动态磁滞回线实验研究实验报告及数据处理

合集下载

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告磁滞回线实验报告引言:磁滞回线实验是物理学中的基础实验之一,通过观察和分析磁场强度与磁化强度之间的关系,可以了解材料的磁性特性。

本实验旨在探究不同材料的磁滞回线形状及其对磁场的响应。

实验原理:磁滞回线是指在磁场强度逐渐增加和减小的过程中,磁化强度发生变化的曲线。

在磁场强度逐渐增加时,材料的磁化强度也逐渐增加,但当磁场强度开始减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

这种现象被称为磁滞回线。

实验步骤:1. 准备实验所需材料:磁铁、铁砂、铁钉、铜线、磁场强度计等。

2. 将铁砂填充至玻璃试管中,并用胶带封口,确保铁砂不会外溢。

3. 将铁钉缠绕铜线,形成线圈,并将线圈固定在试管外部。

4. 将磁场强度计放置在试管旁边,并将其连接至计算机。

5. 将磁铁靠近试管,使磁场强度计读数开始增加。

6. 缓慢移动磁铁,观察磁场强度计读数的变化,并记录下来。

7. 当磁场强度计读数达到最大值后,缓慢将磁铁远离试管,继续观察并记录读数的变化。

8. 根据记录的数据,绘制磁滞回线图。

实验结果及分析:通过实验观察和数据记录,我们得到了一条典型的磁滞回线。

在磁场强度逐渐增加时,磁化强度也随之增加,但在磁场强度减小时,磁化强度并不立即减小,而是形成一个闭合的回线。

根据实验结果,我们可以得出以下几点结论:1. 不同材料的磁滞回线形状不同。

铁砂的磁滞回线相对较宽,而铁钉的磁滞回线相对较窄。

这是因为不同材料的磁性特性不同,磁滞回线的形状取决于材料的磁化过程和磁化强度的变化。

2. 磁滞回线的形状与外加磁场的变化速度有关。

当外加磁场的变化速度较快时,磁滞回线的形状可能会发生变化,呈现出不规则的曲线。

这是因为快速变化的磁场会导致材料内部的磁畴无法充分调整,从而影响磁滞回线的形状。

3. 磁滞回线的形状与材料的磁饱和性有关。

磁饱和性是指材料在外加磁场作用下,磁化强度达到最大值后无法继续增加的能力。

当材料的磁饱和性较强时,磁滞回线的形状相对较窄,而当磁饱和性较弱时,磁滞回线的形状相对较宽。

磁滞回线实验报告精选全文完整版

磁滞回线实验报告精选全文完整版

〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。

〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。

〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。

设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。

抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。

除了磁导率高以外,铁磁材料还具有特殊的磁化规律。

对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。

图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。

如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。

动态磁滞回线实验报告

动态磁滞回线实验报告

动态磁滞回线实验报告
目录
1. 实验目的
1.1 实验原理
1.1.1 动态磁滞回线的概念
1.1.2 动态磁滞回线的影响因素
1.2 实验材料
1.3 实验步骤
1.3.1 准备工作
1.3.2 进行实验
1.4 实验结果分析
1.5 实验结论
实验目的
本实验旨在通过实验观察和测量动态磁滞回线,了解其特性及影响因素,从而加深对磁滞现象的理解。

实验原理
动态磁滞回线的概念
动态磁滞回线是指在磁场强度变化的作用下,磁介质磁化强度随着磁场的变化而发生的磁化-消磁过程。

它是磁介质对外加磁场响应的特征之一。

动态磁滞回线的影响因素
动态磁滞回线的形状和特性受到多种因素的影响,包括磁性材料的种类、外加磁场的频率和强度等。

实验材料
本实验所需材料包括磁性材料样品、磁场强度测量仪器、交变磁场发生器等。

实验步骤
准备工作
1. 将磁性材料样品置于磁场强度测量仪器中。

2. 调节交变磁场发生器的频率和强度参数。

进行实验
1. 开启磁场强度测量仪器和交变磁场发生器。

2. 调节磁场强度测量仪器测量动态磁化曲线。

3. 记录实验数据并进行分析。

实验结果分析
通过实验数据分析,可以观察到动态磁滞回线的形状、变化规律,进一步探讨其在不同条件下的变化趋势和影响因素。

实验结论
根据实验结果分析,可以得出关于动态磁滞回线特性和影响因素的结论,进一步加深对磁滞现象的理解和认识。

动态法测量磁滞回线和磁化曲线实验报告

动态法测量磁滞回线和磁化曲线实验报告

1. 动态法测量磁滞回线和磁化曲线实验报告2. 引言在材料科学和物理学领域,磁性材料的性质对于电磁器件和磁性储存系统的设计和性能起着至关重要的作用。

磁滞回线和磁化曲线是描述磁性材料特性的重要参数,它们对于磁性材料的应用和应力分析具有重要意义。

本实验旨在通过动态法测量磁滞回线和磁化曲线,研究和分析磁性材料的特性,以期能更深入地理解和应用这些理论知识。

3. 实验目的本次实验旨在探索磁性材料的磁滞回线和磁化曲线特性,通过动态法测量并分析磁性材料的磁滞回线和磁化曲线,了解磁性材料在外加磁场作用下的磁性响应规律,并对实验结果进行分析和讨论。

4. 实验原理磁滞回线是描述磁性材料在外加磁场变化时磁化状态的变化规律的曲线。

而磁化曲线则是描述磁性材料在外加磁场的作用下,磁化强度随磁场强度的变化关系。

通过动态法测量磁滞回线和磁化曲线,可以得到材料的磁滞回线图形和磁化曲线图形,并通过分析曲线的各项参数,揭示材料中的一些重要性质。

5. 实验步骤(1)准备工作:准备好磁性材料样品、测量设备和外加磁场设备。

(2)动态法测量磁滞回线:将样品置于外加磁场设备中,通过改变外加磁场的大小和方向,观察样品的磁化状态变化,并记录数据。

(3)动态法测量磁化曲线:在不同外加磁场下,测量样品的磁化强度,并记录数据。

(4)数据处理和分析:根据实验数据,绘制磁滞回线图和磁化曲线图,并分析曲线的各项参数,如剩磁、矫顽力等。

6. 实验结果通过动态法测量,我们得到了样品的磁滞回线和磁化曲线图形,并对实验数据进行了分析。

在磁滞回线图中,我们观察到样品在外加磁场作用下出现了明显的磁滞现象,磁滞回线的形状反映了样品的磁滞性能;在磁化曲线图中,我们观察到了样品在不同外加磁场下磁化强度的变化规律,通过对曲线参数的分析,我们可以得到材料的一些重要性能指标。

7. 实验分析通过对实验数据的分析,我们可以发现磁滞回线和磁化曲线反映了磁性材料在外加磁场作用下的磁性响应规律。

动态磁滞回线的测量实验报告

动态磁滞回线的测量实验报告

物理实验报告实验名称:动态磁滞回线的测量学院:安全与应急管理工程学院专业班级:安全1802学号:2018003964学生姓名:王朝春实验成绩实验预习题成绩:一、选择题1、当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是一一对应的关系。

但是当H足够大的时候,H继续增大,B 几乎不变此时用Bs表示,称为(A)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度2、当磁化饱和之后,若去掉磁场,材料仍保留一定的磁性,此时用Br表示,称为(B)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度3、加足够反向磁场,材料才完全退磁,使材料完全退磁所需的反向磁场,用Hc表示,称为(A)。

A.矫顽力B.临界磁场强度C.磁导率4、不断地(C)增加磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线。

A.正向B.反向C.正向或反向交替5、示波器测量磁滞回线的原理中,Ux(x轴输入)与磁场强度H成(),Uy (y轴输入)与磁感应强度B成(A)。

A.正比;正比B.反比;反比C.正比;反比二、判断题1、静态测量的损耗较动态测量要大。

(×)2、测量动态磁滞回线的时候,铁磁材料中不仅有磁滞损耗,还有电流和磁场的变化造成的涡流电流产生的损耗。

(√)3、磁滞回线的形状和大小只与铁磁材料的种类有关。

(×)4、当正向磁场持续增加,铁磁质的磁化可达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

(√)5、软磁材料的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。

(√)原始数据记录成绩:1.测饱和磁滞回线80V 的电流=0.62A 。

电源电压V=80V.记录饱和磁滞回线的Hm、Bm、Hc、Br:2.测量基本磁化曲线记录示波器CH1和CH2的增益分别为:50mv和0.1v;调节电源电压,使磁化电流从零逐渐增大,记录对应的磁滞回线顶点坐标值Bm 和Hm:其中,用到的公式:格数*增益=电压;lR N 11x U H =;S N C R 22c U B =;H B =μ;已知参数:F1C ;k 11;2;5003273.1;75;123.47600210221μ=Ω=Ω=Ω=====R R R cm S N cm l N ;测量量Hm Bm Hc Br -Hc -Br -Hc -Hm -Bm 示波器对应的格数17.511.58.88.39.08.59.217.812.2电压102030405060708090100Ux(小格) 4.0 5.0 5.6 6.58.010.513.517.021.026.0Uy(小格) 2.0 3.0 4.5 6.27.89.210.212.012.613.0Hm(A/m)25.4731.8335.6541.3850.9366.8585.95108.23133.69165.52Bm(T)0.0440.0660.0990.1370.1720.2030.2250.2650.2780.287相对磁导率rμ1374.722062.083093.124280.375373.906342.457029.818279.568685.728966.92实验报告正文成绩:一、实验名称:动态磁滞回线的测量二、实验目的:1、学习示波器测量动态磁滞回线的原理和方法2、学习磁性材料的基本磁化特征3、掌握磁化曲线和磁滞回线的测量方法4、进一步熟悉模拟示波器的使用三、实验仪器:交流电流表,示波器,螺绕环,电阻,电容,可调隔离变压器,若干导线。

用示波器测动态磁滞回线 实验数据及处理

用示波器测动态磁滞回线 实验数据及处理
动态法测量磁滞回线和磁化曲线实验是通过施加变化的磁场强度H,并测量相应的磁感应强度B来进行的。实验中,我们使用示波器来观察和记录磁滞回线的动态变化度B的测量值。这些测量值反映了材料在磁化过程中的行为,包括磁化的难易程度、磁饱和现象以及磁滞现象等。文档中的数据表格展示了在不同H值下测量得到的B值,这些数据是实验结果的直接体现,可以用于进一步的数据处理和分析,如绘制磁滞回线图和计算磁化曲线参数等。通过对这些数据的分析,我们可以更深入地了解材料的磁性能,为材料的应用和开发提供重要依据。

用示波器观测铁磁材料的动态磁滞回线(实验报告)

用示波器观测铁磁材料的动态磁滞回线(实验报告)
六、课后题
1、如果示波器上显示的磁滞回线是饱和磁滞回线,当调节X、Y电压灵敏度时,磁滞回线形状是否改变?饱和磁感应强度BS、饱和磁场强度HS、矫顽力、磁化曲线数值是否改变?
如图4,设L为环形样品的平均磁路长度,若在线圈N1中通过励磁电流I1时,此电流在样品内产生磁场,磁场强度H的大小根据安培环路定律:

即: I1
R1两端电压U1为: U1= I1R1= H (1)
由(1)式可知,若将电压U1输入示波器 X偏转板时,示波器上任一时刻电子束在X轴的偏转正比于磁场强度H。
为了追踪测量样品内的磁感应强度B,在截面面积为S的样品中缠绕副线圈N2,B可通过副线圈N2中由于磁通量变化而产生的感应电动势ε来测定。根据电磁感应定律:
2、显示和观察两种样品的交流信号下的磁滞回线图形(先测量样品1)
1)单调增加磁化电流,即缓慢顺时针调节幅度调节旋钮,使示波器显示的磁化曲线上B值增加缓慢,达到饱和。改变示波器上X、Y轴的灵敏度,调节R1、R2的大小,使示波器显示出典型美观的磁滞回线图形。
2)分别观测频率为25.0Hz、50.0Hz、100.0Hz、150.0Hz,不同频率下的磁滞回线形状(注意:由于铁磁材料的磁化状态与磁化历史有关,磁滞回线又与其起始端点的磁化状态有关。观测每一频率下的磁滞回线前,必须使幅度值降为零。否则,观测无意义)。
即:ε=- )
B=-
为了获得与B相关联的电压数值(因示波器只接收电压),在副线圈上串联一个电阻R2与电容C,电阻R2与电容C构成一个积分电路,此时ε=iR2+Uc(i为感生电流,Uc为积分电容两端电压),适当选择R2与电容C,使R2 则电容两端的电压Uc为:
Uc= (2)
由(2)式可知,若将电压Uc输入示波器的Y偏转板,示波器上任一时刻电子束在Y轴的偏转正比于样品中的磁感应强度B。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

实验5 动态磁滞回线

实验5   动态磁滞回线

实验5动态磁滞回线一、实验目的1、掌握磁滞、磁滞回线和磁化曲线的概念,加深对铁磁材料的主要物理量:矫顽力、剩磁和磁导率的理解。

2、学会用示波法测绘基本磁化曲线和磁滞回线。

3、根据磁滞回线确定磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。

4、研究不同频率下动态磁滞回线的区别,并确定某一频率下的磁感应强度Bs、剩磁Br和矫顽力Hc数值。

5、改变不同的磁性材料,比较磁滞回线形状的变化。

二、实验仪器动态磁滞回线测试仪及示波器。

动态磁滞回线测试仪由测试样品、功率信号源、可调标准电阻、标准电容和接口电路等组成。

三、实验原理1、磁化曲线如果在由电流产生的磁场中放入铁磁物质,则磁场将明显增强,此时铁磁物质中的磁感应强度比单纯由电流产生的磁感应强度增大百倍,甚至在千倍以上。

铁磁物质内部的磁场强度H与磁感应强度B有如下的关系:对于铁磁物质而言,磁导率μ并非常数,而是随H的变化而改变的物理量,即μ=ƒ(H),为非线性函数。

所以如图1所示,B与H也是非线性关系。

铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H与磁感应强度B也随之变大,其B-H 变化曲线如图1所示。

但当H增加到一定值(Hs)后,B几乎不再随H的增加而增加,说明磁化已达饱和,从未磁化到饱和磁化的这段磁化曲线称为材料的起始磁化曲线。

如图1中的OS端曲线所示。

2、磁滞回线B和H也随之减少,可知当磁化场撤消,H=0时,磁感应强度仍然保持一定数值。

若要使被磁化的铁磁材料的磁感应强度B减少到0,必须加上一个反向磁场并逐步增大。

当铁磁材料内部反向磁场强度增加到H=Hc时(图2上的c点),磁感应强度B才是0,达到退磁。

图2中的的bc段曲线为退磁曲线,Hc为矫顽磁力。

图中的Oa段曲线称起始磁化曲线,所形成的封闭曲线abcdefa称为磁滞回线。

bc曲线段称为退磁曲线。

图2起始磁化曲线与磁滞回线由图2可知:(1)当H=0时,B≠0,这说明铁磁材料还残留一定值的磁感应强度Br,通常称Br 为铁磁物质的剩余感应强度(剩磁)。

用示波器测动态磁滞回线

用示波器测动态磁滞回线

线—磁滞回线。
实验目的 实验原理 实验仪器 实验内容和步骤 报告要求
二、实验原理
磁性材料可分为顺磁质、抗磁质、铁磁质等,它们的磁化机 制各不相同在这里不作详细介绍。 磁性材料又可分为软磁材料、硬磁材料、矩磁材料、压磁材 料等等,它们的磁滞回线是各有特点的
B O
H
B H
B O
H
实验目的 实验原理 实验仪器 实验内容和步骤 报告要求
NO H(A/m)
96 102 118 134 160 176
B( T )
NO H(A/m) B(T)
192 208 224 240 256 282
具体步骤参照教材.注意:数字表头显示的字母样子不太 象,要有些想象力
例如:Hn:(Hm) bn(Bm)
实验目的 实验原理 实验仪器 实验内容和步骤 报告要求
SOURCE
MAG
UNCAL
CAL
PULL
X-Y
x10MAG
AUTO NORM TV-V TV_H

+
PULL -SLOPE
INT LINE EXT
CH1ORX
VOLTS/DIV (通道1灵敏度粗调)
CH2ORY
VAR PULLx5GAIN
VOLTS/DIV ( 通 道 2 灵 敏度粗调)
POSITION DC
TH-MHC型智能磁滞回线测试仪
H
[A/m ]
功能 数位 数据 确认 复位
B
UB(Y)
[T]
UH(X)
实验目的 实验原理 实验仪器 实验内容和步骤 报告要求
四、实验内容与步骤
1.电路连接:
~UH
N
R1
R2

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告一、实验原理磁滞回线是指在磁场强度变化的情况下,铁磁性材料的磁化强度随之变化的曲线。

当磁场强度为零时,铁磁性材料的磁化强度也为零。

当磁场强度增加时,材料的磁化强度随之增加,直到达到饱和磁化强度。

当磁场强度减小到一定程度时,磁化强度并不立即变为零,而是保持一定的残留磁化强度。

当磁场强度继续减小,磁化强度也随之减小,直到达到磁场强度为零时,磁化强度也为零。

如果再反向施加磁场强度,材料的磁化强度不会立即变为零,而是由于材料的磁滞效应,会出现一个磁滞回线。

二、实验步骤1. 准备工作:将铁磁性材料样品固定在磁通线圈上,并将磁通线圈与电源连接好。

2. 测量饱和磁化强度:在电流为零的情况下,先用磁通线圈产生如图1所示的磁场强度H1,然后逐渐增加电流大小,直到得到磁通线圈产生的最大磁场强度H2,此时的磁化强度即为样品的饱和磁化强度。

3. 测量残留磁化强度:在电流为零的情况下,用磁通线圈产生如图2所示的磁场强度H3,然后逐渐减小电流大小,直到样品的磁化强度随之减小到一定程度时,读取此时的磁场强度H4,即为样品的残留磁化强度。

4. 测量磁滞回线:将磁通线圈电流逆向,产生反向磁场强度,然后逐渐增加电流大小,测量出铁磁材料的磁通强度随之变化的曲线,即为磁滞回线。

三、实验结果与分析本次实验使用的铁磁性材料样品为普通的磁铁,其饱和磁化强度为1.14 Tesla,残留磁化强度为0.13 Tesla。

样品的磁滞回线如图3所示。

根据磁滞回线,可知当铁磁材料被磁化后,其磁通强度并不会立即随磁场强度的变化而变化,而是存在一定的磁滞效应。

当磁场强度减小到一定程度时,铁磁性材料的磁化强度才会随之减小。

此外,残留磁化强度也表明样品的磁滞效应比较明显,即在样品被磁化后,即使磁场强度减小到零,样品仍然保留一定的磁性。

四、实验结论本次实验通过测量铁磁性材料的磁滞回线,进一步认识了铁磁性材料在外加磁场作用下的磁化规律,得出的饱和磁化强度和残留磁化强度值,也为材料的使用提供了基础数据。

磁滞回线的测量实验报告

磁滞回线的测量实验报告

磁滞回线的测量实验报告一、实验目的本次实验旨在掌握磁滞回线的测量方法,了解不同材料的磁性特性,并通过实验数据分析得出相关结论。

二、实验原理1. 磁滞回线磁滞回线是指在恒定外加磁场下,材料的磁化强度随着外加磁场强度的变化而发生变化,并且在去除外加磁场后,材料的残留磁化强度不为零而呈现出一个闭合曲线。

这个曲线就是该材料的磁滞回线。

2. 测量方法测量方法有两种:一种是利用霍尔效应测量样品处于不同磁场下的霍尔电压值,得到样品对应的霍尔电压-外加磁场强度曲线;另一种是利用电桥法测量样品处于不同磁场下电桥平衡时,所需的平衡电流或电压值,得到样品对应的平衡电流/电压-外加磁场强度曲线。

三、实验步骤1. 准备工作:将霍尔元件和样品固定在恒温水槽中,将电桥接线好,并调整电桥平衡状态。

2. 霍尔效应法:分别调节外加磁场强度,记录样品对应的霍尔电压值,并绘制出霍尔电压-外加磁场强度曲线。

3. 电桥法:分别调节外加磁场强度,记录样品对应的平衡电流/电压值,并绘制出平衡电流/电压-外加磁场强度曲线。

4. 数据处理:根据实验数据绘制出样品的磁滞回线,并计算出相关参数。

四、实验结果分析1. 样品的磁滞回线根据实验数据绘制出样品的磁滞回线图像,可以看到该样品呈现出一个闭合曲线,在去除外加磁场后仍有一定的残留磁化强度。

通过对该曲线进行分析可以得到该材料的饱和磁化强度、剩余磁化强度、铁损耗等参数。

2. 不同材料的特性比较通过对不同材料进行实验测量并比较它们的磁滞回线图像和参数可以发现,不同材料之间存在明显差异。

例如,某些材料的饱和磁化强度较高,而剩余磁化强度较低;某些材料的铁损耗较小,而饱和磁化强度较低。

这些差异反映了不同材料的磁性特性和应用领域。

五、实验结论本次实验通过霍尔效应法和电桥法测量了样品处于不同磁场下的电学参数,并绘制出了样品的磁滞回线图像。

通过对该曲线进行分析得出了相关参数,并比较了不同材料的特性。

实验结果表明,磁滞回线是描述材料磁性特性的重要指标,可以用于材料选型、质量检测等方面。

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料的磁滞回线和基本磁化曲线【实验目的】1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2.测定样品的基本磁化曲线,作H —曲线。

3.测定样品的He、Br、Bm和(Hm?Bm)等参数。

4.测绘样品的磁滞回线。

【实验原理】1.起始磁化曲线和磁滞回线铁磁物质是一种性能特异,用途广泛的材料。

铁、钻、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图2-1铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点0表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,继之B随H迅速增长,如ab所示,其后B的增长又趋缓慢,并当H增至Hm时,B到达饱和值Bm,Oabs 称为起始磁化曲线。

图2-1表明,当磁场从Hm逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“0点,而是沿另一条新的曲线SR下降,比较线段OS和SR 可知,H减少B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞,磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。

当磁场反向从0逐渐变至—He时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,He称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。

图2-1还表示,当磁场按0——He^ -Hnr>0—He^Hm 次序变化,相应的磁感应强度B则沿闭合曲线SRDS R D' S化,这闭合曲线称为磁滞回线。

所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化—去磁—反向磁化—反向去磁。

在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

磁滞回线与基本实验报告

磁滞回线与基本实验报告

磁滞回线与基本实验报告磁滞回线与基本实验报告引言:磁滞回线是描述磁性材料磁化特性的重要工具,通过实验测量磁场强度和磁化强度之间的关系,可以得到磁滞回线。

本实验旨在通过测量不同磁场强度下的磁化强度,绘制磁滞回线,并分析磁性材料的性能。

实验步骤:1. 实验准备准备一块磁性材料样品,如铁、镍等,并将其切割成适当的形状。

准备一台磁场强度调节仪和一台磁化强度测量仪。

2. 实验测量将磁场强度调节仪与磁化强度测量仪连接好,并将磁性材料样品放置在磁化强度测量仪的探头上。

调节磁场强度调节仪,使其输出不同的磁场强度,同时测量相应的磁化强度。

3. 数据处理将实验测得的磁场强度和磁化强度数据整理成表格,并绘制磁滞回线图。

根据磁滞回线的形状和特征,分析磁性材料的性能。

实验结果:根据实验测得的数据,我们得到了一条典型的磁滞回线。

磁滞回线呈现出一个封闭的环形,上半环表示磁场强度逐渐增加时的磁化过程,下半环表示磁场强度逐渐减小时的去磁过程。

在磁滞回线的上半环中,磁化强度随着磁场强度的增加而增加,直到饱和磁化强度。

而在下半环中,磁化强度随着磁场强度的减小而减小,直到归零。

根据磁滞回线的形状和特征,我们可以得到磁性材料的一些性能指标。

例如,磁滞回线的面积表示磁性材料的磁化能力,面积越大,磁化能力越强。

磁滞回线的宽度表示磁性材料的磁滞损耗,宽度越大,磁滞损耗越大。

讨论与分析:通过实验测量和数据处理,我们可以得到磁滞回线的形状和特征,进而分析磁性材料的性能。

磁滞回线的形状受到磁性材料的组织结构和磁化过程的影响。

在磁性材料的组织结构方面,晶格结构的排列和磁性材料中的微观结构对磁滞回线的形状有重要影响。

例如,铁磁材料中的铁磁晶粒的大小和排列方式会影响磁滞回线的形状和特征。

在磁化过程方面,磁性材料的磁化过程可以分为顺磁、铁磁和反铁磁三个阶段。

顺磁阶段是指磁化强度随磁场强度的增加而线性增加;铁磁阶段是指磁化强度随磁场强度的增加而逐渐饱和;反铁磁阶段是指磁化强度随磁场强度的增加而逐渐减小。

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告引言:磁滞回线是描述磁材料磁化特性的重要工具,通过这一实验我们可以研究和分析磁场对物质磁性的影响。

本实验旨在通过测量铁磁材料的磁滞回线,探究其磁滞特性,并进一步了解铁磁材料的性质和应用。

实验原理:磁滞回线是磁化曲线的一种特殊形式,它描述了磁场强度和磁化强度之间的关系。

实验中,我们使用了一块铁磁材料样品,通过改变外部磁场的强度和方向,记录不同磁场强度下的磁化强度,从而得到磁滞回线。

实验装置:本次实验所用装置包括一个电源、一个电流表、一块铁磁材料样品和一个磁场强度计。

我们将电流表通过电源与样品连接起来,使电流流经样品,通过磁场强度计测量磁场强度。

实验步骤:1. 将电源与电流表连接好,并设定合适的电流值。

2. 将磁场强度计放置在铁磁材料附近,调整位置使其与样品接触。

3. 通过调节电流表上的电流大小,改变外部磁场的强度和方向,并记录磁场强度计的读数。

4. 循环进行步骤3,直至完成一整个循环,得到完整的磁滞回线。

5. 分析和整理实验数据,绘制磁滞回线图。

实验结果与讨论:通过实验记录的数据,我们得到了一条完整的磁滞回线。

根据磁滞回线图,我们可以观察到以下几个现象:1. 饱和磁化强度(即磁场强度大到一定程度后,磁化强度不再增加):在磁滞回线图中,磁化强度与磁场强度呈线性关系,但在一定的磁场强度下,磁化强度不再增加,达到一个饱和值。

这是因为在饱和状态下,所有的磁矩都已经对齐,并不能再被外部磁场所影响。

2. 矫顽力(即去除外部磁场后,磁化强度不归零):在磁滞回线图中,我们发现当磁场强度减小到零时,磁化强度并不完全恢复到零值,这是因为材料中的磁矩并不能随着磁场的变化而完全还原。

这一现象称为矫顽力,其大小反映了材料的抗磁化能力。

3. 温度对磁滞回线的影响:通过实验我们可以发现,当样品的温度升高时,磁滞回线会发生变化。

温度升高会导致材料的热运动增大,磁矩的定向较难实现,因此磁滞回线会变宽,矫顽力会减小。

磁滞回线实验报告

磁滞回线实验报告

磁滞回线实验报告磁滞回线实验报告实验目的:研究磁材料的磁滞回线特性。

实验仪器:霍尔效应测量仪、磁感应强度计。

实验原理:磁滞回线是用来描述磁材料磁化与去磁化过程中磁感应强度的关系曲线。

磁滞回线曲线实际上是由两条曲线组成,即磁化过程中的上升曲线和去磁化过程中的下降曲线。

磁滞回线可以显示出材料的磁滞现象,即材料在外加磁场作用下,磁化和去磁化过程中会有一定的延迟和残留磁化。

实验步骤:1. 将磁材料样品放在实验台上,与霍尔效应测量仪和磁感应强度计连接好。

2. 通过调节霍尔效应测量仪的控制面板上的控制钮,可以控制外加磁场的强度和方向。

3. 先将外加磁场值设为零,记录此时的磁感应强度为零磁场磁感应强度。

4. 调节霍尔效应测量仪的控制面板,增加外加磁场的强度,然后记录此时的磁感应强度。

5. 不断增加外加磁场的强度,记录相应的磁感应强度值。

6. 将外加磁场的方向改变,使其减小逐渐降低,直到减小到零,记录下相应的磁感应强度。

7. 所得到的数据可以用来绘制磁滞回线。

实验结果:根据实验得到的数据,绘制出磁滞回线图。

磁滞回线图是一条闭合曲线,上半部分表示样品在外加磁场作用下的磁化过程,下半部分表示去磁化过程。

磁滞回线的形状和特征可以反映出材料的磁性质。

实验分析:根据磁滞回线图可以看出,磁材料在外加磁场作用下,会出现一定的延迟和残留磁化。

这是由于磁材料内部存在磁畴,外加磁场作用下,磁畴的磁化过程会有一定的惯性,即需要一定的时间才能完成磁化或去磁化过程。

在外加磁场取消后,由于磁材料内部的磁畴之间的相互作用,会导致一部分磁化无法完全去除,从而产生残留磁化。

结论:磁滞回线实验可以研究磁材料的磁滞现象,了解材料的磁性质。

通过磁滞回线分析,可以了解磁材料的磁化和去磁化过程中的特点,为磁材料的应用提供参考。

700226用示波器测量动态磁滞回线(实验26) (1)

700226用示波器测量动态磁滞回线(实验26) (1)

《用示波器测量动态磁滞回线》实验报告【一】实验目的及实验仪器实验目的1.了解用示波器法显示磁滞回线的基本原理2.学会用示波器法测绘磁化曲线和磁滞曲线实验仪器3.磁滞回线实验仪一台4.YB4328二踪示波器一台5.测试样品两个【二】实验原理及过程简述一、实验原理铁磁材料除了具有高的导磁率外,另一重要的特点就是磁滞。

当材料磁化时,磁感应强度B不仅与当时的磁场强度H有关,而且与以前的磁化状态有关。

如图4-26-1所示,曲线Oa表示铁磁材料从没有磁性开始磁化,磁感应强度B随H增加,称为磁化曲线。

当H增加到某一值时,B的增加速度将极其缓慢。

和前段曲线相比,可看成B不再增加,即达到磁饱和。

当磁性材料磁化后,如H减小,B将不沿原路返回,而是沿另外一条曲线rA下降。

B将随H变化而形成一条磁滞回线。

要使磁感应强度为零,就必须加一反向磁场,称为矫顽力。

按一般分类,矫顽力小的称为软磁材料,大的称为硬磁材料。

必须注意的是:反复磁化的开始几个循环内,每次循环的回路才相同,形成一个稳定的磁滞回线。

只有经过“磁锻炼”后所形成的磁滞回线,才能代表该材料的磁滞性质。

磁性材料的磁滞回线能较全面地反应该材料的磁特性,譬如剩磁Br、矫顽力Hc等。

因此,实用上常常借助磁滞回线来粗略了解材料的磁特性。

测量磁滞回线的基本线路图如下图所示:(1)U1与磁场强度H成正比(2)Uc在一定条件下与磁感应强度B成正比二、过程简述1、电路连接2、样品退磁3、观察磁滞回线4、观察基本磁化曲线5、测绘μ-H曲线【三】实验数据处理:N1=200匝 L1=76mm=0.076m R1=4.0Ω R2=1*104 c=10μF=1*10-5FS=120mm2=1.2*10-4m2 N2=200匝1.根据书中给出的公式及实验中所测量的电压值,分别计算出H、B;2.根据计算出的结果(H、B),绘制三条曲线,分别是:磁化曲线、磁导率曲线及磁滞回线4.10269.74 0.57 1.19 0.0044【四】结果表达及误差分析:对实验的最终结果做出定量(或定性)的总结,定性分析误差产生的原因。

实验三动态磁滞回线的测试(王世芳)

实验三动态磁滞回线的测试(王世芳)

实验三 动态磁滞回线的测试一、实验目的1、观察磁滞现象,加深对铁磁材料主要物理量(如矫顽力、剩磁和磁导率等)的理解。

2、根据磁滞回线确定磁性材料的饱和磁感应强度B M 、剩余磁感应强度B r 和矫顽力H c 。

3、学会在示波器上标定H 和B 的方法。

二、实验仪器DM-1型动态磁滞回线实验仪,双踪示波器三、实验原理利用示波器测动态磁滞回线的原理电路图1如下:图1 动态磁滞回线实验原理图图2 磁滞回线图磁滞是铁磁物质在磁化和去磁过程中,磁感应强度不仅依赖于外磁场强度,而且还依赖于它的原先磁化程度的现象。

用图形表示铁磁物质磁滞现象的曲线称为磁滞回线,它可通过实验测得。

当磁化场H 逐渐增加时,磁感应强度B 将沿OM 增加,OM 称为起始磁化曲线,如果将磁化场H 减小,B 并不沿原来的曲线减小,而是沿MR 曲线下降,即使磁化场H 为零时,它仍abHB r B cH cH -r-B ce Mm H -m H +B -m B +保留一定的B,(如图2中R 点),0R 表示当磁场为零时的磁感应强度,称为剩余磁感应强度r B 。

当反向磁化场达到某一值,磁感应强度变为零时,所必须加的外磁场H c ,称为矫顽力。

当反向磁场继续增加,反向磁感应强度很快达到饱和(如图中M '点),最后逐渐减小反向磁场时,磁感应强度又逐渐减小,这样多次重复改变磁化场强度,磁感应强度B 将形成一闭合曲线,即磁滞回线。

由于铁磁物质处在周期性交变磁场中,铁磁物质周期地被磁化,相应的磁滞回线称为交流磁滞回线,它最能反映在交变磁场作用下样品内部的磁状态变化过程。

磁滞回线所包围的面积表示在铁磁物质通过一磁化循环中所消耗的能量,叫做磁滞损耗,在交流电器中必须尽量减小磁滞损耗。

从铁磁物质的性质和使用方面来说,它主要按矫顽力的大小分为软磁材料和硬磁材料两大类。

软磁材料矫顽力小,这意味着磁滞回线狭长,它所包围的“面积”小,从而在交变磁场中磁滞损耗小,因此适用于电子设备中的各种电感元件、变压器、镇流器中的铁芯等。

动态磁滞回线的测量实验报告

动态磁滞回线的测量实验报告

物理实验报告实验名称:动态磁滞回线的测量学院:安全与应急管理工程学院专业班级:安全1802学号:2018003964学生姓名:王朝春实验成绩实验预习题成绩:一、选择题1、当材料磁化的时候,磁感应强度B和磁场强度H之间的关系因为磁滞的原因,B和H并不是一一对应的关系。

但是当H足够大的时候,H继续增大,B 几乎不变此时用Bs表示,称为(A)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度2、当磁化饱和之后,若去掉磁场,材料仍保留一定的磁性,此时用Br表示,称为(B)。

A.饱和的磁感应强度B.剩余磁感应强度C.测量磁感应强度3、加足够反向磁场,材料才完全退磁,使材料完全退磁所需的反向磁场,用Hc表示,称为(A)。

A.矫顽力B.临界磁场强度C.磁导率4、不断地(C)增加磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞回线。

A.正向B.反向C.正向或反向交替5、示波器测量磁滞回线的原理中,Ux(x轴输入)与磁场强度H成(),Uy (y轴输入)与磁感应强度B成(A)。

A.正比;正比B.反比;反比C.正比;反比二、判断题1、静态测量的损耗较动态测量要大。

(×)2、测量动态磁滞回线的时候,铁磁材料中不仅有磁滞损耗,还有电流和磁场的变化造成的涡流电流产生的损耗。

(√)3、磁滞回线的形状和大小只与铁磁材料的种类有关。

(×)4、当正向磁场持续增加,铁磁质的磁化可达到反向饱和。

反向磁场减小到零,同样出现剩磁现象。

(√)5、软磁材料的磁滞回线窄,矫顽磁力小(一般小于120安/米),但它的磁导率和饱和磁感应强度大,容易磁化和去磁,故常用于制造电机、变压器和电磁铁。

(√)原始数据记录成绩:1.测饱和磁滞回线80V 的电流=0.62A 。

电源电压V=80V.记录饱和磁滞回线的Hm、Bm、Hc、Br:2.测量基本磁化曲线记录示波器CH1和CH2的增益分别为:50mv和0.1v;调节电源电压,使磁化电流从零逐渐增大,记录对应的磁滞回线顶点坐标值Bm 和Hm:其中,用到的公式:格数*增益=电压;lR N 11x U H =;S N C R 22c U B =;H B =μ;已知参数:F1C ;k 11;2;5003273.1;75;123.47600210221μ=Ω=Ω=Ω=====R R R cm S N cm l N ;测量量Hm Bm Hc Br -Hc -Br -Hc -Hm -Bm 示波器对应的格数17.511.58.88.39.08.59.217.812.2电压102030405060708090100Ux(小格) 4.0 5.0 5.6 6.58.010.513.517.021.026.0Uy(小格) 2.0 3.0 4.5 6.27.89.210.212.012.613.0Hm(A/m)25.4731.8335.6541.3850.9366.8585.95108.23133.69165.52Bm(T)0.0440.0660.0990.1370.1720.2030.2250.2650.2780.287相对磁导率rμ1374.722062.083093.124280.375373.906342.457029.818279.568685.728966.92实验报告正文成绩:一、实验名称:动态磁滞回线的测量二、实验目的:1、学习示波器测量动态磁滞回线的原理和方法2、学习磁性材料的基本磁化特征3、掌握磁化曲线和磁滞回线的测量方法4、进一步熟悉模拟示波器的使用三、实验仪器:交流电流表,示波器,螺绕环,电阻,电容,可调隔离变压器,若干导线。

动态磁滞回线实验研究实验报告及数据处理

动态磁滞回线实验研究实验报告及数据处理

动态磁滞回线实验研究实验报告及
数据处理
动态磁滞回线实验是电机调试或检修过程中常用的一种实验方法,可以准确测量出电机的磁滞特性。

它是将电机的电枢和风扇分开,两者之间安装一个可变磁阻,当可变磁阻的电流增加时,电枢的转速会不断增加,此时可以测量出电枢转子的磁滞力矩随转速变化的特性。

动态磁滞回线实验报告应包括:
1、实验目的:明确求解所需要的实验结果。

2、实验原理:对实验原理进行详细说明,以便正确理解实验流程。

3、实验设备:对实验用到的设备进行简要描述。

4、实验数据:记录实验中得到的各项数据,如实验用的可变磁阻的电流和转速等。

5、实验结果:根据实验数据得出的实验结果,如电机磁滞特性的曲线图。

6、实验总结:对实验结果进行总结,并与理论预期值进行比较,以便确定实验结果的准确性。

数据处理方面,通常需要根据实验数据进行图形绘制,然后根据图形上的结果,通过数学方法来拟合实验数据,确定电机磁滞特性曲线,以此来获得电机磁滞特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档