单摆非线性动力学

单摆非线性动力学
单摆非线性动力学

单摆的非线性动力学分析

亚兵

(交通大学车辆工程专业,,730070)

摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力

Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement.

Key words: simple pendulum; vibration; damp; drive force

1 引言

单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。

θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0

加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t

θθθ

--的关系。

图1 单摆模型

2单摆的线性情况

2.1线性单摆的无阻尼振动

如图所示,忽略细绳重量,也不计小球受到的空气阻力,则上诉单摆可看成理想单摆,对其进行受力分由牛顿第二定律得:

θsin mg ma -=

(1) 因为2222dt

d l dt s d a θ

==

)(θl s = (2)

把(2)代入(1)式可得

0sin 22=+θθ

mg dt

d ml

(3)

将(3)两端同除以ml 可得 0sin 2

2=+θθl g

dt d (4) 令l

g

=

0ω,其中0ω为自然频率.则(4)可变为 0sin 2

02

2=+θωθdt

d (5) 当θ很小时,θθ=sin

故有,02

022=+θωθdt d (6)

解此方程得:t i t

i e C e

C t 0021)(ωωθ-+= (7)

若θ为实数,则有θθ=*,即

t i t i t

i t i e C e C e C e C 000021*2*1ωωωω--+=+ (8)

所以, *

21C C =, *12C C = (9)

令?i e A C 21=,?

i e A C -=22.

则有())cos(2

)(0)()

(0

?ωθ?ω?ω+=+=+-+t A e e A t t i t i (10) )cos()(0?ωθ+=t A t (11)

从能量守恒方面考虑:

002

2=+θωθdt

d 可变形为 020=+??

?? ??θωθθθdt d d dt d d (12) 令dt

d θθ=',则有 0''20=+θωθθθd d (13)

两边同时乘以θd ,得到 0''2

0=+θθωθθd d (14)

在对两边求积分, ?

??=+θθθωθθd d d 0''2

0 (15)

积分结果为

E =+2

2022

1'21θωθ (16) 令2'21θ=

T (动能),2202

1

θω=V (势能). 则有E V T =+,机械能守恒.

E =+2

2022

1'21θωθ为椭圆方程:

图2 无阻尼单摆的相平面轨迹图

3 有阻尼和有驱动力单摆的运动分析

有阻尼和有驱动力单摆的运动方程为

...

2sin cos f t θβθθ++=Ω (17) 在任意大振幅下,方程(17)的解变得十分复杂,下面利用计算机模拟,分别讨论

单摆运动随初值的变化和其混沌运动。 3.1 初值不同所产生的t θ-曲线

为简单计,设0.10,1,2/3f β==Ω=,当t=0时,两振动初始条件相差极小,

有.

11.

12(0)0, (0)0.01(0)0.01, (0)0

θθθθ?

==???=-=? (18) 取0120t s ≤≤,对(6)式在初始值(18)式下利用MATLAB 绘图,其t θ-变化曲线如图4所示(其中实线为1t θ-,虚线为2t θ-)。

图3 有阻尼和驱动力的t θ-图

由图4可以看出,当025t s ≤≤时,两条曲线重合,两个解12()()t t θθ、不能分辨;但当25t s ≥时,两条曲线不再重合,两个解12()()t t θθ、、完全不一样,这种混沌运动对初始条件的敏感性称为蝴蝶效应。 3.2 振幅不同所产生的相图.

θθ-

为简单计,设方程(17)中,除驱动参数f 取变值外,其余参数不变,即

0.25,2/3β=Ω=。

对(17)式在初始值式.

(0)0, (0)0θθ==下利用MATLAB 作计算模拟绘图,相图.

θθ-如图3所示。

当 1.06f =时,振荡周期τ等于外加周期力的周期T ,2/3T τπ?π===,

应单周期解,其相图.

θθ-如图4示。

图4

当 1.07f =时,3T τ=,对应三倍周期解,其相图.

θθ-如图5示。

图5

当周期强迫力的振幅达到某一临界值 1.684f σ=时,2T τ∞→,系统运动出

现混沌,其相图.

θθ-如图6示。

图6

4 无阻尼、无驱动力单摆的运动稳定性

当单摆的阻尼因数为0时,即当单摆既无驱动力又无阻尼时,单摆的运动方程为

0sin =+θθ

mg ml 此线性系统的本征方程和本征值分别为

012=+λ ωλi ,21±=

本征值为纯虚根,线形方程的零解是为稳定的。

将初值设定为:初始角度θ=1.8,角速度为0,此时的阻尼因数驱动力都为0,利用matlab ,作出此时的单摆运动的相图为图8所示。

-0.4-0.3-0.2-0.100.10.20.30.4角度

角速度

图7 阻尼为0驱动力为0单摆的小摆角运动相图

由图可知,无阻尼、无驱动力的单摆运动的相图是一个极限环。因此这种单摆的运动是稳定的。由此可以验证,当角度很小时,方程的推导是正确的,即线性时是稳定的。

当增大初始角度,令θ=45时保持其他条件不变,利用matlab 绘出大角度单摆无阻尼无驱动里的相图,如图9。

-0.8-0.6-0.4-0.200.20.40.60.8角度

角速度

图7 阻尼为0驱动力为0单摆的大摆角运动相图

由图可知,当摆角变大时,无阻尼、无驱动的单摆运动的相图也是一个极限环,也就是说,此时的单摆运动也是稳定的。

综上所述,由方程推导的结果以及利用工具matlab 绘图所得到的结论都是相同的,即不论摆角的大小,无阻尼、无驱动力的单摆的运动都是稳定的

5 结论

本文以单摆为研究对象。研究了实际条件下的单摆问题,即含阻尼的受迫运动。在受迫阻尼运动中,单摆的运动反映出如下特征,即:

(l)描述运动特征的动力学方程是非线性的;

(2)这些非线性的方程是“确定性的”,不包含任何随时间变化的随机项; (3)在某些情况下,系统运动轨道的时间行为存在对初始条件的敏感性,初始条件的微小差异可能导致结果的变化非常大;

(4)整个系统长期行为的全局特征与初始条件无关。

从本文的分析中,结合各种情况下的位移时间图像及相图,我们可以得出以下结论:

(1)在摆角较小即5θ<时,单摆其相轨迹是围绕原点的椭圆曲线,即我们所熟知的简谐运动相轨迹,此时单摆在平衡位置附近作简谐运动;随着摆角的增加,单摆作非线性振动,周期与摆角θ有关,周期随摆角θ的增大而增大。因此,当摆角较大时,单摆运动存在若干稳定点和鞍点(不稳定点),振动曲线和周期是非线性振动的结果;

(2)在有阻尼和有驱动力的情况下,非线性单摆的振动对初始条件非常敏感,称为蝴蝶效应;在有阻尼和有驱动力的情况下,若取某一参数变值由小到大,其余参数不变,非线性振动的相图会出现由单周期解→倍周期解→四周期解…混沌→单周期解…,如此反复。

参考文献

[1]王海期.非线性振动[M]. 高等教育,1992,262-278

[2]延柱,立群. 非线性振动[M]. 高等教育,2001,-169

[3]德丰. MATLAB数值计算方法[M].机械工业,2010,225-239

[4]欣亚,明路. 机械振动[M]. 清华大学,2009,587-589

[5]中奎,徐伟,晓丽.求解强非线性动力系统响应的一种新方法[J]. 动力学与控制学报,第3卷第2期,2005,29-35

[6]文涛,龚善初. 单摆振动分析[J]. 理工学院学报,第21卷第1期,2008,66-70

[7] Kunihik Kaneko.Oscillation and doubling of torus [J]. Progress of

Theoretical Physics,1984,72(2).

[8] 伟,霍拳忠,骊.非线性振动系统的异宿轨道分叉、次谐分叉和混沌[J].应用数学

和力学,1992 ,13:.

[9] 谢柏松.单摆运动的同宿轨道分叉、次谐分叉和混沌[J].师大学学报,2000,36(5):631.

[10] 郎和.保守单摆系统中的混沌运动[J].西北师大学学报,2002 ,38 (4):108.

[11] 元杰.单摆的规则运动及混沌运动的研究[J ].大学物理,1998 ,17(9):6.

非线性系统控制理论单摆的动力学分析

学院:机电工程学院专业:车辆工程

:亚兵

学号:0211362

结构动力学

结构动力学试题 2016年4月 重庆交通大学结构工程硕士研究生考试 1.试述结构动力问题和静力问题的主要区别(10分) 答:结构静力学相比,动力学的复杂性表现在: (1)动力问题具有随时间而变化的性质; (2)数学解答不是单一的数值,而是时间的函数; (3)惯性力是结构内部弹性力所平衡的全部荷载的一个重要部分; (4)引入惯性力后涉及到二阶微分方程的求解; (5)需考虑结构本身的动力特性:刚度分布、质量分布、阻尼特性分布的影响。 2.什么是结构动力系统的阻尼?一般结构系统的阻尼有何特性?在结构分析中 阻尼问题的处理方法有哪些?(20分) 答:(1)结构在震动过程中的能量耗散作用称为阻尼; (2)阻尼的特性:a、阻尼耗能与质量(反映附属部分大小)和刚度(反映位移大小)有关。b、难以采用精确的理论分析方法; (3)对于多自由度体系:在结构动力分析中,通常从系统响应这个角度来考虑阻尼,而且能量的损耗是由外界激励来平衡的。一个振动系统可能存在多种不同类型的阻尼,一般来说,要用数学的方法来精确描述阻尼目前是比较困难的。因此,人们根据经验提出了一些简化模型,常用的阻尼模型有黏性阻尼和结构阻尼。黏性阻尼系统:黏性阻尼的特点是阻尼力和运动速度成真封闭。 在用振型叠加法进行分析时,能否将联立的运动方程化为解耦的一系列单自由度运动方程,将取决于阻尼矩阵的性质,即结构的振型是否关于阻尼阵满足正交条件。如果满足阻尼阵的正交条件,则采用振型叠加法分析时,就可以把多自由度体系的动力反应问题化为一系列单自由度问题求解;如果不满足阻尼阵的正交条件,则对位移向量用振型展开后,关于振型坐标的运动方程成为耦联的,必须联立求解,与解耦方程相比,增加了难度和计算量。 3.试述多自由度体系振型矩阵关于质量矩阵和刚度矩阵的正交性的意义,并写出广义正交性的表达式且加以证明。(20分) 答:(1)由振型关于质量、刚度正交性公式可知,i振型上的惯性力在j振型上作的虚功为0。由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕. (2)振型正交性的证明在Clough书中应用的是Betti互易定理,就像D’Alember 原理一样考虑了惯性力,是运动学中功的互等定理。实际振型正交性的证明可

航天飞行动力学作业及答案(2)

第四章 第二次作业及答案 1. 考虑地球为自转椭球模型,请推导地面返回坐标系及弹道坐标系(半速度坐标系)下航天 器无动力再入返回质心动力学方程和运动学方程,以及绕质心旋转动力学和运动学方程。 解答: (1)地面返回坐标系:原点位于返回初始时刻地心矢径与地表的交点处,ox 轴位于当地水平面内指向着陆点,oy 垂直于当地水平面向上为正,oz 轴形成右手坐标系。 地面返回坐标系下的动力学方程:与发射坐标系下的动力学方程形式相同,令推力为0即可得到。 (2)弹道(航迹,半速度)坐标系定义:原点位于火箭质心,2ox 轴与速度矢量重合,2oy 轴位于包含速度矢量的当地铅垂平面内,并垂直于2ox 轴向上为正,2oz 轴形成右手 坐标系。 由于弹道坐标系是动坐标系,不仅相对于惯性坐标系是动系,相对于地面返回坐标系也是动系,在地面坐标系下的动力学方程可以写为: 惯性系下:22222()=F=++m e e e d m m m m t dt t δδδδ=+?+??r r r ωωωr P R g 地面系下:22=++m -2-()e e e m m m t t δδδδ???r r P R g ωωωr 弹道系下:22=()=++m -2-()t e e e m m m m m t t t t δδδδδδδδ'=+????'r v v r ωv P R g ωωωr 式中,t δδ''v 表示速度矢量在弹道坐标系的导数,t ω表示弹道坐标系相对于地面坐标系的 旋转角速度,将上式矢量在弹道坐标系分解得到: 速度矢量00v ????=??????v ,角速度矢量=tx t ty tz ?? ???????? ωωωω 00cos 0sin 00sin =+=()001000sin 0cos 0cos t y L σσσθσσσσθσσθσθ?? --??????????????????????+=+=? ???????????????????????????????????ωθσ sin 0 cos 0=0cos 0sin 0cos cos 0sin 00t v v v v σθσθσσσθσθσθσθσ σθ σ????--?????? ????????????==????????????????? ???---??????????ωv 等式左边:()=cos t v m v t v δσθδσ? ? '??+???'??-?? v ωv 等式右边将所有力转换到弹道坐标系下,如果不方便直接转换,可以先转到地面系,然 后再转到弹道系。其中:

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

2018年北京航空航天大学宇航学院航天飞行器动力学原理试题-精选.pdf

航天飞行器动力学原理 A 卷一、轨道力学的定义是什么 ,简述主要的研究内容。二、什么是轨道要素,典型的轨道要素如何描述航天器的轨道特性,给出典型轨道的定义,并用图示方法具体说明。 三、简述太阳同步轨道,地球同步轨道,地球静止轨道,临界轨道以及回归轨道的定义,说明上述各种对应轨道要素应满足的数学条件。 四、根据322R R dt R d ,说明L E H ,,三个积分常量及其具体含义(物理意义)。 五、什么是霍曼转移轨道,试求平面内霍曼轨道转移所需的两次轨道增量和变轨作用时间(包括轨道转移和轨道交会的时间条件)。 六、弹道导弹弹道一般由哪几段组成,各段有什么特点? 七、弹道导弹自由飞行段的最大射程弹道是惟一的, ,已知关机点速度0q ,试根据开普勒方程给出自由飞行段最大射程角 ,最大射程对应的关机点当地弹道倾角0的表达式(利用半通径0,q 的关系)。 八、忽略地球转动并假设地球为圆球形, 设导弹以常值当地弹道倾角再入,已知再入点高度e h 和当地弹道倾角e ,再入段射程如何计算? 九、分析垂直上升段飞行时间计算公式1//40001G P t 的物理意义。 十、什么是比力,加速度计感受到的是什么量,导引惯性加速度和比力的关系?

航天飞行器动力学原理 B 卷(补考) 一、轨道力学定义,内容二、瞬时轨道要素,平均轨道要素,开普勒轨道要素的定义,区别 三、太阳同步轨道定义,数学条件,特点 四、根据322R R dt R d ,说明L E H ,,三个积分常量及其具体含义(物理意义)五、轨道平面转移相关(一次脉冲和三次脉冲的分界点) 六、主动段氛围哪几段,要求是是什么。 七、已知关机点的r,v ,从发射坐标系转换到当地铅锤坐标系。 八、求q,e,a 和000,,v r 的关系 利用cos 1/e p r 说出为什么会有高低轨道 (20分)九、推导再入段方程组力垂直于速度方向的方程(原题给出了方程,我懒得写了)

单摆运动的分析

单摆的运动规律分析 摘要:单摆的理想模型是,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。在此基础上还可以进一步考虑受阻力情况。 关键词:单摆 线性微分方程 非线性微分方程 正文: 单摆的理想模型是,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。在此基础上还可以进一步考虑受阻力情况。 单摆在摆动过程中要受到空气阻力的影响,且其在摆动的过程中可能会出现不在同一平面内的情况,若考虑这一系列问题,求解就会变得比较复杂了,首先把问题理想化,假设单摆由不可伸缩的轻绳与一质量为m 的小球组成,不考虑空气阻力。 Ⅰ.由刚体绕定轴转动的微分方程可知: θθsin 2 22 mgl dt d ml -=……⑴ 当θ很小时: 02 2=+θθl g dt d ……⑵ 令l g w =2 则原式化为02 22=+θθw dt d ……⑶ 做任意角度摆动时的情况: 0sin 2 2 2=+θθw dt d ……⑷ Ⅱ.受大小与速度成正比的阻力作用时: 0sin 2 22=+-θθθw dt d k dt d ……⑸ 做小角度摆动时可近似为: 0222=++θθ θw dt d k dt d ……⑹ 其中⑵、⑶、⑹式为线性微分方程,⑴、⑷、⑸式为非线性微分方程。 1)小角度震荡时将sin θ近似看作θ i.函数文件: function fc=f0(t,y) global g l fc=[y(2) -g/l*y(1)]' ii.绘图程序:

clear clc global g l g=9.8; l=1; w0=input('wm0?\n') [t,y]=ode45('f0',[0,100],[0,w0*pi]'); plot(t,y(:,1),'r') title('θ-t 图'); xlabel('时间/s'); ylabel('θ/rad'); grid iii.图像: 取wm0=0.5. 2)振幅增大后,θ将不满足近似条件。 i.函数文件: function fc=f1(t,y) global g l fc=[y(2) -g/l*sin(y(1))]' ii.绘图程序: clear clc global g l k

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

单摆运动的描述

单摆运动的描述 (1)无阻尼单摆(小角度) 20 +*sin()0θωθ= 上式中令 sin()θθ=,201ω=得到如下方程: +0θθ= 上述方程即为相图的方程,可由此方程画出无阻尼单摆在小角度下的相图: 代码如下: %w0=2 %E=2时 syms x y ;%x 表示角度,y 表示角速度 ezplot('x.^2+4*y.^2-4'),hold on %E=3时 syms x y ; ezplot('x.^2+4*y.^2-6'),hold on %E=4时 syms x y ; ezplot('x.^2+4*y.^2-8'),hold on %E=0.5时 syms x y ezplot('x.^2+4*y.^2-1'),hold on

xlabel('角度') ylabel('角速度') title('无阻尼小角度单摆运动相图') 上图中不同的同心椭圆表示在不同的能量下单摆的运动相图,在画上图时,令02ω=,改变能量E 得到一簇同心椭圆。改变0ω会改变椭圆的形状,当01ω=时,椭圆变成圆。 下面时无阻尼小角度单摆的运动轨迹分析: 此时只要求解上述的微分方程,然后改变其中的初始条件00(,)θω即可,其中求解微分方程的代码如下: %w0=1时 %初始角度为pi/4时 dsolve('D2y+y=0','y(0)=pi/4,Dy(0)=0','t')%用y 表示角度,Dy 表示角速度 %初始角度为pi/3时 dsolve('D2y1+y1=0','y1(0)=pi/3,Dy1(0)=0','t')%此时令y1为角度 %初始角度为pi/2时 dsolve('D2y2+y2=0','y2(0)=pi/2,Dy2(0)=0','t')%此时用y3表示角度 画图的代码如下: %初始角度为pi/4时 t=0:pi/50:4*pi; y=(pi*cos(t))/4; plot(t,y),hold on %初始角度为pi/3时 y=(pi*cos(t))/3; plot(t,y,'r'),hold on %初始角度为pi/2时 y=(pi*cos(t))/2; plot(t,y,'g'),hold on xlabel('时间') ylabel('角度') title('无阻尼小角度单摆在不同初始角度下的运动轨迹') legend('初始角度为pi/4的图','初始角度为pi/3的图','初始角度为pi/2的图') 出的图如下:

海洋生态系统非线性动力学研究

海洋技术 第28卷 1引言 自从上世纪90年代以来,海洋生态方面的研究日趋活跃,海洋生态系统动力学模型的研究成为本领域内的一个重要方向。本文通过参阅国内外大量相关学术资料,建立了新的海洋生态经济系统动力学模型,并运用非线性动力学理论分析了此模型。 2主要内容 2.1 模型介绍 考虑营养盐、自养浮游植物和食植鱼类相互作用关系,并添加人为经济因素对该体系的影响,建立了三者的新模型。 参考NPZ 模型[1],将浮游动物换为食植鱼类;在营养盐方程中,忽略浮游植物和食植鱼类的死亡以及食植鱼类取食浮游植物过程中非同化的浮游植物部分向营养盐的转化,加入外界污染对其的影响;在食植鱼类方程中加入捕捞项,建立模型如下: (1 )式中:N 为营养盐浓度;P 为浮游植物浓度;Z 为食植鱼类浓度;a 为浮游植物生长率;k N 为吸收营养盐的半饱和参 数;e 为污染强度;R m 为食植鱼类的最大摄食率;λZ 为食植鱼类摄食半饱和系数;εP 为浮游植物死亡率;εZ 为食植鱼类死亡率;γ为食植鱼类的营养转化率;h 为人类对食植鱼类的捕捞率。 模型中浮游动物对浮游植物的摄食采用Ivlev 公式[2]:参数 h 是本文着重讨论的分岔参数。并且其它各参数的默认取值如表1所示: 表1 参数意义及其取值范围[3~4] 2.2系统稳定性及分岔分析 根据模型方程的基本特征,注意到食物链模型中各元素的物理意义及在实际发生过程中相互影响、耦合。我们考虑运用Lyapunov 运动稳定性理论[5]来判断变量各状态的稳定 性。 首先求所建模型方程的平衡点,令方程(1)的左端为零,即: (2) 海洋生态系统非线性动力学研究 王洪礼,董占琢 (天津大学机械工程学院,天津300072) 摘 要:海洋生态经济系统非线性动力学模型的建立及分析,对我国海洋生态经济发展乃至社会经济的发展都具 有重要意义。建立了新的海洋生态经济系统动力学模型,研究了模型的稳定性和分岔现象,揭示了该系统的非线性动力学特性。 关键词:海洋生态经济系统;非线性;稳定性;分岔中图分类号:X82 文献标识码:A 文章编号:1003-2029(2009)01-0050-05 第28卷第1期2009年3月海洋技术OCEAN TECHNOLOGY Vol.28,No.1Mar ,2009收稿日期:2008-09-22 基金项目:国家自然科学基金资助项目(10772132);博士点基金资 助项目(20070056063) 作者简介:王洪礼(1945-),女,河北沧县人,天津大学教授,博生导 师。 符号 意义 默认取值 a 浮游植物的生长率 0.2k N 吸收营养盐的半饱和参数0.05Rm 食植鱼类的最大摄食率0.6γ 食植鱼类的营养转化率0.9λZ 食植鱼类摄食的半饱和系数 0.035εP 藻类的死亡率0.005εZ 食植鱼类死亡率 0.005

线性与非线性结构力学评介与分析

《线性与非线性结构力学》评介与分析 彭剑(湖南大学机械与运载工程学院博士生) 王旺平(南开大学经济学院博士生) [内容摘要] 本文介绍了《Linear and nonlinear structural mechanics》一书的基本情况。通过评介与分析,建议国内编写同类专著时,也应由名家撰写、文献丰富、善用图表、及时更新等,并特别注重理论与实践相结合。 [关键词] 非线性;结构力学;教材评介;启示 《Linear and nonlinear structural mechanics》(线性与非线性结构力学)是A.H. Nayfeh教授撰写。本文评介的专著《Linear and nonlinear structural mechanics》由前言、正文、参考文献和索引四个部分组成,其中正文9章,共746页。本书的作者是美国教授。 一、出版与作者情况 《Linear and nonlinear structural mechanics》由美国弗吉尼亚理工学院和州立大学的A.H. Nayfeh教授撰写。2004年由美国约翰威立 (John Wiley & Sons)出版公司出版。[1] A.H. Nayfeh于1933年12月21日出生于Shuwaikah。1962年,获得斯坦福大学 B.S.工学学士学位,后于1963年和1964年取得航空和航天的M.S.和博士学位。他拥有在Heliodyne公司和Aerotherm工业公司工作经验。他是美国物理学会,航空航天,机械工程师协会美国研究所和力学美国科学院院士。他是非线性科学的主编,非线性动力学和振动与控制杂志WILEY丛书的编辑。1981年获科威特在基础科学奖(物理);美国航空航天研究所和航天Pendray文学奖,1995年,美国机械工程师协会太平绅士书斋哈尔托赫奖,1997年,俄罗斯圣彼得堡大学荣誉博士学位,1996年,弗兰克J马希尔工程教育奖,1997年卓越工程学院院长的卓越研究奖,1998年,德国慕尼黑大学名誉博士学位,1999年,波兰Politechnika Szczecinska技术大学名誉博士学位,2004年,他建立约旦耶尔穆克大学并从1980-1984年担任学院院长。他目前是美国弗吉尼亚理工学院和州立大学的杰出工程教授。 二、本书的创作背景 众多书籍在过去二十年的一直致力于索,电缆,梁,板,和壳结构力学的研究。虽然正确分类他们不是一件容易的任务,更可以大致区分面向数学类书籍,

单摆运动规律的研究

单摆运动规律的研究 摘要单摆问题是高中物理及大学普通物理实验教学中的一个基础问题。受各种因素的影响,其运动规律较为复杂。本文建立了理想模式下单摆的数学模型,现实情况下单摆的数学模型.等对单摆的运动进行了探究。 首先,本文从理想情况出发,由牛顿第二定律进行推理,建立了无阻尼小角度单摆运动模型,对单摆的运动进行了初步探究。 然后,本文又建立了无阻尼大角度单摆运动模型,进一步完善了理想模式下单摆的数学模型。 最后,本文从实际出发,考虑单摆运动中受到的阻力因素,以理想模式下单摆的数学模型为基础,建立了现实情况下单摆的运动模型,深度的对单摆运动进行了探索。 关键词简谐运动角度阻尼运动单摆运动 目录 一、问题的描述 二、模型假设 三、模型建立及求解 1 理想模式下单摆的数学模型 1.1 小角度单摆运动模型 1.1.1 模型建立 1.1.2 模型求解

1.1.3 结果分析 1.2 大角度单摆运动模型 1.2.1 模型建立 1.2.2 模型求解 1.2.3 结果分析 2 现实模式下单摆的数学模型 2.1 小、大阻尼单摆运动模型 2.1.1 模型建立 2.1.2 模型求解 2.1.3 结果分析 四模型分析 一问题的描述 根据平常接触到的摆钟、秋千等实物中,我们可以抽象出单摆的模型。细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略,球的直接与线的长度相比也可以忽略,这样的装置就叫做单摆.我们从理想情况出发进行分析,并逐渐完善从而推导出单摆实际运动规律。 二模型假设 1悬挂小球的细线伸缩和质量均忽略不记,线长比小球的直径大得多;

2.装置严格水平; 3.无驱动力。 三模型建立及求解 1 理想模式下单摆的数学模型 图1 简单单摆模型 在 t 时刻,摆锤所受切向力ft(t)是重力mg在其运动圆弧切线方向上的分力,即f(t) =mg sin(t) 完全理想条件下,根据牛顿第二运动定律,切向加速度为: a(t) =g sin(t) 因此得到单摆的运动微分方程组:

航天飞行动力学课程设计-飞船再入质点弹道数值计算

航天飞行动力学课程设计 ——飞船再入质点弹道 日期:2019-09-12 航天飞行动力学课程设计 0 ——飞船再入质点弹道 0 1.题目重述 (1) 1)假设:1 2)标称轨迹制导 1 2.背景分析 (2) 3.数值求解方法 (2) 1)地球以及大气模型2 2)再入初始数据 2 3)线性插值方法 2 4)积分方法-四阶龙格库塔 2 5)蒙特卡洛打靶随机数生成2 4.分析过程 (3) 1)求解ODE获取基准弹道 3 2)给定偏差量求解ODE获取制导弹道弹道3 5.结果分析 (3) 1)基准弹道情况 3 2)100次打靶结果分析5 6.C++程序结构及主要代码 (6) 1)头文件6 2)Cpp文件6 3)函数声明 7 4)函数定义 8

1. 题目重述 1) 假设: ● 考虑地球旋转影响。 ● 地球看成质量均匀分布的圆球,质心在球心。 ● 把飞行器看成质点,应用瞬时平衡假设。 2 2 22sin cos sin cos cos cos sin cos (sin cos cos sin cos )1cos ()cos 2cos sin cos (cos cos sin cos sin )1sin cos sin tan 2cos e e e dr V dt d V dt r d V dt r dV D g r dt d V L g V r dt V r d L V dt V r γθγψφφγψγωφγφγφψγσγωφψωφγφγψφψσγψφγ ====--+-??=+-+++??? ?=+-??2 (1)(tan cos cos sin )sin sin cos cos e e r V ωωγψφφψφφγ??? ??? ??? ??? ??????-+? ??? 上述动力学方程组中,有6个状态变量:[,,,,,]r V θφγψ。各状态变量的意义为:r :地球球心到飞行 器质心的距离;λ:经度;φ:纬度;V :相对地球速度;γ:速度倾角;ψ:速度方位角,0ψ=表示正北方向,从正北顺时针旋转为正。e ω为地球旋转角速度;,D L 分别为阻力加速度和升力加速度,可由下式给出: 221 1 (,)(,)(2)22ref D ref L D V S C Ma L V S C Ma m m ραρα= = ,D L C C 分别为飞行器的阻力系数和升力系数,它们是攻角α和马赫数的函数;ref S 为飞行器参考面积; ρ为大气密度。 首先按照配平攻角飞行,得到基准弹道。 2) 标称轨迹制导 倾侧角指令 (/)cos /c L D L D σ= 0(/)(/)(/)c L D L D L D =+?, 其中0(/)L D 为基准弹道升阻比,取为0.28; (/)L D ?为与以速度为自变量的基准弹道偏差引起的升阻比,由下式计算: 1234(/)x L D k n k R k h k R ?=?+?+?+? x n ?为切向过载偏差,R ?为航程偏差。 1234,,,k k k k 为系数,通过试验法自行确定。 倾侧角指令在轴向过载大于0.5的时候开始输出,在轴向过载小于0.5时,采用开环制导的方式,即常数10度。

空间飞行器动力学与控制

Nanjing University of Aeronautics and Astronautics Spacecraft Dynamics and Control Teacher:Han-qing Zhang College of Astronautics

Spacecraft Dynamics and Control Text book: Spacecraft Dynamics and Control:A Practical Engineering Approach https://www.360docs.net/doc/531240461.html,/s/1o6BF32U (1) Wertz, J. R. Spacecraft Orbit and Attitude Systems, Springer. 2001 (2) 刘墩.空间飞行器动力学,哈尔滨工业大学出版社,2003. (3) 章仁为.卫星轨道姿态动力学与控制,北京航空航天大学出版社,2006. (4) 基于MATLAB/Simulink的系统仿真技术与应用,清华大学出版社,2002。 2014年4月22日星期二Spacecraft Dynamics and Control

Spacecraft Dynamics and Control 1. Introduction Space technology is relatively young compared to other modern technologies, such as aircraft technology. In only forty years this novel domain has achieved a tremendous level of complexity and sophistication. The reason for this is simply explained: most satellites, once in space, must rely heavily on the quality of their onboard instrumentation and on the design ingenuity of the scientists and engineers. 2014年4月22日星期二Spacecraft Dynamics and Control

结构力学模拟中的三类非线性问题

1. 线性分析 外加载荷与系统的响应之间为线性关系。例如线性弹簧,结构的柔度阵(将刚度阵集成并求逆)只需计算一次。通过将新的载荷向量乘以刚度阵的逆,可得到结构对其它载荷情况的线性响应。 此外,结构对各种载荷情况的响应,可以用常数放大和/或相互叠加,以确定它对一种全新载荷情况的响应,所提供的新载荷情况是前面各种载荷的叠加(或相乘)。这种载荷的叠加原理假定所有的载荷情况采用了相同的边界条件。 2. 非线性分析 非线性结构问题是指结构的刚度随其变形而改变。所有的物理结果均是非线性的。线性分析只是一种近似,它对设计来说通常已经足够了。但是,对于许多结构包括加工过程的模拟(诸如锻造或者冲压)、碰撞分析以及橡胶部件的分析(诸如轮胎或者发动机支座),线性分析是不够的。一个简单例子就是具有非线性刚度响应的弹簧。 线性弹簧,刚度是常数 非线性弹簧,刚度不是常数 由于刚度依赖于位移,所以不能再用初始柔度乘以外加载荷的方法来计算任意载荷时弹簧的位移。在非线性隐式分析中,结构的刚度阵在整个分析过程中必须进行许多次的生成和求逆,分析求解的成本比线性隐式分析昂贵得多。在显式分析中,非线性分析增加的成本是由于稳定时间增量减小而造成的。 非线性系统的响应不是所施加载荷的线性函数,因此不能通过叠加来获得不同载荷情况的解答。每种载荷情况都必须作为独立的分析进行定义和求解。 3. 非线性的来源 在结构的力学模拟中有三种:材料非线性、边界非线性(接触)、几何非线性。 (1) 材料非线性 大多数金属在低应变值时都具有良好的线性应力/应变关系;但是在高应变时材料发生屈服,此时材料的响应成为了非线性和不可恢复的。橡胶材料等也是一种非线性、可恢复(弹性)响应的材料。

大角度单摆运动的计算机模拟

2006年6月 重庆文理学院学报(自然科学版)J un 1,2006 第5卷 第2期J ournal of Chongqing Universi ty of Arts and Sciences (Nature Sciences Edi ti on)Vol 15 No 12 大角度单摆运动的计算机模拟 龙晓霞 (重庆文理学院 物理与信息工程系,重庆 永川 402160) [摘 要]大角度单摆问题属于非线性问题,很难用解析的方法求其运动.本文利用MATLAB 软件对大角度单摆在无阻力无驱动、有阻力无驱动、有阻力有驱动3种情况下的运动进行了计算机模拟,并对运动情况进行了分析. [关键词]单摆;计算机模拟;MATLAB [中图分类号]O4-39 [文献标识码]A [文章编号]1671-7538(2006)02-0028-04 1 引言 MATLAB 数学软件是欧美十分流行的通用性很强的数学软件,占据了数学软件市场的主导地位.它可以对非线性微分方程进行数值求解. 当单摆的摆角小于5b 的时候,单摆的运动微分方程为线性方程,可以解析求解.但当单摆做大摆角运动时,其运动微分方程为非线性方程,很难用解析的方法讨论其运动.利用MATLAB 软件可以对单摆运动进行数值求解,模拟不同情况下大角度单摆的运动,其结果非常直观、形象. 2 大角度单摆运动的模拟 2.1 大角度单摆的运动微分方程 单摆在做大摆角运动的情况下,考虑到空气阻力和驱动力的影响,其运动微分方程为 [1]: d 2H d t 2+X 2sin H +2b d H d t =f cos pt 1其中,b 为阻尼因数,由阻力大小决定,f 和p 由驱动力决定,X 2=g l 由系统本身决定.2.2 无阻力、无驱动下大角度单摆的运动 2.2.1 微分方程 图1根据大角度单摆的运动微分方程,在无阻力无驱动时, 也就是b =0和f =0时,其运动微分方程为: d 2 H d t 2+X 2sin H =012.2.2 相图及其分析 由图1可以看出: (1)E <2mgl 时,摆锤在-P -P 的势阱中作周期运 动,其相轨迹为一闭合曲线. (2)E >2mgl 时,摆锤在势场中作定向运动,且H 可以 趋向?],其相轨迹为两条不相交的曲线,对应两个不同的X [收稿日期]2005-09-27 [作者简介]龙晓霞(1965-),女,重庆荣昌人,副教授,主要从事力学教学及研究1 [基金项目]重庆文理学院2005-2006年教育教学研究项目(05015)1

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

相关文档
最新文档