数学分析课本(华师大三版)-习题及答案第十七章
数学分析课本(华师大三版)-习题及答案16+17
![数学分析课本(华师大三版)-习题及答案16+17](https://img.taocdn.com/s3/m/11d3bbe9b8f67c1cfad6b83f.png)
1 ⎧ 2 2 ( x , y ) ≠ 0,0) ⎪( x + y ) sin 2 f ( x, y) = ⎨ x + y2 ⎪ 0 ( x , y ) = (0,0) ⎩
在 ( 0,0) 处的可微性与偏导数的连续性. 47.设函数 u = f ( x , y ) 满足拉普拉斯方程
12.求下列函数的全微分. (1) z = x y
2 3
(2) z =
xy x−y ⎛ x+ y⎞ ⎟ ⎟ ⎝ 1 − xy ⎠
(3) z = arcsin 13.求 z = xy sin 14.求 z =
y x 1 x + y2
2
(4) z = arctan⎜ ⎜ 在点 (0,1) 的全微分.
y ,当 x = 2 ,y = 1,Δx = 01 . ,Δy = −0.2 时的全增量 Δz 与全 x du ; dt
2 2 2
(3) u = ln( x +
y 2 + z 2 ) 从点 A ( 1 , 0 , 1 ) 到点 B ( 3 , − 2 , 2 ) 的方向.
2 2
27. 求函数 z = x + y 在点 p ( 1 , 2 ) 处的最大方向导数. 28. 求下列函数的梯度 (1) z =
4 + x 2 + y 2 在点 ( 2 , 1 ) ;
(2) z = x y − xy ,其中 x = u cos v,y = u sin v ,求
3
∂ 2z 17.设 z = yf ( x − y ) ,求 2 . ∂y
2 2
18.求由下列方程确定的函数 y ( x ) 的导数. (1) x + 2 xy − y = a (3) xy − ln y = a
《数学分析》(华师大版)课本上的习题
![《数学分析》(华师大版)课本上的习题](https://img.taocdn.com/s3/m/c6fe605927284b73f24250fe.png)
第十九章 含参量积分P.178 含参量正常积分 习题 1. 设n R y x ∈,,证明:).(22222y x yx yx +=-++2. 设n n R x R E ∈⊂点,到集合E 的距离定义为).,(inf ),(y x E x Ey ρρ∈=证明:(1)若E 是闭集,;0),(,>∉E x E x ρ则(2)若E E 是连同其全体聚点所组成的集合(称为E 的闭包),则{}.0),(==E x x E ρ 3. 设证明的任意子集是.,;:,,X B A Y X f R y R x m n →⊂⊂: (1));()()(B f A f B A f = (2));()()(B f A f B A f ⊂(3)若).()()(B f A f B A f f =是一一映射,则4. 设证明.)(lim ,)(lim ,,,,:,c x g b x f R c b R a R R g f ax ax m n m n ==∈∈→→→:(1) 时可逆;且当0,)(lim ==→b b x f ax(2) .)]()([lim c b x g x f TT ax =→5. 设.:,mn R D f R D →⊂若存在正实数r k ,,对任何点D y x ∈,满足 ry x k y f x f -≤-)()(, 试证明.上的连续函数是D f 6. 设nR y x ∈,,证明下列各式: (1);1x n x ni i ≤∑= (2)22y x y x y x +≤-+;(3).y x y x -≤-并讨论各不等式等号成立的条件和解释2=n 时的几何意义. 7. (1)证明定理19.6;(2) 设的所有于上一致连续,是否等价在试问向量函数f D R D f R D mn →⊂:,坐标函数m i f i ,,2,1, =都在D 上一致连续?为什么?8. 设mn R R f →:为连续函数,nR A ⊂为任意开集,nR B ⊂为任意闭集.试问)(A f 是否必为开集?)(B f 是否必为闭集? P.189 含参量反常积分 习题 1. 证明定理19.12.2. 求下列函数的导数:(1) ;和,求)2,0(),()2,)(,sin (),(21222212121πf x x f x x x x x x x f T''-=(2) Tex x f )x x (x ),(21x x 222121=++=,,求).1,0,1(),,(321f x x x f ''和3. 设nR D ⊂为开集,m R D g f →:,均为可微函数.证明g f T 也是可微函数,而且 .)(f g g f g f T T T '+'=' 4. 设函数t s h g f ,,,,的定义如下:T T x x x x x x h x x x g x x x x f ),(),(,)cos ,(sin )(,)(1221212121-==-=+,.),(),,(,)4,2,(),(321321*********T T x x x x x x x x x t x x x x x s ++=+=试依链式法则求下列复合函数的导数:(1))('g f (2) )('f g (3) )('h h ; (4) )('h s (5) )('s t (6) )('t s . 5. 设),,(),,,(),,(v u x H w u y x g v y x f u ===,应用链式法则计算).,(y x w '6. 设nR D ⊂为开域,mR D f →:可微函数.利用定理19.14证明:(1) 若在)(0)(x f x f D 矩阵(零矩阵),则恒为上'为常向量函数; (2) 若在.,,)()()(mR b D x b cx x f c x f D ∈∈+=≡',则常数阵上7. 设mn R R f →:为可微函数,试求分别满足以下条件的函数)(x f :(1) ;单位阵)()(I x f ≡'(2) )(,),(),()),(()(2211n n i i x x x x diag x f ϕϕϕϕ 即以='为主对角线元素的对角阵, Tn x x x ),,(1 =.8. 求下列函数f 的海赛矩阵,并根据例2的结果判断该函数的极值点: (1) ;322)(3213223222121x x x x x x x x x x x f -++-++-= (2) 31322322212166424)(x x x x x x x x x x f --+-+-=.9. 设t s h g f ,,,,为第4题中的五个函数.(1) 试问:除第4题6个小题中的两个函数的复合外,还有哪些两个函数可以进行复合,并求这些复合函数的导数; (2) 求下列复合函数的导数: (i ))('h f g ; (ii))('s t s .10. 设nR D ⊂为开集,.:0可微在D x R D f m ∈→试证明:(1) 任给时,有当存在),(,0,00δδεx U x ∈>>000))(()()(x x x f x f x f -+'≤-ε.(2) 存在000)()(,),(,0,0x x K x f x f x U x K -≤-∈>>有时当δδ (这称为在可微点领域内满足局部利普希兹条件.)11. 设的可微函数是凸开集,n n R D g R D →⊂:,且满足:对任何D x ∈和任何非零的 n R h ∈,恒有.0)(>'h x g h T 时证明:D g 在上是一一映射。
《数学分析》第三版全册课后答案 (1)
![《数学分析》第三版全册课后答案 (1)](https://img.taocdn.com/s3/m/13778ddaa1c7aa00b52acb1b.png)
1 u( , )d d r 2 ( x )2 2 2 ( y ) r 1 2
u( x, y)
1 2 r
( x ) ( y ) r
2
u( , )ds
2 2
2
u( x r cos , y r sin )d
0
对任意 r 0 成立.
2 2 2 S
x2 y 2 z 2 (0 z h) 的外侧.
4、 (10 分) (两题选作一题)用适当方法完成下列计算: (1)计算拉普拉斯积分: I
0
cos 2 x dx ; 1 x2
(2)计算菲涅尔积分: I
sin x 2 dx .
0
得分
评阅人
四、证明题(共 3 小题,35 分)
华中师范大学 2008–2009 学年第二学期
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
期末考试试卷(A 卷)
课程名称 数学分析 3(试点班) 课程编号 83410004 任课教师 张正杰 陈世荣 题型 填空 题 分值 得分
得分 评阅人
学号:
计算 题I 15
计算 题 II 40
证明 题 35
总分10100 Nhomakorabea学生姓名:
一、填空题(共 5 题,10 分)
2
数值分析第三版课本习题及答案
![数值分析第三版课本习题及答案](https://img.taocdn.com/s3/m/c8d50e975acfa1c7ab00cc81.png)
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i)0()(0,1,,);nkkj jj x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:试求三次样条插值并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='=ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.27.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A fh --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x fx -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4.用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7.用复化梯形公式求积分()b af x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1xedx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nnnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数学分析课本(华师大三版)-习题及答案第十六章
![数学分析课本(华师大三版)-习题及答案第十六章](https://img.taocdn.com/s3/m/7281c7cf0508763231121232.png)
第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。
华东师大数学分析答案完整版
![华东师大数学分析答案完整版](https://img.taocdn.com/s3/m/6b0a1f17f342336c1eb91a37f111f18583d00cd7.png)
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
数学分析课本(华师大三版)-习题及答案第十六章
![数学分析课本(华师大三版)-习题及答案第十六章](https://img.taocdn.com/s3/m/7281c7cf0508763231121232.png)
第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。
华东师大数学分析答案完整版
![华东师大数学分析答案完整版](https://img.taocdn.com/s3/m/6b832bce6137ee06eff91891.png)
历年考研真题评析!
%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使 得 对 ,#&##,!$$在!#(##= &#$2 (%#;’上 无 界 !
分析!本题采用闭区间套定理证明!
证明!取%#;中点%$&;#则(%#%$&;’#(%$&;#;’中至 少 有 一 个 区 间 使 ,!$$无 界 !如 果 两 个 都 是 可 任 取 一 个 $#记 为 (%! #;!’!
,!($$%8!($$&9 !($$% (8!$$&9 !$$
而
,!$$%8!$$&9!$$
由 之 可 得 ! ! !8!$$%,!$$($,!($$#9 !$$%,!$$&$,!($$
这里 8!$$#9!$$分别是奇函数和偶函数!
+ , %例"&!求数集 ’% !&!&$&!(!$& �& 的上"下确界!
向 的 基 础 !数 学 归 纳 法 是 证 明 某 些 不 等 式 的 重 要 工 具 !
二 !数 集 " 确 界 原 理
!" 邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的 集 合#它 是 描 述 极 限 概 念的基本工具! 在无限区间记号!()#%’#!() #%$#(%#& )$#!%#& )$#!( ) #& )$中 出 现 的 ( ) 与 & )仅是常 用 的 记 号#它 们 并 不 表 示 具 体 的 数!在 数 学 分 析 课 程 范 围 内#不 要 把&)#( )#) 当作数来运算!
数学分析课本(华师大三版)-习题及答案01
![数学分析课本(华师大三版)-习题及答案01](https://img.taocdn.com/s3/m/96c49a54e87101f69e3195d1.png)
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明 |22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n 21,n ∈+N }。
数学分析课本(华师大三版)-习题及答案01
![数学分析课本(华师大三版)-习题及答案01](https://img.taocdn.com/s3/m/efb457c36bd97f192379e990.png)
第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明 |22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗?7、 设x>0,b>0,a ≠b 。
证明x b x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义:(1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
数学分析课本(华师大三版)-习题及答案第十六章
![数学分析课本(华师大三版)-习题及答案第十六章](https://img.taocdn.com/s3/m/7281c7cf0508763231121232.png)
第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。
数学分析课本(华师大三版)-习题及答案07
![数学分析课本(华师大三版)-习题及答案07](https://img.taocdn.com/s3/m/f8cbe492daef5ef7ba0d3c3c.png)
习 题 七1.用闭区间套定理证明确界存在定理.2.用维尔斯特拉斯聚点原则证明单调有界数列必有极限.3.用有限覆盖定理证明闭区间套定理.4.设S 为闭区间[,证明:若,]a b x S ∈,则x 为S 的聚点;反之,若x 为S 的聚点,则x 必属于S .5.设H 为点集S 的聚点集合,若x 为H 的聚点,则必为S 的聚点.6.证明:有限点集没有聚点.7.利用柯西收敛准则,证明下列数列收敛: (1) a n n n =+++sin sin sin 122222Λ; (2) a n n n =⋅+⋅+++11212311Λ(); (3) a nn =++++11213122Λ2n . 8.若对数列{存在常数M ,对一切n 有}a n A a a a a a a M n n =−+−++−≤−||||||21321Λ,证明:(i) 为收敛数列;(ii) 也为收敛数列. {}A n {}a n 9.应用柯西收敛准则证明下列数列不收敛:(1) ; (2) a n n =−()1n a nx n =sin2 ; (3) a nn =++++112131Λ. 10.设H n nn =+={(,,,,}121123Λ为开区间集,问: (1) H 是否为的开覆盖?(,)01(2) 能否从H 中选出有限个开区间覆盖(,)012?1(3) 能否从H 中选出有限个开区间覆盖(,11001)? 11.试用聚点定理证明区间套定理.12.试用聚点定理证明柯西收敛准则. 13.试用确界原理证明聚点定理(聚点原则).13.试用确界原理证明聚点定理(聚点原则).14. 设并且0)(11=+++=−n n n a x a x x f Λ0≠n a .试证明:(1)若为奇数,则方程至少有一个实根与异号;(2)若为偶数,且n n a n 0<n a ,则方程至少有一个正根和一个负根.15. 证明:若函数具有下列二性质:(1)在闭区间[上有定义且并单调;(2)能取介于和之间的所有数作为其函数值,则在[,]连续.)(x f ,]a b )(a f )(b f )(x f a b 16. 证明:函数)(x f ax −=1sin 若0≠x 及=0,在任意闭区间[取介于和之间的一切值,但在[并不连续.)(a f ,]a b )(a f )(b f ,]a b 17. 证明:若函数在区间内连续,并且)(x f ),(b a n x x x ,,,21Λ为此区间中的任意值,则存在一个数值∈ζ),(b a ,使得)]()()([1)(21n x f x f x f nf +++=Λζ. 18. 证明:若函数与在[连续,且<,>,则存在,使)(x f )(x g ,]a b )(a f )(a g )(b f )(b g ∈c ),(b a )()(c g c f =.19. 证明:若函数在[连续,则函数在在[有最小值. )(x f ,]a b )(x f ,]a b m 20. 证明:(1) 函数)(x f x =在),0[∞+一致连续.(2) 函数在有限区间一致连续,在R 不一致连续.)(x f 3x =),(b a (3) 函数)(x f x sin +=在R 一致连续.21. 证明:若函数与在区间I 一致连续,则和函数+在区间I 一致连续.)(x f )(x g )(x f )(x g 22. 证明:若∈∀y x ,I (区间),满足条件 y x k x f x f −≤−)()(,其中:为常数,则在I 一致连续.k )(x f223. 证明;若函数在)(x f ),0[∞+连续且b x f x =+∞→)(lim ,则函数在一致连续.)(x f ),0[∞+24. 用一致连续定义证明:若函数在与都一致连续,则函数在[一致连续.)(x f ],[c a ],[b c )(x f ,]a b 25. 证明:在上的连续函数为一致连续的充分必要条件是),(b a )(x f )0(),0(−+b f a f 存在并且有限.26. 设函数在连续,并且)(x f ]2,0[a )2()0(a f f =,试证存在,使得],0[0a x ∈)()(00a x f x f +=.27. 证明:设函数在有限区间有定义,若对于内任一收敛数列,极限都存在,则在区间一致连续. )(x f ),(b a ),(b a }{n x )(lim n x x f ∞→)(x f ),(b a3。
数学分析课本(华师大三版)-习题及答案第十六章
![数学分析课本(华师大三版)-习题及答案第十六章](https://img.taocdn.com/s3/m/7281c7cf0508763231121232.png)
第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章 多元函数微分学一、证明题1. 证明函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x y x y)f(x,2222222 在点(0,0)连续且偏导数存在,但在此点不可微.2. 证明函数⎪⎩⎪⎨⎧=+≠+++=0y x 0,0y x ,y x 1)sin y (x y)f(x,22222222在点(0,0)连续且偏导数存在,但偏导数在点(0,0)不连续,而f 在原点(0,0)可微.3. 证明: 若二元函数f 在点p(x 0,y 0)的某邻域U(p)内的偏导函数f x 与f y 有界,则f 在U(p)内连续.4. 试证在原点(0,0)的充分小邻域内有x y1y x arctg ++≈x+y. 5. 试证:(1) 乘积的相对误差限近似于各因子相对误差限之和;(2) 商的相对误差限近似于分子和分母相对误差限之和.6.设Z=()22y x f y -,其中f 为可微函数,验证 x 1xZ ∂∂+y 1y Z ∂∂=2y Z . 7.设Z=sin y+f(sin x-sin y),其中f 为可微函数,证明:x Z ∂∂ sec x + y Z ∂∂secy=1. 8.设f(x,y)可微,证明:在坐标旋转变换x=u cos θ-v sin θ, y=u sin θ+v cos θ之下.()2x f +()2y f 是一个形式不变量,即若 g(u,v)=f(u cos θ-v sin θ,u sin θ+v cos θ).则必有()2x f +()2y f =()2u g +()2vg .(其中旋转角θ是常数) 9.设f(u)是可微函数,F(x,t)=f(x+2t)+f(3x-2t),试求:F x (0,0)与F g (0,0)10..若函数u=F(x,y,z)满足恒等式F(tx,ty,tZ)=t k (x,y,z)(t>0)则称F(x,y,x)为K 次齐次函数.试证下述关于齐次函数的欧拉定理:可微函数F(x,y,z)为K 次齐次函数的充要条件是:()z ,y ,x x F x +()z ,y ,x yF y +()z ,y ,x ZF x =KF(x,y,z).并证明:Z=xy y x xy 222-+为二次齐次函数.11..设f(x,y,z)具有性质f ()Z t ,y t ,tx m k =f t n (x,y,z)(t>0) 证明:(1) f(x,y,z)=⎪⎭⎫ ⎝⎛m k n x Z ,x y ,1f x ; (2) ()z ,y ,x x f x +()z ,y ,x kyf y +()z ,y ,x m zf z =nf(x,y,z).12.设由行列式表示的函数D(t)=()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n 2n 22211n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅其中()t a ij (i,j=1,2,…,n)的导数都存在,证明()dt t dD =∑=n 1k ()()()()()()()()()t a t a t a t a t a t a t a t a t a nn n21n k n k 21k 1n 1211⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅''⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 13.证明:(1) grad(u+c)=grad u(c 为常数);(2) graqd(αu+βv)=αgrad u+βgrad v(α,β为常数);(3) grsdu v=u grad v+v grsd u;(4) grad f(u)=f '(u)grad u.14.设f(x,y)可微,L 1与L 2是R 2上的一组线性无关向量,试证明;若()0,≡y x f i λ(i=1,2)则f(x,y)≡常数.15.通过对F(x,y)=sin x cos y 施用中值定理,证明对某∈θ (0,1),有43=6cos 3cos 3πθπθπ6sin 3sin 6πθπθπ-. 16.证明:函数 u=()t a 4b x 22e t a 21--π(a,b 为常数)满足热传导方程:tu ∂∂=222x u a ∂∂ 17.证明:函数u=()()22b y a x ln -+-(a,b 为常数)满足拉普拉斯方程:22x u ∂∂+22yu ∂∂=0. 18.证明:若函数u=f(x,y)满足拉普拉斯方程: 22x u ∂∂+22yu ∂∂=0.则函数V=f(22y x x +,22y x y +)也满足此方程. 19.设函数u=()()y x φ+ϕ,证明:⋅∂∂x u y x u 2∂∂∂=⋅∂∂y u 22x u ∂∂. 20.设f x ,f y 和f yx 在点(x 0,y 0) 的某领域内存在,f yx 在点(x 0,y 0)连续,证明f xy (x 0,y 0)也存在,且f xy (x 0,y 0)= f yx (x 0,y 0),21.设f x ,f y 在点(x 0,y 0)的某邻域内存在且在点(x 0,y 0)可微,则有f xy (x 0,y 0)= f yx (x 0,y 0)二、计算题1.求下列函数的偏导数:(1) Z=x 2y; (2) Z=ycosx; (3) Z=22y x 1+;(4) Z=ln(x+y 2); (5) Z=e xy ; (6) Z=arctgx y ; (7) Z=xye sin(xy); (8) u=zx y Z x y -+; (9) u=(xy)z ; (10) u=z y x.2. 设f(x,y)=x+(y-1)arcsinyx ; 求f x (x,1). 3. 设 ⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1ysin y)f(x,222222考察函数f 在原点(0,0)的偏导数.4. 证明函数Z=22y x +在点(0,0)连续但偏导数不存在.5. 考察函数⎪⎩⎪⎨⎧=+≠++=0y x 0,0y x ,y x 1xysin y)f(x,222222在点(0,0)处的可微性.6. 求下列函数在给定点的全微分;(1) Z=x 4+y 4-4x 2y 2在点(0,0),(1,1); (2) Z=22y x x+在点(1,0),(0,1).7. 求下列函数的全微分;(1) Z=ysin(x+y);(2) u=xe yx +e -z +y8. 求曲面Z=arctg x y 在点⎪⎭⎫ ⎝⎛4,1,1π处的切平面方程和法线方程. 9. 求曲面3x 2+y 2-Z 2=27在点(3,1,1)处的切平面方程与法线方程.10. 在曲面Z=xy 上求一点,使这点的切平面平行于平面x+3y+Z+9=0,并写出这切平面方程和法线方程.11. 计算近似值:(1) 1.002×2.0032×3.0043;(2) sin29°×tg46°.12. 设园台上下底的半径分别为R=30cm, r=20cm 高h=40cm. 若R,r,h 分别增加3mm,4mm,2mm.求此园台体积变化的近似值.13. 设二元函数f 在区域D=[a,b]×[c,d]上连续(1) 若在intD 内有f x ≡0,试问f 在D 上有何特性?(2) 若在intD 内有f x =f y ≡0,f 又怎样?(3) 在(1)的讨论中,关于f 在D 上的连续性假设可否省略?长方形区域可否改为任意区域?14. 求曲面Z=4y x 22+与平面y=4的交线在x=2处的切线与OZ 轴的交角. 15. 测得一物体的体积v=4.45cm 3,其绝对误差限为0.01cm 3,又测得重量W=30.80g,其绝对误差限为0.018,求由公式d=vw 算出的比重d 的相对误差限和绝对误差限. 16.求下列复合函数的偏导数或导数: (1) 设Z=arc tg(xy),y=e x ,求xdZ α; (2) 设Z=xy y x 2222e xy y x ++,求x Z ∂∂,y Z ∂∂; (3) 设Z=x 2+xy+y 2,x=t 2,y=t,求dtZ ∂; (4) 设Z=x 2lny,x=v u ,y=3u-2v,求u Z ∂∂,v Z ∂∂; (5) 设u=f(x+y,xy),求x u ∂∂,yu ∂∂; (6) 设u=f ⎪⎪⎭⎫ ⎝⎛Z y ,y x ,求x u ∂∂,y u ∂∂,Z u ∂∂. 17.求函数u=xy 2+z 3-xyz 在点(1,1,2)处沿方向L(其方向角分别为60,°45°,60°)的方向导数.18.求函数u=xyz 在点A(5,1,2)处沿到点B(9,4,14)的方向AB 上的方向导数.19.求函数u=x 2+2y 2+3z 2+xy-4x+2y-4z 在点A(0,0,0)及点B(5,-3,3z )处的梯度以及它们的模. 20.设函数u=ln ⎪⎭⎫ ⎝⎛r 1,其中r=()()()222c z 0y a x -+-+- 求u 的梯度;并指出在空间哪些点上成立等式gradu =1.21设函数u=222222by a x c z --,求它在点(a,b,c)的梯度. 22.设r=222z y r ++,试求:(1)grad r; (2)grad r1. 23.设u=x 3+y 3+z 3-3xyz,试问在怎样的点集上grad u 分加满足:(1)垂直于Z 轴,(2)平行于Z 轴(3)恒为零向量.24.设f(x,y)可微,L 是R 2上的一个确定向量,倘若处处有f L (x,y)≡0,试问此函数f 有何特征?25.求下列函数的高阶偏导数:(1) Z=x 4+y 4-4x 2y 2,所有二阶偏导数;(2) Z=e x (cos y+x sin y),所有二阶偏导数; (3) Z=xln(xy),y x z 23∂∂∂,23yx z ∂∂∂; (4) u=xyze x+y+z ,r q p z q p zy x u ∂∂∂∂++; (5) Z=f(xy 2,x 2y),所有二阶偏导数;(6) u=f(x 2+y 2+x 2),所有二阶偏导数; (7)Z=f(x+y,xy,yx ),z x , z xx , Z xy . 26.求下列函数在指定点处的泰勒公式:(1) f(x,y)=sin(x 2+y 2)在点(0,0)(到二阶为止); (2) f(x,y)=yx 在点(1,1)(到三阶为止); (3) f(x,y)=ln(1+x+y)在点(0,0);(4) f(x,y)=2x 2―xy ―y 2―6x ―36+5在点(1,-2).27.求下列函数的极值点:(1) Z=3axy ―x 3―y 3 (a>0);(2) Z=x 2+5y 2―6x+10y+6;(3) Z=e 2x (x+y 2+2y).28.求下列函数在指定范围内的最大值与最小值.(1) Z=22y x -,(){2x y ,x +}4y 2≤; (2) Z=22y x y x +-,(){}1y x y ,x ≤+; (3) Z=sinx+sing -sin(x+y),()(){}π≤+≥2y x ,0x y ,x y ,x29.在已知周长为2P 的一切三角形中,求出面积为最大的三角形.30.在xy 平面上求一点,使它到三直线x=0,y=0,及x+2y -16=0的距离平方和最小.31.已知平面上n 个点的坐标分别是 ()111y ,x A ,()222y ,x A ,…()n n n y ,x A .试求一点,使它与这n 个点距离的平方和最小.32.设 u=222z y x z y x1 1 1求(1)u x +u y +u z ; (2)xu x +yu x +zu z ; (3)u xx +u yy +u zz .33.设f(x,y,z)=Ax 2+By 2+Cz 2+Dxy+Eyz+Fzx,试按h,k,L 的下正整数幂展开f(x+h,y+k,z+L).三、三、考研复习题1. 设f(x,y,z)=x 2y+y 2z+z 2x,证明f x +f y +f z =(x+y+z)2.2. 求函数⎪⎩⎪⎨⎧=+≠++-=0y x 0,0y x ,y x y x y)f(x,22222233在原点的偏导数f x (0,0)与f y (0,0),并考察f(x,y)在(0,0)的可微性.3. 设 1nn1n 21n 12n 2221n21 x x x x x x x x x 11 1u ---=证明: (1)∑==∂∂n 1k k0;x u (2) ∑=-=∂∂n 1k k k u 21)n(n x u x . 4. 设函数f(x,y)具有连续的n 阶偏导数:试证函数g(t)=f (a+ht,b+kt)的n 阶导数 kt)b ht,f(a y k xh dt g(t)d n n n ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=. 5. 设 22x 求xk z h y g y f x e z d z c y b x a z)y,(x,∂∂+++++++++=ϕϕ. 6. 设 (z)h (z)h (z)h (y)g (y)g (y)g (x)f (x)f (x)f z)y,Φ(x,321321321=求z y x Φ3∂∂∂∂. 7. 设函数u=f(x,y)在R 2上有u xy =0,试求u 关于x,y 的函数式.8. 设f 在点p 0(x 0,y 0)可微,且在p 0给定了n 个向量L i (i=1,2,…n).相邻两个向量之间的夹角为n2π,证明 ∑==n 1i 0Li 0)(p f.9. 设f(x,y)为n 次齐次函数,证明 1)f m (n 1)n(n f y y x x m +--=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂ . 10. 对于函数f(x,y)=sin xy ,试证 m y y x x ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂f=0.。