼兹公式与变限积分 5.2.1. 牛顿-莱布尼兹公式的应用 5.2.2. 变限积分的计算5.3. 定积分的概念与性质5.3.1. 定积分的定义5.3.2. 定积分的计算方法5.4. 积分中值定理与上积分5.4.1. 积分中值定理的应用5.4.2. 上积分的概念与计算6. 积分应用与定积分计算6.1. 曲线的长度与平面图形的面积6.1.1. 曲线长度的计算6.1.2. 平面图形面积的计算6.2. 旋转体的体积与平面曲线的求弧长6.2.1. 旋转体的体积计算6.2.2. 平面曲线弧长的计算6.3. 曲线的参数方程与极坐标方程6.3.1. 参数方程与极坐标方程的基本概念6.3.2. 参数方程与极坐标方程的应用7. 微分方程初步7.1. 微分方程的基本概念与解的存在唯一性 7.2. 一阶微分方程的解法7.2.1. 可分离变量的微分方程7.2.2. 齐次与一阶线性微分方程7.2.3. 可降阶的高阶微分方程7.3. 二阶线性齐次微分方程7.3.1. 齐次线性微分方程的基本概念7.3.2. 常系数齐次线性微分方程的解法 7.4. 可降阶的高阶线性微分方程7.4.1. 高阶线性微分方程的基本概念7.4.2. 可降阶的高阶线性微分方程的解法8. 多元函数微分学8.1. 二元函数与偏导数8.1.1. 二元函数的概念与性质8.1.2. 偏导数的定义与计算8.2. 多元函数的微分8.2.1. 多元函数的全微分8.2.2. 隐函数与反函数的微分8.2.3. 多元函数的全微分与偏导数8.3. 多元函数的极值与条件极值8.3.1. 多元函数的极值及其判定条件8.3.2. 多元函数的条件极值及其求解9. 重积分9.1. 二重积分的概念与性质9.1.1. 二重积分的定义9.1.2. 二重积分的计算方法9.2. 二重积分的应用9.2.1. 平面图形的质心与重心 9.2.2. 轴对称曲面的体积计算 9.3. 三重积分的概念与性质9.3.1. 三重积分的定义9.3.2. 三重积分的计算方法9.4. 三重积分的应用9.4.1. 空间图形的体积计算9.4.2. 质量和质心的计算10. 曲线积分与曲面积分10.1. 曲线积分的概念与计算10.1.1. 第一类曲线积分10.1.2. 第二类曲线积分10.2. Green公式与环流量10.2.1. Green公式的推导与应用10.2.2. 曲线的环流量计算10.3. 曲面积分的概念与计算10.3.1. 第一类曲面积分10.3.2. 第二类曲面积分10.4. Stokes公式与散度定理10.4.1. Stokes公式的应用10.4.2. 散度定理的应用11. 序列与级数11.1. 数列的极限与收敛性11.1.1. 数列极限的概念与性质11.1.2. 数列收敛性的判定准则11.2. 函数项级数11.2.1. 函数项级数的收敛性判定11.2.2. 常见函数项级数的性质11.3. 幂级数与Taylor展开11.3.1. 幂级数的概念与收敛半径11.3.2. Taylor级数与Maclaurin级数11.4. 函数的一致收敛性11.4.1. 函数列的逐点收敛与一致收敛11.4.2. 一致收敛的判定条件以上为《高等数学上册》教材目录的简要内容概述,各章节内容详细,适合根据教材目录迅速定位所需知识点并展开学习。
《平面图形的面积》课件
总结
平面图形的面积计算公式
矩形: 长 x 宽 正方形: 边长的平方 三角形: 底 x 高 ÷ 2 圆形: 半径的平方 x π
化解复杂图形的方法
分割图形和减去Βιβλιοθήκη 形实际场景中如何应用掌握图形的面积计算,可以帮助解决建筑规划、地理测量和设计等实际问题。
《平面图形的面积》PPT 课件
在本课程中,我们将学习如何计算不同平面图形的面积,了解常见图形的特 征,并探索如何化解复杂图形以求得准确面积。
什么是平面图形?
矩形
拥有四个直角和相等长度的对边。
三角形
由三条边和三个内角组成的多边形。
正方形
具有四个相等的边和四个直角。
圆形
具有完全相同半径的闭合曲线。
如何计算平面图形的面积
1 矩形
长度 x 宽度
3 三角形
底边长度 x 高度 ÷ 2
2 正方形
边长的平方
4 圆形
半径的平方 x π
化解平面图形
1
分割图形
将复杂图形分割为简单的形状,再计算各形状的面积并相加。
2
减去图形
通过减去较小图形的面积来计算复杂图形的面积。
案例分析
计算不规则图形的面积
通过将不规则图形分割为简单图形,然后计算各个简单图形的面积,并相加得到总面积。
大学_高等数学理工类第三版上册(吴赣昌著)课后答案下载
高等数学理工类第三版上册(吴赣昌著)课后答案下载高等数学理工类第三版上册(吴赣昌著)内容提要绪言第1章函数、极限与连续1.1 函数1.2 初等函数1.3 数列的极限1.4 函数的极限1.5 无穷小与无穷大1.6 极限运算法则1.7 极限存在准则两个重要极限1.8 无穷小的比较1.9 函数的连续与间断1.10 连续函数的运算与性质总习题数学家简介第2章导数与微分2.1 导数概念2.2 函数的求导法则2.3 高阶导数2.4 隐函数的导数2.5 函数的微分总习题二数学家简介第3章中值定理与导数的应用3.1 中值定理3.2 洛必达法则3.3 泰勒公式3.4 函数的单调性、凹凸性与极值 3.5 数学建模——最优化3.6 函数图形的描绘3.7 曲率总习题三数学家简介第4章不定积分4.1 不定积分的概念与性质4.2 换元积分法4.3 分部积分法4.4 有理函数的积分总习题四数学家简介第5章定积分5.1 定积分概念5.2 定积分的性质5.3 微积分基本公式5.4 定积分的换元积分法和分部积分法 5.5 广义积分总习题五数学家简介第6章定积分的应用6.1 定积分的微元法6.2 平面图形的面积6.3 体积6.4 平面曲线的弧长6.5 功、水压力和引力总习题六第7章微分方程7.1 微分方程的基本概念7.2 可分离变量的微分方程7.3 一阶线性微分方程7.4 可降阶的二阶微分方程7.5 二阶线性微分方程解的结构7.6 二阶常系数齐次线性微分方程7.7 二阶常系数非齐次线性微分方程7.8 欧拉方程7.9 常系数线性微分方程组7.10 数学建模——微分方程的应用举例总习题七附录Ⅰ预备知识附录Ⅱ常用曲线附录Ⅲ利用Excel软件做线性回归习题答案第1章答案第2章答案第3章答案第4章答案第5章答案第6章答案第7章答案高等数学理工类第三版上册(吴赣昌著)目录本书根据高等院校理工类本科专业高等数学课程的教学大纲编写而成,并在第二版的基础上进行了修订和完善。
平面面积的求法
线等所溯成的区域面积。谯这里不一一介绍。
综上所述,我们看到由特殊曲线湖成的图形面积可由
积分求姆。并且同一图形的瓣积问题逐可以有多攀争不同酶
积分方浚,逶避总络鞍整瑾,我秘迸一步瑾释黎受积分鹃实
质及内涵,为了计算这类区域的面积,我们可归绪为计算特
定结构的和式的极限。同时.我们还可以借助黎曼积分进
一步总络夔线弧妖熬求法、ll|l蘸蠢积憋求法及支体体积的
[收稿日期3zoos-11—16 [作者简介]孛宏(1980--),女。辽宁庄河人,黑龙江幼儿师范i蠹i葶专科学校助理讲师,主要研究穷向为数学与应用数学。 · 132 ·
万方数据
一。疗旧m…m—a曲霄sinz tdt;-2abfT‘c·
一cos2 f)凌;2ab(1一百1 sin2#)|亏=垃兢
1.3 檄坐标系申的面积 若包围平面图形的曲线由极坐标方糨:r;r(口),(a≤口 ≤黟绘窭,篡ee r(鳓褒[a,羽连续,筘一a≤2嚣,麦基线冬巍条 射线疗=a、o=fl所围成的平面翻形s通常称为扇形(如图
1.用定积分求解平面面积 1.1 直角坐标系中的面积
一般情况下,由两条连续的藏线Y一五(z)程Y一 兵(茗)及直线z=a,x—b(a<酗鳜嚣憨乎覆匿影,其嚣积
谛舞公式A=|。阪(工)一苁(烹>鼯。(鞠踅1)
佩一
一l,\LLu x
y。f,∞
j,4
y-)d
‰ 拶j t l
l y_i / l。
O
j
露l
霉2
1帕
4)。则扇形的面积A一÷I‘r2(口)棚.
铡4求双纽线 rz 5 a2 cos2。(Ⅱ>O) 嗣成区域(如图5)的
八胁口。 Y
聋
哆r
\\ 衫 \./f
高等数学电子教案(下).doc
《高等数学》
授课教案
2008 ~2009 学年第二学期
教师姓名:李石涛
授课对象:1.化学工程与工艺0801-0803,应用化学0801,0802
2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64
选用教材《高等数学》史俊贤主编
大连理工大学出版社2006/2
基础部数学教研室
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 6 周授课日期 09.3.27
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 9 周授课日期 09.4.17
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 11 周授课日期 09.5.1
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 13 周授课日期 09.5.13
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 14 周授课日期 09.5.22
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 18 周授课日期 09.6.17。
§6.1定积分的元素法§6.2几何应用(面积、体积)(2015)
则对应该小区间上曲边扇形面积的近似值为
dA 1 ( )2 d
2
所求曲边扇形的面积为
r ( ) d
A 1 2 ( ) d 2
x
《高等数学》
返回
下页
结束
例4. 计算阿基米德螺线 到 2 所围图形面积 .
解:
A
2
0
1 (a )2 d
2
02
y
ox
R x
《高等数学》
返回
下页
结束
微分的几何意义与切线段的长度
dy f (x)dx
y y f (x)
y
ds dy dx
o
x
x
切线段的长度
x dx
此直角三角形称为: 微分三角形
ds (d x)2 (d y)2 1 f 2 (x)dx (弧微分公式)
曲线 y f (x) C[a,b], s b 1 f 2 (x)dx.
4 3 a2
3
对应 从 0 变
2 a
o
x
d
例5. 计算心形线
所围图形的面积 .
解:
1 (1 cos )2 d
2
2
2
1 (3cos
)2
d
2
3
5.
4
《高等数学》
返回
与圆
(
3
,
(利用对称性)
)
23
d
o
2x
下页
结束
二、体积
1.平行截面面积为已知函数的立体体积
§6 定积分的应用
§6.1 定积分的元素法(微元法) §6.2 几何应用 §6.3 物理应用
高等数学第六章《定积分的应用》
第六章 定积分的应用一、内容提要(一)主要定义【定义】 定积分的元素法 如果(1)所求量U 是与一个变量x 的变化区间[]b a ,有关的一个整体量; (2)U 对区间[]b a ,具有可加性; (3)部分量i U ∆可表示为()i i i U f x ξ∆≈∆.则可按以下步骤计算定积分(1)选取一个变量x 或y ,并确定它的变化区间[]b a ,;(2)把区间[]b a ,分成n 个小区间, 求任一小区间[],x x dx +的部分量U ∆的近似dU .()U dU f x dx ∆≈=; (3)计算()U=baf x dx ⎰.(二)主要定理与公式根据定积分的元素法可建立一些几何和物理方面的定积分表达式. 1.平面图形面积 (1)直角坐标情形①由()(),(0),,y f x f x x a x b =≥==所围图形的面积()bas f x dx =⎰.②由()()12,,,y f x y f x x a x b ====所围图形的面积()()12 bas f x f x dx =-⎰.③由()()12,,,x y x y y c y d ϕϕ====所围图形的面积()()12dcs y y dy ϕϕ=-⎰(2)参数方程情形 由曲线l :()()x t y t ϕψ=⎧⎪⎨=⎪⎩,12t t t ≤≤,x 轴及,x a x b ==所围图形的面积 ()()21t t s t t dt ψϕ'=⎰(3)极坐标情形① 由(),,ρϕθθαθβ===所围图形的面积()212s d βαϕθθ=⎰ ② 由()()12,,,ρϕθρϕθθαθβ====所围图形的面积()()222112s d βαϕθϕθθ⎡⎤=-⎣⎦⎰ 2.体积(1)旋转体的体积① 由()0,,,y y f x x a x b ====所围图形绕x 轴旋转所得旋转体体积:()2b a V f x dx π=⎡⎤⎣⎦⎰. 当0a b ≤<时,上述曲边梯形绕y 轴旋转所得旋转体的体积: ()22bbaaV x y dx x f x dx ππ==⎰⎰.② 由(),0,,x y x y c y d ϕ====所围图形绕y 轴旋转一周形成的立体体积:()2d c V y dy πϕ=⎡⎤⎣⎦⎰ (2)平行截面面积为已知的立体的体积设以()[],A x C a b ∈表示立体Ω的过点x 且垂直于x 轴的截面面积,且立体Ω夹在平面x a x b ==与之间,则立体Ω的体积:()baV A x dx =⎰.3.平面曲线的弧长(1)光滑曲线():,l y f x a x b =≤≤的弧长为as =⎰.(2)光滑曲线()(),: ,x x t l t y y t αβ=⎧⎪≤≤⎨=⎪⎩的弧长为s βα=⎰.(3)光滑曲线():, l ρϕθαθβ=≤≤的弧长为s βαθ=⎰4.变力沿直线做功、水压力 (1)变力沿直线做功设物体在变力()F x 的作用下,沿变力的方向由x a =移到x b =,在物体的位移区间[],a b 内任一子区间[],x x dx +上功的元素为 ()dW F x dx =,全部功()baW F x dx =⎰.(2)水压力设平板铅直地放入液体中,液体的密度为ρ,平板位于液面下的深度在区间[]0,b 内任一子区间[],x x dx +上,液体深x 处的压强为p gx ρ=,压力元素()dp gx f x dx ρ=⋅. 全部压力为 ()0bp gx f x dx ρ=⋅⎰.二、典型题解析(一)填空题【例6.1】 由曲线,xxy e y e -==及直线1x =所围成图形的面积是 . 解 所求面积 ()()1112xx x x S ee dx e e e e ---=-=+=+-⎰.故应填12e e -+-. 【例6.2】 由222,82x y x y =+=所围成图形(见图6.1)面积A (上半平面部分),则A = .解 两曲线22228x y x y ⎧=⎪⎨⎪+=⎩的交点为()()2,2,2,2-.所求的面积为222)2x A dx -=⎰328226x ⎫=-⎪⎭423π=+. 故应填423π+. 【例6.3】 曲线sin 02y x x π⎛⎫=≤≤⎪⎝⎭与直线,02x y π==围成一个平面图形,此平面图形绕x 轴旋转产生的旋转体的体积 .解 2220s i n 4V x d x πππ==⎰. 故应填24π.【例6.4】 阿基米德螺线()0aeλθρλ=>从0θ=到θα=一段弧长s = .解 0s αθ=⎰ ()01eλαθλ==-⎰.)1eλα-.【例6.5】 曲线322y x x x =-++与x 轴所围成的图形的面积A = . 解 函数322(2)(1)y x x x x x x =-++=--+与x 轴的交点为()()()1,0,0,02,0-.()()023232122A x x x dx x x x dx -=--+++-++⎰⎰3712=. (二)选择题图6.122x y =228x y +=【例6.6】 曲线x y e =与其过原点的切线及y 轴所围成的图形(见图6.2)面积为[ ](A ) ()1x e ex dx -⎰; (B )()1ln ln ey y y dy -⎰;(C )()1e x x e xe dx -⎰; (D )()1ln ln y y y dy -⎰.解 曲线x y e =在任意点(),x y 的切线方程为()x x Y e e X x -=-,由于切线过原点,可以求出1x =,于是过原点的切线方程为Y eX =.所求平面图形的面积等于()1xeex dx -⎰. 故选择A.【例6.7】 由曲线()()12y x x x =--与x 轴围成的平面图形的面积为 [ ]. (A )()()()()12011212x x x dx x x x dx -----⎰⎰;(B )()()212x x x dx ---⎰;(C )()()()()12011212x x x dx x x x dx ---+--⎰⎰;(D )()()212x x x dx --⎰.解 在区间[]0,1,0y <,在区间[]1,2,0y >, 所以 ()()112S x x x dx =---⎰()()2112x x x dx +--⎰.故选择C.【例 6.8】 曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴围成的平面图形绕x 轴旋转一周而成的旋转体体积为 [ ](A )2π (B )π (C )212π (D )2π. 解 2222cos2V xdx ππππ-==⎰.故选择C.图6.2【例6.9】 双纽线()22222x yx y +=-围成的平面图形的面积为 [ ](A )402cos 2d πθθ⎰; (B )404cos 2d πθθ⎰;(C)2θ; (D )()2401cos 22d πθθ⎰.解 双纽线的极坐标方程为2cos 2 r θ=,(,44ππθ-≤≤35)44ππθ≤≤由对称性 2244001422S r d r d ππθθ=⨯=⎰⎰402cos 2d πθθ=⎰. 故选择A.【例6.10】 曲线()2ln 1y x =-上102x ≤≤的一段弧长l = [ ].(A); (B )1222011x dx x +-⎰; (C); (D ). 解 曲线是直角坐标表示的曲线,采用公式al =⎰.由曲线方程()2ln 1y x =-可得210x ->,221x y x -'=-,则1222011x l dx x +==-⎰. 故选择B .(三)非客观题 1. 平面图形的面积解题方法 (1)先画出草图;(2)求出交点;(3)选取积分变量、区间,找出面积元素,然后积分. (1)直角坐标情形【例6.11】求曲线22,ax y ay x ==所围(见图6.3)的面积. 解 如图所示,交点为()(),00,0A a O 及.图6.32ax y =2y ax =所围的面积()23232002)333aax x aS dx ax a aa ⎡⎤==-=⎢⎥⎣⎦⎰. 【例6.12】 求介于由曲线2121,2+==x y x y 和x 轴围成的平面图形(见图6.4)的面积.解 (法一)设此面积为S ,有12101111()d ()d 2222S x x x x x -=+++-⎰⎰0122310()()42423x x x x x -=+++-23=(法二)13122002(21)]d ()3S y y y y y =-=-+⎰23=.【例6.12】 求0,2x x π==之间由曲线sin y x =和cos y x =所围成的图形(见图6.5)的面积. 解 20sin cos A x x dx π=-⎰()40cos sin x x dx π=-⎰()544sin cos x x dx ππ+-⎰()254cos sin x x dx ππ+-⎰=【例6.13】 求抛物线243y x x =-+-及其在点()0,3-和()3,0处的切线所围成的图形(见图6.6)的面积.解 由24y x '=-+得过点()0,3-和()3,0的切线方程为1:43l y x =-和2:26l y x =-+,图 6.4图 6.24π54π2π图 6.5图 6.6且可得12,l l 交点坐标为3,32⎛⎫⎪⎝⎭,则所围图形的面积为()32204343A x x x dx ⎡⎤=---+-⎣⎦⎰()32322643x x x dx ⎡⎤+-+--+-⎣⎦⎰94=. 【例6.14】求由曲线322,0a y y a x==+所围的面积. 解 所求面积为33222202lim b b a dx S dx a dx a x a x+∞-∞→+∞==++⎰⎰ 3212limarctan b a b a aπ→+∞==. 【例6.15】确定常数k ,使曲线2y x =与直线,2,0x k x k y ==+=所围成图形的面积最小. 解 选x 为积分变量,变化区间为[],2k k +,面积元素2dA x dx =,所求面积为()()22 k kA k x dx k +=-∞<<+∞⎰,要求k 使()A k 取最小值,()A k 是积分上(下)限函数,故()()22241dA k k k dk=+-=+, 令0dA dk =,解得驻点1k =-,因为2240d Adk=>,则1k =-为()A k 在(),-∞+∞内唯一极小值点,即当1k =-时,所围成图形的面积最小. (2)参数方程情形【例6.16】求摆线()()sin ,1cos x a t t y a t =-=-()020t y π≤≤=及所围的面积. 解 所求面积为20(1cos )(1cos )S a t a t dt π=-⋅-⎰图 6.72220(12cos cos )a t t dt π=-+⎰221cos 2(12cos )2tat dt π+=-+⎰20312sin sin 224t t t π⎡⎤=-+⎢⎥⎣⎦23a π=【例6.17】求椭圆渐趋线()2233222cos ,sin c c x t y t c a b a b===-所围面积. 解 所求面积为223324sin cos c c S t t dt b a π'⎛⎫= ⎪⎝⎭⎰22322034sin cos sin c c t t tdt b aπ=⎰4422012sin (1sin )c t t dt abπ=--⎰438c abπ=.(3)极坐标情形【例6.18】求曲线2(2cos )r a θ=+所围成图形(见图6.7)的面积. 解 所求面积为()201222cos 2S a d πθθ=⋅+⎡⎤⎣⎦⎰ ()220444cos cos a d πθθθ=++⎰201cos 2444cos 2a d πθθθ+⎛⎫=++ ⎪⎝⎭⎰209sin 244sin 24a πθθθ⎡⎤=++⎢⎥⎣⎦ 218a π=【例6.19】 求心脏线1cos r θ=+与圆3cos r θ=公共部分(见图6.8)的面积. 解 由3cos 1cos θθ=+得交点坐标为3,23π⎛⎫± ⎪⎝⎭,()2232031121cos (3cos )22S d d πππθθθθ⎡⎤=++⎢⎥⎣⎦⎰⎰54π=. 【例6.20】 求由双纽线()()222222x ya x y +=-所围成且在圆周22212x y a +=内部的图形(见图6.9)的面积.解将r =代入方程22cos2r a θ=中得6πθ=.令0r =代入22cos 2r a θ=中得4πθ=,故 226410611cos 222A d a d πππθθθ=+⎰⎰ 224611sin 22264a a πππθ=⋅⋅+2(633)24a π=+-, 214(66a A A π∴==+-.【例6.21】求由曲线2cos2r r θθ==及所围成的图形的公共部分(见图6.10)的面积.解 解方程组2cos 2r r θθ⎧=⎪⎨=⎪⎩,得两曲线的交点坐标为26π⎛⎫ ⎪ ⎪⎝⎭. 所求的面积为1r =+图 6.9)2646112cos222S d dπππθθθθ=+⎰⎰[]64061112sin2sin2242πππθθθ⎡⎤=-+⎢⎥⎣⎦1626ππ=+=.2.体积的计算(1)旋转体的体积【例6.22】将抛物线24y ax=及直线x x=()x>所围成的图形绕x轴旋转,计算所得的旋转抛物体的体积.解()2,dV f x dxπ=其中()f x=所求体积()00222002x xV f x dx dx axπππ===⎰⎰.【例6.23】求曲线22,0y x x y=-=所围图形分别绕ox轴,oy轴旋转所成旋转体的体积.解所求体积为()22216215xV x x dxππ=-=⎰;()228223yV x x x dxππ=-=⎰。
高等数学第四章 第四节 不定积分 课件
例3
解
计算由 y 2 2 x 和 y x 4所围图形的面积.
选 y 为积分变量
y x4
y2 2 x
y2 dA( y ) ( y 4) dy, y [2, 4] 2
4
A
4
2
dA( y )
2
y (y 4 )d y 18. 2 2
与 y 0 所围成的图形分别绕 x 轴、y 轴旋转构成旋转 体的体积.
解 绕 x 轴旋转的旋转体体积
y( x )
a
Vx
2a
0
y 2dx
2a
a 2 (1 cost )2 d[a( t sint )]
0
2
5 2a 3 .
20/31
例 4
求摆线 x a( t sin t ) , y a(1 cos t ) 的一拱
a 4 2 0 3 π ab
方法2 利用椭圆参数方程
y O
b
x
ax
则
V 2 π y 2 dx 2 π ab 2 sin 3t d t
0
a
2 2 π ab 1 3 4 π ab 2 3
2
4 3 特别当b = a 时, 就得半径为a 的球体的体积 π a . 3
a xxdx
b x
例 2
计算由曲线 y x 3 6 x 和 y x 2 所围成
的图形的面积.
解
A f1 ( x) f 2 ( x) dx
a
b
y x3 6x
两曲线的交点
y x 6x 2 y x
3
y x2
高等数学教材详细答案
高等数学教材详细答案1. 极限与连续1.1 数列极限的定义与性质(1) 数列极限的定义(2) 数列极限的性质1.2 函数极限的定义与性质(1) 函数极限的定义(2) 函数极限的性质1.3 极限运算法则(1) 四则运算法则(2) 复合函数的极限(3) 三角函数的极限1.4 连续与间断(1) 连续的定义与性质(2) 间断点与间断类型2. 导数与微分2.1 导数的概念(2) 导数的几何意义2.2 导数的基本运算法则(1) 乘积法则(2) 商法则(3) 复合函数的导数2.3 高阶导数与高阶微分(1) 高阶导数的定义(2) 高阶导数的性质2.4 微分的概念与运算(1) 微分的定义(2) 微分运算法则3. 微分中值定理与应用3.1 罗尔定理与拉格朗日中值定理(1) 罗尔定理(2) 拉格朗日中值定理3.2 柯西中值定理与洛必达法则(2) 洛必达法则3.3 泰勒公式与极值问题(1) 泰勒公式的推导(2) 极值问题的求解4. 不定积分与定积分4.1 不定积分的概念与性质(1) 不定积分的定义(2) 不定积分的基本性质 4.2 基本积分表与常用公式(1) 基本积分表(2) 常用公式与性质4.3 定积分的概念与性质(1) 定积分的定义(2) 定积分的性质4.4 定积分的计算方法(1) 几何与物理应用(2) 牛顿-莱布尼茨公式5. 定积分的应用5.1 平面图形的面积(1) 平面图形的面积计算5.2 几何体的体积(1) 旋转体的体积计算(2) 截面法计算体积5.3 物理应用(1) 质量和质心的计算(2) 转动惯量和转动中心的计算6. 多元函数微分学6.1 二元函数与二元函数的极限(1) 二元函数的定义与极限(2) 二元函数的性质6.2 偏导数与全微分(1) 偏导数的定义与计算(2) 全微分的概念与性质6.3 多元函数的微分学定理(1) 多元函数的极值定理(2) 多元函数的条件极值问题7. 重积分7.1 二重积分的概念与性质(1) 二重积分的定义(2) 二重积分的性质7.2 二重积分的计算方法(1) 矩形区域的二重积分(2) 极坐标下的二重积分7.3 三重积分的概念与性质(1) 三重积分的定义(2) 三重积分的性质7.4 三重积分的计算方法(1) 柱面坐标和球面坐标下的三重积分(2) 三元函数的体积计算8. 曲线与曲面积分8.1 曲线积分的概念与性质(1) 第一类曲线积分(2) 第二类曲线积分8.2 曲线积分的计算方法(1) 参数方程下的曲线积分(2) 平面曲线的曲线积分8.3 曲面积分的概念与性质(1) 第一类曲面积分(2) 第二类曲面积分8.4 曲面积分的计算方法(1) 参数方程下的曲面积分(2) 线面积分的转化9. 常微分方程9.1 高阶常微分方程(1) 二阶常微分方程(2) 高阶常微分方程的线性方程 9.2 变量可分离方程与齐次方程(1) 变量可分离方程(2) 齐次方程9.3 一阶线性微分方程(1) 一阶线性微分方程的求解 9.4 常系数线性微分方程(1) 齐次线性微分方程的解法(2) 非齐次线性微分方程的解法10. 线性代数基础10.1 向量的基本概念与运算(1) 向量的定义与性质(2) 向量的线性运算10.2 矩阵与矩阵运算(1) 矩阵的定义与性质(2) 矩阵的运算法则10.3 行列式的定义与性质(1) 行列式的定义(2) 行列式的性质10.4 线性方程组与解的判定(1) 线性方程组的解的性质(2) 线性方程组的解的判定。
高等数学第6章
• 另外,如果这个极限存在,也称广义积分 • 收敛,否则称广义积分
发散。
• 同样可定义广义积分 及其收敛
• 和发散。对广义积分 •
,
存在的充分必要条件是对任意 实数a,两个广义积分 和
都收敛。
• 6.5.2 无界函数的定积分
• 定义6.5.2 设函数 f (x)在[a,b)有定义,且当 x→b-时,f (x)→∞,设δ>0,积分
• 如果极限
• 存在,这个极限就称为无界函数 f (x)在[a,b] 上的广义积分,记为
• 也称广义积分
极限 •
收敛。否则,如果
不存在,就称广义积分
是发散的。
• 类似地,如果当x→a+时,f(x)→∞,可以类
似地定义广义积分 为:
• 而对当a<c<b,当x→c时,f(x)→∞,规定广
义积分 • 和 存在当且仅当广义积分 都存在,且
• 6.3 微积分学基本定理 • 6.3.1 变限定积分 • 定理6.3.1 如果函数f (x)是区间[a,b]上的一个
连续函数,那么当a≤x≤b时,变上限积分
• 是一个可导函数,且
• 定理6.3.2 在区间[a,b]上连续的函数 f (x)的
• 原函数一定存在,且变上限积分
• 就是它的一个原函数。 • 例6.3.4 设 f (x),g(x)和h(x)都是连续函数,
• 令各小区间的最大长度
,
• 如果不论小区间怎样划分,也不论在小区
间[xk-1,xk]上如何取ξk,当λ→0时,极限
•
• 为
总是存在,则这一极限就称
为函数 f (x)在区间[a,b]上的定积分。记 ,即:
• 关于定积分的定义,我们做如下说明:
平面图形面积课件
面积相关概念:表面积和体积
1
定义1
表面积是指一个形体表面的总面积。
例题1
2
例如,一个立方体的表面积为6面的面积
之和,而一个圆柱体的表面积则为侧面
积和两个圆的面积之和。
3
定义2
体积是指一个物体所占据的空间总量。
例题2
4
例如,一个长方体的体积就是长、宽和 高的乘积,而一个球体的体积则为 “(4/3)πr³”。
长方形面积计算公式
定理
长方形的面积就是长乘以宽。
例题
例如,长为8厘米,宽为6厘 米的长方形的面积为48平方 厘米。
公式
面积 = 长 x 宽
正方形面积计算公式
1
定理
正方形的面积就是一个边的平方。
2
例题
例如,边长为5厘米的正方形的面积为25平方厘米。
3
公式
面积 = 边长²
三角形面积计算公式
定理1
三角形的面积等于底边乘以高再 除以2。
定理2
等边三角形的面积可使用公式 “面积 = (边长²√3)/4”进行计算。
定理3
等腰三角形的面积可使用公式 “面积 = 底边乘以高再除以2”进行 计算。
梯形面积计算公式
定理
梯形的面积可使用公式“面积 = (上底 + 下底) x 高 / 2”进行计算,其中高是指顶点到底边的距 离。
例题
例如,上底长为5厘米,下底长为9厘米,高为4厘米的梯形的面积为32平方厘米。
公式
面积 = (上底 + 下底) x 高 / 2
圆面积计算公式
1
定理1
圆的面积计算公式为πr²,其中r为半径。
例题1
2
例如,半径为3厘米的圆的面积为28.27平
高等数学同济七版教材目录
高等数学同济七版教材目录第一章集合与函数1.1 集合1.2 常用函数与运算1.3 映射与函数第二章极限与连续2.1 数列的极限2.2 函数的极限2.3 极限的运算法则2.4 无穷小与无穷大2.5 极限存在准则与两个重要极限2.6 连续与间断第三章导数与微分3.1 导数与物理意义3.2 函数的求导法则3.3 高阶导数与莱布尼茨公式3.4 常用函数的导数3.5 隐函数与参数方程的导数3.6 微分3.7 导数在实际问题中的应用第四章微分中值定理与导数的应用4.1 罗尔定理、拉格朗日中值定理4.2 柯西中值定理与洛必达法则4.3 幂指对数函数的凹凸性与曲率4.4 函数的单调性与曲线的图形4.5 弧长与曲线的面积第五章定积分5.1 不定积分5.2 定积分的概念与性质5.3 反常积分5.4 定积分的计算方法5.5 可积性与定积分中值定理5.6 定积分的应用第六章定积分的应用6.1 几何应用之平面图形的面积6.2 物理应用之质心、转动惯量和万有引力6.3 概率应用之统计平均值和方差第七章级数7.1 数项级数的概念7.2 收敛级数的性质7.3 正项级数的审敛法与特殊级数7.4 幂级数7.5 函数展开成幂级数第八章常微分方程8.1 常微分方程的基本概念8.2 可分离变量的微分方程8.3 齐次方程和一阶线性非齐次方程8.4 二阶齐次线性微分方程8.5 常系数线性微分方程和其它一些特殊方程附录1. 通用公式与常用极限2. 高等数学同济七版教材参考答案3. 数表4. 符号说明。
第四讲-平面图形的面积(一)
第四讲-平面图形的面积(一)第四讲平面图形的面积(一)在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。
——毕达哥拉斯(古希腊数学家)【知识对对碰】基本概念:本讲中的平面图形面积计算主要指多边形及其组合图形面积的计算。
基本思路:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4.采用割、补、分解、代换等方法,可将复杂问题变得简单。
关键问题:将一般多边形及其组合图形“转化”为基本图形。
公式: (1)三角形面积=底×高÷2 (2)平行四边形面积=底×高(3)梯形面积=(上底+下底)×高÷2 (4)长方形面积=长×宽(5)正方形面积=边长 2【名题典中典】模块一、等高的三角形、平行四边形和梯形。
【例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
28÷4=7(厘米)7-5=2(厘米)S=ah ÷2=2×4÷2=4(平方厘米)答:面积是4平方厘米。
【思路导航】4厘米既是平行四边形的高,也是阴影三角形的高,平行四边形的面积是28平方厘米,它的底为28÷4=7(厘米),平行四边形的底减去5厘米就是三角形的底,7-5=2(厘米)。
根据三角形的面积公式直接求出阴影部分的面积。
画龙点睛:求阴影部分的面积最直接的方法是利用面积计算公式直接求阴影面积;还可以用总面积减去空白面积求得阴影部分面积。
这两种是最常用最简便的方法。
(tips :解图形题时,最好能把关键数据在图中标出,以方便观察。
如边长、高、底等。
)【我能行】1、已知平行四边形的面积是18平方分米,求阴影部分的面积。
2下面的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。
3、下图中,大梯形的面积是多少?(单位:厘米)模块二:三角形的面积画龙点睛:“等积变换”是解决图形题中经常用的一种方法。
高等数学第六版(同济版)第六章复习资料
第六章定积分的应用引入:前面学习了定积分的理论,这一章要应用这些理论来分析和解决一些实际问题中出现的量.用定积分计算这些量,必须把它们表示成定积分,先介绍将所求量表示成定积分的方法——元素法第一节定积分的元素法我们先用定积分的引例——曲边梯形的面积,引出元素以及元素法的概念:一、元素及元素法 1.元素:由连续曲线与直线以及轴所围成的曲边梯形的面积为:.(由微分知识得) 为面积元素或面积微元,记为 2.元素法:用元素法将所求量表示成定积分的方法,称为元素法. 由此可知,曲边梯形的面积是将面积微元累加得到的下面我们通过曲边梯形的面积来总结出实际问题中所求的量能用定积分表示的条件:二、用元素法将所求量能表示成定积分的条件:(设所求量为) 1.量与变量的所在区间有关; 2.量对于区间具有可加性;3.量的部分量有近似值,即. 三、用元素法将所求量能表示成定积分的步骤: 1.由实际情况选一变量如为积分变量,确定该其变化区间.2.分为个小区间,取其中一个小区间,计算其上的部分量,的所求量的一个元素 3.以为被积表达式,在注:元素的几何形状常取为:条,带,段,环,扇,片,壳等内容小结:本节介绍了元素法以及用元素法将所求量表示成定积分的方法与步骤第二节定积分在几何上的应用一、平面图形的面积 1.直角坐标情形:曲线与直线及轴所围成的曲边梯形面积为,因为面积元素为 2.参数方程情形:若曲线的参数方程为,且满足 (1). , (2). 在或上具有连续导数,且连续,则由曲线所围成的曲边图形的面积为:3.极坐标情形:设曲线的极坐标方程为,且在上连续,则由曲线与射线以及所围成图形的面积为 . 由于当在上变动时,极径来计算. 推导:①.取极角为积分变量,②.在上任取一小区间,其上的曲边扇形面积的近似值:③. . 为被积表达式,在上作定积分,得曲边扇形的面积公式:例1. 计算两条抛物线在第一象限所围所围图形的面积 2y解:首先确定图形的范围,由得交点、,y取为积分变量,由于面积元素,所以所求面积为 . 注: . 例2. 计算抛物线与直线所围图形的面积解:由得交点、,若取为积分变量,则有 . 若取为积分变量,则有 . 例3. 求椭圆所围图形的面积解:由于椭圆关于两个坐标轴对称,设椭圆在第一象限所围成的面积为,则所求面积为设,当时,,当时,,且,于是 . 例4.计算阿基米德螺线对应从变到所围图形面积. 解:由题可知,积分变量,于是所求面积为例5.计算心形线所围图形的面积解:心形线所围成的图形关于极轴对称,设极轴上半部分图形的面积为,则心形线所围成的图形面积为.取极角为积分变量,,于是 . 二、体积 1.旋转体的体积: (1).旋转体:由一个平面图形绕这平面内一条直线旋转一周而成的立体称为旋转体,该直线称为旋转轴注:圆柱体、圆台、球体等都是旋转体,它们都可以看做是由连续曲线与直线以及轴围成的曲边梯形绕轴旋转一周所围成的立体 (2).旋转体的体积:①.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:推导:取为积分变量,,在上任取一小区间轴旋转而成的薄层的体积近似等于以为底面半径、以为高的扁圆柱体的体积,即体积元素为,以为被积表达式,在上作定积分即得所求旋转体的体积:②.由曲线与直线、以及轴所围成的曲边梯形绕轴旋转而成的旋转体的体积:例6.连接坐标原点及点的直线、直线及轴围成一个直角三角形,将它绕轴旋转构成一个底半径为、高为的圆锥体,求其体积解:过及的直线方程为: . 取为积分变量,,则所求旋转体的体积为例7.计算由椭圆所围成的图形绕轴旋转而成的旋转体的体积解:该旋转椭球体可看做是由半椭圆与轴所围成的绕轴旋转而成的立体,半椭圆方程为: . 取为积分变量,,则所求立体体积为例8.计算由摆线,相应于的一拱,直线所围成的图形分别绕轴、轴旋转而成的旋转体的体积解:记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则记摆线绕轴旋转而成的旋转体的体积为,取为积分变量,,则. 2.平行截面面积为已知的立体的体积:设一非旋转体的立体介于过点、且垂直于轴的两个平面之间,该立体过轴上的点且垂直于轴的截面面积为,则该立体的体积为:推导:若为连续函数且已知,取为积分变量,,在,其上的薄层的体积近似等于底面积为、高为的扁圆柱体的体积,积元素:,以为被积表达式,在上作定积分,得所求立体的体积公式:例9.一平面经过半径为的圆柱体的底圆的中心,并与底面交成角,计算着平面截圆柱体所得立体的体积解:取该平面与圆柱体的底面的交线为轴,底面上过圆中心且垂直于轴的直线为轴,则底面圆方程为:,该立体中过轴上的点且垂直于轴的截面是一个直角三角形,两直角边分别为和即和,从而截面面积为,于是所求体积为例4.求以半径为的圆为底、以平行且等于底圆直径的线段为顶、高为的正劈锥体的体积解:取底面圆所在的平面为平面,圆心为原点,并使轴与正劈锥体的顶平行,底面圆方程为:,过轴上的点作垂直于轴的平面截正劈锥体得等腰三角形,截面面积为,于是,所求正劈锥体的体积为三、平面曲线的弧长引入:我们知道,用刘徽的割圆术可以定义圆的周长,即利用圆的内接正多边形的周长当边数无限增加时的极限来确定,现在将刘徽的割圆术加以推广,来定义平面曲线的弧长,从而应用定积分来计算平面曲线的弧长. 1.平面曲线弧长的相关概念 (1).平面曲线弧长:若在曲线弧上任取分点,,依次连接相邻分点得到该曲线弧的一内接折线,记限增加且每一个小弧段都缩向一点,即时,折线的长的极限存在,则称此极限值为曲线弧的弧长,并称该曲线弧是可求长的,记作 (2).光滑曲线:若曲线上每一点处都存在切线,且切线随切点的移动而连续转动,则称该曲线为光滑曲线 (3).定理:光滑曲线可求长. 2.光滑曲线弧长的计算 (1).直角坐标情形:设曲线弧的直角坐标方程为,,若在上具有一阶连续函数,则曲线弧长为推导:取为积分变量,曲线上的相应于上任意小区间上的一段弧的长度近似等于曲线在点处切线上相应的一段的长度,又切线上相应小段的长度为,从而有弧长元素,以为被积表达式,在上作定积分,得弧长公式:(2).参数方程情形:设曲线弧的参数方程为,,若及在具有连续导数,则曲线弧长为推导:取参数为积分变量,曲线上相应于上任意小区间上的一段弧的长度的近似值即为弧长元素,以为被积表达式,在上作定积分,得弧长公式: (3).参数方程情形:设曲线弧的极坐标方程为,,若在上具有连续导数,则曲线弧长为:推导:由直角坐标与极坐标的关系得:,,即为曲线的以极角。
高等数学第六章第二节
因此所求弧长
s r 2 ( ) r2 ( ) d
例9. 两根电线杆之间的电线, 由于其本身的重量,下垂
成悬链线 . 悬链线方程为
y c ch x (b x b)
y c
c
求这一段弧长 .
36π 2 π
12(1x2
x21)2
dห้องสมุดไป่ตู้
x
448 2π
π2
(
x2
1) 2
d
x
0
15 1
三、平面曲线的弧长
定义: 若在弧 AB 上任意作内接折线 , 当折线段的最大
边长 →0 时, 折线的长度趋向于一个确定的极限 , 则称
此极限为曲线弧 AB 的弧长 , 即
n
s lim 0
M i1M i
2πa
O
r
r a
2π
sa
1 2 d
0
a2
1 2 1 ln
2
1 2
2π 0
内容小结
1. 平面图形的面积 直角坐标方程
上下限按顺时针方向 确定
边界方程 参数方程
极坐标方程
2. 平面曲线的弧长
弧微分: d s
(d x)2 (d y)2
注意: 求弧长时积分上 下限必须上大下小
直角坐标方程
1
3
3 y
s
弧线段部分
3
1 1 4 y2 dy
直线段部分
3
dy
1
O 1
x2y3 0 x
x y2
2. 试用定积分求圆
绕x轴
旋转而成的环体体积 V 及表面积 S .
高等数学试题(含答案)
7.解.特征方程为 k 2 k 0 ,得到特征根 k1 0, k2 1,
故对应的齐次方程的通解为 y c1 c2ex ,
由观察法,可知非齐次方程的特解是 y 1 e x , 2
因而,所求方程的通解为
y
c1
c2ex
1 2
e x ,其中 c1 , c2
第4页,共12页
报考学校:______________________报考专业:______________________姓名:
准考证号:
-------------------------------------------------------------------------------------密封线---------------------------------------------------------------------------------------------------
是任意常数.
………..1 分 ………..3 分 ………..5 分
……….6 分
8.解.因为 ln1 x x x 2 x3 x 4 1n x n1 (1 x 1) ,
234
n 1
….3 分
所以 x 2 ln1 x x 2 (x x 2 x3 x 4 1n x n1 )
1
1.解法一(1). S e e x dx
0
ex e x 1 e e 1 1 . 0
1
(2).V e2 e2x dx
0
e2 x 1 e2x 1
2 0
e2
1 2
e2
1
2
e2 1
1
解法二.(1) S e e x dx
(完整版)高数上册知识点
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学课件 第六章(6-1平面图形的面积)
从而面积元素为
于是得面积
《高等数学》第六章第一节
1. 直角坐标系 例1 求由曲线 及 所围成平面图形的面积.
Байду номын сангаас
解 面积元素 (如图) , 在积分区间 [0, 2] 上作定积分, 即所求的面积是
《高等数学》第六章第一节
思考题: 求由星形线 所围成图形的面积.
《高等数学》第六章第一节
2.极坐标情形
线 所围成的曲边扇形,求其面积公式.
问题:设平面图形 是由曲线 ( )与射
, 且当x由0变到a时, 由
变到0, 则有
可得
一般地,当曲边梯形的曲边 y = f (x) ( f (x) 0 , x[a, b] )
由参数方程 给出时, 若
(1) 在 (或 )上具有连续导数,且
《高等数学》第六章第一节
(2) 连续,
则曲边梯形的面积为
《高等数学》第六章第一节
例4 求摆线第一拱 与
轴围成的面积.
解 上图为摆线形成的过程,所求面积为:
《高等数学》第六章第一节
应用定积分来计算平面图形面积, 对于 在不同坐标系下的情况我们分别加以介绍.
6.1.2 平面图形面积
《高等数学》第六章第一节
1.直角坐标情形
问题: 设曲边形由两条曲线 及直线
《高等数学》第六章第一节
思考题:求由 围成的面积.
如果平面区域是由曲线 , 及 直线 所围成 ,它的面积是定积分
解 由于椭圆关于两个坐标轴都对称 , 故椭圆面积为 A = 4A1, 其中A1为椭圆在第一象限的面积, 因此
利用椭圆的参数方程
, 0 2,
x
y
a
高等数学
第六章 定积分的应用§6-1 定积分的元素法§6-2 定积分在几何学上的应用(平面图形的面积)一、填空题1.定积分⎰ba dx x f )(的几何意义是 。
2. )(x f 、g(x)在[a ,b ] 上连续,则由y=f (x ), y=g (x )和x=a , x=b 所围成图形的 面积A= 。
3.计算y 2=2x 与y=x- 4所围成图形的面积时,选用 作积分变量较为简捷。
二、选择题1.曲线y=x ln 与直线0,,1===y e x ex 及所围成的区域的面积S= 。
(A )、2)11(e-(B )、ee 1- (C )、ee 1+(D )、e11+2.曲线r=2a cos θ所围图形的面积A= 。
(A )、θθπd a 22)co s 2(21⎰ (B )、θθππd a 222)c o s 2(21⎰-(C )、θθπd a 220)co s 2(21⎰(D )、2θθπd a 220)cos 2(21⎰3.曲线⎪⎩⎪⎨⎧==ta y t a x 33sincos 所围图形的面积A= 。
(A )、28a π (B )、24a π (C )、283a π (D )、22a π§6-3 定积分在几何学上的应用(体积)一、判断题1.平面图形)()(0,x g y x f b x a ≤≤≤≤≤绕X 轴旋转一周的生成的旋转体的体积V=dx x f x g ba⎰-22)]([)]([π( )2.平面图形)()(0,x g y x f b x a ≤≤≤≤≤绕X 轴旋转一周的生成的旋转体的体积V=dx x f x g ba2)]()([-⎰π( )第七章 微分方程§7-1 微分方程的基本概念一、判断题1.y=c ex2(c 的任意常数)是y '=2x 的特解。
( )2.y=(y '')3是二阶微分方程。
( ) 3.微分方程的通解包含了所有特解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求由曲线y=f 上(x)、 y=f 下(x)及直线x=a、 x=b所围成的图形的 面积,也可以按如下方法求面积: 所求的图形的面积可以看成是两个曲边梯形面积的差 A= a f 上(x)dx a f 下(x)]dx.
b b
y
y=f 上(x)
y=f (x) y=f 下下(x)
O
a
b
x
例1 计算由两条抛物线:y2x、yx 2 所围成的图形的面积. 解 在区间[0, 1]上过x点且垂直于x 轴的直线左侧的面积记 为A(x),直线平移dx 后所产生的面积的改变量近似为 DA ( x x 2)dx , 于是面积元素为 dA = ( x x 2)dx , 以( x x 2)dx为被积表达式, 以[0, 1]为积分区间求定积分 得所求的图形面积 1 y2x yx 2 y
A
1 [()] 2d . 2
+d
r ()
O
x
例4 计算阿基米德螺线ra (a >0)上相应于从0变到2 的 一段弧与极轴所围成的图形的面积. 解
A 0
2
1 4 1 2 d a 2[ 3 2 a 2 3. ]0 [ a ] 2 3 3
§6.1 平面图形的面积
一、定积分的元素法 二、在直角坐标情形下求图形的面积 三、在极坐标情形下求图形的面积
一、 定积分的元素法
设yf为底的曲边梯形的面积. a
b
y
A a f (x)dx O a b x
b
一、 定积分的元素法
A(x)
x x+dx 1 x
A
1
0
1 0 2 3/21 1 ( x x 2)dx [ x x3] 0 . 3 3 3
例2 计算抛物线y22x 与直线yx4所围成的图形的面积. 解 画图.求两曲线的交点得:(2,2),(8,4). 将图形向 y 轴投影得区间[2,4]. A(y)为区间[2,4]上过y点且垂直于 y轴的直线下侧的面积. 直线平移dy 后所产生的面积的改变量近似为 1 DA (y 4 y2)dy , 2 于是面积元素为 1 2 dA = (y 4 y )dy , 2 所求的图形面积为 4 1 2 1 2 1 A (y 4 y )dy [ y 4y y 3]4 2 18. 2 2 6 2
x
讨论:如果下图形的面积元素是什么?面积公式是什么? y y=f 上(x) O d x=f 左( y) x=f 右( y) y
a
A1 y=f 下(x)
b
x c
A3
y a O y=f 上(x) A2 y=f 下(x) b x
O
b a
x
A1=A2= [f 上(x)f 下(x)]dx. A3 = [f 右(x)f 左(x)]dx.
x dx
f (t ) dt.
点x处,高为f (x) 、宽为dx的矩形的面积为:f (x)dx. DAf (x)dx,且DAf (x)dxo(dx). f (x)dx称为曲边梯形的面积元素. 以[a,b]为底的曲边梯形的面积A就是以面积元素f (x)dx为 被积表达式,以[a,b]为积分区间的定积分:A f (x)dx a y
d
2a
dA =
ra(1cos )
1 [ a(1cos )] 2d 2
O
x
设yf (x)0 (x[a,b]).
A=a f(x)dx 是以[a,b]为底的曲边梯形的面积. A(x) a f (t)dt是以[a,x]为底的曲边梯形的面积. y
x b
A(x) a f (t)dt O a x x x x x x x b x
x
曲边梯形面积A(x)的微分为dA(x)f (x)dx, 以dx为宽的曲边梯形面积为: DA x
A1
a
0
ydx b sin t d (a cos t) a b sin 2t d t
2 2
0
三、在极坐标情形下求图形的面积
•曲边扇形及曲边扇形的面积元素: 由曲线r()及射线 , 围成的图形称为曲边扇形. •曲边扇形的面积元素: 1 dA [()] 2d . 2 •曲边扇形的面积为
b
二、在直角坐标情形下求图形的面积
求由曲线y=f 上(x)、 y=f 下(x)及直线x=a、 x=b所围成的图形 的面积. 面积元素为: [f 上(x)f 下(x)]dx. A= [f 上(x)f 下(x)]dx.
a b
所求图形的面积为:
y
y=f 上(x)
y=f 下(x)
O
a
x x+dx
b
4 2
y 2=2x
(8, 4)
y=x4
0 -2
2
4
6
8
x
(2, -2)
x2 y2 例 3 求椭圆 2 2 1 所围成的图形面积. a b
解 设椭圆在第一象限的面积为A1,则椭圆的面积为A4A1.
第一象限的部分椭圆在x 轴上的投影区间为[0,a]. y 因为面积元素为ydx, 所以 b
2a O d ra x
dA=
1 [ a ] 2 d 2
例5 计算心形线ra(1cos ) (a>0) 所围成的图形的面积.
解
1 A2 [ a(1cos )] 2d 0 2 1 1 2 a ( 2cos cos 2 ) d 0 2 2 1 3 2 3 sin2 ] a [ 2sin a 2 . 0 2 4 2
A1 0 ydx ,
椭圆的参数方程为:
于是
a
x2 y2 1 a 2 b2
y O dx a x
xa cos t , yb sin t ,
0
1 1 1 1 1 1 22 a b (1cos 2t )d tt a b· a b . a b0 (1cos 2t )d a b· a b . 0 2 2 2 4 2 2 2 4 A 4A1 a b.
b
A(x) a f (t)dt O a x x+dx b x
x
一般情况下,为求某一量U (不一定就是面积,即使是面积 也不一定是曲边梯形的面积),先将此量看成是某区间[a,b]上的 函数U(x),再求这一量在[a,b]上的元素 d U(x), 设d U(x)u(x)dx,然后以u(x)dx为被积表达式,以[a,b]为积分区 间求定积分即得 U a u(x)dx . 用这一方法求一量的值的方法称为微元法(或元素法).