中考数学试题及答案解析版

合集下载

2023年福建省中考数学真题(答案解析)

2023年福建省中考数学真题(答案解析)

数学试题一、选择题1.【答案】D【解析】解:正数大于0,正数大于负数,且21>,所以1012-、、、中最大的实数是2.故选:D2.【答案】D【解析】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .3.【答案】B【解析】解:由题意,得4343m -<<+,即17m <<,故m 的值可选5,故选:B .4.【答案】C【解析】解:91040000000 1.0410=⨯,故选:C .5.【答案】A【解析】解:A 选项,()23236a a a ⨯==,故A 选项计算正确,符合题意;B 选项,62624a a a a -÷==,故B 选项计算错误,不合题意;C 选项,34347a a a a +==⋅,故C 选项计算错误,不合题意;D 选项,2a 与a -不是同类项,所以不能合并,故D 选项计算错误,不合题意.故选:A .6.【答案】B【解析】设这两年福建省地区生产总值的年平均增长率为x ,根据题意可列方程243903.89(1)53109.85x +=,故选:B .7.【答案】A 【解析】解:由作图过程可得:,OD OC CM DM==∵DM DM=∴()SSS COM DOM ≅ ,∴12∠=∠∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .8.【答案】B【解析】解:A 选项,平均数为6567270757988737+⨯++++=(分钟),故选项错误,不符合题意;B 选项,在7个数据中,67出现的次数最多,为2次,则众数为67分钟,故选项正确,符合题意;C 选项,7个数据按照从小到大排列为:65,67,67,70,75,79,88,中位数是70分钟,故选项错误,不符合题意;D 选项,平均数为6567270757988737+⨯++++=,方差为()()()()()()222222657367732707375737973887341077-+-⨯+-+-+-+-=,故选项错误,不符合题意.故选:B .9.【答案】A 【解析】解:如图所示,连接正方形的对角线,过点,A B 分别作x 轴的垂线,垂足分别为,C D ,点B 在3y x=上,∵OB OA =,90AOB BDO ACO ∠=∠=∠=︒∴90CAO AOC BOD∠=︒-∠=∠∴AOC OBD≌∴32AOC OBD S S == 2n =,∵A 点在第二象限,∴3n =-故选:A .10.【答案】C【解析】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30︒,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC OA ⊥交OA 于点于点C ,∵30AOB ∠=︒,∴1122BC OB ==,则1111224OAB S =⨯⨯= ,故正十二边形的面积为1121234OAB S =⨯= ,圆的面积为113π⨯⨯=,用圆内接正十二边形面积近似估计O 的面积可得3π=,故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.【答案】5-【解析】解:∵“正”和“负”相对,∴进货10件记作10+,那么出货5件应记作5-.故答案为:5-.12.【答案】10【解析】解:∵ABCD Y 中,∴,DC AB DC AB =∥,∴,OFD OEB ODF EBO ∠=∠∠=∠,∵OD OB=∴()AAS DOF BOE ≅ ,∴DF EB =,∴DC DF AB BE -=-,即10FC AE ==.故答案为:10.13.【答案】10【解析】解:∵四边形ABCD 是菱形,∴10AB BC ==,∵=60B ∠︒,∴ABC 是等边三角形,∴10AC =.故答案为:10.14.【答案】乙【解析】解:52375808077.5101010x =⨯+⨯+⨯=甲,52385807079.5101010x =⨯+⨯+⨯=乙,52370787071.6101010x =⨯+⨯+⨯=丙,∵71.677.579.5<<∴被录用的是乙,故答案为:乙.15.【答案】1【解析】解:∵121a b+=∴21b a ab +=,∴2b a ab +=,即ab a b a -=+.∴1ab a a b a b a b-+==++.16.【答案】10n -<<【解析】解:∵22y ax ax b =-+,0a >∴抛物线的对称轴为直线212a x a-=-=,开口向上,∵()()1223,,1,A n y B n y +-分别位于抛物线对称轴的两侧,假设点B 在对称轴的右侧,则11n ->,解得2n >,∴()23140n n n +--=+>∴A 点在B 点的右侧,与假设矛盾,则点A 在对称轴的右侧,∴23111n n +>⎧⎨-<⎩解得:12n -<<又∵12y y <,∴()()23111n n +-<--∴222.n n +<-解得:0n <∴10n -<<,故答案为:10n -<<.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.【答案】3【解析】解:原式311=-+3=.18.【答案】31x -≤<【解析】解:213,13 1.24x x x +<⎧⎪⎨-+≤⎪⎩①②解不等式①,得1x <.解不等式②,得3x ≥-.所以原不等式组的解集为31x -≤<.19.【答案】见解析【解析】证明:AOD COB ∠=∠ ,,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD∴ ≌AB CD ∴=.20.【答案】11x -+,2-【解析】解:22111x x x x x+-⎛⎫-÷ ⎪-⎝⎭22111x x x x x +-⎛⎫=-⋅ ⎪-⎝⎭()()()()1111x x x x x x x -+-=⋅+-11x x x =-⋅+11x =-+.当1x =-时,原式2==-.21.【答案】(1)见解析(2)见解析【解析】(1)证明AF 是O 的切线,AF OA ∴⊥,即90OAF ∠=︒.CE 是O 的直径,90CBE ∴∠=︒.∴90OAF CBE ∠=∠=︒.AF BC ∥,BAF ABC ∴∠=∠,OAF BAF CBE ABC ∴∠-∠=∠-∠,即OAB ABE ∠=∠,AO BE ∴∥.(2)解:ABE ∠ 与ACE ∠都是»AE 所对的圆周角,ABE ACE ∴∠=∠.OA OC = ,ACE OAC ∴∠=∠,ABE OAC ∴∠=∠.由(1)知OAB ABE ∠=∠,OAB OAC ∴∠=∠,AO ∴平分BAC ∠.22.【答案】(1)14(2)应往袋中加入黄球,见解析【解析】(1)解:顾客首次摸球的所有可能结果为红,黄①,黄②,黄③,共4种等可能的结果.记“首次摸得红球”为事件A ,则事件A 发生的结果只有1种,所以()14P A =,所以顾客首次摸球中奖的概率为14.(2)他应往袋中加入黄球.理由如下:记往袋中加入的球为“新”,摸得的两球所有可能的结果列表如下:第二球第一球红黄①黄②黄③新红红,黄①红,黄②红,黄③红,新黄①黄①,红黄①,黄②黄①,黄③黄①,新黄②黄②,红黄②,黄①黄②,黄③黄②,新黄③黄③,红黄③,黄①黄③,黄②黄③,新新新,红新,黄①新,黄②新,黄③共有20种等可能结果.(ⅰ)若往袋中加入的是红球,两球颜色相同的结果共有8种,此时该顾客获得精美礼品的概率182205P ==;(ⅱ)若往袋中加入的是黄球,两球颜色相同的结果共有12种,此时该顾客获得精美礼品的概率2123205P ==;因为2355<,所以12P P <,所作他应往袋中加入黄球.23.【答案】(1)①C C ∠=∠;②3c(2)相似三角形的判定与性质(3)最大宽度为sin cos m tan a a ααβ⎛⎫+ ⎪⎝⎭,见解析【解析】(1)∵AC a =,BC b =,3a CM =,3b CN =,∴13CM CN CA CB ==,又∵C C ∠=∠,∴CMN CAB ∽△△,∴13MN AB =.又∵MN c =,∴()3m AB c =.故小水池的最大宽度为3c m .(2)根据相似三角形的判定和性质求得33AB MN c ==,故答案为:相似三角形的判定与性质.(3)测量过程:(ⅰ)在小水池外选点C ,如图,用测角仪在点B 处测得ABC α∠=,在点A 处测得BAC β∠=;(ⅱ)用皮尺测得m BC a =.求解过程:由测量知,在ABC 中,ABC α∠=,BAC β∠=,BC a =.过点C 作CD AB ⊥,垂足为D .在Rt CBD △中,cos BD CBD BC∠=,即cos BD a α=,所以cos BD a α=.同理,sin CD a α=.在Rt ACD △中,tan CD CAD AD∠=,即sin tan a ADαβ=,所以sin tan a AD αβ=.所以()sin cos m tan a AB BD AD a ααβ=+=+.故小水池的最大宽度为sin cos m tan a a ααβ⎛⎫+ ⎪⎝⎭.24.【答案】(1)243y xx =-+(2)见解析(3)ABP 的面积为定值,其面积为2【解析】(1)解:因为抛物线23y ax bx =++经过点()()1,0,3,0A B ,所以30,9330.a b a b ++=⎧⎨++=⎩解得1,4.a b =⎧⎨=-⎩所以抛物线的函数表达式为243y xx =-+;(2)解:设直线CE 对应的函数表达式为()0y kx n k =+≠,因为E 为AB 中点,所以()2,0E .又因为()4,3C ,所以4320k n k n +=⎧⎨+=⎩,解得323k n ⎧=⎪⎨⎪=-⎩,所以直线CE 对应的函数表达式为332y x =-.因为点3,4D m ⎛⎫-⎪⎝⎭在抛物线上,所以23434m m -+=-.解得,32m =或52m =.又因为2m <,所以32m =.所以33,24D ⎛⎫- ⎪⎝⎭.因为3333224⨯-=-,即33,24D ⎛⎫- ⎪⎝⎭满足直线CE 对应的函数表达式,所以点D 在直线CE 上,即,,C D E 三点共线;(3)解:ABP 的面积为定值,其面积为2.理由如下:(考生不必写出下列理由)如图1,当,C D 分别运动到点,C D ''的位置时,,C D '与,D C '分别关于直线EM 对称,此时仍有,,C D E ''三点共线.设AD '与BC '的交点为P ',则,P P '关于直线EM 对称,即PP x '∥轴.此时,PP '与AM 不平行,且AM 不平分线段PP ',故P ,P '到直线AM 的距离不相等,即在此情形下 AMP 与AMP ' 的面积不相等,所以 AMP 的面积不为定值.如图2,当,C D 分别运动到点11,C D 的位置,且保持11,,C D E 三点共线.此时1AD 与1BC 的交点1P 到直线EM 的距离小于P 到直线EM 的距离,所以1MEP △的面积小于MEP △的面积,故MEP △的面积不为定值.又因为,,AMP MEP ABP △△△中存在面积为定值的三角形,故ABP 的面积为定值.在(2)的条件下,直线BC 对应的函数表达式为39y x =-,直线AD 对应的函数表达式为3322y x =-+,求得7,23P ⎛⎫- ⎪⎝⎭,此时ABP 的面积为2.25.【答案】(1)见解析(2)135ABF ∠=︒(3)见解析【解析】(1)解:DF 是由线段DC 绕点D 顺时针旋转90︒得到的,45DFC ∴∠=︒,,AB AC AO BC =⊥ ,12BAO BAC ∴∠=∠.90BAC ∠=︒ ,45BAO ABC ∴∠=∠=︒.BAO DFC ∴∠=∠.90,90EDA ADM M ADM ︒∠+∠︒=∠+∠= ,EDA M ∴∠=∠.ADE FMC ∴ .(2)解:如图1:设BC 与DF 的交点为I ,45,DBI CFI BID FIC ︒∠=∠=∠=∠ ,BID FIC ∴ ,BI DI FI CI ∴=,BI FI DI CI ∴=.BIF DIC ∠=∠ ,BIF DIC ∴ ,IBF IDC ∴∠=∠.又90IDC =︒∠ ,90IBF ∴∠=︒.45,ABC ABF ABC IBF ∠=∠︒=∠+∠ ,135ABF ∴∠=︒.(3)解:如图2:延长ON 交BF 于点T ,连接,DT DO ,90FBI BOA ∠︒∠== ,BF AO ∴∥,FTN AON ∴∠=∠.N Q 是AF 的中点,AN NF ∴=.又TNF ONA ∠=∠ ,TNF ONA ∴≅ ,,NT NO FT AO ∴==.90,,BAC AB AC AO BC =︒∠=⊥ ,AO CO ∴=,FT CO ∴=.由(2)知,BIF DIC ,DFT DCO ∴∠=∠.DF DC =,DFT DCO ∴≅ ,,DT DO FDT CDO ∴=∠=∠,FDT FDO CDO FDO ∴∠+∠=∠+∠,即ODT CDF ∠=∠.90CDF ∠=︒ ,90ODT CDF ∴∠=∠=︒,12ND TO NO ∴==.。

2024年河北省中考数学试题(解析版)

2024年河北省中考数学试题(解析版)

2024年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A. B.C. D.【答案】A【解析】【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是()A.734a a a -= B.222326a a a ⋅= C.33(2)8a a -=- D.44a a a÷=【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是()A.AD BC⊥ B.AC PQ ⊥ C.ABO CDO △≌△ D.AC BD∥【答案】A【解析】【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为()A.1B.2C.3D.4【答案】A【解析】【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到75x <,以此判断即可.【详解】解:∵516x -<,∴75x <.∴符合题意的是A故选A .5.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的()A.角平分线B.高线C.中位线D.中线【答案】B【解析】【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A. B. C. D.【答案】D【解析】【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是()A.若5x =,则100y =B.若125y =,则4x =C.若x 减小,则y 也减小D.若x 减小一半,则y 增大一倍【答案】C【解析】【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x 度,能使用y 天.∴500xy =,∴500y x =,当5x =时,100y =,故A 不符合题意;当125y =时,5004125x ==,故B 不符合题意;∵0x >,0y >,∴当x 减小,则y 增大,故C 符合题意;若x 减小一半,则y 增大一倍,表述正确,故D 不符合题意;故选:C .8.若a ,b 是正整数,且满足8282222222a b a a a b b b++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A.38a b +=B.38a b =C.83a b +=D.38a b=+【答案】A【解析】【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ()A.1B.1-C.1D.11+【答案】C【解析】【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,解得:1x =+1x =故选:C .10.下面是嘉嘉作业本上的一道习题及解答过程:若以上解答过程正确,①,②应分别为()A.13∠=∠,AASB.13∠=∠,ASAC.23∠∠=,AASD.23∠∠=,ASA【答案】D【解析】【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得3ABC ∠=∠,根据三角形外角的性质及角平分线的定义可得23∠∠=,证明MAD MCB △≌△,得到MD MB =,再结合中点的定义得出MA MC =,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①23∠=∠.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②ASA ).∴MD MB =.∴四边形ABCD 是平行四边形.故选:D .11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=()A.115︒B.120︒C.135︒D.144︒【答案】B【解析】【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为120︒,再根据六边形MBCDEN 的内角和为720︒即可求解ENM NMB ∠+∠的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:()621801206-⨯︒=︒,而六边形MBCDEN 的内角和也为()62180720-⨯︒=︒,∴720B C D E ENM NMB ∠+∠+∠+∠+∠+∠=︒,∴7204120240ENM NMB ∠+∠=︒-⨯︒=︒,∵1802360ENM NMB βα+∠++∠=︒⨯=︒,∴360240120αβ+=︒-︒=︒,故选:B .12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点AB.点BC.点CD.点D【答案】B【解析】【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设(),A a b ,AB m =,AD n =,可得(),D a b n +,(),B a m b +,(),C a m b n ++,再结合新定义与分式的值的大小比较即可得到答案.【详解】解:设(),A a b ,AB m =,AD n =,∵矩形ABCD ,∴AD BC n ==,AB CD m ==,∴(),D a b n +,(),B a m b +,(),C a m b n ++,∵b b b n a m a a +<<+,而b b n a m a m+<++,∴该矩形四个顶点中“特征值”最小的是点B ;故选:B .13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy-,则A =()A.xB.yC.x y +D.x y-【答案】A【解析】【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.由题意得22y x y A x xy xy xy y -+=++,对2y x y x xy xy-++进行通分化简即可.【详解】解:∵22A y xy y x xy -++的结果为x y xy-,∴22y x y A x xy xy xy y -+=++,∴()()()()()2222x y x y y x x A xy x y xy x y xy x y xy y xy y -++===+++++,∴A x =,故选:A .14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m S S =,则m 与n 关系的图象大致是()A.B.C.D.【答案】C【解析】【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为R ,根据扇形的面积公式表示出23R S π=,进一步得出2360120n S n n R S π==,再代入n m S S =即可得出结论.掌握扇形的面积公式是解题的关键.【详解】解:设该扇面所在圆的半径为R ,221203603R R S ππ==,∴23R S π=,∵该折扇张开的角度为n ︒时,扇面面积为n S ,∴223360360360120n R S R n n n nS S π=⨯⨯===π,∴1120120120n S m n S nS n S ====,∴m 是n 的正比例函数,∵0n ≥,∴它的图像是过原点的一条射线.故选:C .15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“□”表示5C.运算结果小于6000D.运算结果可以表示为41001025a +【答案】D【解析】设一个三位数与一个两位数分别为10010x y z ++和10m n +,则20,5,2,mz nz ny nx a ====,即4=m n ,可确定1,2n y ==时,则4,5,m z x a ===,由题意可判断A 、B 选项,根据题意可得运算结果可以表示为:()1000411002541001025a a a +++=+,故可判断C 、D 选项.【详解】解:设一个三位数与一个两位数分别为10010x y z ++和10m n+如图:则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz =,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为()A.()6,1或()7,1 B.()15,7-或()8,0 C.()6,0或()8,0 D.()5,1或()7,1【答案】D【解析】【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为______.【答案】89【解析】【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89, 89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a ,b ,n 均为正整数.(1)若1n n <<+,则n =______;(2)若1,1n n n n -<<<+,则满足条件的a 的个数总比b 的个数少______个.【答案】①.3②.2【解析】【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;(1)由34<<即可得到答案;(2)由n 1-,n ,1n +为连续的三个自然数,1,1n n n n -<<<+,可得<<,<<,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.【详解】解:(1)∵34<<,而1n n <<+,∴3n =;故答案为:3;(2)∵a ,b ,n 均为正整数.∴n 1-,n ,1n +为连续的三个自然数,而1,1n n n n -<<<+,<<<<,观察0,1,2,3,4,5,6,7,8,9, ,而200=,211=,224=,239=,2416=,∴()21n -与2n 之间的整数有()22n -个,2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为______;(2)143B C D △的面积为______.【答案】①.1②.7【解析】【分析】(1)根据三角形中线的性质得112ABD ACD ABC S S S △△△===,证明()11SAS AC D ACD ≌,根据全等三角形的性质可得结论;(2)证明()11SAS AB D ABD ≌,得111AB D ABD S S ==△△,推出1C 、1D 、1B 三点共线,得1111112AB C AB D AC D S S S △△△=+=,继而得出141148AB C AB C S S △△==,131133AB D AB D S S ==△△,证明33C AD CAD △∽△,得3399C AD CAD S S ==△△,推出43334123AC D C AD S S ==△△,最后代入431314143AC D D AB D AB C B C S S S S =+-△△△△即可.【详解】解:(1)连接11B D 、12B D 、12B C 、13B C 、33C D ,∵ABC 的面积为2,AD 为BC 边上的中线,∴112122ABD ACD ABC S S S △△△====,∵点A ,1C ,2C ,3C 是线段4CC 的五等分点,∴1122334415AC AC C C C C C C CC =====,∵点A ,1D ,2D 是线段3DD 的四等分点,∴11223314AD AD D D D D DD ====,∵点A 是线段1BB 的中点,∴1112AB AB BB ==,在11AC D △和ACD 中,1111AC ACC AD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AC D ACD ≌,∴111AC D ACD S S ==△△,11C D A CDA ∠=∠,∴11AC D △的面积为1,故答案为:1;(2)在11AB D 和ABD △中,1111AB AB B AD BAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()11SAS AB D ABD ≌,∴111AB D ABD S S ==△△,11B D A BDA ∠=∠,∵180BDA CDA ∠+∠=︒,∴1111180B D A C D A ∠+∠=︒,∴1C 、1D 、1B 三点共线,∴111111112AB C AB D AC D S S S △△△=+=+=,∵1122334AC C C C C C C ===,∴14114428AB C AB C S S △△==´=,∵11223AD D D D D ==,111AB D S =△,∴13113313AB D AB D S S ==⨯=△△,在33AC D △和ACD 中,∵333AC AD AC AD==,33C AD ∠=∠,∴33C AD CAD △∽△,∴3322339C AD CAD S AC S AC ⎛⎫=== ⎪⎝⎭ ,∴339919C AD CAD S S ==⨯=△△,∵1122334AC C C C C C C ===,∴43334491233AC D C AD S S ==⨯=△△,∴41433131412387AC D AB C B C D D AB S S S S =+-=+-=△△△△,∴143B C D △的面积为7,故答案为:7.【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,乙数轴上的三点D ,E ,F 所对应的数依次为0,x ,12.(1)计算A ,B ,C 三点所对应的数的和,并求AB AC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.【答案】(1)30,16(2)2x =【解析】【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;(1)直接列式求解三个数的和即可,再分别计算,AB AC ,从而可得答案;(2)由题意可得,对应线段是成比例的,再建立方程求解即可.【小问1详解】解:∵甲数轴上的三点A ,B ,C 所对应的数依次为4-,2,32,∴423230-++=,()24246AB =--=+=,()32432436AC =--=+=,∴61366AB AC ==;【小问2详解】解:∵点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,∴DE DF AB AC =,∴12636x =,解得:2x =;21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b +2a2a b+a b -2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.【答案】(1)13(2)填表见解析,49【解析】【分析】(1)先分别求解三个代数式当1,2a b ==-时的值,再利用概率公式计算即可;(2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.【小问1详解】解:当1,2a b ==-时,1a b +=-,20a b +=,()123a b -=--=,∴取出的卡片上代数式的值为负数的概率为:13;【小问2详解】解:补全表格如下:a b+2a b +a b -a b+22a b +32a b +2a 2a b+32a b +42a b +3a a b -2a 3a 22a b -∴所有等可能的结果数有9种,和为单项式的结果数有4种,∴和为单项式的概率为49.【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.【答案】(1)45︒,14(2m ,33434【解析】【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;(1)根据题意先求解1CE PE ==m ,再结合等腰三角形的性质与正切的定义可得答案;(2)利用勾股定理先求解CP =m ,如图,过C 作CH AP ⊥于H ,结合1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,再建立方程求解x ,即可得到答案.【小问1详解】解:由题意可得:PQ AE ⊥, 2.6PQ =m , 1.6AB CD EQ ===m ,4AE BQ ==()m ,3AC BD ==()m ,∴431CE =-=()m , 2.6 1.61PE =-=()m ,90CEP ∠=︒,∴CE PE =,∴45PCE β=∠=︒,1tan tan 4PE PAE AE α=∠==;【小问2详解】解:∵1CE PE ==m ,90CEP ∠=︒,∴CP ==m ,如图,过C 作CH AP ⊥于H ,∵1tan tan 4CH PAE AH α=∠==,设CH x =m ,则4AH x =m ,∴()22249x x AC +==,解得:17x =,∴31717CH =m ,∴31733417sin 34CH APC CP ∠===.23.情境图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF 的长;(2)直接写出图3中所有与线段BE 相等的线段,并计算BE 的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC 边上找一点P (可以借助刻度尺或圆规),画出裁剪线(线段PQ )的位置,并直接写出BP 的长.【答案】(1)1EF =;(2)BE GE AH GH ===,2BE =;BP 或2【解析】【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.(1)如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,可得FO KG '=,由拼接可得:HF FO KG '==,可得AHG ,H G D '' ,AFE △为等腰直角三角形,G KH '' 为等腰直角三角形,设H K KG x ''==,则H G H D '''==,再进一步解答即可;(2)由AFE △为等腰直角三角形,1EFAF ==;求解2BE =,,GE AH GH ;可得答案,如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,再进一步求解BP 的长即可.【详解】解:如图,过G '作G K FH ''⊥于K ,结合题意可得:四边形FOG K '为矩形,∴FO KG '=,由拼接可得:HF FO KG '==,由正方形的性质可得:45A ∠=︒,∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,∴H G H D '''==,∴AH HG ==,HF FO x ==,∵正方形的边长为2,=,∴OA =∴x x ++=解得:1x =,∴))1111EF AF x ====;(2)∵AFE △为等腰直角三角形,1EF AF ==;∴AE ==,∴2BE =,∵)12GE H G =='='=-,2AH GH ===-,∴BE GE AH GH ===;如图,以B 为圆心,BO 为半径画弧交BC 于P ',交AB 于Q ',则直线P Q ''为分割线,此时BP '=,2P Q ''==,符合要求,或以C 圆心,CO 为半径画弧,交BC 于P ,交CD 于Q ,则直线PQ 为分割线,此时CP CQ ==2PQ ==,∴2BP =,综上:BP 或224.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80xy p=;当150p x ≤≤时,()2080150x p y p-=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)95100105110115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.【答案】(1)甲、乙的报告成绩分别为76,92分(2)125(3)①130;②95%【解析】【分析】(1)当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;(2)设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时和②140150p x ≤-≤时均不符合题意,③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-== 丁⑥,解得1125,140p x ==;(3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,而由表格得到原始成绩为110及110以上的人数为100595-=,故合格率为:95100%95%100⨯=.【小问1详解】解:当100p =时,甲的报告成绩为:809576100y ⨯==分,乙的报告成绩为:()201301008092150100y ⨯-=+=-分;【小问2详解】解:设丙的原始成绩为1x 分,则丁的原始成绩为()140x -分,①10x p ≤<时,18092x y p ==丙①,()1804064x y p-== 丁②,由①-②得320028p=,∴8007p =,∴1800929207131807x p ⨯==≈>,故不成立,舍;②140150p x ≤-≤时,()1209280150x p y p-==+- 丙③,()120406480150x p y p--==+- 丁④,由③-④得:80028150p=-,∴8507p =,∴185020792808501507x ⎛⎫- ⎪⎝⎭=+-,∴19707x =,∴16908504077x p -=<=,故不成立,舍;③11040,150x p p x ≤-<≤≤时,()1209280150x p y p-==+- 丙⑤,()1804064x y p-==丁⑥,联立⑤⑥解得:1125,140p x ==,且符合题意,综上所述125p =;【小问3详解】解:①共计100名员工,且成绩已经排列好,∴中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,∴中位数为130;②当130p >时,则8013090p ⨯=,解得10401309p =<,故不成立,舍;当130p ≤时,则()201309080150p p-=+-,解得110p =,符合题意,∴由表格得到原始成绩为110及110以上的人数为()10012295-++=,∴合格率为:95100%95%100⨯=.【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键.25.已知O 的半径为3,弦MN =,ABC 中,90,3,ABC AB BC ∠=︒==.在平面上,先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B 与点N 重合时,求劣弧 AN 的长;(2)当OA MN ∥时,如图2,求点B 到OA 的距离,并求此时x 的值;(3)设点O 到BC 的距离为d .①当点A 在劣弧 MN上,且过点A 的切线与AC 垂直时,求d 的值;②直接写出d 的最小值.【答案】(1)π(2)点B 到OA 的距离为2;3(3)①3d =-23【解析】【分析】(1)如图,连接OA ,OB ,先证明AOB 为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;(2)过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,证明四边形BIOH 是矩形,可得BH OI =,BI OH =,再结合勾股定理可得答案;(3)①如图,由过点A 的切线与AC 垂直,可得AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,可得四边形KOJB 为矩形,可得OJ KB =,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,证明1BQ OQ ==,求解AQ ==,再结合等角的三角函数可得答案.【小问1详解】解:如图,连接OA ,OB ,∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;【小问2详解】解:过B 作BI OA ⊥于I ,过O 作OH MN ⊥于H ,连接MO ,∵OA MN ∥,∴90IBH BHO HOI BIO ∠=∠=∠=∠=︒,∴四边形BIOH 是矩形,∴BH OI =,BI OH =,∵MN =,OH MN ⊥,∴MH NH ==,而3OM =,∴2OH BI ===,∴点B 到OA 的距离为2;∵3AB =,BI OA ⊥,∴AI ==,∴3OI OA AI BH =-=-=,∴33x BN BH NH ==+=-;【小问3详解】解:①如图,∵过点A 的切线与AC 垂直,∴AC 过圆心,过O 作OJ BC ⊥于J ,过O 作OK AB ⊥于K ,而90ABC ∠=︒,∴四边形KOJB 为矩形,∴OJ KB =,∵3AB =,BC =,∴AC ==∴cosAB AKBAC AC AO∠==,∴AK =∴3OJ BK ==-3d =②如图,当B 为MN 中点时,过O 作OL B C ''⊥于L ,过O 作OJ BC ⊥于J ,∴90OJL ∠>︒,∴OL OJ >,此时OJ 最短,如图,过A 作AQ OB ⊥于Q ,而3AB AO ==,∵B 为MN 中点,则OB MN ⊥,∴由(2)可得2OB =,∴1BQ OQ ==,∴AQ ==,∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO BAQ ∠+∠=︒=∠+∠,∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴OJ BQ BJ AQ ==,设OJ m =,则BJ =,∴()2222m +=,解得:23m =(不符合题意的根舍去),∴d 的最小值为23.【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .【答案】(1)12a =,()2,2Q -(2)两人说法都正确,理由见解析(3)①410=-y x ;②112-112+(4)2n t m =+-【解析】【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;(2)把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,再检验即可,再根据函数化为2122y x xt =-+-,可得函数过定点;(3)①先求解P 的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),可得4x =±,可得交点()46J --,交点()4K +,再进一步求解即可;(4)如图,由题意可得2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,可得四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,再进一步利用中点坐标公式解答即可.【小问1详解】解:∵抛物线21:2C y ax x =-过点(4,0),顶点为Q .∴1680a -=,解得:12a =,∴抛物线为:()221122222y x x x =-=--,∴()2,2Q -;【小问2详解】解:把()2,2Q -向左平移2个单位长度得到对应点的坐标为:()0,2-,当0x =时,∴222221111:()2222222C y x t t t t =--+-=-+-=-,∴()0,2-在2C 上,∴嘉嘉说法正确;∵22211:()222C y x t t =--+-2122x xt =-+-,当0x =时,=2y -,∴22211:()222C y x t t =--+-过定点()0,2-;∴淇淇说法正确;【小问3详解】解:①当4t =时,()2222111:()246222C y x t t x =--+-=--+,∴顶点()4,6P ,而()2,2Q -,设PQ 为y ex f =+,∴4622e f e f +=⎧⎨+=-⎩,解得:410e f =⎧⎨=-⎩,∴PQ 为410=-y x ;②如图,当()221:4662C y x =--+=-(等于6两直线重合不符合题意),∴4x =±,∴交点()46J --,交点()4K +,由直线l PQ ∥,设直线l 为4y x b =+,∴(446b -+=-,解得:22b =,∴直线l 为:422y x =+-,当4220y x =+-=时,112x =-此时直线l 与x 轴交点的横坐标为112-,同理当直线l 过点()4K +,直线l 为:422y x =--,当4220y x =--=时,112x =+此时直线l 与x 轴交点的横坐标为112+,【小问4详解】解:如图,∵()21222y x =--,22211:()222C y x t t =--+-,∴2C 是由1C 通过旋转180︒,再平移得到的,两个函数图象的形状相同,如图,连接AB 交PQ 于L ,连接AQ ,BQ ,AP ,BP ,∴四边形APBQ 是平行四边形,当点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,此时M 与B 重合,N 与A 重合,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()2211,222N n n t t ⎡⎤--+-⎢⎥⎣⎦,∴L 的横坐标为2m n +,∴222m n t ++=,解得:2n t m =+-;【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.。

湖南省株洲市2024年中考数学试卷(解析版)

湖南省株洲市2024年中考数学试卷(解析版)

湖南省株洲市2024年中考数学试卷一、选择题1.下列数中,﹣3的倒数是()A.﹣13B.13C.﹣3D.3【答案】A.【解析】试题分析:1÷(﹣3)=13-=﹣13.故选A.考点:倒数.2.下列等式错误的是()A.222(2)4mn m n=B.222(2)4mn m n-=C.22366(2)8m n m n=D.22355(2)8m n m n-=-【答案】D.【解析】考点:幂的乘方与积的乘方.3.甲、乙、丙、丁四名射击队员考核赛的平均成果(环)及方差统计如表,现要依据这些数据,从中选出一人参与竞赛,假如你是教练员,你的选择是()队员平均成绩方差甲9.7 2.12乙9.6 0.56丙9.7 0.56丁9.6 1.34A.甲B.乙C.丙D.丁【答案】C.【解析】试题分析:∵=x x甲丙=9.7,22S S>甲乙,∴选择丙.故选C.考点:方差.4.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B.【解析】考点:旋转的性质.5.不等式21120xx-≥⎧⎨-<⎩的解集在数轴上表示为()A.B.C.D.【答案】C.【解析】试题分析:解不等式2x﹣1≥1,得:x≥1,解不等式x﹣2<0,得:x<2,∴不等式组的解集为:1≤x<2,故选C.考点:解一元一次不等式组;在数轴上表示不等式的解集.6.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是()A.2x﹣1+6x=3(3x+1)B.2(x﹣1)+6x=3(3x+1)C.2(x﹣1)+x=3(3x+1)D.(x﹣1)+x=3(x+1)【答案】B.【解析】试题分析:方程两边同时乘以6得:2(x﹣1)+6x=3(3x+1),故选B.考点:解一元一次方程.7.已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE【答案】D.【解析】考点:平行四边形的性质.8.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种状况的面积关系满意S1+S2=S3图形个数有()A.1B.2C.3D.4【答案】D.【解析】故选D.考点:勾股定理.9.已知,如图一次函数1y ax b=+与反比例函数2ky x =的图象如图示,当12y y <时,x 的取值范围是( )A .x <2B .x >5C .2<x <5D .0<x <2或x >5 【答案】D . 【解析】试题分析:依据题意得:当12y y <时,x 的取值范围是0<x <2或x >5.故选D .考点:反比例函数与一次函数的交点问题.10.已知二次函数2y ax bx c =++(a >0)的图象经过点A (﹣1,2),B (2,5),顶点坐标为(m ,n ),则下列说法错误的是( )A .c <3B .m ≤12 C .n ≤2 D .b <1【答案】B . 【解析】考点:二次函数的性质;二次函数图象上点的坐标特征. 二、填空题11.计算:3a ﹣(2a ﹣1)= . 【答案】a+1. 【解析】试题分析:原式=3a ﹣2a+1=a+1,故答案为:a+1. 考点:整式的加减.12.据民政部网站消息,截至2024年底,我国60岁以上老年人口已经达到2.12亿,其中2.12亿用科学记数法表示为 . 【答案】2.12×108.【解析】试题分析:2.12亿=212000000=2.12×108,故答案为:2.12×108.考点:科学记数法—表示较大的数.13.从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率是.【答案】0.4.【解析】试题分析:从1,2,3…99,100个整数中,任取一个数,这个数大于60的概率=40100=0.4.故答案为:0.4.考点:概率公式.14.如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为.【答案】π.【解析】试题分析:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×16=60°,AB的长为603180π⨯=π.故答案为:π.考点:正多边形和圆;弧长的计算.15.分解因式:(x﹣8)(x+2)+6x= .【答案】(x+4)(x﹣4).考点:因式分解-运用公式法.16.△ABC的内切圆的三个切点分别为D、E、F,∠A=75°,∠B=45°,则圆心角∠EOF= 度.【答案】120.【解析】试题分析:∵∠A=75°,∠B=45°,∴∠C=180°﹣75°﹣45°=105°﹣45°=60°.∵△ABC的内切圆的三个切点分别为D、E、F,∴∠OEC=∠OFC=90°,∵四边形OECF的内角和等于360°,∴∠EOF=360°﹣(90°+90°+60°)=360°﹣240°=120°.故答案为:120.考点:三角形的内切圆与内心.17.已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1,直线CD的表达式为y2=k2x+b2,则k1k2= .【答案】1.【解析】试题分析:设点A(0,a)、B(b,0),∴OA=a,OB=﹣b,∵△AOB≌△COD,∴OC=a,OD=﹣b,∴C(a,0),D(0,b),∴k1=OAOB=ab-,k2=ODOC=ba-,∴k1k2=1,故答案为:1.考点:两条直线相交或平行问题;全等三角形的性质.18.已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermat point),已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点,若P就是△ABC的费马点,若点P2的等腰直角三角形DEF的费马点,则PD+PE+PF= .31.【解析】考点:解直角三角形;等腰直角三角形;新定义.三、解答题19.计算:20169(1)4cos 60+--.【答案】2.【解析】试题分析:原式利用算术平方根定义,乘方的意义,以及特别角的三角函数值计算即可得到结果.试题解析:原式=3+1﹣2=2.考点:实数的运算;零指数幂;特别角的三角函数值.20.先化简,再求值:2114()22xx x--⋅+,其中x=3.【答案】2xx-,13.【解析】考点:分式的化简求值.21.某社区从2024年起先,组织全民健身活动,结合社区条件,开展了广场舞、太极拳、羽毛球和跑步四个活动项目,现将参与项目活动总人数进行统计,并绘制成每年参与总人数折线统计图和2024年各活动项目参与人数的扇形统计图,请你依据统计图解答下列题(1)2024年比2024年增加人;(2)请依据扇形统计图求出2024年参与跑步项目的人数;(3)组织者预料2024年参与人员人数将比2024年的人数增加15%,名各活动项目参与人数的百分比与2024年相同,请依据以上统计结果,估计2024年参与太极拳的人数.【答案】(1)990;(2)880;(3)184.【解析】试题解析:(1)1600﹣610=(人);故答案为:990人;(2)1600×55%=880(人);答:2024年参与跑步项目的人数为880人;(3)1600×(1+15%)×(1﹣55%﹣30%﹣5%)=184(人);答:估计2024年参与太极拳的人数为184人.考点:折线统计图;用样本估计总体;扇形统计图.22.某市对初二综合素养测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成果(满分100分)和平常成果(满分100分)两部分组成,其中测试成果占80%,平常成果占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.(1)孔明同学的测试成果和平常成果两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成果和平常成果各得多少分?(2)某同学测试成果为70分,他的综合评价得分有可能达到A等吗?为什么?(3)假如一个同学综合评价要达到A等,他的测试成果至少要多少分?【答案】(1)孔明同学测试成果位90分,平常成果为95分;(2)不行能;(3)75.【解析】试题分析:(1)分别利用孔明同学的测试成果和平常成果两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成果占80%,平常成果占20%,进而得出答案;(3)首先假设平常成果为满分,进而得出不等式,求出测试成果的最小值.考点:一元一次不等式的应用;二元一次方程组的应用.23.已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A 作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.【答案】(1)证明见解析;(2)9 13.【解析】试题分析:(1)依据协助线的性质得到AD=AB,∠ADC=∠ABC=90°,由邻补角的定义得到∠ADF=∠ABE=90°,于是得到结论;(2)过点A作AH⊥DE于点H,依据勾股定理得到1022CD CE=5,依据三角形的面积S△AED=12AD×BA=92,S△ADE=12ED×AH=92,求得AH=1.8,由三角函数的定义即可得到结论.试题解析:(1)正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE 中,∵AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE;考点:正方形的性质;全等三角形的判定与性质.24.平行四边形ABCD的两个顶点A、C在反比例函数k yx =(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)若△APO的面积为2,求点D到直线AC的距离.【答案】(1)k=6,C(﹣2,﹣3);(2)1213.【解析】试题分析:(1)依据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数kyx=(k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)依据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再依据等积法可以求得点D到直线AC的距离.试题解析:(1)∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数kyx=(k≠0)图象上,点B 、D 在x 轴上,且B 、D 两点关于原点对称,∴3=2k,点C 与点A 关于原点O 对称,∴k=6,C (﹣2,﹣3),即k 的值是6,C 点的坐标是(﹣2,﹣3);考点:反比例函数与一次函数的交点问题;平行四边形的性质;函数及其图象.25.已知AB 是半径为1的圆O 直径,C 是圆上一点,D 是BC 延长线上一点,过点D 的直线交AC 于E 点,且△AEF 为等边三角形.(1)求证:△DFB 是等腰三角形;(2)若DA=7AF ,求证:CF ⊥AB .【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由AB 是⊙O 直径,得到∠ACB=90°,由于△AEF 为等边三角形,得到∠CAB=∠EFA=60°,依据三角形的外角的性质即可得到结论;试题解析:(1)∵AB 是⊙O 直径,∴∠ACB=90°,∵△AEF 为等边三角形,∴∠CAB=∠EFA=60°,∴∠B=30°,∵∠EFA=∠B+∠FDB ,∴∠B=∠FDB=30°,∴△DFB 是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EN=a,AM=3a,在Rt△DAM中,AD=7AF=27a,AM=3,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=CE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.考点:圆周角定理;等腰三角形的判定与性质;垂径定理.26.已知二次函数22(21)y x k x k k=-+++(k>0).(1)当k=12时,求这个二次函数的顶点坐标;(2)求证:关于x的一元次方程22(21)0x k x k k-+++=有两个不相等的实数根;(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:222 111OA AB AQ+=.【答案】(1)(1,14-);(2)证明见解析;(3)证明见解析.【解析】试题分析:(1)干脆将k的值代入函数解析式,进而利用配方法求出顶点坐标;(2)利用根的判别式得出△=1,进而得出答案;(3)依据题意首先表示出Q点坐标,以及表示出OA,AB的长,再利用两点之间距离求出AQ的长,进而求出答案.试题解析:(1)将k=12代入二次函数可求得,2324y x x=++=21(1)4x+-,故抛物线的顶点坐标为:(1,14-);考点:二次函数综合题.。

精品解析:2024年福建省中考真题数学试题(解析版)

精品解析:2024年福建省中考真题数学试题(解析版)

数学试题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列实数中,无理数是()A.3-B.0C.23D.【答案】D 【解析】【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判定选择项.本题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2ππ等;开方开不尽的数;以及像0.1010010001....,等数.故选:D .2.据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为()A.696110⨯B.2696.110⨯ C.46.96110⨯ D.50.696110⨯【答案】C 【解析】【分析】根据科学记数法的定义解答,科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<∣∣为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.本题考查了科学记数法,熟悉科学记数法概念是解题的关键.【详解】469610 6.96110=⨯故选:C .3.如图是由长方体和圆柱组成的几何体,其俯视图是()A. B.C. D.【答案】C 【解析】【分析】本题考查了简单组合体的三视图,根据从上边看得到的图形是俯视图,可得答案.【详解】解:这个立体图形的俯视图是一个圆形,圆形内部中间是一个矩形.故选:C .4.在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为()A.30︒B.45︒C.60︒D.75︒【答案】A 【解析】【分析】本题考查了平行线的性质,由AB CD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD ,∴60CDB ∠=︒,∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒-∠-∠=︒,故选:A .5.下列运算正确的是()A.339a a a ⋅=B.422a a a ÷= C.()235a a = D.2222a a -=【答案】B 【解析】【分析】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,解题的关键是掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项运算法则.利用同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项计算后判断正误.【详解】解:336a a a ⋅=,A 选项错误;422a a a ÷=,B 选项正确;()236a a =,C 选项错误;2222a a a -=,D 选项错误;故选:B .6.哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是()A.14B.13C.12D.23【答案】B 【解析】【分析】此题考查了树状图或列表法求概率,根据题意画出树状图,求和后利用概率公式计算即可.【详解】解:画树状图如下:由树状图可知,共有6种不同情况,和是偶数的共有2种情况,故和是偶数的概率是2163=,故选:B7.如图,已知点,A B 在O 上,72AOB ∠=︒,直线MN 与O 相切,切点为C ,且C 为 AB 的中点,则ACM ∠等于()A.18︒B.30︒C.36︒D.72︒【答案】A 【解析】【分析】本题考查了切线的性质,三角形内角和以及等腰三角形的性质,根据C 为AB的中点,三角形内角和可求出1(18036)722OCA ∠=⨯︒-︒=︒,再根据切线的性质即可求解.【详解】∵72AOB ∠=︒,C 为 AB 的中点,∴36AOC ∠=︒∵OA OC =∴1(18036)722OCA ∠=⨯︒-︒=︒∵直线MN 与O 相切,∴90OCM ∠=︒,∴18ACM OCM OCA ∠=∠-∠=︒故选:A .8.今年我国国民经济开局良好,市场销售稳定增长,社会消费增长较快,第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,求去年第一季度社会消费品零售总额.若将去年第一季度社会消费品零售总额设为x 亿元,则符合题意的方程是()A.()1 4.7%120327x += B.()1 4.7%120327x -=C.1203271 4.7%x=+ D.1203271 4.7%x=-【答案】A 【解析】【分析】本题主要考查了列一元一次方程,解题的关键是理解题意,找出等量关系,根据今年第一季度社会消费品零售总额120327亿元,比去年第一季度增长4.7%,列出方程即可.【详解】解:将去年第一季度社会消费品零售总额设为x 亿元,根据题意得:()1 4.7%120327x +=,故选:A .9.小明用两个全等的等腰三角形设计了一个“蝴蝶”的平面图案.如图,其中OAB 与ODC 都是等腰三角形,且它们关于直线l 对称,点E ,F 分别是底边AB ,CD 的中点,OE OF ⊥.下列推断错误的是()A.OB OD ⊥B.BOC AOB ∠=∠C.OE OF =D.180BOC AOD ∠+∠=︒【答案】B 【解析】【分析】本题考查了对称的性质,等腰三角形的性质等;A.由对称的性质得AOB DOC ∠=∠,由等腰三角形的性质得12BOE AOB ∠=∠,12DOF DOC ∠=∠,即可判断;B.BOC ∠不一定等于AOB ∠,即可判断;C.由对称的性质得OAB ODC ≌,由全等三角形的性质即可判断;D.过O 作GM OH ⊥,可得GOD BOH ∠=∠,由对称性质得BOH COH ∠∠=同理可证AOM AOH ∠=∠,即可判断;掌握性质是解题的关键.【详解】解:A. OE OF ⊥,90BOE BOF ∴∠+∠=︒,由对称得AOB DOC ∠=∠,点E ,F 分别是底边AB ,CD 的中点,OAB 与ODC 都是等腰三角形,12BOE AOB ∴∠=∠,12DOF DOC ∠=∠,90BOF DOF ∴∠+∠=︒,OB OD ∴⊥,结论正确,故不符合题意;B.BOC ∠不一定等于AOB ∠,结论错误,故符合题意;C.由对称得OAB ODC ≌,OE OF ∴=,结论正确,故不符合题意;D.过O 作GM OH ⊥,90GOD DOH ∴∠+∠=︒,90BOH DOH ∠+∠=︒ ,GOD BOH ∴∠=∠,由对称得BOH COH ∠∠=,GOD COH ∴∠=∠,同理可证AOM AOH ∴∠=∠,AOD BOC ∠∠∴+AOD AOM DOG =∠+∠+∠180=︒,结论正确,故不符合题意;故选:B .10.已知二次函数()220y x ax a a =-+≠的图象经过1,2a A y ⎛⎫⎪⎝⎭,()23,B a y 两点,则下列判断正确的是()A.可以找到一个实数a ,使得1y a >B.无论实数a 取什么值,都有1y a >C.可以找到一个实数a ,使得20y <D.无论实数a 取什么值,都有20y <【答案】C 【解析】【分析】本题考查二次函数的图象和性质,根据题意得到二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a-,再分情况讨论,当0a >时,当a<0时,1y ,2y 的大小情况,即可解题.【详解】解: 二次函数解析式为()220y x ax a a =-+≠,∴二次函数开口向上,且对称轴为22ax a -=-=,顶点坐标为()2,a a a -,当0a >时,02aa <<,∴21a y a a >>-,当a<0时,02aa <<,∴21a a y a -<<,故A 、B 错误,不符合题意;当0a >时,023a a a <<<,由二次函数对称性可知,20y a >>,当a<0时,320a a a <<<,由二次函数对称性可知,2y a >,不一定大于0,故C 正确符合题意;D 错误,不符合题意;故选:C .二、填空题:本题共6小题,每小题4分,共24分.11.因式分解:x 2+x =_____.【答案】()1x x +【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+12.不等式321x -<的解集是______.【答案】1x <【解析】【分析】本题考查的是解一元一次不等式,通过移项,未知数系数化为1,求解即可解.【详解】解:321x -<,33x <,1x <,故答案为:1x <.13.学校为了解学生的安全防范意识,随机抽取了12名学生进行相关知识测试,将测试成绩整理得到如图所示的条形统计图,则这12名学生测试成绩的中位数是______.(单位:分)【答案】90【解析】【分析】本题考查了中位数的知识,解题的关键是了解中位数的求法,难度不大.根据中位数的定义(数据个数为偶数时,排序后,位于中间位置的数为中位数),结合图中的数据进行计算即可;【详解】解:∵共有12个数,∴中位数是第6和7个数的平均数,∴中位数是(9090)290+÷=;故答案为:90.14.如图,正方形ABCD 的面积为4,点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,则四边形EFGH 的面积为______.【答案】2【解析】【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到1HD DG ==,进而得到 DGH S ,同理可得12AHE EFB CGF S S S === ,最后利用四边形EFGH 的面积=正方形ABCD 的面积4-个小三角形面积求解,即可解题.【详解】解: 正方形ABCD 的面积为4,2AB BC CD AD ∴====,90D Ð=°, 点E ,F ,G ,H 分别为边AB ,BC ,CD ,AD 的中点,1HD DG ∴==,111122DGH S ∴=⨯⨯= ,同理可得12AHE EFB CGF S S S === ,∴四边形EFGH 的面积为1111422222----=.故答案为:2.15.如图,在平面直角坐标系xOy 中,反比例函数ky x=的图象与O 交于,A B 两点,且点,A B 都在第一象限.若()1,2A ,则点B 的坐标为______.【答案】()2,1【解析】【分析】本题考查了反比例函数的性质以及勾股定理,完全平方公式的应用,先根据()1,2A 得出2k =,设()B n m ,,则2nm k ==,结合完全平方公式的变形与应用得出()()22332120m m m m m m+=-+=--=,,结合()1,2A ,则()21B ,,即可作答.【详解】解:如图:连接OA OB,∵反比例函数ky x=的图象与O 交于,A B 两点,且()1,2A ∴221kk ==,设()B n m ,,则2nm k ==∵OB OA ==∴2225m n +==则()2222549m n m n mn +=++=+=∵点B 在第一象限∴3m n +=把2nm k ==代入得()()22332120m m m m m m+=-+=--=,∴1212m m ==,经检验:1212m m ==,都是原方程的解∵()1,2A ∴()21B ,故答案为:()21,16.无动力帆船是借助风力前行的.下图是帆船借助风力航行的平面示意图,已知帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,风对帆的作用力F 为400N .根据物理知识,F 可以分解为两个力1F 与2F ,其中与帆平行的力1F 不起作用,与帆垂直的力2F 仪可以分解为两个力1f 与21,f f 与航行方向垂直,被舵的阻力抵消;2f 与航行方向一致,是真正推动帆船前行的动力.在物理学上常用线段的长度表示力的大小,据此,建立数学模型:400F AD ==,则2f CD ==______.(单位:N )(参考数据:sin400.64,cos400.77︒=︒=)【答案】128【解析】【分析】此题考查了解直角三角形的应用,求出40ADQ ∠=︒,130PDQ ∠=∠=︒,由AB QD ∥得到40BAD ADQ ∠=∠=︒,求出2sin 256F BD AD BAD ==⋅∠=,求出90160BDC ∠=︒-∠=︒在Rt BCD 中,根据2cos f CD BD BDC ==⋅∠即可求出答案.【详解】解:如图,∵帆船航行方向与风向所在直线的夹角PDA ∠为70︒,帆与航行方向的夹角PDQ ∠为30︒,∴703040ADQ PDA PDQ ∠=∠-∠=︒-︒=︒,130PDQ ∠=∠=︒,∵AB QD ∥,∴40BAD ADQ ∠=∠=︒,在Rt △ABD 中,400F AD ==,90ABD Ð=°,∴2sin 400sin 404000.64256F BD AD BAD ==⋅∠=⨯︒=⨯=,由题意可知,BD DQ ⊥,∴190BDC ∠+∠=︒,∴90160BDC ∠=︒-∠=︒在Rt BCD 中,256,90BD BCD =∠=︒,∴21cos 256cos 602561282f CD BD BDC ==⋅∠=⨯︒=⨯=,故答案为:128三、解答题:本题共9小题,共86分。

2024年四川省达州市中考数学真题(解析版)

2024年四川省达州市中考数学真题(解析版)

2024年四川省达州市中考数学试题本考试为闭卷考试.考试时间120分钟、满分150分.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1-2页,第Ⅱ卷3-8页,共8页.温馨提示:1.答题前,考生需用0.5毫米黑色签字笔将自己的姓名、准考证号、座位号正确填写在答题卡对应位置,待监考老师粘贴条形码后,再认真核对条形码上的信息与自己的准考证上的信息是否一致.2.选择题必须使用2B 铅笔在答题卡相应位置规范填涂.如需改动,用橡皮擦擦干净后,再选涂其他答案标号;非选择题用0.5毫米黑色签字笔作答,答案必须写在答题卡对应的框内.超出答题区答案无效;在草稿纸、试题卷上作答无效.3.不要折叠、弄破、弄皱答题卡.不得使用涂改液、修正带、刮纸刀等影响答题卡整洁.4.考试结束后,将试卷及答题卡一并交回.第Ⅰ卷(选择题共40分)一、单项选择题(每小题4分.共40分)1.有理数2024的相反数是()A.2024B.2024- C.12024D.12024-【答案】B 【解析】【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:有理数2024的相反数是2024-,故选:B .2.大米是我国居民最重要的主食之一,与此同时,我国也是世界上最大的大米生产国,水稻产量常年稳定在2亿吨以上.将2亿用科学记数法表示为()A.9210⨯B.8210⨯ C.80.210⨯ D.7210⨯【答案】B 【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值大于1与小数点移动的位数相同.【详解】解:2亿8200000000210==⨯,故选:B .3.下列计算正确的是()A.235a a a +=B.()22224a a a +=++C.()3236928a b a b -=- D.1262a a a ÷=【答案】C 【解析】【分析】本题主要考查了完全平方公式,积的乘方计算,同底数幂除法计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、2a 与3a 不是同类项,不能合并,原式计算错误,不符合题意;B 、()22244a a a +=++,原式计算错误,不符合题意;C 、()3236928a b a b -=-,原式计算正确,符合题意;D 、1266a a a ÷=,原式计算错误,不符合题意;故选:C .4.如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国【答案】B 【解析】【分析】本题考查了正方体相对两个面上的文字,正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答即可.【详解】解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,则与“我”字相对的字是“爱”,与“们”字相对的字是“中”,与“国”字相对的字是“热”,故选:B .5.小明在处理一组数据“12,12,28,35,■”时,不小心将其中一个数据污染了,只记得该数据在30~40之间.则“■”在范围内无论为何值都不影响这组数据的()A.平均数B.众数C.中位数D.方差【答案】C 【解析】【分析】此题考查数据平均数、众数、中位数方差的计算方法,根据中位数的定义求解可得.【详解】解:依题意“■”该数据在30~40之间,则这组数据的中位数为28,∴“■”在范围内无论为何值都不影响这组数据的中位数.故选:C .6.当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象(如图所示).图中180∠=︒,240∠=︒,则3∠的度数为()A.30︒B.40︒C.50︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据平行线的性质可得123∠=∠+∠,代入数据,即可求解.【详解】解:依题意,水面与容器底面平行,∴123∠=∠+∠∵180∠=︒,240∠=︒,∴312804040∠=∠-∠=︒-︒=︒故选:B .7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为()A.120120301.2x x-= B.120120301.2x x-=C.120120301.260x x -= D.120120301.260x x -=【答案】D 【解析】【分析】本题主要考查了分式方程的实际应用,设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,再根据时间=工作总量÷工作效率结合甲的工作时间比乙的工作时间少30分钟列出方程即可.【详解】解:设乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,由题意得120120301.260x x -=,故选:D .8.如图,由8个全等的菱形组成的网格中,每个小菱形的边长均为2,120ABD ∠=︒,其中点A ,B ,C 都在格点上,则tan BCD ∠的值为()A.2B.C.32D.3【答案】B 【解析】【分析】本题考查了菱形的性质,解直角三角形,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,根据菱形的性质,进而得出90AFC ∠=︒,解直角三角形求得,AF FC 的长,根据对顶角相等,进而根据正切的定义,即可求解.【详解】解:如图所示,延长BC 交格点于点F ,连接AF ,,E G 分别在格点上,依题意,120,EGF EG GF ∠=︒=,,60GF GC FGC =∠=︒∴30,60CEF ECF ∠=︒∠=︒∴90AFC ∠=︒又2FC =,∴324cos30422AF EF EG ==︒=⨯⨯=∴tan tan 2AF BCD ACF FC ∠=∠===故选:B .9.抛物线2y x bx c =-++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是()A.1b c +>B.2b = C.240b c +< D.0c <【答案】A 【解析】【分析】本题考查了二次函数的性质,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =-++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =-<,抛物线开口向下,∴当1x =时,0y >,即10b c -++>∴1b c +>,故A 选项正确,符合题意;若对称轴为1222b b b x a =-=-==-,即2b =,而121,1x x <>,不能得出对称轴为直线1x =,故B 选项不正确,不符合题意;∵抛物线与坐标轴有2个交点,∴方程20x bx c -++=有两个不等实数解,即240b ac ∆=->,又1a =-∴240b c +>,故C 选项错误,不符合题意;无法判断c 的符号,故D 选项错误,不符合题意;故选:A .10.如图,ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,点D ,E 分别在AC ,BC 边上运动,连结AE ,BD 交于点F ,且始终满足2AD =,则下列结论:①AE BD =;②135DFE ∠=︒;③ABF △面积的最大值是4;④CF 的最小值是-)A.①③B.①②④C.②③④D.①②③④【答案】D 【解析】【分析】过点B 作BM AC ⊥于点M ,证明ABE BMD ∽,根据相似三角形的性质即可判断①;得出BAE MBD ∠=∠,根据三角形内角和定理即可判断②;在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,根据定弦定角得出F 在O 的 AB 上运动,进而根据当OF AB ⊥时,ABF △面积的最大,根据三角形的面积公式求解,即可判断③,当F 在OC 上时,FC 最小,过点O 作OH BC⊥交CB 的延长线于点H ,勾股定理,即可求解.【详解】解:如图所示,过点B 作BM AC ⊥于点M ,∵ABC 是等腰直角三角形,90ABC ∠=︒,4AB =,∴AB BC AC ===,,∵2AD =,∴()1122222222DM AC AD CE BC CE BE =-=-=-=∴22DM AD BE CE ==又∵90DMB EBA ∠=∠=︒∴ABE BMD ∽,∴AE AB BD BM==∵ABE BMD ∽,∴BAE MBD ∠=∠,∴BAE ABD MBD ABD∠+∠=∠+∠即()()180180BAE ABD MBD ABD ︒-∠+∠=︒-∠+∠在ABF △中,()180AFB BAE ABD ∠=︒-∠+∠即()180AFB MBD ABD ∠=︒-∠+∠∵ABC 是等腰直角三角形,BM AC ⊥∴BM 平分ABC ∠∴1452ABM CBM ABC ∠=∠=∠=︒∴()180180135AFB MBD ABD ABM ∠=︒-∠+∠=︒-∠=︒∴()180135AFB BAE ABD ∠=︒-∠+∠=︒,∴135DFE ∠=︒,故②正确,如图所示,在AB 的左侧,以AB 为斜边作等腰直角三角形AOB ,以OA 为半径作O ,且4AB =∴90AOB ∠=︒,4OA OB ====,AB ∵135AFB ∠=︒∴11802DFE AOB ∠+∠=︒∴F 在O 的 AB 上运动,∴422OF AO AB ====,连接OF 交AB 于点G ,则2AG GB ==,∴当OF AB ⊥时,结合垂径定理,OG 最小,∵OF 是半径不变∴此时CF 最大则ABF △面积的最大,∴()22ABF AGF AOF AOG S S S S ==- 211222OF AG OG ⎛⎫=⨯⨯- ⎪⎝⎭222=-4=-,故③正确;如图所示,当F 在OC 上时,FC 最小,过点O 作OHBC ⊥交CB 的延长线于点H ,∴OHB 是等腰直角三角形,∴22222OH HB OB OA ====,在Rt OHC 中,6HC HB BC =+=,∴OC ==∴CF 的最小值是故选:D .【点睛】本题考查了相似三角形的性质与判定,圆内接四边形对角互补,求圆外一点到圆上的距离最值问题,勾股定理,等腰直角三角形的性质与判定,熟练掌握以上知识是解题的关键.第II 卷(非选择题共110分)二、填空题(每小题4分,共20分)11.分解因式:3x 2﹣18x+27=________.【答案】3(x ﹣3)2【解析】【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.12.“四大名著”《红楼梦》《水浒传》《三国演义》《西游记》是中国优秀文化的重要组成部分.某校七年级准备从这四部名著中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本)开展“名著共读”活动,则该年级的学生恰好抽取到《三国演义》和《西游记》的概率是______.【答案】16【解析】【分析】本题考查画树状图法求等可能事件的概率;画树状图,共有12种等可能的结果,其中抽取的两本恰好是《水浒传》和《西游记》的结果有2种,再由概率公式求解即可.【详解】解:把《红楼梦》《水浒传》《三国演义》《西游记》四本书分别记为A ,B ,C ,D ,根据题意,画出如下的树状图:由树状图可知看出,所有可能出现的结果共有12种,这些结果出现的可能性相等.两本是《三国演义》和《西游记》的结果有2种,所以P (两本是《三国演义》和《西游记》)21126==.故答案为:16.13.若关于x 的方程31122k x x --=--无解,则k 的值为______.【答案】4【解析】【分析】本题主要考查了根据分式方程解的情况求参数,先解分式方程得到6x k =-,再根据分式方程无解得到620k --=,解方程即可得到答案.【详解】解:31122k x x --=--去分母得:312k x -+=-,解得6x k =-,∵关于x 的方程31122k x x --=--无解,∴原方程有增根,∴20x -=,即620k --=,∴4k =,故答案为:4.14.如图,在ABC 中,1AE ,1BE 分别是内角CAB ∠、外角CBD ∠的三等分线,且113E AD CAB ∠=∠,113E BD CBD ∠=∠,在1ABE 中,2AE ,2BE 分别是内角1E AB ∠,外角1E BD ∠的三等分线.且2113E AD E AB ∠=∠,2113E BD E BD ∠=∠,…,以此规律作下去.若C m ∠=︒.则n E ∠=______度.【答案】13n m 【解析】【分析】本题考查了三角形的外角定理,等式性质,熟练掌握知识点是解题的关键.先分别对1,ABC E AB △△运用三角形的外角定理,设1E AD α∠=,则3CAB α∠=,1E BD β∠=,则3CBD β∠=,得到1E βα=+∠,33C βα=+∠,同理可求:2211133E E C ⎛⎫∠=∠=∠ ⎪⎝⎭,所以可得13nn E C ⎛⎫∠=∠ ⎪⎝⎭.【详解】解:如图:∵113E AD CAB ∠=∠,113E BD CBD ∠=∠,∴设1E AD α∠=,1E BD β∠=,则3CAB α∠=,3CBD β∠=,由三角形的外角的性质得:1E βα=+∠,33C βα=+∠,∴113E C ∠=∠,如图:同理可求:2113E E ∠=∠,∴2213E C ⎛⎫∠=∠ ⎪⎝⎭,……,∴13nn E C ⎛⎫∠=∠ ⎪⎝⎭,即13n nE m ∠=︒,故答案为:13n m .15.如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是______.【答案】403【解析】【分析】本题考查解直角三角形,勾股定理.过D 作DE AB ⊥于E ,设DB x =,则1CB x =+,利用sin AC DE B AB DBÐ==列出等式即可.【详解】解:过D 作DE AB ⊥于E ,90C ∠=︒ ,4AC =,1CD =,AD \=45BAD ∠=︒ADE ∴V 是等腰直角三角形23422DE AD \==设DB x =,则1CB x =+AB \=sin AC DE B AB DB Ð==342x \解得175x =-(舍去)或173x =经检验173x =是原分式方程的解,111740(142233ABC S CB AC \=鬃=�△.故答案为:403.三、解答题:解答时应写出必要的文字说明、证明过程或演算步骤(共90分)16.(1)计算:()2012sin 60π20242-⎛⎫--︒-- ⎪⎝⎭;(2)解不等式组323122x x x --<-⎧⎪⎨-≤+⎪⎩【答案】(1)3-(2)15x -<≤【解析】【分析】本题考查了实数的混合运算,解一元一次不等式组;(1)根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂进行计算即可求解;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:(1)()212sin 60π20242-⎛⎫--︒-- ⎪⎝⎭4212=-⨯-41=-3=-(2)323122x x x --<-⎧⎪⎨-≤+⎪⎩①②解不等式①得:1x >-解不等式②得:5x ≤∴不等式组的解集为:15x -<≤17.先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.【答案】41x +,当1x =时,原式2=.【解析】【分析】本题主要考查了分式的化简求值,先把小括号内的式子通分,再把除法变成乘法后约分化简,接着根据分式有意义的条件确定x 的值,最后代值计算即可.【详解】解:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()()()()()()2212222x x x x x x x x x x +--+=÷-+-+()()()()()222222221x x x x x x x x x x -++-+=⋅-++()()()()()224221x x x x x x x -+=⋅-++41x =+,∵分式要有意义,∴()()()22010x x x x ⎧+-≠⎪⎨+≠⎪⎩,∴2x ≠±且0x ≠且1x ≠-,∴当1x =时,原式4211==+.18.2024年4月21日,达州马拉松暨“跑遍四川”达州站马拉松赛鸣枪开跑.本次赛事以“相约巴人故里,乐跑红色达州”为主题.旨在增强全市民众科学健身意识.推动全民健身活动,本届赛事共设置马拉松,半程马拉松和欢乐跑三个项目赛后随机抽样了部分参赛选手对本次赛事组织进行满意度评分调查,整理后得到下列不完整的图表:等级A B C D分数段90~10080~8970~7960~69频数440280m40请根据表中提供的信息.解答下列问题:(1)此次调查共抽取了______名选手,m=______,n=______;(2)扇形统计图中,B等级所对应的扇形圆心角度数是______度;(3)赛后若在三个项目的冠军中随机抽取两人访谈,请用列表或画树状图的方法,求出恰好抽到马拉松和欢乐跑冠军的概率.【答案】(1)800,40,5(2)126(3)1 3【解析】【分析】本题考查了列表法求概率,频数分布表以及扇形统计图;(1)根据A等级的人数除以占比得出总人数,进而求得,m n的值;(2)根据B等级的占比乘以360︒,即可求解;(3)设三个项目的冠军分别为,,A B C,根据列表法求概率,即可求解.【小问1详解】解:依题意,44080055%=名选手,8005%40m=⨯=,40%100%5%800n=⨯=∴5n=故答案为:800,40,5.【小问2详解】扇形统计图中,B 等级所对应的扇形圆心角度数是280360126800⨯︒=︒,故答案为:126.【小问3详解】解:设三个项目的冠军分别为,,A B C ,列表如下,A B CA AB AC B BA BCC CA CB共有6种等可能结果,其中恰好抽到马拉松和欢乐跑冠军的有2种情形,∴恰好抽到马拉松和欢乐跑冠军的概率为2163=19.如图,线段AC 、BD 相交于点O .且AB CD ∥,AE BD ⊥于点E .(1)尺规作图:过点C 作BD 的垂线,垂足为点F 、连接AF 、CE ;(不写作法,保留作图痕迹,并标明相应的字母)(2)若AB CD =,请判断四边形AECF 的形状,并说明理由.(若前问未完成,可画草图完成此问)【答案】(1)见解析(2)四边形AECF 是平行四边形,理由见解析【解析】【分析】本题主要考查了平行四边形的判定,垂线的尺规作图,全等三角形的性质与判定:(1)先根据垂线的尺规作图方法作出点F ,再连接AF 、CE 即可;(2)先证明()ASA ABO CDO ≌,得到OA OC =,再证明90AE CF AEO CFO ==︒∥,∠∠,进而证明()AAS AOE COF ≌,得到AE CF =,即可证明四边形AECF 是平行四边形.【小问1详解】解:如图所示,即为所求;【小问2详解】解:四边形AECF 是平行四边形,理由如下:∵AB CD ∥,∴B D OAB OCD ==∠∠,∠∠,又∵AB CD =,∴()ASA ABO CDO ≌,∴OA OC =,∵AE BD CF BD ⊥⊥,,∴90AE CF AEO CFO ==︒∥,∠∠,又∵AOE COF ∠=∠,∴()AAS AOE COF ≌,∴AE CF =,∴四边形AECF 是平行四边形.20.“三汇彩婷会”是达州市渠县三汇镇独有的传统民俗文化活动、起源于汉代、融数学,力学,锻造,绑扎,运载于一体,如图1,在一次展演活动中,某数学综合与实践小组将彩婷抽象成如图2的示意图,AB 是彩婷的中轴、甲同学站在C 处.借助测角仪观察,发现中轴AB 上的点D 的仰角是30︒,他与彩婷中轴的距离6BC =米.乙同学在观测点E 处借助无人机技术进行测量,测得AE 平行于水平线BC ,中轴AB 上的点F 的仰角45AEF ∠=︒,点E 、F 之间的距离是4米,已知彩婷的中轴 6.3AB =米,甲同学的眼睛到地面的距离 1.5MC =米,请根据以上数据,求中轴上DF 的长度.(结果精确到0.1米,参考数据1.73≈1.41≈)【答案】中轴上DF 的长度为1.5米【解析】【分析】本题考查了解直角三角形的应用;过点M 作MN AB ⊥于点N ,分别求得,DN AF 的长,根据DF AF DB AB =+-,即可求解.【详解】解:如图,过点M 作MN AB ⊥于点N ,依题意,四边形MCBN 是矩形,30,45DMN AEF ∠=︒∠=︒∴3tan 3063DN MN =⋅︒=⨯=2sin 4542AF EF =⋅︒=⨯=∴DF AF DB AB =+-1.5 6.3=++-21.4121.73 1.5 6.3=⨯+⨯+-1.5≈米答:中轴上DF 的长度为1.5米.21.如图,一次函数y kx b =+(k 、b 为常数,0k ≠)的图象与反比例函数m y x=(m 为常数,0m ≠)的图象交于点()2,3A ,(),2B a -.(1)求反比例函数和一次函数的解析式;(2)若点C 是x 轴正半轴上的一点.且90BCA ∠=︒.求点C 的坐标.【答案】(1)6y x =,1y x =+(2)(3,0)C 【解析】【分析】本题考查反比例函数与一次函数综合题型,也考查了锐角三角函数的应用.(1)用待定系数法先求反比例函数解析式,再求一次函数解析式即可;(2)过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,设(,0)C c ,先求得NCB MAC ∠=∠得到tan tan NCB MAC Ð=Ð,即NB MC NC AM =,得出等量关系解出c 即可.【小问1详解】解:将()2,3A 代入m y x=得236m =⨯=6y x∴=将(),2B a -代入6y x =得62a -=3a ∴=-()3,2B ∴--将()2,3A 和()3,2B --代入y kx b =+得2332k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩1y x ∴=+故反比例函数和一次函数的解析式分别为6y x=和1y x =+;【小问2详解】如图,过A 作AM x ⊥轴于M ,过B 作BN x ⊥轴于N ,90BCA ∠=︒90NCB ACM \Ð+Ð=°90MAC ACM Ð+Ð=°NCB MAC\Ð=Ðtan tan NCB MAC\Ð=Ð即NB MC NC AM=设(,0)C c ,则2MC c =-,3NC c =+3,2AM BN == 2233c c -\=+解得4c =-(舍去)或3c =经检验,3c =是原分式方程的解,(3,0)C ∴.22.为拓宽销售渠道,助力乡村振兴,某乡镇帮助农户将A 、B 两个品种的柑橘加工包装成礼盒再出售.已知每件A 品种柑橘礼盒比B 品种柑橘礼盒的售价少20元.且出售25件A 品种柑橘礼盒和15件B 品种柑橘礼盒的总价共3500元.(1)求A 、B 两种柑橘礼盒每件的售价分别为多少元?(2)已知加工A 、B 两种柑橘礼盒每件的成本分别为50元、60元、该乡镇计划在某农产品展销活动中售出A 、B 两种柑橘礼盒共1000盒,且A 品种柑橘礼盒售出的数量不超过B 品种柑橘礼盒数量的1.5倍.总成本不超过54050元.要使农户收益最大,该乡镇应怎样安排A 、B 两种柑橘礼盒的销售方案,并求出农户在这次农产品展销活动中的最大收益为多少元?【答案】(1)A 、B 两种柑橘礼盒每件的售价分别为80,100元(2)要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元【解析】【分析】本题考查了二元一次方程组的应用;一元一次不等式的应用,一次函数的应用;(1)设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意列出二元一次方程组,即可求解;(2)设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意列出不等式组,得出595600x ≤≤,设收益为y 元,根据题意列出函数关系式,进而根据一次函数的性质,即可求解.【小问1详解】解:设A 、B 两种柑橘礼盒每件的售价分别为a 元,b 元,根据题意得,2025153500a b a b +=⎧⎨+=⎩解得:80100a b =⎧⎨=⎩答:A 、B 两种柑橘礼盒每件的售价分别为80,100元;【小问2详解】解:设售出A 种柑橘礼盒x 盒,则售出B 种柑橘礼盒()1000x -盒,根据题意得,()()1.510005060100054050x x x x ⎧≤-⎪⎨+-≤⎪⎩解得:595600x ≤≤设收益为y 元,根据题意得,()()()80501006010001040000y x x x =-+--=-+∵100-<∴y 随x 的增大而减小,∴当595x =时,y 取得最大值,最大值为105954000034050-⨯+=(元)∴售出B 种柑橘礼盒1000595405-=(盒)答:要使农户收益最大,销售方案为售出A 种柑橘礼盒595盒,售出B 种柑橘礼盒405盒,最大收益为34050元.23.如图,BD 是O 的直径.四边形ABCD 内接于O .连接AC ,且AB AC =,以AD 为边作DAF ACD ∠=∠交BD 的延长线于点F .(1)求证:AF 是O 的切线;(2)过点A 作AE BD ⊥交BD 于点E .若3CD DE =,求cos ABC ∠的值.【答案】(1)证明见解析(2【解析】【分析】(1)如图所示,连接OA ,由直径所对的圆周角是直角得到90BAD ∠=︒,导角可证明DAF OAB ∠=∠,进而得到90OAF ∠=︒,据此即可证明AF 是O 的切线;(2)延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,由直径所对的圆周角是直角得到90BCD ∠=︒,证明AG CH ∥,得到90AHC ∠=︒,接着证明()AAS ABE ACH ≌,得到AE AH BE CH ==,,进一步证明()Rt Rt HL ADE ADH ≌,得到DH DE =,设DH DE a ==,则3CD a =,4BE CH a ==,进而得到5BD BE DE a =+=,则 2.5OA OD a ==,由勾股定理得到2AE a ==,AD ==,则cos 5DE ADE AD ==∠,进一步可得cos cos 5ABC ADE ==∠∠.【小问1详解】证明:如图所示,连接OA ,∵BD 是O 的直径,∴90BAD ∠=︒,∴90OAB OAD ∠+∠=︒,∵OA OB =,∴OAB OBA ∠=∠,∵DAF ACD ∠=∠,OBA ACD ∠=∠,∴DAF OAB ∠=∠,∴90DAF OAD OAB OAD +=+=︒∠∠∠∠,∴90OAF ∠=︒,∴OA AF ⊥,又∵OA 是O 的半径,∴AF 是O 的切线;【小问2详解】解:如图所示,延长CD 交AF 于H ,延长AO 交BC 于G ,连接OC ,∵BD 是O 的直径,∴90BCD ∠=︒,即CH BC ⊥,∵AB AC OB OC ==,,∴OA 垂直平分BC ,∴AG BC ⊥,∴AG CH ∥,∵90OAF ∠=︒,∵AE BD ⊥,∴90AEB AHC ==︒∠∠,又∵ABE ACH ∠=∠,∴()AAS ABE ACH ≌,∴AE AH BE CH ==,,∵AD AD =,∴()Rt Rt HL ADE ADH ≌,∴DH DE =,设DH DE a ==,则3CD a =,∴4BE CH DH CD a ==+=,∴5BD BE DE a =+=,∴ 2.5OA OD a ==,∴ 1.5OE OD DE a =-=,∴2AE a ==,∴AD ==,∴5cos 5DE ADE AD ==∠,∵AB AC =,∴A ABC CB =∠∠,∵ADE ACB ∠=∠,∴ABC ADE ∠=∠,∴cos cos 5ABC ADE ==∠∠.【点睛】本题主要考查了切线的判定,求角的余弦值,直径所对的圆周角是直角,同弧所对的圆周角相等,勾股定理,全等三角形的性质与判定等等,正确作出辅助线构造全等三角形和直角三角形是解题的关键.24.如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.【答案】(1)223y x x =+-(2)()1,0P 或()4,5P -;(3)(N -或(1,-或()1,1--或()3-【解析】【分析】(1)待定系数法求解析式,即可求解;(2)先求得,,C M D 的坐标,根据勾股定理的逆定理得出MCD △是等腰三角形,进而根据2PMC DMC S S =△△得出2PMC S =△,连接MB ,设MD 交x 轴于点E ,则2ME EB ==得出MBE △是等腰直角三角形,进而得出2BMC S =△,则点P 与点B 重合时符合题意,()1,0P ,过点B 作BP AC ∥交抛物线于点P ,得出直线BP 的解析式为1y x =-+,联立抛物线解析式,即可求解;(3)勾股定理求得222,,AC AN CN ,根据等腰三角形的性质,分类讨论解方程,即可求解.【小问1详解】解:∵抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,∴933030a k a k --=⎧⎨+-=⎩解得:12a k =⎧⎨=⎩∴抛物线的解析式为223y x x =+-;【小问2详解】由223y x x =+-,当0x =时,=3y -,则()0,3C -∵()222314y x x x =+-=+-,则()1,4D --,对称轴为直线=1x -设直线AC 的解析式为11y k x b =+,代入()3,0A -,()0,3C -∴11303k b b -+=⎧⎨=-⎩解得:1113k b =-⎧⎨=-⎩∴直线AC 的解析式为3y x =--,当=1x -时,=2y -,则()1,2M --∴()242,MC MD CD ===---===∴222MD MC CD =+∴MCD △是等腰三角形,∴212222PMC DMC S CD S ==⨯⨯=△△连接MB ,设MD 交x 轴于点E ,则2ME EB ==∴MBE △是等腰直角三角形,∴45BME ∠=︒,BM =,又45DMC ∠=︒∴BM AC⊥∴11222BMC S MC BM =⨯⨯== ∴点P 与点B 重合时符合题意,()1,0P 如图所示,过点B作BP AC ∥交抛物线于点P ,设直线BP 的解析式为y x m =-+,将()1,0B 代入得,01m=-+解得:1m =∴直线BP 的解析式为1y x =-+联立2123y x y x x =-+⎧⎨=+-⎩解得:45x y =-⎧⎨=⎩,10x y =⎧⎨=⎩∴()4,5P -综上所述,()1,0P 或()4,5P -;【小问3详解】解:∵()3,0A -,()0,3C -,∴2223318AC =+=∵点N 是抛物线对称轴上位于点D 上方的一动点,设()1,N n -其中4n >-∴()2222314AN n n =-++=+,()222213610CN n n n =++=++①当AN AC =时,2418n +=,解得:n =或n =②当NA NC =时,224610n n n +=++,解得:1n =-③当CA CN =时,218610n n =++,解得:3n =-或3n =(舍去)综上所述,(N -或(1,-或()11--,或()13-.【点睛】本题考查了二次函数综合问题,待定系数法求解析式,面积问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.25.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.【答案】(1)214AC ,214BD ,24AB ;(2)222222AC BD AB AD +=+;(3【解析】【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;(2)过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F ,根据平行四边形的性质得AB CD =,AB CD ∥,AD BC =,证明()AAS DAE CBF ≌,得AE BF =,DE CF =,,根据勾股定理得()22222DB DE BB DE AB AE =+=+-,()22222AC CF AF CF AB BF =+=++,继而得出22AC BD +的值即可;(3)由(2)可得222222AC BD AB AD +=+得出AD =,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,根据勾股定理以及已知条件,分别求得,,OG CG BG ,根据EM OG ∥得出131024MG CG ==,MF =根据COG CEM ∽得出32EM OG ==可求解.【详解】解:(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2221144AB AC BD ∴=+.化简整理得2224AC BD AB +=故答案为:214AC ,214BD ,24AB .(2)222222AC BD AB AD +=+,理由如下,过点D 作DE AB ⊥于点E ,过点C 作CF AB ⊥交AB 的延长线于点F,∴90DEA DEB CFB ∠=∠=∠=︒,∵四边形ABCD 是平行四边形,∴AB CD =,AB CD ∥,AD BC =,∴DAE CBF ∠=∠,在DAE 和CBF V 中,DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS DAE CBF ≌,∴AE BF =,DE CF =,在Rt DBE 中,()22222DB DE BE DE AB AE =+=+-,在Rt CAF △中,()22222AC CF AF CF AB BF =+=++,∴()()222222AC BD DE AB AE CF AB BF +=+-+++22222222DE AB AB AE AE AB AB AE AE =+-⋅+++⋅+()22222DE AE AB =++2222AD AB =+,∴222222AC BD AB AD +=+(3)∵四边形ABCD 是平行四边形,8AB =,8BD =,12AC =,∴由(2)可得222222AC BD AB AD +=+∴2222128282AD +=⨯+解得:AD =∵四边形ABCD 是平行四边形,12,8,AC BD ==∴BC AD ==6OA OC ==,142OB OD BD ===,如图所示,过点,E O 分别作BC 的垂线,垂足分别为,M G ,连接OF ,∵F 分别为BC 的中点,∴11422OF AB OB BD ====,∵OG BF ⊥,∴BG GF =12BF =,∵F 是BC 的中点,∴12BF BC =∴BG GF =1110242BF BC ===,∴CG BC BG =-=,在Rt OGC △中,OG BC ⊥,∴362OG ===,∵E 为AO 的中点,∴12OE OA =,∵AO OC =,∴12OE OC =,∴23OC EC =,12OE OC =,∵,EM BC OG BC ⊥⊥,∴EM OG ∥,∴12EO MG OC CG ==,∴131024MG CG ==,∴3101042MF MG GF =+=+=,∵EM OG ∥,∴COG CEM ∽,∴23OG OC EM EC ==,∴32EM OG ==在Rt EMF △中,EF ===.【点睛】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.。

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考真题数学试卷含答案解析

2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。

2023年山东省日照市中考数学真题(解析版)

2023年山东省日照市中考数学真题(解析版)

日照市2023年初中学业水平考试数学试题(满分120分,时间120分钟)注意事项:1.本试题分第I 卷和第Ⅱ卷两部分,共6页.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号等填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回.2.第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第I 卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1. 计算:()23−−的结果是( ) A. 5B. 1C. -1D. -5【答案】A【解析】【分析】把减法化为加法,即可求解 。

【详解】解:()23−−=235+=,故选A .【点睛】本题主要考查有理数的减法运算,掌握有理数的减法法则是关键.2. 窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A 、既是轴对称图形,也是中心对称图形,故此选项符合题意;B 、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 、不是轴对称图形,是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意;故选A .【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.3. 芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )A. 81.410−×B. 71410−×C. 60.1410−×D. 91.410−×【答案】A【解析】【分析】科学计数法的记数形式为:10n a ×,其中1a 10≤<,当数值绝对值大于1时,n 是小数点向右移动的位数;当数值绝对值小于1时,n 是小数点向左移动的位数的相反数.【详解】解:80.000000014 1.410−=×,故选A .【点睛】本题考查科学计数法,掌握科学计数法的记数形式是解题的关键.4. 如图所示的几何体的俯视图可能是( )A. B. C. D.【答案】C【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看,是一个六边形和圆形.故选:C .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图是解题关键.5. 在数学活动课上,小明同学将含30°角的直角三角板的一个顶点按如图方式放置在直尺上,测得123∠=°,则2∠的度数是( ).A. 23°B. 53°C. 60°D. 67°【答案】B【解析】【分析】根据平行线的性质和三角形的外角性质即可求解.【详解】解:如图:∵BC DE ∥,∴2BCD ∠=∠,在ABC 中,1BCD A =+∠∠∠,∵30A ∠=°,故21233053BCD A ==+=°+°=°∠∠∠∠,故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质,熟练掌握以上性质是解题的关键.6. 下列计算正确的是( )A. 236a a a ⋅=B. ()32628m m −=−C. 222()x y x y +=+D. 232235ab a b a b +=【答案】B【分析】根据整式乘法运算法则及加法法则逐一判断即可.【详解】A 、235a a a ⋅=,故错误;B 、()32628m m −=−,故正确;C 、222()2x y x xy y +=++,故错误;D 、223ab a b 、不是同类项,不能合并,故错误;故选:B .【点睛】本题考查整式乘法与加法运算法则,熟记基本的运算法则是解题关键.7. 《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,可列方程为( )A. 911616x x +=+B. 911616x x −=−C. 911616x x +=−D. 911616x x −=+【答案】D【解析】【分析】设人数为x ,根据每人出9钱,会多出11钱,可得鸡的价格为()911x −钱,根据每人出6钱,又差16钱,可得鸡的价格为()616x +钱,由此列出方程即可.【详解】解:设人数为x ,由题意得,911616x x −=+,故选D .【点睛】本题主要考查了从实际问题中抽象出一元一次方程,正确理解题意找到等量关系是解题的关键. 8. 日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=°,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=°,15.3m BC =,则灯塔的高度AD 大约是( )(结果精确到1m 1.41≈ 1.73≈)A. 31mB. 36mC. 42mD. 53m【答案】B【解析】 【分析】在Rt ADB 中,得出AD BD =,设AD x =,则BD x =,15.3CD x =−,在Rt ADC 中,根据正切得出tan 15.3AD x ACD CD x ∠==− 【详解】解:在Rt ADB 中,45ABD ∠=°,AD BD ∴=,设AD x =,则BD x =,15.3CD x =−,在Rt ADC 中,60ACD ∠=°,tan15.3AD xACD CD x ∴∠−,36x ∴≈,∴灯塔的高度AD 大约是36m .故选:B .【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是弄清有关的直角三角形中的有关角的度数.9. 已知直角三角形的三边,,a b c 满足c a b >>,分别以,,a b c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为1S ,均重叠部分的面积为2S ,则( )A. 12S S >B. 12S S <C. 12S S =D. 12,S S 大小无法确定【答案】C【解析】【分析】根据题意,由勾股定理可得222+=a b c ,易得222c a b −=,然后用,,a b c 分别表示1S 和2S ,即可获得答案.【详解】解:如下图,∵,,a b c 为直角三角形的三边,且c a b >>。

2023年湖北省十堰市中考数学真题(解析版)

2023年湖北省十堰市中考数学真题(解析版)

2023年十堰市初中毕业生学业水平考试数学试题满分120分,考试时限120分钟.一、选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1. 3−的倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 下列几何体中,三视图的三个视图完全相同的几何体是( )A. B. C. D.【答案】D【解析】【分析】找到从物体正面、左面和上面看得到的图形完全相同的几何体即可.【详解】解:A .四棱柱的俯视图与主视图和左视图都不同,故此选项错误;B .圆锥的俯视图与主视图和左视图不同,故此选项错误;C .圆柱的俯视图与主视图和左视图不同,故此选项错误;D .球的三视图完全相同,都是圆,故此选项正确.故选:D .【点睛】本题主要考查了三视图的有关知识,掌握三视图都相同的常见的几何体有球和正方体是解答本题的关键.3. 下列计算正确的是( )A. B. 33(2)8a a −=− C. 842a a a ÷= D. 22(1)1a a −=−【答案】B【解析】【分析】根据二次根式运算法则,幂的运算法则,完全平方公式处理.【详解】A.B. 33(2)8a a −=−,根据积的乘方运算法则处理,运算正确,符合题意;C. 844a a a ÷=,故选项错误,不符合题意;D. 22(1)21a a a −=−+,故选项错误,不符合题意;故选:B .【点睛】本题考查二次根式的运算、幂的运算法则、完全平方公式;熟练掌握相关法则是解题的关键. 4. 任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为( ) A. 16 B. 13 C. 12 D. 23【答案】C【解析】【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种, ∴朝上点数是偶数的概率为3162=. 故选C .【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.5. 如图,将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,观察所得四边形的变化.下面判断错误的是( )A. 四边形ABCD 由矩形变为平行四边形B. 对角线BD 的长度减小C. 四边形ABCD 的面积不变D. 四边形ABCD 的周长不变【答案】C【解析】【分析】根据四边形的不稳定性、矩形的性质和平行四边形的性质,结合图形前后变化逐项判断即可.【详解】解:A 、因为矩形框架ABCD 向左扭动,AD BC =,AB DC =,但CBA ∠不再为直角,所以四边形变成平行四边形,故A 正确,不符合题意;B 、向左扭动框架,BD 的长度减小,故B 正确,不符合题意;C 、因为拉成平行四边形后,高变小了,但底边没变,所以面积变小了,故C 错误,符合题意;D 、因为四边形的每条边的长度没变,所以周长没变,故D 正确,不符合题意,故选:C .【点睛】本题主要考查了矩形的性质和平行四边形的性质、四边形的不稳定性,弄清图形变化前后的变量和不变量是解答此题的关键.6. 为了落实“双减”政策,进一步丰富文体活动,学校准备购进一批篮球和足球,已知每个篮球的价格比每个足球的价格多20元,用1500元购进篮球的数量比用800元购进足球的数量多5个,如果设每个足球的价格为x 元,那么可列方程为( ) A. 1500800520x x −=+ B. 1500800520x x −=− C. 8001500520x x −=+ D. 8001500520x x −=− 【答案】A【解析】【分析】设每个足球的价格为x 元,则篮球的价格为()+20x 元,根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.【详解】解:设每个足球的价格为x 元,则篮球的价格为()+20x 元, 由题意可得:1500800520x x−=+, 故选:A .【点睛】本题考查分式方程的应用,正确理解题意是关键.7. 如图所示,有一天桥高AB 为5米,BC 是通向天桥的斜坡,45ACB ∠=°,市政部门启动“陡改缓”工程,决定将斜坡的底端C 延伸到D 处,使30D ∠=°,则CD 的长度约为(参考数据:1.732≈≈)( )A. 1.59米B. 2.07米C. 3.55米D. 3.66米【答案】D【解析】 【分析】在Rt ABC △中,求得5AC AB ==米,在Rt △ABD中,求得AD =米,即可得到CD 的长度.【详解】解:在Rt ABC △中,45ACB ∠=°,90BAC ∠=°,∴5AC AB ==米,在Rt △ABD 中,30ADB ∠=°,90BAD ∠=°, ∴tan AB ADB AD=∠,∴tan 30AB AD ==°(米),∴58.665 3.66CD AD AC =−=≈−=(米)故选:D �【点睛】此题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.8. 如图,已知点C 为圆锥母线SB 中点,AB 为底面圆的直径,6SB =,4AB =,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为( )A. 5B.C.D.【答案】B的【解析】【分析】连接AB ,先根据直径求出底面周长,根据底面周长等于展开后扇形的弧长可求出圆锥的侧面展开后的圆心角,可得SAB △是等边三角形,即可求解.【详解】解:连接AB ,如图所示,�AB 为底面圆的直径,4AB =,设半径为r ,∴底面周长24r ππ==,设圆锥的侧面展开后的圆心角为n ,�圆锥母线6SB =, 根据底面周长等于展开后扇形的弧长可得:64180n ππ×°=, 解得:120n =°,�60ASC ∠=°,�半径SA SB =,�SAB △是等边三角形,在Rt ACS 中,sin 606AC SA =⋅°,�蚂蚁爬行的最短路程为故选:B .【点睛】本题考查平面展开—最短路径问题,圆锥的侧面展开图是一个扇形。

精品解析:2023年浙江省杭州市中考数学真题(解析版)

精品解析:2023年浙江省杭州市中考数学真题(解析版)

2023年杭州市初中学业水平考试数学考生须知:1.本试卷满分120分,考试时间100分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.参考公式:二次函数()20y ax bx c a =++≠图象的顶点坐标公式:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.试题卷一、选择题:(本大题有10个小题,每小题3分,共30分)1.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为()A.48.810⨯ B.48.0810⨯ C.58.810⨯ D.58.0810⨯【答案】B【解析】【分析】根据科学记数法的表示方法求解即可.【详解】4808008.0810=⨯.故选:B .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.2.22(2)2-+=()A.0 B.2 C.4 D.8【答案】D【解析】【分析】先计算乘方,再计算加法即可求解.【详解】解:22(2)2448-+=+=,故选:D .【点睛】本题考查有理数度混合运算,熟练掌握有理数乘方运算法则是解题的关键.3.分解因式:241a -=()A.()()2121a a -+ B.()()22a a -+ C.()()41a a -+ D.()()411a a -+【答案】A【解析】【分析】利用平方差公式分解即可.【详解】()()()2241212121a a a a -=-=+-.故选:A .【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4.如图,矩形ABCD 的对角线,AC BD 相交于点O .若60AOB ∠=︒,则AB BC =()A.12 B.312- C.32 D.33【答案】D【解析】【分析】根据矩形性质得出1122OA OC AC OB OD BD AC BD =====,,,推出OA OB =则有等边三角形AOB ,即60BAO ∠=︒,然后运用余切函数即可解答.【详解】解:∵四边形ABCD 是矩形,∴1122OA OC AC OB OD BD AC BD =====,,,∴OA OB =,∵60AOB ∠=︒,∴AOB 是等边三角形,∴60BAO ∠=︒,∴906030ACB ∠=︒-︒=︒,∵3tan tan 303AB ACB BC ∠==︒=,故D 正确.故选:D .【点睛】本题考查了等边三角形性质和判定、矩形的性质、余切的定义等知识点,求出60BAO ∠=︒是解答本题的关键.5.在直角坐标系中,把点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B .若点B 的横坐标和纵坐标相等,则m =()A.2B.3C.4D.5【答案】C【解析】【分析】先根据平移方式确定点B 的坐标,再根据点B 的横坐标和纵坐标相等列方程,解方程即可.【详解】解: 点(),2A m 先向右平移1个单位,再向上平移3个单位得到点B ,∴()1,23B m ++,即()1,5B m +,点B 的横坐标和纵坐标相等,∴15m +=,∴4m =,故选C .【点睛】本题考查平面直角坐标系内点的平移,一元一次方程的应用等,解题的关键是掌握平面直角坐标系内点平移时坐标的变化规律:横坐标右加左减,纵坐标上加下减.6.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=()A.23︒B.24︒C.25︒D.26︒【答案】D【解析】【分析】根据,OA OB 互相垂直可得 ADB 所对的圆心角为270︒,根据圆周角定理可得12701352ACB ∠=⨯︒=︒,再根据三角形内角和定理即可求解.【详解】解:如图,半径,OA OB 互相垂直,∴90AOB ∠=︒,∴ ADB 所对的圆心角为270︒,∴ ADB 所对的圆周角12701352ACB ∠=⨯︒=︒,又 19ABC ∠=︒,∴18026BAC ACB ABC ∠=︒-∠-∠=︒,故选D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.7.已知数轴上的点,A B 分别表示数,a b ,其中10a -<<,01b <<.若a b c ⨯=,数c 在数轴上用点C 表示,则点,,A B C 在数轴上的位置可能是()A. B.C. D.【答案】B【解析】【分析】先由10a -<<,01b <<,a b c ⨯=,根据不等式性质得出0a c <<,再分别判定即可.【详解】解:∵10a -<<,01b <<,∴0a ab <<∵a b c⨯=∴0a c <<A 、01bc <<<,故此选项不符合题意;B 、0a c <<,故此选项符合题意;C 、1c >,故此选项不符合题意;D 、1c <-,故此选项不符合题意;故选:B .【点睛】本题考查用数轴上的点表示数,不等式性质,由10a -<<,01b <<,a b c ⨯=得出0a c <<是解题的关键.8.设二次函数()()(0,,y a x m x m k a m k =--->是实数),则()A.当2k =时,函数y 的最小值为a- B.当2k =时,函数y 的最小值为2a -C.当4k =时,函数y 的最小值为a- D.当4k =时,函数y 的最小值为2a -【答案】A【解析】【分析】令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,从而求得抛物线对称轴为直线222m m k m k x +++==,再分别求出当2k =或4k =时函数y 的最小值即可求解.【详解】解:令0y =,则()()0a x m x m k =---,解得:1x m =,2x m k =+,∴抛物线对称轴为直线222m m k m k x +++==当2k =时,抛物线对称轴为直线1x m =+,把1x m =+代入()()2y a x m x m =---,得y a =-,∵0a >∴当1x m =+,2k =时,y 有最小值,最小值为a -.故A 正确,B 错误;当4k =时,抛物线对称轴为直线2x m =+,把2x m =+代入()()4y a x m x m =---,得4y a =-,∵0a >∴当2x m =+,4k =时,y 有最小值,最小值为4a -,故C 、D 错误,故选:A .【点睛】本题考查抛物线的最值,抛物线对称轴.利用抛物线的对称性求出抛物线对称轴是解题的关键.9.一枚质地均匀的正方体骰子(六个面分别标有数字1,2,3,4,5,6),投掷5次,分别记录每次骰子向上的一面出现的数字.根据下面的统计结果,能判断记录的这5个数字中一定没有..出现数字6的是()A.中位数是3,众数是2B.平均数是3,中位数是2C.平均数是3,方差是2D.平均数是3,众数是2【答案】C【解析】【分析】根据中位数、众数、平均数、方差的定义,结合选项中设定情况,逐项判断即可.【详解】解:当中位数是3,众数是2时,记录的5个数字可能为:2,2,3,4,5或2,2,3,4,6或2,2,3,5,6,故A 选项不合题意;当平均数是3,中位数是2时,5个数之和为15,记录的5个数字可能为1,1,2,5,6或1,2,2,5,5,故B 选项不合题意;当平均数是3,方差是2时,5个数之和为15,假设6出现了1次,方差最小的情况下另外4个数为:1,2,3,3,此时方差()()()()()2222211323333363 2.825s ⎡⎤=⨯-+-+-+-+-=>⎣⎦,因此假设不成立,即一定没有出现数字6,故C 选项符合题意;当平均数是3,众数是2时,5个数之和为15,2至少出现两次,记录的5个数字可能为1,2,2,4,6,故D 选项不合题意;故选:C .【点睛】本题考查中位数、众数、平均数、方差,解题的关键是根据每个选项中的设定情况,列出可能出现的5个数字.10.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(,,,DAE ABF BCG CDH △△△△)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,ABF BAF ∠>∠,连接BE .设,BAF BEF αβ∠=∠=,若正方形EFGH 与正方形ABCD 的面积之比为21:,tan tan n αβ=,则n =()A.5B.4C.3D.2【答案】C【解析】【分析】设BF AE a ==,EF b =,首先根据2tan tan αβ=得到22222a ab b +=,然后表示出正方形ABCD 的面积为223AB b =,正方形EFGH 的面积为22EF b =,最后利用正方形EFGH 与正方形ABCD 的面积之比为1:n 求解即可.【详解】设BF AE a ==,EF b =,∵2tan tan αβ=,90AFB ∠=︒,∴2BF BF AF EF ⎛⎫= ⎪⎝⎭,即2a a ab b ⎛⎫= ⎪+⎝⎭,∴22a a a b b=+,整理得22a ab b +=,∴22222a ab b +=,∵90AFB ∠=︒,∴()22222222223AB AF BF a b a a ab b b =+=++=++=,∴正方形ABCD 的面积为223AB b =,∵正方形EFGH 的面积为22EF b =,∵正方形EFGH 与正方形ABCD 的面积之比为1:n ,∴2213b b n=,∴解得3n =.故选:C .【点睛】此题考查了勾股定理,解直角三角形,赵爽“弦图”等知识,解题的关键是熟练掌握以上知识点.二、填空题:(本大题有6个小题,每小题4分,共24分)11.计算:=______【答案】【解析】【12.如图,点,D E 分别在ABC 的边,AB AC 上,且DE BC ∥,点F 在线段BC 的延长线上.若28ADE ∠=︒,118ACF ︒∠=,则A ∠=_________.【答案】90︒##90度【解析】【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒,然后根据三角形外角的性质求解即可.【详解】∵DE BC ∥,28ADE ∠=︒,∴28B ADE ∠=∠=︒,∵118ACF ︒∠=,∴1182890A ACF B ∠=∠-∠=︒-︒=︒.故答案为:90︒.【点睛】此题考查了平行线的性质和三角形外角的性质,解题的关键是熟练掌握以上知识点.13.一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =_________.【答案】9【解析】【分析】根据概率公式列分式方程,解方程即可.【详解】解: 从中任意摸出一个球是红球的概率为25,∴6265n =+,去分母,得()6526n ⨯=+,解得9n =,经检验9n =是所列分式方程的根,∴9n =,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.14.如图,六边形ABCDEF 是O 的内接正六边形,设正六边形ABCDEF 的面积为1S ,ACE △的面积为2S ,则12S S =_________.【答案】2【解析】【分析】连接,,OA OC OE ,首先证明出ACE △是O 的内接正三角形,然后证明出()ASA BAC OAC ≌ ,得到BAC AFE CDE S S S == ,OAC OAE OCE S S S == ,进而求解即可.【详解】如图所示,连接,,OA OC OE,∵六边形ABCDEF 是O 的内接正六边形,∴AC AE CE ==,∴ACE △是O 的内接正三角形,∵120B ∠=︒,AB BC =,∴()1180302BAC BCA B ∠=∠=︒-∠=︒,∵60CAE ∠=︒,∴30OAC OAE ∠=∠=︒,∴30BAC OAC ∠=∠=︒,同理可得,30BCA OCA ∠=∠=︒,又∵AC AC =,∴()ASA BAC OAC ≌ ,∴BAC OAC S S = ,由圆和正六边形的性质可得,BAC AFE CDE S S S == ,由圆和正三角形的性质可得,OAC OAE OCE S S S == ,∵()2122BAC AFE CDE OAC OAE OCE OAC OAE OCE S S S S S S S S S S S =+++++=++= ,∴122S S =.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.15.在““探索一次函数y kx b =+的系数,k b 与图像的关系”活动中,老师给出了直角坐标系中的三个点:()()()0,2,2,3,3,1A B C .同学们画出了经过这三个点中每两个点的一次函数的图像,并得到对应的函数表达式111222333,,y k x b y k x b y k x b =+=+=+.分别计算11k b +,2233,k b k b ++的值,其中最大的值等于_________.【答案】5【解析】【分析】分别求出三个函数解析式,然后求出11k b +,2233,k b k b ++进行比较即可解答.【详解】解:设111y k x b =+过()()0,2,2,3A B ,则有:111232b k b =⎧⎨=+⎩,解得:11122k b ⎧=⎪⎨⎪=⎩,则1115222k b +=+=;同理:22275k b +=-+=,3315233k b +=-+=则分别计算11k b +,2233,k b k b ++的最大值为值22275k b +=-+=.故答案为5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.16.如图,在ABC 中,,90AB AC A =∠<︒,点,,D E F 分别在边AB ,,BC CA 上,连接,,DE EF FD ,已知点B 和点F 关于直线DE 对称.设BC k AB =,若AD DF =,则CF FA=_________(结果用含k 的代数式表示).【答案】222k k -【解析】【分析】先根据轴对称的性质和已知条件证明DE AC ∥,再证BDE BAC ∽△△,推出12EC k AB =⋅,通过证明ABC ECF ∽,推出212CF k AB =⋅,即可求出CF FA 的值.【详解】解: 点B 和点F 关于直线DE 对称,∴DB DF =,AD DF =,∴AD DB =.AD DF =,∴A DFA ∠=∠,点B 和点F 关于直线DE 对称,∴BDE FDE ∠=∠,又 BDE FDE BDF A DFA ∠+∠=∠=∠+∠,∴FDE DFA ∠=∠,∴DE AC ∥,∴C DEB ∠=∠,DEF EFC ∠=∠,点B 和点F 关于直线DE 对称,∴DEB DEF ∠=∠,∴C EFC ∠=∠,AB AC =,∴C B ∠=∠,在ABC 和ECF △中,B C ACB EFC∠=∠⎧⎨∠=∠⎩,∴ABC ECF ∽.在ABC 中,DE AC ∥,∴BDE A ∠=∠,BED C ∠=∠,∴BDE BAC ∽△△,∴12BE BD BC BA ==,∴12EC BC =, BC k AB =,∴BC k AB =⋅,12EC k AB =⋅, ABC ECF ∽.∴AB BC EC CF =,∴12AB k AB CF k AB ⋅=⋅,解得212CF k AB =⋅,∴222212122k AB CF CF CF k FA AC CF AB CF k AB k AB ⋅====----⋅.故答案为:222k k-.【点睛】本题考查相似三角形的判定与性质,轴对称的性质,平行线的判定与性质,等腰三角形的性质,三角形外角的定义和性质等,有一定难度,解题的关键是证明ABC ECF ∽.三、解答题:(本大题有7个小题,共66分)17.设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.【答案】选②,1352x -+=,2352x --=;选③,13132x -+=,23132x -=【解析】【分析】先根据判别式判断一元二次方程根的情况,再利用公式法解一元二次方程即可.【详解】解:20x bx c ++=中1a =,①2,1b c ==时,22424110b ac ∆=-=-⨯⨯=,方程有两个相等的实数根;②3,1b c ==时,224341150b ac ∆=-=-⨯⨯=>,方程有两个不相等的实数根;③3,1b c ==-时,()2243411130b ac ∆=-=-⨯⨯-=>,方程有两个不相等的实数根;④2,2b c ==时,224241240b ac ∆=-=-⨯⨯=-<,方程没有实数根;因此可选择②或③.选择②3,1b c ==时,2310x x ++=,224341150b ac ∆=-=-⨯⨯=>,322b x a --±==,132x -+=,232x --=;选择③3,1b c ==-时,2310x x +-=,()2243411130b ac ∆=-=-⨯⨯-=>,322b x a -±-±==,132x -+=,232x --=.【点睛】本题考查根据判别式判断一元二次方程根的情况,解一元二次方程,解题的关键是掌握:对于一元二次方程20ax bx c ++=,当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个不相等的实数根;当Δ0<时,方程没有实数根.18.某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A ,B ,C ,D 四类(A 表示仅学生参与;B 表示家长和学生一起参与;C 表示仅家长参与;D 表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B 类的学生人数.【答案】(1)200名(2)见解析(3)600名【解析】【分析】(1)由A 类别人数及其所占百分比可得总人数;(2)先求出B 类学生人数为:200601010120---=(名),再补画长形图即可;(3)用该校学生总数1000乘以B 类的学生所占百分比即可求解.【小问1详解】解:6030%200÷=(名),答:这次抽样调查中,共调查了200名学生;【小问2详解】解:B 类学生人数为:200601010120---=(名),补全条形统计图如图所示:【小问3详解】解:1201000100%600200⨯⨯=(名),答:估计B 类的学生人数600名.【点睛】本题考查样本容量,条形统计图,扇形统计图,用样本估计总体,从条形统计图与扇形统计图获取到有用信息是解题的关键.19.如图,平行四边形ABCD 的对角线,AC BD 相交于点O ,点,E F 在对角线BD 上,且BE EF FD ==,连接,AE EC ,,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2,求CFO △的面积.【答案】(1)见解析(2)1【解析】【分析】(1)根据平行四边形对角线互相平分可得OA OC =,OB OD =,结合BE FD =可得OE OF =,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得2AEF ABE S S == ,再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===⨯= .【小问1详解】证明: 四边形ABCD 是平行四边形,∴OA OC =,OB OD =,BE FD =,∴OB BE OD FD -=-,∴OE OF =,又 OA OC =,∴四边形AECF 是平行四边形.【小问2详解】解: 2ABE S = ,BE EF =,∴2AEF ABE S S == ,四边形AECF 是平行四边形,∴11121222CFO CEF AEF S S S ===⨯= .【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.20.在直角坐标系中,已知120k k ≠,设函数11k y x =与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110k =,22k =(2)见解析【解析】【分析】(1)首先将点A 的横坐标代入()2225y k x =-+求出点A 的坐标,然后代入11k y x =求出110k =,然后将点B 的纵坐标代入110y x =求出5,42B ⎛⎫-- ⎪⎝⎭,然后代入()2225y k x =-+即可求出22k =;(2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.【小问1详解】∵点A 的横坐标是2,∴将2x =代入()22255y k x =-+=∴()2,5A ,∴将()2,5A 代入11k y x =得,110k =,∴110y x=,∵点B 的纵坐标是4-,∴将4y =-代入110y x =得,52x =-,∴5,42B ⎛⎫-- ⎪⎝⎭,∴将5,42B ⎛⎫-- ⎪⎝⎭代入()2225y k x =-+得,254252k ⎛⎫-=--+ ⎪⎝⎭,∴解得22k =,∴()222521y x x =-+=+;【小问2详解】如图所示,由题意可得,5,52C ⎛⎫- ⎪⎝⎭,()2,4D -,∴设CD 所在直线的表达式为y kx b =+,∴55224k b k b ⎧-+=⎪⎨⎪+=-⎩,解得20k b =-⎧⎨=⎩,∴2y x =-,∴当0x =时,0y =,∴直线CD 经过原点.【点睛】此题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题的关键是熟练掌握以上知识点.21.在边长为1的正方形ABCD 中,点E 在边AD 上(不与点A ,D 重合),射线BE 与射线CD 交于点F.(1)若13ED =,求DF 的长.(2)求证:1AE CF ⋅=.(3)以点B 为圆心,BC 长为半径画弧,交线段BE 于点G .若EG ED =,求ED 的长.【答案】(1)12(2)见解析(3)14【解析】【分析】(1)证明AEB DEF △∽△,利用相似三角形的对应边成比例求解;(2)证明AEB CBF ∽,利用相似三角形的对应边成比例证明;(3)设EG ED x ==,则1AE x =-,1BE x =+,在Rt ABE △中,利用勾股定理求解.【小问1详解】解:由题知,1AB BC CD DA ====,若13ED =,则23AE AD ED =-=. 四边形ABCD 是正方形,∴90A FDE ∠=∠=︒,又 AEB FED ∠=∠,∴AEB DEF △∽△,∴AB AE DF ED =,即21313DF =,∴12DF =.【小问2详解】证明: 四边形ABCD 是正方形,∴90A C ∠=∠=︒,AB CD ∥,∴ABE F ∠=∠,∴ABE CFB ∽,∴AB AE CF BC=,∴111AE CF AB BC ⋅=⋅=⨯=.【小问3详解】解:设EG ED x ==,则1AE AD AE x =-=-,1BE BG GE BC GE x =+=+=+.在Rt ABE △中,222AB AE BE +=,即2221(1)(1)x x +-=+,解得14x =.∴14ED =.【点睛】本题考查了相似三角形的性质与判定,勾股定理的应用,正方形的性质等,熟练掌握相关性质定理是解题的关键.22.设二次函数21y ax bx =++,(0a ≠,b 是实数).已知函数值y 和自变量x 的部分对应取值如下表所示:x …1-0123…y …m 1n 1p…(1)若4m =,求二次函数的表达式;(2)在(1)问的条件下,写出一个符合条件的x 的取值范围,使得y 随x 的增大而减小.(3)若在m 、n 、p 这三个实数中,只有一个是正数,求a 的取值范围.【答案】(1)221y x x =-+(2)当0a >时,则1x <时,y 随x 的增大而减小;当a<0时,则1x >时,y 随x 的增大而减小(3)13a ≤-【解析】【分析】(1)用待定系数法求解即可.(2)利用抛物线的对称性质求得抛物线的对称轴为直线1x =;再根据抛物线的增减性求解即可.(3)先把()2,1代入21y ax bx =++,得2b a =-,从而得221y ax ax =-+,再求出31m a =+,1n a =-+,31p a =+,从而得m p =,然后m 、n 、p 这三个实数中,只有一个是正数,得10310a a -+>⎧⎨+≤⎩,求解即可.【小问1详解】解:把()1,4-,()2,1代入21y ax bx =++,得144211a b a b -+=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩,∴221y x x =-+.【小问2详解】解:∵()0,1,()2,1在21y ax bx =++图象上,∴抛物线的对称轴为直线0212x +==,∴当0a >时,则1x <时,y 随x 的增大而减小,当a<0时,则1x >时,y 随x 的增大而减小.【小问3详解】解:把()2,1代入21y ax bx =++,得1421a b =++,∴2b a=-∴22121y ax bx ax ax =++=-+把()1,m -代入221y ax ax =-+得,2131m a a a =++=+,把()1,n 代入221y ax ax =-+得,211n a a a =-+=-+,把()3,p 代入221y ax ax =-+得,96131p a a a =-+=+,∴m p =,∵m 、n 、p 这三个实数中,只有一个是正数,∴10310a a -+>⎧⎨+≤⎩,解得:13a ≤-.【点睛】本题考查用待定系数法求抛物线解析式,抛物线的图象性质,解不等式组,熟练掌握用待定系数法求抛物线解析式和抛物线的图象性质是解析的关键.23.如图,在O 中,直径AB 垂直弦CD 于点E ,连接,,AC AD BC ,作CF AD ⊥于点F ,交线段OB 于点G (不与点,O B 重合),连接OF .(1)若1BE =,求GE 的长.(2)求证:2BC BG BO =⋅.(3)若FO FG =,猜想CAD ∠的度数,并证明你的结论.【答案】(1)1(2)见解析(3)45CAD ∠=︒,证明见解析【解析】【分析】(1)由垂径定理可得90AED ∠=︒,结合CF AD ⊥可得DAE FCD ∠=∠,根据圆周角定理可得DAE BCD ∠=∠,进而可得BCD FCD ∠=∠,通过证明BCE GCE ≌可得1GE BE ==;(2)证明ACB △CEB ∽,根据对应边成比例可得2BC BA BE =⋅,再根据2AB BO =,12BE BG =,可证2BC BG BO =⋅;(3)设DAE CAE α∠=∠=,FOG FGO β∠=∠=,可证90αβ=︒-,903OCF α∠=︒-,通过SAS 证明COF AOF ≌,进而可得OCF OAF ∠=∠,即903αα︒-=,则245CAD α∠==︒.【小问1详解】解: 直径AB 垂直弦CD ,∴90AED ∠=︒,∴90DAE D ∠+∠=︒,CF AD ⊥,∴90FCD D ∠+∠=︒,∴DAE FCD ∠=∠,由圆周角定理得DAE BCD ∠=∠,∴BCD FCD ∠=∠,在BCE 和GCE 中,BCE GCE CE CE BEC GEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴BCE GCE≌()ASA ,∴1GE BE ==;【小问2详解】证明: AB 是O 的直径,∴90ACB ∠=︒,在ACB △和CEB 中,90ACB CEB ABC CBE ∠=∠=︒⎧⎨∠=∠⎩,∴ACB △CEB ∽,∴BC BA BE BC=,∴2BC BA BE =⋅,由(1)知GE BE =,∴12BE BG =,又 2AB BO =,∴2122BC BA BE BO BG BG BO =⋅=⋅=⋅;【小问3详解】解:45CAD ∠=︒,证明如下:如图,连接OC ,FO FG =,∴FOG FGO ∠=∠,直径AB 垂直弦CD ,∴CE DE =,90AED AEC ∠=∠=︒,又 AE AE =,∴ACE △ADE ≌()SAS ,∴DAE CAE ∠=∠,设DAE CAE α∠=∠=,FOG FGO β∠=∠=,则FCD BCD DAE α∠=∠=∠=,OA OC =,∴OCA OAC α∠=∠=,又 90ACB ∠=︒,∴903OCF ACB OCA FCD BCD α∠=∠-∠-∠-∠=︒-,CGE OGF β∠=∠=,GCE α∠=,90CGE GCE ∠+∠=︒∴90βα+=︒,∴90αβ=︒-,2COG OAC OCA ααα∠=∠+∠=+=,∴()2290180COF COG GOF αββββ∠=∠+∠=+=︒-+=︒-,∴COF AOF ∠=∠,在COF 和AOF 中,CO AO COF AOF OF OF =⎧⎪∠=∠⎨⎪=⎩∴()SAS COF AOF ≌,∴OCF OAF ∠=∠,即903αα︒-=,∴22.5α=︒,∴245CAD α∠==︒.【点睛】本题考查垂径定理,圆周角定理,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的性质等,难度较大,解题的关键是综合应用上述知识点,特别是第3问,需要大胆猜想,再逐步论证.。

2024年四川省凉山州中考数学真题试卷及答案解析

2024年四川省凉山州中考数学真题试卷及答案解析

凉山州2024年初中学业水平暨高中阶段学校招生考试试题数学A 卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1. 下列各数中:,负数有()A. 1个B. 2个C. 3个D. 4个2. 如图,由3个相同的小正方体搭成的几何体的俯视图是()A. B. C. D.3. 下列运算正确的是( )A. B.C.D.4. 一副直角三角板按如图所示的方式摆放,点在的延长线上,当时,的度数为()A. B.C.D.5. 点关于原点对称的点是,则的值是( )A.B. C. D.6. 如图,在中,垂直平分交于点,若的周长为,则()A. B. C. D.7. 匀速地向如图所示的容器内注水,直到把容器注满.在注水过程中,容器内水面高度随时间变化的大致图象是()A B. C. D.8. 在一次芭蕾舞比赛中,甲,乙两个芭蕾舞团都表演了舞剧《天鹅湖》,每个团参加表演的位女演员身高的折线统计图如下.则甲,乙两团女演员身高的方差大小关系正确的是()A. B. C. D. 无法确定9. 若关于的一元二次方程的一个根是,则的值为()A. 2B.C. 2或D.10. 数学活动课上,同学们要测一个如图所示的残缺圆形工件的半径,小明的解决方案是:在工件圆弧上任取两点,连接,作的垂直平分线交于点,交于点,测出,则圆形工件的半径为()A. B. C. D.11. 如图,一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,若,则的面积是()A. B. C. D.12. 抛物线经过三点,则的大小关系正确的是()A. B. C. D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13. 已知,且,则______.14. 方程的解是_______15. 如图,中,是边上的高,是的平分线,则的度数是______.16. 如图,四边形各边中点分别是,若对角线,则四边形的周长是______.17. 如图,一次函数的图象经过两点,交轴于点,则的面积为______.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18. 计算:.19. 求不等式的整数解.20. 为保证每位同学在学校组织的课外体育活动中,都能参与自己最喜欢的球类项目,学校体育社团随机抽取部分同学进行“最喜欢的球类项目”的调查(每人只能选择一项),根据调查结果绘制成以下两幅不完整的统计图:请根据统计图回答下列问题:(1)本次调查的总人数是______人,估计全校名学生中最喜欢乒乓球项目的约有______人;(2)补全条形统计图;(3)学校体育社团为了制订训练计划,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两名进行个别访谈,请用列表法或画树状图法求抽取的两人恰好是甲和乙的概率.21. 为建设全域旅游西昌,加快旅游产业发展.年月日位于西昌主城区东部的历史风貌核心区唐园正式开园,坐落于唐园内的怀远塔乃唐园至高点,为七层密檐式八角砖混结构阁楼式塔楼,建筑面积为平方米,塔顶金碧辉煌,为“火珠垂莲”窣()堵坡造型.某校为了让学生进一步了解怀远塔,组织九年级()班学生利用综合实践课测量怀远塔的高度.小江同学站在如图所示的怀远塔前的平地上点处,测得塔顶的仰角为,眼睛距离地面,向塔前行,到达点处,测得塔顶的仰角为,求塔高.(参考数据:,结果精确到)22. 如图,正比例函数与反比例函数的图象交于点.(1)求反比例函数的解析式;(2)把直线向上平移3个单位长度与的图象交于点,连接,求的面积.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23. 已知,则的值为______.24. 如图,的圆心为,半径为,是直线上的一个动点,过点作的切线,切点为,则的最小值为______五、解答题(共4小题,共40分)25. 阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第行有个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前行的点数之和为______(2)体验:三角点阵中前行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第排盆的规律摆放而成,则一共能摆放多少排?26. 如图,在菱形中,,是边上一个动点,连接,的垂直平分线交于点,交于点.连接.(1)求证:;(2)求的最小值.27. 如图,是的直径,点在上,平分交于点,过点的直线,交的延长线于点,交的延长线于点.(1)求证:是的切线;(2)连接并延长,分别交于两点,交于点,若的半径为,求的值.28. 如图,抛物线与直线相交于两点,与轴相交于另一点.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一个动点(不与重合),过点作直线轴于点,交直线于点,当时,求点坐标;(3)抛物线上是否存在点使的面积等于面积的一半?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案A卷(共100分)第Ⅰ卷选择题(共48分)一、选择题(共12小题,每小题4分,共48分)在每小题给出的四个选项中只有一项的,请把正确选项的字母序号填涂在答题卡上对应的位置.1.【答案】C【解析】【分析】本题考查了对正数和负数定义的理解,难度不大,注意0既不是正数也不是负数.根据正数和负数的定义判断即可,注意:0既不是负数也不是正数.解:,是正数;,是负数;,是负数;0既不是正数,也不是负数;,是负数;,是正数;负数有,,,共3个.故选:C.2.【答案】B【解析】【分析】本题考查了简单组合体的三视图,俯视图是从物体的上面看得到的视图.找到从上面看所得到的图形即可.解:从上面可看,是一行两个相邻的正方形.故选:B.3.【答案】A【解析】【分析】本题考查了整式的运算,根据合并同类项法则、积的乘方、同底数幂的除法和乘法分别计算即可判断求解,掌握整式的运算法则是解题的关键.解:.,该选项正确,符合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;.,该选项错误,不合题意;故选:.4.【答案】B【解析】【分析】本题考查平行线的性质,三角形的外角的性质,掌握平行线的性质,是解题的关键.证明,再利用,进行求解即可.解:由题意,得:,∵,∴,∴;故选B.5.【答案】A【解析】【分析】本题考查了关于原点对称的点的坐标特征,代数式求值,根据关于原点对称的点,横纵坐标互为相反数可得,,再代入代数式计算即可求解,掌握关于原点对称的点的坐标特征是解题的关键.解:∵点关于原点对称点是,∴,,∴,故选:.6.【答案】C【解析】【分析】本题考查了线段垂直平分线的的性质,由线段垂直平分线的的性质可得,进而可得的周长,即可求解,掌握线段垂直平分线的的性质是解题的关键.】解:∵垂直平分,∴,∴的周长,故选:.7.【答案】C【解析】【分析】本题考查了函数图象,根据容器最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大即可判断求解,正确识图是解题的关键.解:由容器可知,最下面圆柱底面积最小,中间圆柱底面积最大,最上面圆柱底面积最较大,所以一开始水面高度上升的很快,然后很慢,最后又上升的更快点,故选:.8.【答案】B【解析】【分析】本题考查了方差,根据折线统计图结合数据波动小者即可判断求解,理解方差的意义是解题的关键.解:由折线统计图可知,甲的数据波动更小,乙的数据波动更大,甲比乙更稳定,∴,故选:.9.【答案】A【解析】【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为.由一元二次方程的定义,可知;一根是,代入可得,即可求答案.解:是关于的一元二次方程,,即由一个根,代入,可得,解之得;由得;故选A10.【答案】C【解析】【分析】本题考查垂径定理,勾股定理等知识.由垂径定理,可得出的长;设圆心为O,连接,在中,可用半径表示出的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.解:∵是线段的垂直平分线,∴直线经过圆心,设圆心,连接.中,,根据勾股定理得:,即:,解得:;故轮子的半径为,故选:C.11.【答案】D【解析】解:∵一块面积为的三角形硬纸板(记为)平行于投影面时,在点光的照射下形成的投影是,,∴,∴位似图形由三角形硬纸板与其灯光照射下的中心投影组成,相似比为,∵三角形硬纸板的面积为,∴,∴的面积为.故选:D.12.【答案】D【解析】【分析】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.根据二次函数的图象与性质可进行求解.解:由抛物线可知:开口向上,对称轴为直线,该二次函数上所有的点满足离对称轴的距离越近,其对应的函数值也就越小,∵,,,而,,,∴点离对称轴最近,点离对称轴最远,∴;故选:D.第Ⅱ卷非选择题(共52分)二、填空题(共5小题,每小题4分,共20分)13.【答案】【解析】【分析】本题考查了因式分解的应用,先把的左边分解因式,再把代入即可求出的值.解:∵,∴,∵,∴.故答案为:.14.【答案】x=9【解析】【分析】观察可得最简公分母是x(x-3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘x(x-3),得3x-9=2x,解得x=9.检验:把x=9代入x(x-3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.15.【答案】##100度【解析】【分析】本题考查了三角形内角和以及外角性质、角平分线的定义.先求出,结合高的定义,得,因为角平分线的定义得,运用三角形的外角性质,即可作答.解:∵,∴,∵是边上的高,∴,∴,∵是的平分线,∴,∴.故答案为:.16.【答案】42【解析】【分析】本题考查的是中点四边形,熟记三角形中位线定理是解题的关键.根据三角形中位线定理分别求出、、、,根据四边形的周长公式计算,得到答案.解:四边形各边中点分别是、、、,、、、分别为、、、的中位线,,,,,四边形的周长为:,故答案为:42.17.【答案】9【解析】【分析】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积.根据点A,B的坐标,利用待定系数法可求出直线的解析式,得出点C的坐标及的长,再利用三角形的面积公式即可求出的面积.解:将代入,得:,解得:,∴直线的解析式为.当时,,解得:,∴点C的坐标为,,∴.故答案为:9.三、解答题(共5小题,共32分)解答应写出文字说明,证明过程或演算步骤.18.【答案】2【解析】【分析】本题考查了实数的混合运算.分别进行零指数幂、负整数指数幂、二次根式及绝对值的运算,然后代入特殊角的三角函数值代入运算即可.解:.19.【答案】【解析】【分析】本题考查了解一元一次不等式组,熟练掌握知识点是解题的关键.先将变形为,再解每一个不等式,取解集的公共部分作为不等式组的解集,再找出其中的整数解即可.解:由题意得,解①得:,解②得:,∴该不等式组的解集为:,∴整数解为:20.【答案】(1),;(2)补图见解析;(3).【解析】【分析】()用最喜欢足球的学生人数除以其百分比可求出调查的总人数,用乘以最喜欢乒乓球项目的百分比可求出最喜欢乒乓球项目的学生人数;()求出最喜欢篮球项目的学生人数和最喜欢羽毛球项目的学生人数,即可补全条形统计图;()画出树状图,根据树状图即可求解;本题考查了条形统计图和扇形统计图,样本估计总体,用树状图或列表法求概率,看懂统计图及正确画出树状图是解题的关键.小问1解:本次调查的总人数是人,估计全校名学生中最喜欢乒乓球项目的约有人,故答案为:,;小问2解:最喜欢篮球项目的学生有人,∴最喜欢羽毛球项目的学生有人,∴补全条形统计图如下:小问3解:画树状图如下:由树状图可知,共有种等结果,其中抽取的两人恰好是甲和乙的结果有种,∴抽取的两人恰好是甲和乙的概率为.21.【答案】.【解析】【分析】本题考查了解直角三角形的应用仰角俯角问题,设,解直角三角形得到,,再根据可得,解方程求出即可求解,正确解直角三角形是解题的关键.解:由题意可得,,,,,设,在中,,在中,,∵,∴,解得,∴,答:塔高为.22.【答案】(1)(2)6【解析】【分析】(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点坐标,根据平行线可得代入数据计算即可.小问1解:点在正比例函数图象上,,解得,,在反比例函数图象上,,反比例函数解析式为.小问2解:把直线向上平移3个单位得到解析式为,令,则,∴记直线与轴交点坐标为,连接,联立方程组,解得,(舍去),,由题意得:,∴同底等高,.【点拨】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移,三角形的面积,熟练掌握函数的平移法则是关键.B卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.【答案】【解析】【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.将代入,转化为解一元二次方程,,要进行舍解.解:∵,∴,将代入得,,即:,,∴或,∵,∴舍,∴,故答案为:3.24.【答案】【解析】解:记直线与x,y轴分别交于点A,K,连接,当,,当,即,解得:,而∴,∴均是等腰直角三角形,∴,∴,∵与相切,∴,∴,∵,∴当最小时即最小,∴当时,取得最小值,即点P与点K重合,此时最小值为,在中,由勾股定理得:,∴,∴最小值为.【点拨】本题考查了圆的切线的性质,勾股定理,一次函数与坐标轴的交点问题,垂线段最短,正确添加辅助线是解题的关键.五、解答题(共4小题,共40分)25.【答案】(1)36;120;(2)不能(3)一共能摆放20排.【解析】【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)根据图形,总结规律,列式计算即可求解;(2)根据前n行的点数和是500,即可得出关于n的一元二次方程,解之即可判断;(2)先得到前n行的点数和是,再根据题意得出关于n的一元二次方程,解之即可得出n的值.小问1解:三角点阵中前8行的点数之和为,前15行的点数之和为,那么,前行的点数之和为;故答案为:36;120;;小问2解:不能,理由如下:由题意得,得,,∴此方程无正整数解,所以三角点阵中前n行的点数和不能是500;故答案为:不能;小问3解:同理,前行的点数之和为,由题意得,得,即,解得或(舍去),∴一共能摆放20排.26.【答案】(1)见详解(2)【解析】【分析】(1)根据菱形的性质证明,再结合是的垂直平分线,即可证明;(2)过点N作于点F,连接,,则,故,此时,在中,进行解直角三角形即可.小问1证明:连接,∵四边形是菱形,∴,,∵,∴,∴,∵是垂直平分线,∴,∴;小问2解:过点N作于点F,连接,∵,∴,∵,∴,当点A.N、F三点共线时,取得最小值,如图:即,∴在中,,∴的最小值为.【点拨】本题考查了菱形的性质,垂直平分线的性质,全等三角形的判定与性质,垂线段最短,解直角三角形,正确添加辅助线是解决本题的关键.27.【答案】(1)见详解(2)【解析】【分析】(1)连接,根据等腰三角形的性质及角平分线得到,根据平行线的性质得,即可证明;(2)连接,先解,求得,,则,,可证明,由,得,故,证明,即可得到.小问1解:连接,∵,∴,∵平分,∴,∴,∴,∴∵,∴,∴,即,∵是的半径∴是的切线;小问2解:连接,∵,∴在中,,由勾股定理得:∴,∵在中,,∴,∵,∴,而,∴,∴,∴,∵,∴,∴,∴,∵,∴,∵,∴,∴,∴.【点拨】本题考查了圆的切线的判定,相似三角形的判定与性质,勾股定理,的直角三角形的性质,等腰三角形的性质,正确添加辅助线是解题的关键.28.【答案】(1)抛物线的解析式为(2)的坐标为(3)的坐标为或或或【解析】【分析】(1)把代入求出,再用待定系数法可得抛物线的解析式为;(2)设,则,,由,可得,解出的值可得的坐标为;(3)过作轴交直线于,求出,知,故,设,则,可得,,根据的面积等于面积的一半,有,可得,即或,解出的值可得答案.小问1解:把代入得:,,把,代入得:,解得,抛物线的解析式为;小问2解:设,则,,,,解得或(此时不在直线上方,舍去);的坐标为;小问3解:抛物线上存在点,使的面积等于面积的一半,理由如下:过作轴交直线于,过点B作,延长交x轴于点F,如图:中,令得,解得或,,,,,,设,则,,∵,的面积等于面积的一半,,,或,解得或,的坐标为或或或.【点拨】本题考查二次函数的图像与性质,涉及待定系数法求函数解析式,抛物线与坐标轴交点问题,解一元二次方程,三角形面积等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.。

精品解析:2023年山东省烟台市中考数学真题(解析版)

精品解析:2023年山东省烟台市中考数学真题(解析版)

2023年烟台市初中学业水平考试数学试题一、选择题1. 23−的倒数是( )A.23 B. 23−C.32D. 32−【答案】D 【解析】【分析】根据乘积是1两个数叫做互为倒数解答. 【详解】解:∵23132−×−=, ∴23−的倒数是32−,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键. 2.是同类二次根式的是( )A.B.C.D.【答案】C 【解析】【分析】根据同类二次根式定义,逐个进行判断即可.【详解】解:A2=不是同类二次根式,不符合题意; B不是同类二次根式,不符合题意; C=是同类二次根式,符合题意; D=不是同类二次根式,不符合题意; 故选:C .【点睛】本题主要考查了同类二次根式,解题的关键是掌握同类二次根式的定义:将二次根式化为最简二次根式后,被开方数相同的二次根式是同类二次根式;最简二次根式的特征:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式. 3. 下列四种图案中,是中心对称图形的是( )的的A. B. C. D.【答案】B 【解析】【分析】根据中心对称图形的定义,逐个进行判断即可,中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 【详解】解:根据题意可得:是中心对称图形的只有B , 故选:B .【点睛】本题主要考查了中心对称图形的定义,解题的关键是中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形. 4. 下列计算正确的是( ) A. 2242a a a += B. ()32626a a = C. 235a a a ⋅= D. 824a a a ÷=【答案】C 【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法的运算法则逐项排查即可解答. 【详解】解:A .2222a a a +=,故该选项不正确,不符合题意; B .()32628a a =,故该选项不正确,不符合题意;C .235a a a ⋅=,故该选项正确,符合题意;D .826a a a ÷=,故该选项不正确,不符合题意. 故选:C .【点睛】本题主要考查了合并同类项、幂的乘方、同底数幂的乘法、同底数幂的除法等知识,掌握运算法则是解题的关键. 5. 不等式组321,23m m −≥ −>的解集在同一条数轴上表示正确的是( )A. B.C.D.【答案】A【解析】【分析】用数轴表示不等式的解集时,要注意“两定”:一是定界点,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【详解】解:32123m m −≥−>①② 解不等式①得:m 1≥ 解不等式②得:1m <−将不等式的解集表示在数轴上,如图所示,故选:A .【点睛】本题主要考查数轴上表示不等式的解集,熟练掌握数轴上表示不等式组的解集的方法是解题的关键.6. 如图,对正方体进行两次切割,得到如图⑤所示的几何体,则图⑤几何体的俯视图为( )A. B. C. D.【答案】A 【解析】【分析】根据俯视图的定义,即可进行解答.【详解】解:根据题意可得:从该几何体正上方看,棱AE 的投影为点E ,棱AB 的投影为线段BE ,棱AD 的投影为线段ED ,棱AC 的投影为正方形BCDE 的对角线,∴该几何体的俯视图为:,故选:A【点睛】本题主要考查了俯视图,解题的关键是熟练掌握俯视图的定义:从物体正上方看到的图形是俯视图.7. 长时间观看手机、电脑等电子产品对视力影响非常大.6月6日是“全国爱眼日”,为了解学生的视力情况,某学校从甲、乙两个班级各随机抽取8名学生进行调查,并将统计数据绘制成如图所示的折线统计图,则下列说法正确的是( )A. 甲班视力值平均数大于乙班视力值的平均数B.C. 甲班视力值的极差小于乙班视力值的极差D. 甲班视力值的方差小于乙班视力值的方差 【答案】D 【解析】【分析】根据平均数,中位数,极差,方差的定义分别求解即可. 【详解】甲班视力值分别为:4.7,5.0,4.7,4.8,4.7,4.7,4.6,4.4; 从小到大排列为:4.4,4.6,4.7,4.7,4.7,4.7,4.8,5.0;中位数为4.7 4.7=4.72+, 平均数为()14.4 4.6 4.7 4.7 4.7 4.7 4.85.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()222221=0.30.10.10.3=0.0258S +++甲;乙班视力值分别为:4.8,4.7,4.7,5.0,4.6,4.5,4.9,4.4;的从小到大排列为:4.4,4.5,4.6,4.7,4.7,4.8,4.9,5.0,中位数为4.7 4.7=4.72+ 平均数为()14.4 4.5 4.6 4.7 4.7 4.8 4.95.0=4.78+++++++;极差为5.0 4.40.6−=方差为()()()()()()22222221=0.30.20.10.10.20.3=0.0358S +++++甲;甲、乙班视力值的平均数、中位数、极差都相等,甲班视力值的方差小于乙班视力值的方差,故D 选项正确 故选:D .【点睛】本题考查了折线统计图,求平均数,中位数,极差,方差,熟练掌握平均数,中位数,极差,方差的定义是解题的关键.8. 如图,在正方形中,阴影部分是以正方形的顶点及其对称中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.将一个小球在该正方形内自由滚动,小球随机地停在正方形内的某一点上.若小球停在阴影部分的概率为1P ,停在空白部分的概率为2P ,则1P 与2P 的大小关系为( )A. 12P P <B. 12P PC. 12P P >D. 无法判断【答案】C 【解析】【分析】根据题意可得阴影部分面积等于正方形面积的一半,进而即可求解. 【详解】解:如图所示,连接AE BD ,交于O , 由题意得,A B C D ,,,分别是正方形四条边的中点, ∴点O 为正方形的中心, ∴AOBF AODC S S =四边形四边形,根据题意,可得扇形OAB 的面积等于扇形CAD 的面积, ∴AOBF OAB AODC AOC S S S S −=−四边形扇形四边形扇形,∴阴影部分面积等于空白部分面积,即阴影部分面积等于正方形面积的一半 ∴12P P =, 故选:C .【点睛】本题考查了正方形的性质,扇形面积,几何概率,得出阴影部分面积等于正方形面积的一半是解题的关键.9. 如图,抛物线2y ax bx c ++的顶点A 的坐标为1,2m−,与x 轴的一个交点位于0合和1之间,则以下结论:①0abc >;②20b c +>;③若图象经过点()()123,,3,y y −,则12y y >;④若关于x 的一元二次方程230ax bx c ++−=无实数根,则3m <.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C 【解析】【分析】根据图象,分别得出a 、b 、c 的符号,即可判断①;根据对称轴得出a b =,再根据图象得出当1x =时,0y a b c =++<,即可判断②;分别计算两点到对称轴的距离,再根据该抛物线开口向下,在抛物线上的点离对称轴越远,函数值越小,即可判断③;将方程230ax bx c ++−=移项可得23ax bx c ++=,根据该方程无实数根,得出抛物线2y ax bx c ++与直线3y =没有交点,即可判断④.【详解】解:①∵该抛物线开口向下, ∴a<0,∵该抛物线的对称轴在y 轴左侧, ∴0b <,∵该抛物线于y 轴交于正半轴,∴0c >, ∴0abc >,故①正确,符合题意; ②∵1,2A m−, ∴该抛物线的对称轴为直线122b x a =-=-,则a b =, 当1x =时,y a bc =++,把a b =得:当1x =时,2y b c =+, 由图可知:当1x =时,0y <, ∴20b c +<,故②不正确,不符合题意; ③∵该抛物线的对称轴为直线12x =−, ∴()13,y −到对称轴的距离为()15322−−−=,()23,y 到对称轴的距离为17322−−= , ∵该抛物线开口向下,∵5722<, ∴12y y >,故③正确,符合题意;④将方程230ax bx c ++−=移项可得23ax bx c ++=, ∵230ax bx c ++−=无实数根,∴抛物线2y ax bx c ++与直线3y =没有交点, ∵1,2A m−, ∴3m <.故④正确综上:正确的有:①③④,共三个. 故选:C .【点睛】本题主要考查了二次函数的图象和性质,解题的关键是掌握根据二次函数图象判断各系数的方法,熟练掌握二次函数的图象和性质.10. 如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A …,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A −−−,()32,1A −−,则顶点100A 的坐标为( )A ()31.34 B. ()31,34− C. ()32,35 D. ()32,0【答案】A 【解析】【分析】根据图象可得移动3次完成一个循环,从而可得出点坐标的规律()323n A n n −−,.【详解】解:∵()121A −,,()412A −,,()703A ,,()1014A ,, , ∴()323n A n n −−,,∵1003342=×−,则34n =,∴()1003134A ,, 故选:A .【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律.二、填空题11. “北斗系统”是我国自主建设运行的全球卫星导航系统,国内多个导航地图采用北斗优先定位.目前,北斗定位服务日均使用量已超过3600亿次.3600亿用科学记数法表示为________. 【答案】113.610×.【解析】【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:3600亿360000000000=,用科学记数法表示为113.610×. 故答案为:113.610×.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,正确确定a 的值以及n 的值是解决问题的关键.12. 一杆古秤在称物时的状态如图所示,已知1102∠=°,则2∠的度数为_____.【答案】78°##78度 【解析】【分析】根据两直线平行,内错角相等,即可求解. AB DC ∥, ∴2BCD ∠=∠,∵1180BCD ∠+∠=°,1102∠=°, ∴180178BCD ∠=°−∠=°∴278∠=°.故答案为:78°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.13. 如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A ,B ,C ,D ,连接AB ,则BAD ∠的度数为_______.【答案】52.5° 【解析】【分析】如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,然后再根据等腰三角形的性质求得65OAB ∠=°、25OAD ∠=°,最后根据角的和差即可解答.【详解】解:如图:连接,,,,,OA OB OC OD AD AB ,由题意可得:OA OB OC OD ===,502525AOB ∠=°−°=°,15525130AOD ∠=°−°=°,∴()118077.52OABAOB ∠=°−∠=°,()1180252OAD AOB ∠=°−∠=°, ∴52.5OAB A BAD O D ∠∠−∠==°. 故答案为52.5°.【点睛】本题主要考查了角的度量、等腰三角形的性质等知识点,灵活运用等腰三角形的性质是解答本题的关键.14. 如图,利用课本上的计算器进行计算,其按键顺序及结果如下:①按键的结果为4;②按键的结果为8; ③按键的结果为0.5;④按键的结果为25.以上说法正确的序号是___________. 【答案】①③ 【解析】【分析】根据计算器按键,写出式子,进行计算即可.【详解】解:①4=;故①正确,符合题意; ②按键的结果为()3424+−=−;故②不正确,不符合题意;③按键的结果为()sin 4515sin 300.5°−°=°=;故③正确,符合题意; ④按键的结果为2132102−×=;故④不正确,不符合题意;综上:正确的有①③. 故答案为:①③.【点睛】本题主要考查了科学计算器是使用,解题的关键是熟练掌握和了解科学计算器各个按键的含义. 15. 如图,在直角坐标系中,A 与x 轴相切于点,B CB 为A 的直径,点C 在函数(0,0)ky k x x=>>的图象上,D 为y 轴上一点,ACD 的面积为6,则k 的值为________.【答案】24 【解析】【分析】设,k C a a,则,kOB a AC a==,则122k AC BC a ==,根据三角形的面积公式得出162ACD S AC OB =⋅= ,列出方程求解即可. 【详解】解:设,k C a a, ∵A 与x 轴相切于点B , ∴BC x ⊥轴,∴,kOB a AC a==,则点D 到BC 的距离为a , ∵CB 为A 的直径,∴122kAC BC a ==, ∴16224ACDk k S a a =⋅⋅== , 解得:24k =, 故答案为:24.【点睛】本题主要考查了切线的性质,反比例函数的图象和性质,解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线,以及反比例函数图象上点的坐标特征.16. 如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y 2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【解析】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC == 在Rt ABQ 中,8,4AB BQ ==∴AQ∵1122ABC S AB CG AQ BC =×=× ,∴BC AQ CG AB ×==,. 【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.三、解答题17. 先化简,再求值:2695222a a a a a −+÷++−−,其中a 是使不等式112a −≤成立的正整数. 【答案】33a a −+;12−【解析】【分析】先根据分式混合运算法则进行化简,然后求出不等式的解集,得出正整数a 的值,再代入数据计算即可.【详解】解:2695222a a a a a −+÷++ −−()()()23225222a a a a a a −+−=÷+ −−−()2234522a a a a−−+÷−−()()()232233a aa a a −−⋅−+−33a a −=+, 解不等式112a −≤得:3a ≤, ∵a 为正整数, ∴1a =,2,3,∵要使分式有意义20a −≠, ∴2a ≠,∵当3a =时,552320223a a ++=++=−−, ∴3a ≠,∴把1a =代入得:原式131132−==−+. 【点睛】本题主要考查了分式化简求作,分式有意义的条件,解不等式,解题的关键是熟练掌握分式混合运算法则,准确计算.18. “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之问”而推出的一项A ,B ,C ,D ,E 五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该市有1000名中学生参加本次活动,则选择A 大学的大约有_________人;(3)甲、乙两位同学计划从A ,B ,C 三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.【答案】(1)见解析(2)14.4°;200.(3)1 3【解析】【分析】(1)根据C的人数除以占比得到总人数,进而求得B的人数,补全统计图即可求解;(2)根据D的占比乘以360°得到圆心角的度数,根据1000乘以选择A的人数的占比即可求解;(3)根据列表法求概率即可求解.【小问1详解】解:总人数为1428%50÷=(人)∴选择B大学的人数为5010142816−−−−=,补全统计图如图所示,【小问2详解】在扇形统计图中,D所在的扇形的圆心角的度数为236014.4 50°×=°,选择A大学的大约有101000=20050×(人)故答案为:14.4°;200.【小问3详解】列表如下,共有9种等可能结果,其中有3种符合题意,∴甲、乙两人恰好选取同一所大学的概率为13.【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,列表法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD 长16米,在地面点A 处测得风力发电机塔杆顶端P 点的仰角为45°,利用无人机在点A 的正上方53米的点B 处测得P 点的俯角为18°,求该风力发电机塔杆PD 的高度.(参考数据:sin180.309≈°,cos180.951≈°,tan180.325≈°)【答案】该风力发电机塔杆PD 的高度为32米 【解析】【分析】过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,先根据含30°角直角三角形的性质得出8DE =,设PD x =米,则()8PD DE x =+=+米,进而得出()8AE x =+米,证明四边形FAEP 为矩形,则()8PFAE x ==+米,()8AFPE x ==+米,根据线段之间的和差关系得出()45BF AB AF s x =−=−米,最后根据tan18BFPF=°,列出方程求解即可.【详解】解:过点P 作PF AB ⊥于点F ,延长PD 交AC 延长线于点E ,根据题意可得:AB 、PD 垂直于水平面,30DCE ∠=°,45PAC ∠=°,18GBP ∠=°, ∴PE AE ⊥,∵16CD =米, ∴1116822DE CD ==×=(米), 设PD x =米,则()8PE PD DE x =+=+米,∵45PAC ∠=°,PE AE ⊥,∴()8tan 45PEAEx ==+°米,∵AB AE ⊥,PE AE ⊥,PF AB ⊥,∴四边形FAEP 为矩形,∴()8PFAE x ==+米,()8AFPE x ==+米,∵53AB =米,∴()()53845BF AB AF x x =−=−+=−米, ∵18GBP ∠=°, ∴18BPF ∠=°, ∴tan18BF PF =°,即450.3258xx−≈+, 解得:32x ≈,答:该风力发电机塔杆PD 的高度为32米.【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤. 20. 【问题背景】如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形ABCD 进行如下操作:①分别以点,B C 为圆心,以大于12BC 的长度为半径作弧,两弧相交于点E ,F ,作直线EF 交BC 于点O ,连接AO ;②将ABO 沿AO 翻折,点B 的对应点落在点P 处,作射线AP 交CD 于点Q .【问题提出】在矩形ABCD 中,53AD AB ==,,求线段CQ 的长.【问题解决】经过小组合作、探究、展示,其中的两个方案如下:方案一:连接OQ ,如图2.经过推理、计算可求出线段CQ 的长;方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.经过推理、计算可求出线段CQ 的长. 请你任选其中一种方案求线段CQ 的长. 【答案】线段CQ 的长为2512. 【解析】【分析】方案一:连接OQ ,由翻折的不变性,知3AP AB ==, 2.5OPOB ==,证明()HL QPO QCO ≌△△,推出PQ CQ =,设PQCQ x ==,在Rt ADQ △中,利用勾股定理列式计算求解即可;方案二:将ABO 绕点O 旋转180°至RCO △处,证明OAQ R ∠=∠,推出QA QR =,设CQ x =,同方案一即可求解.【详解】解:方案一:连接OQ ,如图2.∵四边形ABCD 矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由翻折的不变性,知3AP AB ==, 2.5OP OB ==,90APO B ∠=∠=°,∴ 2.5OP OC ==,90QPO C ∠=∠=°,又OQ OQ =, ∴()HL QPO QCO ≌△△, ∴PQ CQ =,设PQCQ x ==,则3AQ x =+,3DQ x =−,是在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512; 方案二:将ABO 绕点O 旋转180°至RCO △处,如图3.∵四边形ABCD 是矩形,∴3AB CD ==,5ADBC ==, 由作图知12.52BOOC BC ===, 由旋转的不变性,知3CR AB ==,BAO R ∠=∠,90B OCR ∠=∠=°, 则9090180OCR OCD ∠+∠=°+°=°, ∴D C R 、、共线,由翻折的不变性,知BAO OAQ ∠=∠, ∴OAQ R ∠=∠, ∴QA QR =,设CQ x =,则3QA QR x ==+,3DQ x =−,在Rt ADQ △中,222AD QD AQ +=,即()()222533x x +−=+, 解得2512x =, ∴线段CQ 的长为2512. 【点睛】本题考查了作线段的垂直平分线,翻折的性质,旋转的性质,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,解题的关键是学会利用参数构建方程解决问题.21. 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的34,用600元购买《孙子算经》比购买《周髀算经》多买5本. (1)求两种图书的单价分别为多少元?(2)为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?【答案】(1)《周髀算经》单价为40元,则《孙子算经》单价是30元;(2)当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元. 【解析】【分析】(1)设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元,根据“用600元购买《孙子算经》比购买《周髀算经》多买5本”列分式方程,解之即可求解;(2)根据购买的《周髀算经》数量不少于《孙子算经》数量的一半列出不等式求出m 的取值范围,根据m 的取值范围结合函数解析式解答即可. 【小问1详解】解:设《周髀算经》单价为x 元,则《孙子算经》单价是34x 元, 依题意得,600600534x x=+, 解得40x =,经检验,40x =是原方程的解,且符合题意,340304×=, 答:《周髀算经》单价为40元,则《孙子算经》单价是30元; 【小问2详解】解:设购买的《周髀算经》数量m 本,则购买的《孙子算经》数量为()80m −本, 依题意得,()1802m m ≥−, 解得2263m ≥, 设购买《周髀算经》和《孙子算经》的总费用为y (元), 依题意得,()400.8300.88081920y m m m =×+×−=+,∵80k =>,∴y 随m 的增大而增大,∴当27m =时,有最小值,此时82719202316y =×+=(元), 802753−=(本)答:当购买《周髀算经》27本,《孙子算经》53本时,购买两类图书总费用最少,最少总费用为2316元.【点睛】本题主要考查分式方程的实际应用,一次函数的实际应用以及一元一次不等式的实际应用,根据题意表示出y 与x 之间的函数关系式以及列出不等式是解题的关键.22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点,E O 经过,A D 两点,交对角线AC 于点F ,连接OF 交AD 于点G ,且AG GD =.(1)求证:AB 是O 的切线;(2)已知O 的半径与菱形的边长之比为5:8,求tan ADB ∠的值.【答案】(1)见解析 (2)tan 2ADB ∠=.【解析】【分析】(1)利用垂径定理得OF AD ⊥,利用菱形的性质得GAF BAF ∠=∠,利用半径相等得OAF OFA ∠=∠,即可证明90OAF BAF ∠+∠=°,据此即可证明结论成立;(2)设4AG GD a ==,由题意得:5:4OA AG =,求得5OA a =,由勾股定理得到3OG a =,求得2FG a =,利用菱形的性质求得ADB AFG ∠=∠,据此求解即可. 【小问1详解】证明:连接OA ,∵AG GD =,由垂径定理知OF AD ⊥,∴90OGA FGA ∠=∠=°,∵四边形ABCD 是菱形,∴GAF BAF ∠=∠,∴90GAF AFG BAF AFG ∠+∠=°=∠+∠,∵OA OF =,∴OAF OFA ∠=∠,∴90OAF BAF OAB ∠+∠=∠=°,又∵OA 为O 的半径,∴AB 是O 的切线;【小问2详解】解:∵四边形ABCD 是菱形,AG GD =,∴设4AG GD a ==,∵O 的半径与菱形的边长之比为5:8,∴在Rt OAG △中,:5:4OA AG =,∴5OA a =,3OG a ==,∴2FG OF OG a =−=,∵四边形ABCD 是菱形,∴BD AC ⊥,即90DEA FGA ∠=°=∠,∴ADB AFG ∠=∠, ∴4tan tan 22AG a ADB AFG FG a∠=∠===. 【点睛】本题考查了菱形的性质,垂径定理,切线的判定,求角的正切值,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.23. 如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.【答案】(1)见解析 (2)2BE =【解析】【分析】(1)证明CD BE ∥,推出DCE BEF ∠=∠,利用SAS 证明DCE FEB ≌△△即可证明结论成立; (2)取CF 的中点H ,连接GH ,证明GH 是FCD 的中位线,设BE a =,则122FH a =−,证明FGH FBE ∽△△,得到GH FH BE EF=,即2440a a −−=,解方程即可求解. 【小问1详解】 证明:∵等腰ACD 和等腰BCE ,∴AD CD =,EC EB =,A DCA ∠=∠,∵A CBE ∠=∠,∴DCA CBE ∠=∠,∴CD BE ∥,∴DCE BEF ∠=∠,∵EF AD =,∴EF CD =,在DCE △和FEB 中,CD EF DCE FEB EC = ∠=∠ =, ∴()SAS DCE FEB ≌△△,∴DE BF =;【小问2详解】解:取CF 的中点H ,连接GH ,∵点G 是DE 的中点,∴GH 是FCD 的中位线, ∴11122GH CD AD ===,GH CD ∥,设BE a =,则111222CH EH CE BE a ====, ∵2EF AD ==, ∴122FH a =−, ∵CD BE ∥,∴GH BE ∥,∴FGH FBE ∽△△, ∴GH FH BE EF =,即12122a a −=, 整理得2440a a −−=,解得2a =+(负值已舍),经检验2a =+是所列方程的解,且符合题意,∴2BE =【点睛】本题考查了相似三角形的判定和性质,解一元二次方程,三角形中位线定理,全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24. 如图,抛物线25y ax bx =++与x 轴交于,A B 两点,与y 轴交于点,4C AB =.抛物线的对称轴3x =与经过点A 的直线1y kx =−交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为B 上一个动点,请求出12+PC PA 的最小值. 【答案】(1)直线AD 的解析式为1y x =−;抛物线解析式为265y x x =−+(2)存在,点M 的坐标为()4,3−或()0,5 或()5,0(3【解析】【分析】(1)根据对称轴3x =,4AB =,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当90DAM ∠=°时,求出直线AM 的解析式为1y x =−+,解方程组2165y x y x x =−+ =−+ ,即可得到点M 的坐标;②当90ADM ∠=°时,求出直线DM 的解析式为5y x =−+,解方程组2565y x y x x =−+ =−+,即可得到点M 的坐标; (3)在AB 上取点F ,使1BF =,连接CF ,证得BF PB PB AB=,又PBF ABP ∠=∠,得到PBF ABP ∽,推出12PF PA =,进而得到当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【小问1详解】解:∵抛物线的对称轴3x =,4AB =,∴()()1,0,5,0A B ,将 1,0A 代入直线1y kx =−10k −=,解得1k =,∴直线AD 的解析式为1y x =−;将()()1,0,5,0A B 代入25y ax bx =++,得5025550a b a b ++= ++= ,解得16a b = =−, ∴抛物线的解析式为265y x x =−+;【小问2详解】存在点M ,∵直线AD 的解析式为1y x =−,抛物线对称轴3x =与x 轴交于点E .∴当3x =时,12y x =−=,∴()3,2D ,①当90DAM ∠=°时,设直线AM 的解析式为y x c =−+,将点A 坐标代入, 得10c −+=,解得1c =,∴直线AM 的解析式为1y x =−+, 解方程组2165y x y x x =−+ =−+ , 得10x y = =或43x y = =− , ∴点M 的坐标为()4,3−;②当90ADM ∠=°时,设直线DM 的解析式为y x d =−+,将()3,2D 代入, 得32d −+=,解得5d =,∴直线DM 的解析式为5y x =−+, 解方程组2565y x y x x =−+ =−+, 解得05x y = = 或50x y = =, ∴点M 的坐标为()0,5 或()5,0综上,点M 的坐标为()4,3−或()0,5 或()5,0;【小问3详解】如图,在AB 上取点F ,使1BF =,连接CF ,∵2PB =, ∴12BF PB =, ∵2142PB AB ==,、 ∴BF PB PB AB=, 又∵PBF ABP ∠=∠,∴PBF ABP ∽, ∴12PF BF PAPB ==,即12PF PA =, ∴12PC PA PC PF CF +=+≥, ∴当点C 、P 、F 三点共线时,12+PC PA 的值最小,即为线段CF 的长, ∵5,1514OC OF OB ==−=−=,∴CF∴12+PC PA【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.。

2024年陕西省中考数学试题(解析版)

2024年陕西省中考数学试题(解析版)

2024年陕西省初中学业水平考试数 学 试 卷注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题),全卷共8页,总分120分,考试时间120分钟2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的试卷类型信息点(A 或B )3.请在答题卡上各题的指定区域内作答,否则作答无效4.作图时,先用铅笔作图,再用规定签字笔描黑5.考试结束,本试卷和答题卡一并交回第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的) 1. 3−倒数是( )A. 3B. 13C. 13−D. 3−【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】解:∵1313 −×−=, ∴3−的倒数是13−. 故选C2. 如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.的【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3. 如图,AB DC ∥,BC DE ∥,145B ∠=°,则D ∠的度数为( )A. 25°B. 35°C. 45°D. 55°【答案】B【解析】 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=°,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C∠+∠=°∴, 145B ∠=°,18035C B ∴∠=°−∠=°,∥ BC DE ,35D C ∴∠=∠=°.故选B .4. 不等式()216x −≥的解集是( )A. 2x ≤B. 2x ≥C. 4x ≤D. 4x ≥【答案】D【解析】【分析】本题主要考查解一元一次不等式.通过去括号,移项,合并同类项,未知数系数化为1,即可求解.【详解】解:()216x −≥,去括号得:226x −≥,移项合并得:28x ≥,解得:4x ≥,故选:D .5. 如图,在ABC 中,90BAC ∠=°,AD 是BC 边上的高,E 是DC 的中点,连接AE ,则图中的直角三角形有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题主要考查直角三角形的概念.根据直角三角形的概念可以直接判断.【详解】解:由图得ABD △,ABC ,ADC △,ADE 为直角三角形,共有4个直角三角形.故选:C .6. 一个正比例函数图象经过点()2,A m 和点(),6B n −,若点A 与点B 关于原点对称,则这个正比例函数的表达式为 ( )A. 3y x =B. 3y x =−C. 13y x =D. 13y x =− 【答案】A【解析】【分析】本题考查正比例函数的图象,坐标与中心对称,根据关于原点对称的两个点的横纵坐标均互为相反数,求出,A B 的坐标,进而利用待定系数法求出函数表达式即可.【详解】解:∵点A 与点B 关于原点对称,∴6,2m n ==−,∴()2,6A ,()2,6B −−, 设正比例函数的解析式为:()0y kx k =≠,把()2,6A 代入,得:3k =, ∴3y x =;故选A .7. 如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上,AF 与DC 交于点H ,若6AB =,2CE =,则DH 的长为( )的A. 2B. 3C. 52D. 83【答案】B【解析】 【分析】本题考查了相似三角形的判定和性质,正方形的性质.证明ADH FGH ∽△△,利用相似三角形的性质列式计算即可求解.【详解】解:∵正方形ABCD ,6AB =,∴6AB AD CD ===,∵正方形CEFG ,2CE =,∴2CE GF CG ===,∴4DG CD CG =−=,由题意得AD GF ∥,∴ADH FGH ∽△△, ∴AD DH GF GH=,即624DH DH =−, 解得3DH =,故选:B .8. 已知一个二次函数2y ax bx c ++的自变量x 与函数y 的几组对应值如下表, x …4− 2− 0 3 5 …y … 24− 8− 0 3− 15− …则下列关于这个二次函数的结论正确的是( )A. 图象的开口向上B. 当0x >时,y 的值随x 的值增大而增大C. 图象经过第二、三、四象限D. 图象对称轴是直线1x =【答案】D【解析】【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可. 的【详解】解:由题意得4280933a b c c a b c −+=− = ++=− ,解得102a c b =− = =,∴二次函数的解析式为()22211y x x x =−+=−−+,∵10a =−<,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线1x =,故选项D 符合题意;当01x <<时,y 的值随x 的值增大而增大,当1x >时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为()1,1且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D . 第二部分(非选择题 共96分)二、填空题(共5小题,每小题3分,计15分)9. 分解因式:2a ab −=_______________.【答案】a (a ﹣b ).【解析】【详解】解:2a ab −=a (a ﹣b ). 故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.10. 小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)【答案】0【解析】【分析】本题考查有理数的运算,根据横向三个数之和与纵向三个数之和相等,进行填写即可得出结果.【详解】解:由题意,填写如下:()()10102020++−=++−=,,满足题意;故答案为:0.11. 如图,BC 是O 的弦,连接OB ,OC ,A ∠是 BC所对的圆周角,则A ∠与OBC ∠的和的度数是________.【答案】90°##90度【解析】【分析】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,熟练掌握圆周角定理是解题的关键.根据圆周角定理可得2BOC A ∠=∠,结合三角形内角和定理,可证明2180A OBC OCB ∠+∠+∠=°,再根据等腰三角形的性质可知OBC OCB ∠=∠,由此即得答案.【详解】A ∠是 BC所对的圆周角,BOC ∠是 BC 所对的圆心角, 2BOC A ∴∠=∠,180BOC OBC OCB ∠+∠+∠=° ,2180A OBC OCB ∴∠+∠+∠=°,OB OC = ,OBC OCB ∴∠=∠,2180A OBC OBC ∴∠+∠+∠=°,22180A OBC ∴∠+∠=°,90A OBC ∴∠+∠=°.故答案为:90°.12. 已知点()12,A y −和点()2,B m y 均在反比例函数5y x=−的图象上,若01m <<,则12y y +________0. 【答案】<##小于【解析】【分析】本题主要考查了反比例函数的性质,先求出152y =,25y m =−,再根据01m <<,得出25y <−,最后求出120y y +<即可.【详解】解:∵点()12,A y −和点()2,B m y 均在反比例函数5y x =−的图象上, ∴152y =,25y m=−, ∵01m <<,∴25y <−,∴120y y +<.故答案为:<.13. 如图,在ABC 中,AB AC =,E 是边AB 上一点,连接CE ,在BC 右侧作BF AC ∥,且BF AE =,连接CF .若13AC =,10BC =,则四边形EBFC 的面积为________.【答案】60【解析】【分析】本题考查等边对等角,平行线的性质,角平分线的性质,勾股定理:过点C 作C M A B ⊥,CN BF ⊥,根据等边对等角结合平行线的性质,推出ABC CBF ∠=∠,进而得到CM CN =,得到CBF ACE S S = ,进而得到四边形EBFC 的面积等于ABC S ,设AM x =,勾股定理求出CM 的长,再利用面积公式求出ABC 的面积即可.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵BF AC ∥,∴ACB CBF ∠=∠,∴ABC CBF ∠=∠,∴BC 平分ABF ∠,过点C 作C M A B ⊥,CN BF ⊥,则:CM CN =, ∵11,22ACE CBF S AE CM S BF CN =⋅=⋅ ,且BF AE =, ∴CBF ACE S S = ,∴四边形EBFC 面积CBF CBE ACE CBE CBA S S S S S =+=+= ,∵13AC =,∴13AB =,设AM x =,则:13BM x =−,由勾股定理,得:22222CM AC AM BC BM =−=−,∴()2222131013x x −=−−, 解:11913x =,∴12013CM =, ∴1602CBA S AC CM ⋅ , ∴四边形EBFC 的面积为60.故答案为:60.三、解答题(共13小题,计81分。

中考试题及答案解析数学

中考试题及答案解析数学

中考试题及答案解析数学一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax + b答案:A解析:二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

2. 计算下列哪个表达式的结果为0?A. 3x - 2xB. 4y + 5yC. 7z - 7zD. 6a - 5a答案:C解析:7z - 7z = 0,因为任何数减去它自己都等于0。

3. 以下哪个分数是最简分数?A. 3/6B. 8/12C. 5/10D. 7/9答案:D解析:最简分数是指分子和分母没有公因数的分数。

选项A、B和C都可以进一步简化,而选项D的分子和分母互质,因此是最简分数。

4. 如果一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B解析:圆的面积公式是A = πr^2,其中r是半径。

将半径5厘米代入公式,得到面积为25π平方厘米。

5. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 2答案:A解析:解不等式2x - 3 > 5,首先将3加到不等式的两边,得到2x > 8,然后将两边都除以2,得到x > 4。

6. 计算下列哪个表达式的结果为负数?A. (-3) × (-2)B. (-3) × 2D. 3 × 2答案:B解析:负数乘以正数得到负数,所以(-3) × 2 = -6,结果是负数。

7. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 22答案:A解析:完全平方数是指一个整数的平方。

16是4的平方,因此是完全平方数。

2023年江苏省无锡市中考数学真题 (解析版)

2023年江苏省无锡市中考数学真题  (解析版)

2023年无锡市初中毕业升学考试数学试题一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.【答案】A3=,故选:A .2.【答案】C【解析】由题意得x-2≠0,∴x≠2.故选C .3.【答案】D【解析】解:A 选项,当12x y =⎧⎨=⎩时,24x y +=,则12x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;B 选项,当20x y =⎧⎨=⎩时,24x y +=,则20x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;C 选项,当0.53x y =⎧⎨=⎩时,24x y +=,则0.53x y =⎧⎨=⎩是二元一次方程24x y +=的解,不合题意;D 选项,当24x y =-⎧⎨=⎩时,20x y +=,则24x y =-⎧⎨=⎩不是二元一次方程24x y +=的解,符合题意;故选:D .4.【答案】D【解析】解:A 选项,235a a a ⨯=,故该选项不正确,不符合题意;B 选项,2a 与3a 不能合并,故该选项不正确,不符合题意;C 选项,22(2)4a a -=,故该选项不正确,不符合题意;D 选项,642a a a ÷=,故该选项正确,符合题意;故选:D .5.【答案】A【解析】解:∵函数21y x =+的图像向下平移2个单位长度,∴21221y x x =+-=-,故答案为:A .6.【答案】A【解析】解:由题意得:25.76(1) 6.58x +=.故选:A .7.【答案】B【解析】解:由旋转性质可得:55BAC DAE ∠=∠=︒,AB AD =,∵40α=︒,∴15DAF ∠=︒,70B ADB ADE ∠=∠=∠=︒,∴85AFE DAF ADE ∠=∠+∠=︒,故选:B .8.【答案】C【解析】解:各边相等各角相等的多边形是正多边形,只有各边相等的多边形不一定是正多边形,如菱形,故①是假命题;正三角形和正五边形就不是中心对称图形,故②为假命题;正六边形中由外接圆半径与边长可构成等边三角形,所以外接圆半径与边长相等,故③为真命题;根据轴对称图形的定义和正多边形的特点,可知正n 边形共有n 条对称轴,故④为真命题.故选:C .9.【答案】B【解析】解:过点C 作CE AD ⊥,∵60D ∠=︒,2CD =,∴sin 60CE CD =⋅︒=过点B 作BF AD ⊥,∵AD BC ∥,∴四边形BCEF 是矩形,∴BF CE ==,需使222BM BN +最小,显然要使得BM 和BN 越小越好,∴显然点F 在线段MN 的之间,设MF x =,则1FN x =-,∴22222229232(1)334113323BM BN x x x x x ⎛⎫⎡⎤+=++-+=-+=+ ⎪-⎣⎦⎝⎭,∴当23x =时取得最小值为293.故选:B .10.【答案】A【解析】①有3种情况,如图1,BC 和OD 都是中线,点E 是重心;如图2,四边形ABDC 是平行四边形,F 是AD 中点,点E 是重心;如图3,点F 不是AD 中点,所以点E 不是重心;①正确②当60α=︒,如图4时AD 最大,4AB =,∴2AC BE ==,BC AE ==6BD ==,∴8DE =,∴AD =≠∴②错误;③如图5,若60α=︒,C ABC BD ∽△△,∴60BCD ∠=︒,90CDB ∠=︒,4AB =,2AC =,23BC =,3OE =1CE =,∴3CD =32GE DF ==,32CF =,∴52EF DG ==,32OG =,∴723OD =≠,∴③错误;④如图6,ABC BCD ∽△△,∴CD BC BC AB =,即214CD BC =,在Rt ABC △中,2216BC x =-,∴()221116444CD x x =-=-+,∴22114(2)544AC CD x x x +=-+=--+,当2x =时,AC CD +最大为5,∴④正确.故选:C .二、填空题(本大题共8小题,每小题3分,共24分.)11.【答案】()22x -##()22x -【解析】解:244x x -+=()22x -;故答案为:()22x -.12.【答案】5610⨯【解析】解:56000006100000610=⨯=⨯.故答案为:5610⨯.13.【答案】1-【解析】解:去分母得:3(1)2(2)x x -=-,去括号得:3324x x -=-,移项得:3243x x -=-+,合并同类项得:=1x -,检验:把=1x -代入最简公分母中:20,10x x -≠-≠,∴原分式方程的解为:=1x -,故答案为:1-14.【答案】36+##36+【解析】解:∵侧面展开图是边长为6的正方形,∴底面周长为6,∵底面为正三角形,∴正三角形的边长为2作CD AB ⊥,ABC 是等边三角形,2AB BC AC ===,1AD ∴=,∴在直角ADC ∆中,CD ==,122ABC S ∴=⨯=∴该直三棱柱的表面积为6636⨯+=+,故答案为:36+.15.【答案】2y x =-(答案不唯一)【解析】解:设1k =,则y x b =+,∵它的图象经过点(20),,∴代入得:20b +=,解得:2b =-,∴一次函数解析式为2y x =-,故答案为:2y x =-(答案不唯一).16.【答案】8【解析】解:设门高x 尺,依题意,竿长为()2x +尺,门的对角线长为()2x +尺,门宽为24x +-=()2x -尺,∴()()22222x x x +=+-,解得:8x =或0x =(舍去),故答案为:8.17.【答案】6【解析】当点A 在y 轴上,点B 、C 在x 轴上时,连接AO ,ABC 为等边三角形且AO BC ⊥,则30BAO ∠=︒,∴tan tan 30BAO ∠=︒=33OB OA =,如图所示,过点,A B 分别作x 轴的垂线,交x 轴分别于点,E F ,AO BO ⊥,90BFO AEO AOB ∠=∠=∠=︒,∴90BOF AOE EAO ∠=︒-∠=∠,∴BFO OEA ∽ ,∴213BFO AOE S OB S OA ⎛⎫== ⎪⎝⎭ ,∴212BFO S -== ,∴3AOE S =△,∴6k =.18.【答案】910或25或212【解析】解:由(1)(5)y a x x =--,令0x =,解得:5y a =,令0y =,解得:121,5x x ==,∴()1,0A ,()5,0B ,()0,5C a ,设直线BM 解析式为y kx b =+,∴5031k b k b +=⎧⎨+=⎩解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线BM 解析式为1522y x =-+,当0x =时,52y =,则直线BM 与y 轴交于50,2⎛⎫ ⎪⎝⎭,∵12a >,∴552a >,∴点M 必在ABC 内部.1)、当分成两个三角形时,直线必过三角形一个顶点,平分面积,必为中线设直线AM 的解析式为y mx n=+∴031k b k b +=⎧⎨+=⎩解得:1212m n ⎧=⎪⎪⎨⎪=-⎪⎩则直线AM 的解析式为1122y x =-①如图1,直线AM 过BC 中点,,BC 中点坐标为55,22a ⎛⎫ ⎪⎝⎭,代入直线求得31102a =<,不成立;②如图2,直线BM 过AC 中点,直线BM 解析式为1522y x =-+,AC 中点坐标为15,22a ⎛⎫ ⎪⎝⎭,待入直线求得910a =;③如图3,直线CM 过AB 中点,AB 中点坐标为()3,0,∴直线MB 与y 轴平行,必不成立;2)、当分成三角形和梯形时,过点M 的直线必与ABC 一边平行,所以必有“”A 型相似,因为平分面积,所以相似比为④如图4,直线EM ∥AB ,∴CEN COA∽∴CE CN CO CA ==,∴515a a -=解得25a =;⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴2BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得2AE AB =∴22AE =222NE =-,tan tan MEN CBO ∠∠=,55222a =-,解得212a =;综上所述,910a =或225+或212+.三、解答题(本大题共10小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【答案】(1)8;(2)24y xy-+【解析】解:(1)2(3)25|4|--954=-+8=;(2)(2)(2)()x y x y x x y +---2224x y x xy=--+24y xy =-+.20.【答案】(1)11174x -+=,21174x --=;(2)13x -<<【解析】(1)2220x x +-=解:∵2,1,2a b c ===-,∴24142217b ac ∆=-=+⨯⨯=0>,∴411724b x a -±-±==解得:11174x -+=,21174x -=;(2)32251x x x +>-⎧⎨-<⎩①②解不等式①得:1x >-解不等式②得:3x <∴不等式组的解集为:13x -<<21.【答案】(1)见解析(2)见解析【解析】(1)证明:∵点D 、E 分别为AB AC 、的中点,∴AE CE =,DE BC ∥,∴ADE F ∠=∠,在CEF △与AED △中,ADE F AED CEF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS CEF AED ≌;(2)证明:由(1)证得CEF AED △≌△,∴A FCE ∠=∠,∴BD CF ∥,∵DF BC ∥,∴四边形DBCF 是平行四边形.22.【答案】(1)14(2)18【解析】(1)解:∵共有4张相同的卡片且任意抽取一张卡片,记录后放回,∴每张卡片抽到的概率都是14,设小明恰好抽到景区A 门票为事件A ,则1()4P A =,故答案为:14;(2)解:根据题意,画树状图如下:∴一共有16种等可能的情况,恰好抽到景区A 和景区B 门票的情况有2种,∴他恰好抽到景区A 和景区B 门票的概率为21168=;23.【答案】(1)90;10(2)七年级的平均分最高;八年级的中位数最大;九年级的众数最大【解析】(1)解:∵抽取的总人数为217%300÷=(人),∴C 组的人数为30030%90a =⨯=(人),100%7%32%30%19%2%10%m =-----=;故答案为:90,10;(2)解:七年级的平均分最高;八年级的中位数最大;九年级的众数最大.(答案不唯一).24.【答案】(1)见解析(2)π【解析】(1)解:如图,O 为所作;;(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,1302MPO NPO APB ∠=∠=∠=︒,∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,∴3tan 3033OM PM =⋅︒=⨯=,∴O 的劣弧 MN与PM PN 、所围成图形的面积PMON MONS S =-四边形扇形21201232360π⨯⨯=⨯⨯-π=.故答案为:π-.25.【答案】(1)67.5︒(2)2【解析】(1)如图,连接OD .FD 为O 的切线,∴90ODF ∠=︒.DF AB ∥,∴90AOD ∠=︒.AD AD =,∴1452ACD AOD ∠=∠=︒. CF CD =,∴1(180)67.52F ACD ∠∠=⨯-=︒.(2)如图,连接AD ,AO OD =,90AOD ∠=︒,∴45EAD ∠=︒.45ACD ∠=︒,∴A C D E A D ∠=∠,且ADE CDA ∠=∠,∴DAE DCA ∽ ,∴DE DA DA DC=,即28DA DE DC =⋅=,∴2DA =,∴222OA OD AD ===,即半径为2.26.【答案】(1)()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)销售价格为35元/kg 时,利润最大为450【解析】(1)当2230x ≤≤时,设y 关于x 的函数表达式为y kx b =+,将点()()22,48,30,40代入得,∴22483040k b k b +=⎧⎨+=⎩解得:170k b =-⎧⎨=⎩∴70y x =-+()2230x ≤≤,当3045x <≤时,设y 关于x 的函数表达式为11y k x b =+,将点()()30,40,45,10代入得,111145103040k b k b +=⎧⎨+=⎩解得:112100k b =-⎧⎨=⎩∴2100y x =-+()3045x <≤,()7022302100(3045)x x y x x ⎧-+≤≤=⎨-+<≤⎩(2)设利润为w当2230x ≤≤时,22(20)(70)901400(45)625w x x x x x =--+=-+-=--+∵在2230x ≤≤范围内,w 随着x 的增大而增大,∴当30x =时,w 取得最大值为400;当3045x <≤时,22(20)(2100)214020002(35)450w x x x x x =--+=-+-=--+∴当35x =时,w 取得最大值为450450400>,∴当销售价格为35元/kg 时,利润最大为450.27.【答案】(1)8+(2)212S x =++【解析】(1)如图,连接BD 、BQ ,四边形ABCD 为菱形,∴4CB CD ==,60A C ∠=∠=︒,∴BDC 为等边三角形.Q 为CD 中点,∴2CQ =,BQ CD ⊥,∴23BQ =,QB PB ⊥.45QPB ∠=︒,∴PBQ 为等腰直角三角形,∴3PB =,62PQ = 翻折,∴90BPB ∠='︒,PB PB '=,∴26BB '=,6PE =;.同理2CQ =,∴22CC '=2QF =∴((221112222323232438222PBB CQC BB C C PBCQ S S S S ''''=-+=⨯⨯+⨯-⨯+⨯=+ 四边形梯形;(2)如图2,连接BQ 、B Q ',延长PQ 交CC '于点F .PB x =,23BQ =,90PBQ ∠=︒,∴212PQ x =+∵1122PBQ S PQ BE PB BQ =⨯=⨯ ∴22312BQ PB BE PQ x ⨯==+,∴212QE x =+,∴222123121232121212QEB S x x x ==+++ . 90BEQ BQC QFC ∠=∠=∠=︒,则90EQB CQF FCQ ∠=︒-∠=∠,∴BEQ QFC ~ ,∴2221323QFCBEQS CQ S QB ⎛⎫=== ⎪⎝⎭ ,∴24312QFC S x =+ .∵122332BQC S =⨯⨯= ∴()222123433232233121212QEB BQC QFC x x S S S S x x x ⎛⎫=++=++=+ ⎪⎪+++⎝⎭ .28.【答案】(1)3b =-,2c =-(2)①3;②2或175【解析】(1)∵二次函数()222y x bx c =++的图像与y 轴交于点A,且经过点B和点(C -∴()()244212b c b c =++⎨=-+解得:32b c =-⎧⎨=-⎩∴3b =-,2c =-,()2322y x x =--;(2)①如图1,过点E 作y 轴平行线分别交AB 、BD 于G 、H.∵()2322y x x =--,当0x =时,y =,∴(0,A ,∴AD =4BD =,∴AB ==,∴6cos 3BD ABD AB ∠==.∵90GFE GHB ∠=∠=︒,FGE HGB ∠=∠,∴FEG ABD ∠=∠,∴cos 3FEG ∠=,∴3EF EG =,∴3EF EG =.∵(0,A B 设直线AB 的解析式为y kx d=+∴4d k d ⎧=⎪⎨+=⎪⎩解得:2k d ⎧=⎪⎨⎪=⎩∴直线AB解析式为22y x =-.设2232,22E m m m ⎛-- ⎝,∴2,2G m m ⎛⎝,∴22(2)22EG m m =-+=--+∴当2m =时,EG取得最大值为,EF ∴的最大值为33⨯=.②如图2,已知tan 2ABC ∠=,令AC =,则2BC =,在BC 上取点D ,使得AD BD =,∴2ADC ABC ∠=∠,设CD x =,则2AD BD x ==-,则222(2)(2)x x +=-,解得12x =,∴tan 2AC ADC CD∠==,即()tan 22ABC ∠=.如图3构造AMF FNE ∽ ,且MN x ∥轴,相似比为:AF EF ,又∵2tan tan tan 2MFA CBA FEN ∠∠∠===,设2AM a =,则2MF a =.分类讨论:ⅰ当2FAE ABC ∠=∠时,则tan 2EF FAE AF ∠==∴AMF 与FNE V 的相似比为1:22,∴224FN a ==,2242NE MF a ==,∴()6,232E a a -,代入抛物线求得113a =,20a =(舍).∴E 点横坐标为62a =.ⅱ当2FEA ABC ∠=∠时,则tan AF FEA EF ∠==,∴相似比为,∴12FN a ==,22NE a ==,∴5,22E a a ⎛⎫+ ⎪ ⎪⎝⎭,代入抛物线求得13425a =,20a =(舍).∴E 点横坐标为51725a =.综上所示,点E 的横坐标为2或175.。

2024年吉林延边中考数学试题及答案

2024年吉林延边中考数学试题及答案

2024年吉林延边中考数学试题及答案数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是( )A .主视图与左视图相同B .主视图与俯视图相同C .左视图与俯视图相同D .主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是( )A .()221x -=-B .()220x -=C .()221x -=D .()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为( )A .()4,2--B .()4,2-C .()2,4D .()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为 .8.因式分解:a 2﹣3a= .9.不等式组2030x x ->⎧⎨-<⎩的解集为 .10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .11.正六边形的每个内角等于 °.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为 .13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为 .14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为 2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.Y中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求17.如图,在ABCD证:AE BC=.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,,只用无E,O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(2)直接写出20192023-年全国居民人均可支配收入的中位数.(3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的y,记录如下:宽度为mmx16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A /s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.1.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B .3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==故选:B .5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.a (a﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a(a﹣3).故答案为a (a﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影,故答案为:11π.15.22a ,6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当a =原式22=⨯6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R=(2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠,把()94,代入()0U I U R=≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;(2)解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DG AG DG EAD===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形,AQ t=(2)32t =(3))2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到12HA AP ==,解Rt AHQ △得到AQ t =;(2)由PQE V 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G,12PG AP ==,则212S QE PG =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC,此时)tan 23CF CE E t =⋅∠=-,因此)21232FCE S CE CF t =⋅=-,故可得2PQE FCE S S S =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △,此时PD =-)1PC CD PD t =+==-,解直角三角形得1tan PC QC t PQC ===-∠,故)2112S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:AP =∵90C ∠=︒,30B ∠=︒,∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=︒,∵PQ AB ∥,∴30APQ BAD ∠=∠=︒,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ⊥,∴12HA AP ==,∴在Rt AHQ △中,cos AH AQ t PAQ==∠;(2)解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,∵30PAQ ∠=︒,∴12PG AP ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴212S QE PG =⋅=,由(2)知当点E 与点C 重合时,32t =,∴2302S t ⎛⎫=<≤ ⎪⎝⎭;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E ∠=︒,而23CE AE AC t =-=-,∴)tan 23CF CE E t =⋅∠=-,∴()))21123232322FCE S CE CF t t t =⋅=--=- ,∴)22223PQE FCE S S S t =-=-=+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠,∴2t =,∴2322S t ⎫=+<<⎪⎭;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC ∠=︒90DCA ∠=︒,由上知DC =∴AD =∴此时PD =-,∴)1PC CD PD t =+==-,∵PQE V 是等边三角形,∴60PQE ∠=︒,∴1tan PC QC t PQC ===-∠,∴)2112S QC PC t =⋅=-,∵30B BAD ∠=∠=︒,∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =,∴)()2124S t t =-≤<,综上所述:)2223,023221,24S t S t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩.【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+,当0x >时,223y x x =-+,对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =,故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解;Ⅲ: 可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值,当0x =时,3y =最大值,当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B.一组对边相等,另一组对边平等的四边形是平行四边形 D.对角线互相垂直平分且相等的四边形是正方形
考点:命题与定理.
分析:根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.
解答:解:A、对角线互相垂直的四边形不一定是菱形,故本选项错误;
B、一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;
题关键.
二、填空题:每小题 3 分,共 24 分.
8.函数 y x 1 的自变量 x 的取值范围是

考点:函数自变量的取值范围;二次根式有意义的条件.
分析:根据二次根式的意义,被开方数不能为负数,据此求解.
解答:解:根据题意,得 x≥0.
故答案为:x≥0.
点评:函数自变量的范围一般从三个方面考虑:
C、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;
D、对角线互相垂直平分且相等的四边形是正方形,故本选项正确.
故选 D.
点评:本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,
此题难度不大.
6.如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆心.若∠B=20°,则∠
当 0 x 2 时, y 0 .其中正确的结论的个数为(

A.1
B.2
C.3
D.4
考点:二次函数的性质.
分析:利用配方法求出二次函数对称轴,再求出图象与 x 轴交点坐标,进而结合二次函数性质得出答案.
解答:解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线 x=1,正确;
②∵直线 x=1 两旁部分增减性不一样,∴设 y1=﹣x12+2x1,y2=﹣x22+2x2,则当 x2>x1 时,有 y2>y1,错误;
B. x 2 x3 x 6
C. (x3 )2 x6
D. x9 x3 x3
考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
专题:
计算题.分析:
A、原式不能合并,错误;
B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;
C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;
B.甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差分别是 S乙2 0.4 , S乙2 0.6 ,则
甲的射击成绩较稳定
1
C.“明天降雨的概率为 ”,表示明天有半天都在降雨
2
D.了解一批电视机的使用寿命,适合用普查的方式 考点:方差;全面调查与抽样调查;随机事件;概率的意义. 分析:利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断. 解答:解:A、掷一枚均匀的骰子,骰子停止转动后,6 点朝上是可能事件,此选项错误; B、甲、乙两人在相同条件下各射击 10 次,他们的成绩平均数相同,方差分别是 S 甲 2=0.4,S 乙 2=0.6,则 甲的射击成绩较稳定,此选项正确;
义务教育基础课程初中教学资料
中考数学试卷
一、选择题:每小题 3 分,共 21 分,每小题给出四个答案,其中只有一个是正确的.
1
1. 的相反数是( )
2
A.2
B.2
1
C.
2
D. 1 2
考点:相反数.
分析:根据只有符号不同的两个数叫做互为相反数解答.
解答:解: 的相反数是﹣ .
故选 D. 点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 2.下图所示几何体的左视图为( )
人 2人 人点:简单组合体的三视图. 分析:根据从左边看得到的图形是左视图,可得答案. 解答: 解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A. 点评:本题考查了简单组合体的三视图,从左边看看得到的图形是左视图.
3.下列计算正确的是( )
A. x x 2 x3
③当 y=0,则 x(﹣x+2)=0,解得:x1=0,x2=2, 故它的图象与 x 轴的两个交点是(0,0)和(2,0),正确;
④∵a=﹣1<0,
∴抛物线开口向下,
∵它的图象与 x 轴的两个交点是(0,0)和(2,0),
∴当 0<x<2 时,y>0,正确.
故选:C.
点评:此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解
C、“明天降雨的概率为 ”,表示明天有可能降雨,此选项错误;
D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;
故选 B.
点评:本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是
熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大.
5.下列命题正确的是( ) A.对角线互相垂直的四边形是菱形 C.对角线相等的四边形是矩形
D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.
解答:解:A、原式不能合并,错误; B、原式=x5,错误; C、原式=x6,正确; D、原式=x6,错误.
故选 C. 点评:此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握
运算法则是解本题的关键.
1
4.下列说法正确的是( ) A.掷一枚均匀的骰子,骰子停止转动后,6 点朝上是必然事件
点评:本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切
点是解题的关键.
7.对于二次函数 y x 2 2x .有下列四个结论:①它的对称轴是直线 x 1;②设 y1 x12 2x1 ,
y2 x22 2x2 ,则当 x2 x1 时,有 y2 y1 ;③它的图象与 x 轴的两个交点是(0,0)和(2,0);④
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为 0;
(3)当函数表达式是二次根式时,被开方数为非负数.
9.分解因式: m3 m
C 的大小等于( )
A.20°
B.25°
C. 40°
D.50°
A
考点:切线的性质.
B
O
C
分析:连接 OA,根据切线的性质,即可求得∠C 的度数.
解答:解:如图,连接 OA,
∵AC 是⊙O 的切线, ∴∠OAC=90°,
2
∵OA=OB,
∴∠B=∠OAB=20°,
∴∠AOC=40°,
∴∠C=50°.
故选:D.
相关文档
最新文档