利用函数证明数列不等式
利用导数证明数列不等式(含解析)
利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
第8讲数列不等式的证明
第8讲 数列不等式的证明(一) ∑=><n i i n f a1)()(及)()(n f a i ><∏型不等式的证明解法突破:(1) 设∑==n i ib n f 1,)(证明i i b a <,同向相加∑∑===<⇒n i ni i i n f b a 11)( (2) 设i b n f ∏=)(证明i i b a <<0,同向同正相乘)(n f b a i i =∏<∏⇒ 例1. 求证:1)1(13121)2(2222+<++++<+n n n n n 变式1. 求证:2)2()1(32212)1(+<+++⨯+⨯<+n n n n n n 变式2. 求证:n nn 212111)11(2<+++<-+ 变式3. 求证:n n n <+++⨯+⨯)1(1321211 例2. 求证:1212414212+>+⨯⨯+⨯+n nn 变式1. 求证:12121-2n 654321+<⋅⋅⋅⋅n n 变式2. 求证:2231335623333+>⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛n n n 变式3. 求证:1122642)12(531423121-+<⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯+n nn 练习1. 等比数列}{n a 的前n 项和为n S ,已知对*N n ∈∀,点),(n S n 均在函数)1,0(≠>+=b b r b y x (b,r 均为常数)的图像上(1) 求r 的值(2) 当2=b 时,记))(1(log 2*2N n a b n n ∈+=,求证:对*N n ∈∀,不等式11112211+>+⋅⋅+⋅+n b b b b b b nn 成立 练习2. 已知曲线),2,1(02:22: ==+-n y nx x C n ,从点)0,1(-P 向曲线n C 引切线n l ,且知其斜率为)0(>n n k k ,切点为),(n n n y x P(1) 求数列}{n x 的通项公式(2) 求证:nn n x x x x x x +-<⋅⋅⋅-1112531 练习3. 已知各项均为正数的数列}{n a 的前n 项和满足1>n S ,且*),2)(1(6N n a a S n n n ∈++=(1) 求}{n a 的通项公式(2) 设数列}{n b 满足1)12(=-⋅n bn a ,并记n T 为}{n b 的前n 项和,求证:*2),3(log 13N n a T n n ∈+>+练习4. 已知x x x f -+=)1ln()(,记)(x f 在区间)](,0[*N n n ∈上的最小值为n b ,令n n b n a -+=)1ln(,求证:1122421231423121-+<+++-n n n a a a a a a a a a a a a a 例3. 求证:*,1211)1ln(113121N n nn n ∈+++<+<++++ 变式:求证:*,)1(2)1ln(131211N n n n n n ∈+++>++++ (二) ∑=><n i i C a1)(及C a i )(><∏(C 为常数)型不等式的证明例4. 求证:12121212132<++++n )(*N n ∈ 变式1. 求证:2223222132<++++n n )(*N n ∈ 变式2. 求证:112112112112132<++++++++n )(*N n ∈ 变式3. 求证:2232322212132<++++++++n n n )(*N n ∈ 例5. 求证:)(,21)12)(12(1751531311*N n n n ∈<+-+⨯+⨯+⨯ 变式1. 求证:113121222<+++n ),2(*N n n ∈≥ 变式2. 求证:2131211222<++++n)(*N n ∈ 变式3. 求证:47131211222<++++n )(*N n ∈变式4. 求证:35131211222<++++n )(*N n ∈ 练习1. 求证:45)12(151311222<-++++n )(*N n ∈ 练习2. 已知2n )1(),1(+=+=n b n n a n ,求证:1251112211<++++++n n b a b a b a 练习3. 设数列}{n a 的前n 项和n S ,已知*211,32312,1N n n n a n S a n n ∈---==+ (1) 求1a 的值(2) 求数列}{n a 的通项公式(3) 求证:对一切整数n ,有4711121<+++n a a a 例6. 求证:232312312312313322<-++-+-+-n n )(*N n ∈ 变式1. 求证:141723123123123132<-++-+-+-n )(*N n ∈ 例7. 已知122-=n nn a ,求证:3)1(1<-∑=n i i i a a 例8. 求100131211++++= S 的整数部分 常见的裂项放缩技巧。
利用定积分证明不等式
热点追踪Җ㊀广东㊀李文东㊀㊀不等式的证明是高考的重要内容,证明的方法多㊁难度大,特别是一些数列和型的不等式.这类不等式常见于高中数学竞赛题和高考压轴题中,由于证明难度较大,往往令人望而生畏.其中有些不等式若利用定积分的几何意义证明,则可达到以简驭繁㊁以形助数的解题效果.1㊀利用定积分证明数列和型不等式数列和型不等式的一般模式为ðni =1a i <g (n )(或ðni =1a i >g (n )),g (n )可以为常数.不失一般性,设数列a n =f (n )>0,此类问题可以考虑如下的定积分证明模式.(1)若f (x )单调递减.因为f (i )<ʏii -1f (x )d x ,从而ðni =1a i =ðn i =1f (i )<ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏi i -1f (x )d x <f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏi i-1f (x )d x <ðn +1i =2f (i -1)=ðni =1a i.㊀㊀(2)若f (x )单调递增.因为f (i )>ʏi i -1f (x )d x ,从而ðni =1a i=ðni =1f (i )>ðni =1ʏii-1f (x )d x =ʏn0f (x )d x .㊀㊀又因为ʏii -1f (x )d x >f (i -1),从而ʏn +11f (x )d x =ðn +1i =2ʏii-1f (x )d x >ðn +1i =2f (i -1)=ðni =1a i .例1㊀(2013年广东卷理19,节选)证明:1+122+132+ +1n2<74(n ɪN ∗).分析㊀本题证法大多采用裂项放缩来证明,为了得到更一般的结论,我们这里采用定积分来证明.证明㊀因为函数y =1xα(α>0且αʂ1)在(0,+ɕ)上单调递减,故ʏii -11x αd x >1iα(i ȡ3),从而当αʂ1时,ðni =11i α<1+12α+ðni =3ʏii -11x αd x =1+12α+ʏn21x αd x =1+12α-1(α-1)x α-1n 2=1+12α+1(α-1)2α-1-1(α-1)nα-1.㊀㊀利用这个不等式可以得到一些常见的不等式.若α=12,则ðn i =11i<1-32+2n =2n -1+(2-32)<2n -1.㊀㊀当α>1时,ðni =11iα<1+12α+1(α-1)2α-1=1+α+1α-1 12α.特别地,若α=2,则ðni =11i 2<1+2+12-1 122=74;若α=3,则ðni =11i3<1+3+13-1 123=54;若α=32,则ðni =11ii<1+32+132-1 1232=1+524<3;若α=1,则1n<ʏnn -11x d x =l n x nn -1=l n n -l n (n -1),从而可以得到12+13+ +1n +1<ʏn +111xd x =l n (n +1),1n +1+1n +2+ +12n<ʏ2nn1xd x =l n2.㊀㊀另一方面,1n -1>ʏnn -11xd x =l n x n n -1=l n n -l n (n -1),则1+12+13+ +1n -1>ʏn11x d x =l n n .㊀㊀当α=1时,借助定积分的几何意义上述不等式42热点追踪还可以进一步加强.图1是函数y =1x的部分图象,显然S 曲边梯形A B C F <S 梯形A B C F ,于是ʏn +1n1x d x <12(1n +1n +1),得l n (1+1n )<12(1n +1n +1),令n =1,2, ,n ,并采用累加法可得1+12+13+ +1n>l n (n +1)+n2(n+1)(n ȡ1).图1例2㊀证明:l n 42n +1<ðni =1i4i 2-1(n ɪN ∗).分析㊀由于i 4i 2-1=14(12i -1+12i +1),l n 42n +1=14l n (2n +1),故证明l n (2n +1)<ðni =1(12i -1+12i +1).构造函数f (x )=12x +1,显然f (x )单调递减,考虑到ðni =1(12i -1+12i +1)的结构,对函数f (x )采用类似图1中的梯形面积放缩.证明㊀由分析得ʏii -112x +1d x <12(12i -1+12i +1),故12l n (2n +1)=ʏn012x +1d x =ðni =1ʏii -112x +1d x <12ðni =1(12i -1+12i +1),不等式两边除以12即为所证.例3㊀证明13+15+17+ +12n +1<12l n (n +1)(n ɪN ∗).分析㊀若考虑函数y =12x +1,则有12i +1<ʏii -112x +1d x ,则ðni =112i +1<ðni =1ʏii -112x +1d x =ʏn012x +1d x =12l n (2x +1)n0=12l n (2n +1),达不到所证的精度,必须改变定积分放缩的精度.证明㊀结合不等式的右边,考虑函数f (x )=1x.如图2所示,在区间[i ,i +1]上,取区间的中点i +12,并以1i +12为高作矩形A E F B ,则S 矩形A E F B <ʏi +1i 1x d x .于是有22i +1=1i +12<ʏi +1i1xd x ,则ðni =122i +1<ðni =1ʏi +1i1xd x =ʏn +111xd x =l n (n +1),即ðn i =112i +1<12ln (n +1).图2例4㊀设n 是正整数,r 为正有理数.(1)求函数f (x )=(1+x )r +1-(r +1)x -1(x >-1)的最小值;(2)证明:n r +1-(n -1)r +1r +1<n r<(n +1)r +1-nr +1r +1;(3)设x ɪR ,记[x ]为不小于x 的最小整数,例如[2]=2,[π]=4,[-32]=-1.令S =381+382+383+ +3125,求[S ]的值.(参考数据:8043ʈ344 7,8143ʈ350 5,12543ʈ625 0,12643ʈ631 7.)分析㊀出题者的本意是利用第(1)问中的伯努利不等式来证明后两问,但这里我们利用积分来证明.证明㊀(1)f m i n (x )=0(求解过程略).(2)因为r 为正有理数,函数y =x r 在(0,+ɕ)上单调递增,故ʏnn -1x r d x <nr,而52热点追踪ʏnn -1x rd x =x r +1r +1n n -1=n r +1-(n -1)r +1r +1,故n r +1-(n -1)r +1r +1<n r.同理可得n r<ʏn +1n x rd x =x r +1r +1n +1n =(n +1)r +1-n r +1r +1,从而n r +1-(n -1)r +1r +1<n r<(n +1)r +1-n r +1r +1.(3)由于i 13<ʏi +1i x 13d x <(i +1)13,故S =ð125i =81i13<ð125i =81ʏi +1ix 13dx =ʏ12681x 13dx =34x 4312681=34(12643-8143),34(12543-8043)=34x 4312580=ʏ12580x 13d x =ð124i =80ʏi +1ix 13d x <ð124i =80(i +1)13=S .34(12543-8043)<S <34(12643-8043).代入数据,可得34(12543-8043)ʈ210.2,34(12643-8143)ʈ210.9.由[S ]的定义,得[S ]=211.2㊀利用积分证明函数不等式我们知道ʏx 2x 1fᶄ(x )d x =f (x 2)-f (x 1),因此,对于与f (x 2)-f (x 1)有关的问题,可以从定积分的角度去思考.若f (x )的导数f ᶄ(x )在区间(a ,b )上单㊀图3调递减且f ᶄ(x )为凹函数,如图3所示.设A C 的中点为B ,过点B 作B G ʅx 轴与f (x )交于点G ,过点G 作f (x )的切线与直线AH 和C D 分别交于点F 和I .设A (x 1,0),C (x 2,0),则f (x 2)-f (x 1)=ʏx 2x 1fᶄ(x )d x =S 曲边梯形A C J H ,S 矩形A C D E =f ᶄ(x 2+x 12)(x 2-x 1).因为S 曲边三角形E G H >S әE F G =S әD I G >S 曲边三角形J D G ,S 曲边梯形A C J H -S 矩形A C D E =S 曲边三角形E G H -S 曲边三角形J D G >0,于是有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12).借助上述几何意义,一般地我们有如下结论.(1)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凹函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1>f ᶄ(x 2+x 12);(2)若函数f (x )的导数f ᶄ(x )在区间(a ,b )上为凸函数,则对于任意的a <x 1<x 2<b ,有f (x 2)-f (x 1)x 2-x 1<f ᶄ(x 2+x12).例5㊀(1)函数f (x )=l n x ,因为f ᶄ(x )=1x在(0,+ɕ)上为凹函数,则对任意0<x 1<x 2,有l n x 2-l n x 1x 2-x 1>1x 2+x 12,即x 2-x 1l n x 2-l n x 1<x 1+x 22,此为对数均值不等式.(2)函数f (x )=x l n x ,因为f ᶄ(x )=1+l n x 在(0,+ɕ)上为凸函数,则对任意0<x 1<x 2,有x 2l n x 2-x 1l n x 1x 2-x 1<1+l n x 2+x 12.许多考题都是以此为背景命题,比如,如下高三模拟考试的压轴题.例6㊀已知函数f (x )=l n x -a x 22+(a -1)x -32a(a >0),在函数f (x )的图象上是否存在不同两点A (x 1,y 1),B (x 2,y 2),线段A B 中点的横坐标为x 0,直线A B 的斜率为k ,使得k >f ᶄ(x 0).简证㊀由于f ᶄ(x )=1x-a x +a -1(a >0)在(0,+ɕ)上为凹函数,可见结论成立!例7㊀设函数f (x )=xex ,若x 1ʂx 2,且f (x 1)=f (x 2),证明:x 1+x 2>2.分析㊀本题的本质是极值点偏移问题,常见证法是利用对称性构造函数,这里采用定积分来证明.证明㊀不妨设x 1<x 2,由f ᶄ(x )=1-x ex ,可知f (x )在(-ɕ,1]上单调递增,在[1,+ɕ)上单调递减,且f (0)=0.当x >0时,f (x )>0,可知0<x 1<1<x 2.设x 1e x 1=x 2e x 2=t ,则x 1+x 2=t (e x 1+e x 2),x 2-x 1=t (e x 2-e x 1),考虑函数y =e x ,则根据定积分的梯形面积放缩有e x 2-e x 1=ʏx 2x 1e xd x <(e x 1+e x2)(x 2-x 1)2,则x 2-x 1t <12 x 2+x 1t(x 2-x 1),故x 1+x 2>2.(作者单位:广东省中山市中山纪念中学)62。
求解数列不等式证明问题的方法
解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。
高中数学:利用导数证明不等式的常见题型
利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。
题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。
例析赋值放缩法证明与函数有关的数列不等式
0 。 , … ② ・ ① 式 减 去 ② 式 并 ( ÷ ) + 2 ・ ( ÷ ) + 3 ・ ( ÷ ) + … + n ・ ( ÷ ) . 移项整理 , 利 用 0 <X ' n + p< ≤1 , 得 一X n + p 用错位相减 法求得 = 3 ( ÷ ) , 则 = ÷ 一
增. 由于 厂 n ( 1 ) : 1+ 1+
1
+
…
>1 n ( n+1 )+
>0 , 故, n ( 1 )≥ 0 .
( n 解
.
\
( 1 ) b=口一1 , c=1—2 a .
( 一 + + 塞
≤ 一 ÷+
( 2 )由( 1 ) 知
) :。 +
‘ n
( I ) 用。 表示 6 , c ; ( 2 ) 若, ( )≥ l 眦在[ 1 ,+∞)上恒成立 , 求 。的 取值范 围;
( 3 ) 证明: 1+ 1 +了 1+… +
证 明 (I )对每个 n∈N+ , 当 >0时 ( ) =
;・
1 + ÷+ …+ > 0 , 故 ( ) 在( 0 , + 。 。 ) 内 单调递
= ・
一
解 ① 用 赋 值 法 求 得 , ( n ) = ( . ② 由 条 件 得
+
( < 3 臆
2 利用 函数的单调性放缩后求和 。 证明不等式 例2 ( 2 0 1 3年安徽 理科 2 0 题) 设 函数 ( ) = 一1
+ + + +‘ +… 一+ +- 7( ∈ ∈R, , n∈N+ ∈ N+ ) ), , 证明 证 明: : (I) )
p g ) 且 1 ) = 了 1
.
① 当 n ∈ N+时 , 求 n )的表 达 式 ; ②设 a =
不等式的常见证明方法
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
数列证明题的解题方法
n n(n 1) n 1
n
n(n 1) n 1 2 2 2
用放缩法证明数列中的不等式问题,判断 证明的方向是至关重要的,决定到解题的 思路和方向,因此一定要熟记常见的放缩 法证明的结论的特点,本题的要证明的结 论是一个等差数列前n项和的形式,所以放 缩应该放所为等差数列,请同学们结合下 面要将的方法仔细比较分析加以区别。
I
1 首项为1,公比为- 的等比数列是否为B -数列?请说明理由; 2 设S n是数列{x n }的前n项和。给出下列两组判断: ③数列{S n }是B -数列。 ④数列{S n }不是B -数列。
A组:①数列{x n }是B -数列。 ②数列{x n }不是B -数列。 请以其中一组的一个论断条件,另一组中的一个论断为结论组成一个命题 判断所给命题的真假,并证明你的结论; ( Ⅲ )若数列{ an }是B 数列,证明:数列{ an 2 }也是B 数列。
祝大家新年快乐!
再见!
先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,
则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、 差比数列(这里所谓的差比数列,即指数列{an }满足条件an 1 an f n )求和 或者利用分组、裂项、倒序相加等方法来求和.
二.先放缩再求和 1.放缩后成等差数列,再求和
2.放缩后成等比数列,再求和
例3.(1)设a,n N*,a 2,证明:a 2 n ( a )n ( a 1) a n; 1 (2)等比数列an 中,a1 ,前n项的和为An,且A7,A9,A8成等差数列. 2 an 2 1 设bn ,数列bn 前n项的和为Bn,证明:Bn 1 an 3
第23讲 证明数列不等式(解析版)
第23讲 证明数列不等式参考答案与试题解析一.解答题(共47小题)1.(2021•浙江月考)设等差数列{}n a 的前为n S ,已知24a =,420S =. (1)求数列{}n a 的通项公式 (2)记数列21{}n n a a +的前n 项和为n T ,求证:212n T n n <++ 【解答】解:(1)设等差数列{}n a 的首项为1a ,公差为d , 则由24a =,420S =得1144620a d a d +=⎧⎨+=⎩,故122a d =⎧⎨=⎩,故2n a n =.(2)证明:1222212111()()n n nT a a a a a a =++⋯++++⋯+ 而212n a a a n n ++⋯+=+.222222121111111()412n a a a n ++⋯+=++⋯+, 故221111111[11]422312n T n n n n n n <+++-+-+⋯+-<++-2.(2021春•江油市校级期中)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(,)n n S ,均在函数(0x y b r b =+>且1b ≠,b ,r 均为常数)的图象上. (1)求r 的值; (2)当2b =时,记*1()4nn bn n N a +=∈,求数列{}n b 的前n 项和n T (3)由(2),是否存在最小的整数m ,使得对于任意的*n N ∈,均有3220n mT -<,若存在,求出m 的值,若不存在,说明理由.【解答】解:(1)因为对任意的*n N ∈,点(,)n n S ,均在函数(0x y b r b =+>且1b ≠,b ,r 均为常数)的图象上 所以得n n S b r =+, 当1n =时,11a S b r ==+,当2n 时,111()(1)n n n n n n a S S b r b r b b ---=-=+-+=-,又因为{}n a 为等比数列,∴公比为b ,所以21(1)a b bb a b r-==+,解得1r =-,首项11a b =-,1(1)n n a b b -∴=-(2)当2b =时,12n n a -=,111114422n n n n n n n b a -++++===⨯ 则234123412222n n n T ++=+++⋯+∴34521234122222n n n T ++=+++⋯+ 两式相减,得23412121111222222n n n n T +++=+++⋯+-31211(1)112212212n n n -+-+=+--12311422n n n +++=-- 113113322222n n n n n n T ++++∴=--=- (3)若3220n mT -<使得对于任意的*n N ∈,都成立 33(3)220nn m+∴--<, 即3220n n m +<对于任意的*n N ∈,都成立 又1(1)3320222n n nn n n ++++---=<, ∴32nn +的最大值在1n =时取得,最大值为2, ∴220m>,40m >,所以存在这样的41m =符合题意. 3.(2021春•兰山区校级月考)等比数列{}n a 的前n 项和为n S ,已知对任意的*n N ∈,点(,)n n S 均在函数(0x y b r b =+>且1b ≠,b ,r 均为常数)的图象上. (1)求r 的值;(2)当2b =时,记*32(log 1)()n n b a n N =+∈,证明:对任意的*n N ∈,不等式1212111n nb b b b b b +++⋯>【解答】解:(1)由题意,n n S b r =+,当2n 时,11n n S b r --=+,∴11(1)n n n n a S S b b --=-=-且1b ≠,所以2n 时,{}n a 是以b 为公比的等比数列, 又1a b r =+,2(1)a b b =-,21a b a =,即(1)b b b b r-=+,解得1r =-, r 的值1-;(2)证明:当2b =时,由(1)知12n n a -=,因此*2()n b n n N =∈,∴不等式为214121242n n+++⋯>①当1n =时,左式32=,右式=>右式,所以结论成立②假设*()n k k N =∈时结论成立,即214121242k k+++⋯>则当1n k =+时,2141212323212422(1)2(1)2k k kk k k k +++++⋯>+=++ 要证当1n k =+>只需证:2241294128k k k k ++>++成立,显然成立,∴当1n k =+时,214121232422(1)k k k k ++++⋯>+综合①②可知不等式1212111n nb b b b b b +++⋯>4.数列{}n a 的前n 项和为n S ,已知对任意的n N +∈,点(,)n n S 均在函数1(0x y b b =->且1b ≠,b 均为常数)的图象上.(1)求证:{}n a 是等比数列; (2)当2b =时,记1()4n n n b n N a ++=∈,证明:数列{}n b 的前n 项和32n T <. 【解答】(1)证明:数列{}n a 的前n 项和为n S , 对任意的n N +∈,点(,)n n S 均在函数1x y b =-的图象上,∴1n n S b =-,111a S b ==-,当2n 时,11111(1)n n n n n n a S S b b b b --=-=--+=-.1n =时,上式成立,∴1(1)n n a b b=-,*n N ∈.{}n a ∴是等比数列.(2)2b =时,12n n a -=,11142n n n n n b a +++==, 231231222n n n T ++=++⋯+,① 34212212222n n n T ++=++⋯+,② ①-②,得:3412111111222222n n n n T +++=+++⋯+-1211(1)118212212n n n -+-+=+--23342n n ++=-, ∴13322n n n T ++=-, 32n T ∴<. 5.(2021•临沂期中)等比数列{}n a 的前n 项和为n S ,已知对任意*n N ∈,点(,)n n S 均在函数2(x y r r =+为常数)的图象上. (1)求r 的值;(2)记*()n n b na n N =∈,数列{}n b 的前n 项和为n T ,试比较2n S 与n T 的大小.【解答】解:(1)因为对任意的n N +∈,点(,)n n S ,均在函数2(x y r r =+为常数)的图象上.所以得2n n S r =+, 当1n =时,112a S r ==+,当2n 时,11112(2)222n n n n n n n n a S S r r ----=-=+-+=-=, 又因为{}n a 为等比数列,所以112a r ==+ 故1r =-;(2)由(1)可知,12n n a -=,21n n S =-,*n N ∈ 又由*()n n b na n N =∈,则1*2()n n b n n N -=∈,则数列{}n b 的前n 项和为01232112223242(1)22n n n T n n --=⨯+⨯+⨯+⨯+⋯+-⨯+⨯①12341212223242(1)22n n n T n n -=⨯+⨯+⨯+⨯+⋯+-⨯+⨯②①-②得到:00123212(12)2222222212n n n nn n T n n ----=++++⋯++-⨯=-⨯-即221(1)21n n n n T n n =⨯-+=-⨯+所以22212221(3)23n n n n n n T S n n -=⨯-+-⨯+⨯=-⨯+ 当1n =时,21n n T S -=-,2n n T S ∴<; 当2n =时,21n n T S -=-,2n n T S ∴<; 当2n >时,20n n T S ->,2n n T S ∴>.综上,当1n =,2时,2n n T S <;当2n >时,2n n T S >.6.已知二次函数1k 图象经过坐标原点,其导函数为()62f x x '=-,数列{}n a 的前n 项和为n S ,点(n ,*)()n S n N ∈均在函数()y f x =的图象上;又11b =,1(2)3n n c a =+,且22112312222n n n n n a b b b c ---+++⋯++=,对任意*n N ∈都成立,(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n c b 的前n 项和n T ;(3)求证:()(1)(0)i ln x x +<>;2*2221()(4(1)ni i ilna n n ii n N a n =--<∈+∑,2)n . 【解答】解:(1)设二次函数2()f x ax bx =+,()2f x ax b '=+, 262a b ∴==-,则2()32f x x x =-, (,)n n S 在232y x x =-上,232n S n n ∴=-.当2n 时1n n n a S S -=-22323(1)2(1)65n n n n n =---+-=- 又1n =时1321615a =-==⨯-符合, 65n a n ∴=-,则163(2)2133n n n c a n -=+==-,由22112312222n n n n n b a b b b c ---+++⋯++=得,2211231222221n n n n b a b b b n ---+++⋯++=-①, 令1(2)n n n =-代入上式得,22212311222223n n n n b a b b b n ----+++⋯++=-②, ①-②得,122n n b -=,即22(2)n n b n -=, 又11b =不满足上式,∴21122n nn b n -=⎧=⎨⎩, (3)由(2)得,211(21)22n n nn c b n n -=⎧=⎨-⎩, 122135272(21)2n n T n ---∴=++⨯+⨯+⋯+-⨯③, 123111325272(21)222n n T n ----=+⨯+⨯+⨯+⋯+-⨯④, ③-④得,1221172(222)(21)222n n n T n ----=+++⋯+--⨯21111(1)711222(21)2(23)212212n n n n n ----=+⨯--⨯=-+⨯-,则211(23)2n n T n -=-+⨯,(3)()i 设()(1)(0)g x x ln x x =-+>,则1()1011x g x x x '=-=>++, ()g x ∴在(0,)+∞上是增函数, ()(0)0g x g ∴>=,即(1)0x ln x -+>,故(1)(0)ln x x x +<>; ()(1)(0)ii ln x x x +<>,当*n N ∈,2n 时,令1n n =-代入上式得: 1lnn n <-,即111lnn n n n n-<=-, 令2n n =代入上式得,22211lnn n n <-,∴2211(1)2lnn n n<-则222222222231111(111)23223ni lni ln ln lnn in n ==++⋯+<-+-+⋯+-∑22211111111[(1)()][(1)()]22322334(1)n n n n n =--++⋯+<--++⋯+⨯⨯+ 1111111[(1)()]223341n n n =---+-+⋯+-+ 21111121[(1)()][(1)]22122(1)4(1)n n n n n n n n ---=---=--=+++, 故结论成立.7.11()43x f x b -+=-⨯+,等比数列{}n a 的前n 项和为n S ,点(n P n ,*)()n S n N ∈均在函数()y f x =上.(1)求b 的值及数列{}n a 的通项公式;(2)设32log (8)n n b a =⨯,记数列{}n b 的前n 项和为n T ,是否存在*k N ∈,使得1212n T T T k n++⋯+<对任意*n N ∈恒成立?若存在,求出k 的最小值;若不存在,请说明理由.【解答】解:(1)依题意,1143n n S b -+=-⨯+,当2n 时,21143n n S b -+-=-⨯+,12111144433n n n n n n a S S -+-+-+-∴=-=-⨯+⨯=,114144n n n n a q a -+-+∴===,∴2121111144114433a ab b -+-+===-⨯+-,即43b =, ∴数列{}n a 的通项公式14n n a -+=;(2)结论:存在*k N ∈,使得1212n T T T k n++⋯+<对任意*n N ∈恒成立. 理由如下:由(1)可知12242n n n a -+-+==,39222118222n n n a -+-+∴⨯=⨯=, 322log (8)log 2n n b a ∴=⨯=211211n n -+=-+,2(1)211102n n n T n n n +∴=-+=-+, ∴21010n T n n n n n-+==-, ∴2212(1)119119136110()122222224n T T T n n n n n n n +++⋯+=-=-+=--+, ∴当9n =或10时1212n T T T n ++⋯+取最大值211910104522-⨯+⨯=, ∴存在*k N∈,使得1212n T T T k n++⋯+<对任意*n N ∈恒成立, 且k 的最小值为45.8.已知*)n a n N =⋯+∈,求证:3(1)1(1)23n n n a n +<<+.【解答】证明:(1n n n n <<+,12231n n ∴++⋯+<⋯+<++⋯++,∴3(1)(3)1(1)223n n n n n ++<+. ∴3(1)1(1)23n n n a n +<<+. 9.(2021•嘉兴模拟)设数列{}n a 的前n 项和为n S ,已知1a ,n a ,n S 成等差数列,且542a S =+,*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记2n n n a b S =,*n N ∈,证明:123144(21)nn b b b ++⋯+--,*n N ∈. 【解答】解:(Ⅰ)1a ,n a ,n S 成等差数列,可得12n n a a S =+, 当2n 时,1112n n a a S --=+,两式相减可得1122n n n n n a a S S a ---=-=, 即12n n a a -=,可得{}n a 为公比为2的等比数列,则11(12)(21)12n n n a S a -==--,由542a S =+,可得44112(21)2a a =-+, 解得12a =,则2n n a =,*n N ∈; (Ⅱ)证明:2224(21)nn n n n a b S ==-,当2n 时,1211222111()4(21)4(21)(22)4(21)(21)42121n n n n n n n n n n nb ---=<==--------, 则121111111131(1)24337212144(21)n n n n b b b -++⋯+<+-+-+⋯+-=----, 当1n =时,131144(21)2a -==⨯-,则等号取得,则123144(21)nn b b b ++⋯+--,*n N ∈. 10.(2021春•秀山县校级月考)设函数()(1)f x ln x =+,22()()1x xg x a a R x+=∈+.(1)若函数()()()h x f x g x =-在定义域内单调递减,求a 的取值范围;(2)设*n N ∈,证明:3422212(1)(1)(1)(ne e n n n++⋯+<为自然对数的底数).【解答】(1)解:函数()h x 的定义域为(1,)-+∞,且22()()()(1)1x xh x f x g x ln x a x+=-=+-+,则22221(22)(1)(2)(1)(22)()1(1)(1)x x x x x a x x h x a x x x ++-++-++'=-=+++, 由于()h x 在(1,)-+∞内单调递减,则()0h x '对(1,)x ∈-+∞恒成立, 即2(1)(22)0x a x x +-++对(1,)x ∈-+∞恒成立,⋯(2分) 从而21()22max xa x x +++,则11()1211max a x x=+++, 故a 的取值范围为1[,)2+∞⋯(4分)(2)证明:取12a =,由第(1)问可知()h x 在(0,)+∞为单调递减函数, 从而()(0)0h x h <=;则212(1)21x xln x x++<+对(0,)x ∈+∞,均成立,⋯(6分)令2(1,2,,)kx k n n ==⋯, 有222222222()2111(1)()()22211k k k k k k k n n ln k n n n k n n n++<=+++++;⋯(9分) 从而22212[(1)(1)(1)]n ln n n n ++⋯+ 2222222221211212(1)(1)(1)()2111n n n ln ln ln n n n n n n n n n =++++⋯++<++⋯++++⋯++++ 221(1)(1)3[3]4(1)4n n n n n -+-=-+, 故3422212(1)(1)(1)ne n n n++⋯+<⋯(12分)11.(2021春•阳江校级月考)设数列{}n a 满足12a =,211n nn a a na +=-+,1n =,2,3,⋯, (1)求2a ,3a ,4a ;(2)猜想出{}n a 的一个通项公式,并用数学归纳法证明你的结论; (3)设21n n b a =,数列{}n b 的前n 项和为n T ,求证:34n T <. 【解答】解:(1)由12a =,得221113a a a =-+=,2322214a a a =-+=,45a =.(2)由此猜想{}n a 的一个通项公式:1(1)n a n n =+. 下面用数学归纳法证明如下:①当1n =时,1211a ==+,等式成立. ②假设当n k=时等式成立,即1k a k =+,那么2211(1)(1)12(1)1k k k a a ka k k k k k +=-+=+-++=+=++, 也就是说,当1n k =+时,1(1)1k a k +=++也成立. 根据①②对于所有1n ,有1n a n =+. 证明:(3)2211111(1)(1)1n n b a n n n n n ==<=-+++, 22222211111111111111111111113()()()()234(1)22334(1)(1)42334114214n T n n n n n n n n n n n ∴=+++⋯++<+++⋯++=+-+-+⋯+-+-=+-<+⨯⨯-+-++12.(2012秋•济源校级期中)设数列{}n a 满足121(2)n n a a n -=+,且11a =,2log (1)n n b a =+ (1)求数列{}n a 的通项公式; (2)设数列21{}n n b b +的前n 项和为n S ,证明:34n S <. 【解答】(1)解:因为121(2)n n a a n -=+,所以112(1)(2)n n a a n -+=+, 所以数列{1}n a +是以112a +=为首项,以2为公比的等比数列. 所以11222n n n a -+==. 所以21n n a =-⋯(4分)(2)证明:因为21n n a =-,所以2log (1)n n b a n =+=⋯(6分) 所以211111()(2)22n n b b n n n n +==-++.⋯(8分) 所以111111111111(1)(1)23241122212n S n n n n n n =-+-+⋯+-+-=+---++++31113()42124n n =-+<++.⋯(12分) 13.(2007•崇文区一模)已知数列{}n a 中,113a =,*11(2,)n n n n a a a a n n N --⋅=-∈,数列{}n b 满足*1()n nb n N a =∈. (Ⅰ)求数列{}n b 的通项公式; (Ⅱ)设数列1{}n nb 的前n 项和为n T ,证明3142n T n <-+. 【解答】解:()I 当1n =时,1113b a ==, 当2n 时,1111111n n n n n n n n a a b b a a a a ------=-==⋅,∴数列{}n b 是首项为3,公差为1的等差数列, ∴通项公式为2n b n =+;(5分)11()(2)n II nb n n =+, ∴1111132435(2)n T n n =++++⋅⋅⋅+ 11111111[(1)()()()]2324352n n =-+-+-++-+ 1311[()]2212n n =-+++ 1323[]22(1)(2)n n n +=-++ 23222(1)(2)(1)(2)2n n n n n n n ++>=+++++ ∴222(1)(2)2n n n n +-<-+++ ∴132313231[[]22(1)(2)22242n n n n n +-<-=-++++ ∴3142n T n <-+.(13分) 14.(2021春•绍兴期中)已知正项数列{}n a 满足:112a =,211(2)nn n n a a a a n --=+,n S 为数列{}n a 的前n 项和. ()I 求证:对任意正整数n ,有2nS n n; ()II 设数列21n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:对任意(0,6)M ∈,总存在正整数N ,使得n N>时,n T M >.【解答】证明:()I 正项数列{}n a 满足:112a =,211(2)nn n n a a a a n --=+, ∴22211022a a --=,20a >,解得2312a =<.猜想212nn a -. 下面利用数学归纳法证明: ()i 当1n =时,112a =成立.()ii 假设*n k N =∈时,212kk a -成立. 则1n k =+时,211121(1)(1)2kk k k k a a a a+++-=++, 解得1(21)k k a +-+=(21)212k k -++=.因此1n k =+时也成立. 综上可得:*n N ∀∈,212nn a -成立. 21321(121)22242nn n n n S -+-∴++⋯+==, 故对任意正整数n ,有2nS n n. ()II 由(Ⅰ)知10n n a a +>>,22121a a a =+,21a =,()1xf x x =+在区间(0,)+∞上单调递增, 121121112n n n n a a a a a a +++∴-==++. 11122111(1)222n n n n n n a a a a a a a a n ---∴=+-+-+⋯+--+=, 当2n 时,2211111n n n n na a a a a -+==+,21111n n n a a a -=-,222212*********6n n nT a a a a a a n∴=++⋯+=+--, 令26M n ->,26n M>-, 设0N 为不小于26M -的最小整数,取01N N =+(即2[]1)6N M=+-, 当n N >时,n T M >.∴对任意(0,6)M ∈,总存在正整数N ,使得n N >时,n T M >.15.(2021•邯郸一模)已知正项数列{}n b 的前n 项和n S 满足:2*632()n nn S b b n N =++∈,且12b <.(Ⅰ)求{}n b 的通项公式;(Ⅱ)设数列{}n a 满足:1112,(1)(2,n n na a a nb -==+且*)n N ∈,试比较n a 的大小,并证明你的结论.【解答】解:(Ⅰ)数列{}n b 的前n 项和n S 满足:2*632()n nn S b b n N =++∈,① ∴当1n =时,2111632b b b =++,11b =或12b =, 12b <,11b ∴=.当2n ,*n N ∈时,2111632n n n S b b ---=++,②由①-②得:22116(32)(32)n n n n n b b b b b --=++-++,22113()n n n n b b b b --∴-=+,正项数列{}n b , 13n n b b -∴-=,∴数列{}n b 是首项为1,公差3的等差数列.13(1)32n b n n ∴=+-=-, {}n b ∴的通项公式为:32n b n =-.(Ⅱ)结论为:n a > 证明:由(Ⅰ)知:32n b n =-. 11(1)n n na ab -=+,(2n 且*)n N ∈, 11(1)32n n a a n -∴=+-, ∴13132n n n a a n --=-, ∴2154a a =, 3287a a =,⋯13132n n n a a n --=-, 又12a =,∴上述n 个式子叠乘,得:25811(31)4710(32)n n a n ⨯⨯⨯⨯⋯⨯-=⨯⨯⨯⋯⨯-.要比较n a的大小, 只要比较3n a 与1n b +的大小, 0n a >,0n b >,∴只要比较31n n a b +与1 的大小.记33[258(31)]()[47(32)](31)n f n n n ⨯⨯⨯⋯⨯-=⨯⨯⋯⨯-+,f (1)33(25)12514432⨯==>⨯, 332332(1)(32)(31)543641()(31)(34)54274f n n n n n n f n n n n n n ++++++==>+++++, ()1f n ∴>,则有:n a >16.(2021•安徽三模)已知正项数列{}n a 的前n 项和为n S ,且*121111()()2n nn a n N S S S +=++⋯+∈ ①求1a ,2a ,3a ;②求数列{}n a 的通项公式n a ; ③若数列{}n b 满足11b =,11(2)n n nb b n a -=+,求证:21231111122()(2)234n n b b b b b n n-<++++⋯+.【解答】解:①由121111()2n nn a S S S +=++⋯+, ∴11111a S a ==,11a ∴=(负值舍去), 同理:22a =,33a =;②猜想:n a n =(下面用数学归纳法证明)n a n =, 当1n =时,命题成立;假设当n k =时命题成立,即k a k =, 112121111()2k k k k a S S S S +++=++⋯++,k a k =,∴(1)2k k k S +=, 121111111111112[(1)()()]2231k k k k S S S S k k S a ++++⋯++=-+-+⋯+-+++ 1111212(1)11k k k k k k S a k S a ++=-+=+++++, ∴11221()(1)212k k k k a k k k a+++=++++, 222112(1)(3)(1)(2)(1)0k k k a k k a k k k ++∴++--+++=, 211[2(1)(2)(1)][(1)]0k k k a k k a k ++∴++++-+=, 11k a k +∴=+,∴当1n k =+时命题成立. n a n ∴=.③11n n nb b a -=+, ∴22211112()n n n n n b b b a a --=++, ∴22211112()n n n n nb b b a a ---=+, ∴22112122223231111112()()n n n nb b b b b a a a a a a --=++⋯++++⋯+, ∴212122211111112()()2323n n b b b b n n-=+++⋯++++⋯+, 22211111111111(1)()()()1(2)23223341n n n n n++⋯+<-+-+-+⋯+-=--, ∴2121111112(!)123n n b b b b n n-<+++⋯++-, 21231111122()(2)234n n b b b b b n n-∴<++++⋯+.17.(2021春•历下区校级期中)(1)已知0a b >>,0m >,比较b a 和b m a m++的大小并给出解答过程;(2)证明:对任意的n N +∈,不等式357212462n n+⋯ 【解答】解:(1)b m ba m a+>+. 由条件()()()()()b m b a b m b a m m a b a m a a a m a a m ++-+--==+++,a b >,0m >,∴()0()m a b a a m ->+,∴0b m ba m a +->+, ∴b m ba m a+>+; (2)证明:由(1)所得结论得若0a b <<,0m >, 则b b ma a m+>+, 可得3355772121()()()()22446622n n n n++⋯ 3456782122()()()()1234567221n nn n n ++>⋯=++, 两边开方,命题得证,由①、②可得对任意的n N +∈,不等式357212462n n+⋯> 18.(2021•盐城三模)(1)已知*0,0()i i a b i N >>∈,比较221212b b a a +与21212()b b a a ++的大小,试将其推广至一般性结论并证明;(2)求证:3*01213521(1)()2n nn n n n n n n N C C C C +++++⋯+∈. 【解答】解:(1)22222212211212121212()()()b b a b a b a a b b a a a a ++=+++, 因为0i a >,0i b >,所以222112120,0a b a b a a >>,则2222112211212122a b a b a b b b a a a +⨯=,所以22222121212121212()()2()b b a a b b b b b b a a ++++=+,即22212121212()()()b b a a b b a a +++.所以22212121212()b b b b a a a a +++,当且仅当22211212a b a b a a =,即2112a b a b =时等号成立. ⋯⋯(2分) 推广:已知0i a >,*0(i b i N >∈,1)i n ,则222212121212()n n nnb b b b b b a a a a a a ++⋯+++⋯+++⋯+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(4分)证明:①当1n =时命题显然成立; 当2n =时,由上述过程可知命题成立; ②假设(2)n k k =时命题成立,即已知0i a >,*0(i b i N >∈,1)i k 时,有222212121212()k k k kb b b b b b a a a a a a ++⋯+++⋯+++⋯+成立,则1n k =+时,222222112112121121()()k k k k k k k k b b b b b b b b a a a a a a a a ++++++⋯+++⋯+++++⋯+,由22212121212()b b b b a a a a +++,可知222121121121121()()k k k k k k k k b b b b b b b b a a a a a a a a ++++++⋯+++⋯+++++⋯+++⋯++,故22222112112121121()k k k k k k k k b b b b b b b b a a a a a a a a ++++++⋯++++⋯++++⋯++,故1n k =+时命题也成立.综合①②,由数学归纳法原理可知,命题对一切*n N ∈恒成立. ⋯⋯(6分) (注:推广命题中未包含1n =的不扣分) (2)证明:由(1)中所得的推广命题知01213521nn n n nn C C C C ++++⋯+ 22222012012135(21)[135(21)]35(21)35(21)n nn n n n n n n nn n C C C n C C C C n C ++++⋯++=+++⋯+++++⋯++①,⋯(8分) 记01235(21)nn n n n n S C C C n C =+++⋯++, 则10(21)(21)n n n n n n S n C n C C -=++-+⋯+,两式相加,得0122(22)(22)(22)(22)nn n n n n S n C n C n C n C =++++++⋯++,012(22)()(22)2nn n n n n n C C C C n =++++⋯+=+⨯,故(1)2n n S n =+⨯②,又2241(21)[135(21)][(1)](1)2n n n n +++++⋯++=⨯+=+③,将②③代入①,得222243012135(21)(1)(1)35(21)(1)22nn nn n n nn n n C C C n C n ++++++⋯+=++,所以,301213521(1)2nnn n n n n n C C C C +++++⋯+,证毕. ⋯⋯(10分) 19.(2021春•枣庄校级月考)(1)已知a ,b ,m 都是正数,且a b <,用分析法证明a m ab m b+>+; (2)已知数列{}n a 的通项公式为312n n a -=,*n N ∈.利用(1)的结论证明如下等式:123111132n a a a a +++⋯+<. 【解答】证明:(1)要证a m ab m b+>+,由于a ,b ,m 都是正数, 只需证()()a b m b a m +<+,即ab am ab bm +<+,只需证am bm <因为0m >,所以只需证a b <, 又已知a b <,所以原不等式成立 (2)证明:1231nn a =-. 当1n =时,左式312=<=右式. 当1n >,*n N ∈时,由(1)知:11221131(31)13n n n n a -+=<=--+ 于是2112311111113131(1)333232n n n a a a a -+++⋯+<+++⋯+=-< 综上可得123111132n a a a a +++⋯+< 20.(2021•杭州期中)已知数列{}n a 的前n 项和n S 满足13210n n a S ++-=,且113a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设113n n nb S =+,证明:1231712nb b b b n +++⋯+<+. 【解答】(本小题满分12分)解:(Ⅰ)由112211113210,393n n a S a a a a ++-==⇒=⇒=;------------------(1分)当2n 时,111321033220n n n n n n a S a a S S -+-+-=⇒-+-=-----------(2分)∴113n n a a +=,(2)n ,----------------------------------(3分)又2113a a =,∴数列{}n a 是以13为首项,13为公比的等比数列, ∴13n na =.-------------(4分) 证明:(Ⅱ)由(Ⅰ)可得112(1)12331n n n n S b =-⇒=+-------------------------(5分)∴12323222231313131n n b b b b n +++⋯+=+++⋯++---- 欲证1231712n b b b b n +++⋯+<+,只需证232222173131313112n +++⋯+<------------------------------(7分) 令231n n c =-,记{}n c 的前n 项和为nT ,即证1217171171,11212412n T T T <=<=+<------------------------------------------(8分) 当3n 时,12211313113n n n -+<=-----------------------------------+(10分)∴当3n 时,223111(1)11115513179311433344921213n n n T ---<++++⋯+=+<+=------------------(12分)综上,1231712n b b b b n +++⋯+<+对*n N ∈成立. 21.(2021•沙坪坝区校级一模)已知数列{}n a 的前n 项之积n T 满足条件:①1{}nT 为首项为2的等差数列;②2516T T -=. (1)求数列{}n a 的通项公式n a ; (2)设数列{}n b 满足n n b a ,其前n 项和为n S .求证:对任意正整数n ,有104n S <<. 【解答】解:(1)设数列1n T ⎧⎫⎨⎬⎩⎭公差为d ,因为数列1n T ⎧⎫⎨⎬⎩⎭首项为2,所以2511,224T T d d ==++, 由方程2516T T -=可得1112246d d -=++,解得1d =, 所以12(1)11n n n T =+-⨯=+,即11n T n =+, 因为数列{}n a 的前n 项之积n T ,所以当2n 时,11111n n n T nn a T n n-+===+,当1n =时,1112a T ==符合,所以1n n a n =+,证明:(2)由(1)得,2222()01n n n n n n n b a n --===>+, 所以数列{}n b 前n 项和0n S >, 同由上面可知:1nn +,222222221111(2)(1)(2)(1)()2(1)(2)2122211n n n n n n n n n n n n b n n n n n n n n --++++<===-++++⨯⨯++,所以1231111111[()()()]2233412n n S b b b b n n =+++⋯+<-+-+⋯+-++1111()2224n =-<+, 综上可得,104n S <<. 22.已知数列{}n a 中,n S 为{}n a 的前n 项和,13n n a S n +=-+,*n N ∈,12a =. (1)求{}n a 的通项公式; (2)设*()2n n n b n N S n =∈-+,数列{}n b 的前n 项和为n T ,求证:*14()33n T n N <∈.【解答】解:(1)当1n =时,2111324a S a =-+=+=, 13n n a S n +=-+,可得14n n a S n -=-+,两式相减可得,11n n n a a a +-=-, 即有112(1)n n a a +-=-,即为数列{1}n a -为第二项起为等比数列, 则2132n n a --=,1n >,n N ∈, 即有22,1321,1n n n a n -=⎧=⎨+>⎩;(2)13n n a S n +=-+,可得1322n n S n -=-+,则1232n n n n nb S n -==-+, 即有前n 项和为211233323232n n nT -=+++⋯+, 231123232323232n nnT =+++⋯+, 两式相减可得,21111112332323232n n nn T -=+++⋯+-11()12133212n nn -=--, 化简可得4412()33232n n nnT =--, 由于{}bn 各项大于0,可得113n T T =,由不等式的性质可得43n T <. 故*14()33n T n N <∈. 23.(2021•宾阳县校级期中)已知公差不为0的等差数列{}n a 满足:11a =且2a ,5a ,14a 成等比数列.(1)求数列{}n a 的通项公式n a 和前n 项和n S ; (2)证明不等式12331111112(221n n n S S S S n-<+++⋯+<-+且*)n N ∈ 【解答】解:(1)设数列{}n a 公差为d ,因为2a ,5a ,14a 成等比数列.所以25214a a a =,即2(14)(1)(113)d d d +=++得2360d d -=又0d ≠,所以2d =. 故2(121)12(1)21,2n n n na n n S n +-=+-=-==.(6分) (2)证明:由(1)得211n S n=,因为 当2n 时,2111(1)(1)n n n n n <<+-. 即21111111n n n n n-<<-+-. 所以22221111111111111111111233412342231n n n n n+-+-+⋯+-<++++⋯+<+-+-+⋯+-+-.即1233111111221n n S S S S n-<+++⋯+<-+.(12分)24.已知函数()f x lnx =,3()2ag x x=-,(a 为常数) (1)若方程2()()f x e g x =在区间1[2,1]上有解,求实数a 的取值范围;(2)当1a =时,证明不等式()()2g x f x x <<-在[4,)+∞上恒成立; (3)证明:(Tex translation failed),*()n N ∈(参考数据:20.693)ln ≈ 【解答】解:(1)()f x lnx =,3()2ag x x=-, ∴方程2()()f x e g x =可化为232a x x=-. 即332a x x =-+. 令33()2h x x x =-+.则23()32h x x '=-+. 由23()302h x x '=-+=得,2x =,或2x =-(舍去).当x ∈时,23()302h x x '=-+>.()h x 单调递增.当x ∈时,23()302h x x '=-+<.()h x 单调递减.15()28h =,h (1)12=,h =.1[2x ∴∈,1]时,1()[2h x ∈. ∴方程2()()f x e g x =在区间1[2,1]上有解等价于1[22a ∈.(2)1a =时,不等式()()g x f x <可化为 312lnx x-<, 即132lnx x +>.令1()r x lnx x=+. 则211()r x x x '=-. 当[4x ∈,)+∞时,()r x 单调递增. ()min r x r ∴=(4)13442ln =+>. ∴当[4x ∈,)+∞时,()()g x f x <恒成立.()2f x x <-可化为 2lnx x <-,即2lnx x -<-. 令()k x lnx x =-. 1()1k x x'=-. 当[4x ∈,)+∞时,()k x 单调递减. ()max k x k ∴=(4)442ln =-<-.∴当[4x ∈,)+∞时,()2f x x <-恒成立.∴当1a =时,证明不等式()()2g x f x x <<-在[4,)+∞上恒成立.(3)()f x lnx =,2(21)(1)()2(21)(1)f k f k f k ln k ln k lnk ∴+-+-=+-+- 2(21)(1)k lnk k +=+ 1(4)(1)f k k =++,由(2)可知,31()22f x x x-<<-, ∴3111(4)4212(1)(1)4(1)f k k k k k k -<+<+-++++,即3(1)111(4)224(1)1(1)1k k f k k k k k k +-<+<-+++++, ∴51111(4)2416(1)4(1)1f k k k k k k +<+<-+++++, ∴(Tex translation failed),*n N ∈,∴(Tex translation failed).25.(2021•衡水校级模拟)已知函数()cos sin (0)f x x x x x =->. (1)求函数()f x 在点(2π,())2f π处的切线方程; (2)记n x 为()f x 的从小到大的第*()n n N ∈个极值点,证明:不等式*2222212311117()4n n N x x x x π+++⋯+<∈. 【解答】(1)解:()cos sin cos sin f x x x x x x x '=--=-,则切线的斜率为()sin 2222f ππππ'=-=-, 又()12f π=-,故函数()f x 在点(,())22f ππ处的切线方程为(1)()22y x ππ--=--,即21024x y ππ++-=.(2)证明:由()sin 0f x x x '=-=,0x >,得*()n x n n N π=∈, 所以当2n 且*n N ∈时,22222111111()(1)(1)2(1)(1)n x n n n n n πππ=<=--+-+. 所以当2n 时,*n N ∈时,2222222222212311111111111111111111111117(1)(1)(1)23243531211221224n x x x x n n n n n n n n πππππππ+++⋯+<+-+-+-+⋯+-+-+-=++--<++=----++. 又当1n =时,22211174x ππ=<. 综上,*2222212311117()4n n N x x x x π+++⋯+<∈. 26.(2012•洛阳模拟)已知函数1()1()af x lnx ax a R x-=-+-∈. (Ⅰ)当12a <时,讨论()f x 的单调性; (Ⅱ)当0a =时,对于任意的n N +∈,且2n ,证明:不等式111321(2)(3)()42(1)n f f f n n n +++⋯+>-+. 【解答】()I 解:函数的定义域为(0,)+∞,求导函数可得221()ax x a f x x-++-'= 当0a =时,21()x f x x -'=,令21()0x f x x -'=>可得1x >,令21()0x f x x-'=<,0x >,01x ∴<<,∴函数()f x 在(1,)+∞上是增函数,在(0,1)上是减函数;当0a <时,令221()0ax x a f x x -++-'=>得210ax x a -+-+>,解得1x >或11x a<-(舍去),此时函数()f x 在(1,_+∞上增函数,在(0,1)上是减函数;当102a <<时,令221()0ax x a f x x -++-'=>得210ax x a -+-+>,解得111x a<<- 此时函数()f x 在1(1,1)a -上是增函数,在(0,1)和1(1a-,)+∞上是减函数⋯(6分)()II 证明:由()I 知:0a =时,1()1f x lnx x=+-在(1,)+∞上是增函数, 1x ∴>时,()f x f >(1)0=设221()()(1)(1)g x f x x lnx x x x=--=+->,则22(1)(221)()x x x g x x -+-+'=22210x x -+>恒成立,1x ∴>时,()0g x '<,()g x ∴在(1,)+∞上单调递减 1x ∴>时,()g x g <(1)0=,即2()1f x x <-()0f x >,∴211111()()1211f x x x x >=---+ ∴1111111111111321(1)(1)(2)(3)()23241122142(1)n f f f n n n n n n n +++⋯+>-+-+⋯+-=+--=--+++∴不等式得证⋯(12分)27.证明不等式:3721135932n n n -+++⋯+<-.【解答】证明:1212121221323322n n n n n n n n ------++⋯+=-++⋯+, 由11211213(221)2(3322)n n n n n n n -------++⋯+-++⋯+121211(32232)(34)n n n n n n ------=-+⋯+- 221132(34)(34)0n n n n ----=-+⋯+-, 当1n =取得等号,即有11212323n n nn n ----, 则113721242115932393n n n nn ---+++⋯+<+++⋯+- 21()2333()32313nn -==-<-. 故原不等式成立.28.(2021春•辛集市校级月考)已知()(1)(1)f x x ln x =++. ()I 求函数()f x 的单调区间;(Ⅱ)设函数2()2()1g x x f x x =-+,若关于x 的方程()g x a =有解,求实数a 的最小值; (Ⅲ)证明不等式:*111(1)1()23ln n n N n+<+++⋯+∈ 【解答】(Ⅰ)解:()(1)(1)f x x ln x =++,(1)x >-,()(1)1f x ln x '=++,由()0f x '=,得11x e=-,当1(1,1)x e∈--时,()0f x '<;1(1x e ∈-,)+∞,()0f x '>.∴函数()f x 的单调增区间为:1(1e -,)+∞,单调减区间为:1(1,1)e--.(Ⅱ)函数2()2()22(1)1g x x f x x ln x x =-=-++,(1)x >- 2()21g x x '=-+,令()0g x '=,得0x =. (1,0)x ∈-时,()0g x '<,(0,)x ∈+∞时,()0g x '> ()g x ∴在(1,0)-递减,在(0,)+∞递增, ()(0)0g x g ∴=,∴关于x 的方程()g x a =有解,则实数a 的最小值为0.(Ⅲ)证明:由(Ⅱ)得(1)x ln x >+在(0,)+∞上恒成立, 令1x n =,则有111(1)(1)ln ln n lnn n n n+<⇒+-< 1211ln ln ∴-<,1322ln ln -<,1433ln ln -<,⋯,1(1)ln n ln n+<<∴11(1)112ln n ln n+-<++⋯+ *111(1)1()23ln n n N n∴+<+++⋯+∈. 29.(2021•大庆一模)已知函数()1f x ax lnx =-+ (1)若不等式()0f x 恒成立,则实数a 的取值范围;(2)在(1)中,a 取最小值时,设函数()(1())(2)2g x x f x k x =--++.若函数()g x 在区间1[,8]2上恰有两个零点,求实数k 的取值范围;(3)证明不等式:2*212(234)(n n ln n n N n-+⨯⨯⨯⋯⨯>∈且2)n .【解答】解:(1)由题意知,10ax lnx -+恒成立.变形得:1lnx a x+. 设1()lnx h x x+=,则()max a h x . 由2()lnxh x x '=-可知,()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, ()h x 在1x =处取得最大值,且()max h x h =(1)1=.所以()1max a h x =,实数a 的取值范围是[1,)+∞.(2)由(1)可知,1a ,当1a =时,()1f x x lnx =-+,2()()(2)2(2)2g x x x lnx k x x xlnx k x =--++=--++, ()g x 在区间1[,8]2上恰有两个零点,即关于x 的方程2(2)20x xlnx k x --++=在区间1[,8]2上恰有两个实数根.整理方程得,222x xlnx k x -+=+,令221(),[,8]22x xlnx s x x x -+=∈+,22324()(2)x x lnx s x x +--'=+. 令2()324x x x lnx ϕ=+--,1[,8]2x ∈,则(21)(2)()x x x xϕ-+'=,1[,8]2x ∈,于是()0x ϕ',()x ϕ在1[,8]2上单调递增.因为ϕ(1)0=,当1[,1)2x ∈时,()0x ϕ<,从而()0s x '<,()s x 单调递减,当(1x ∈,8]时,()0x ϕ>,从而()0s x '>,()s x 单调递增, 192()2105ln s =+,s (1)1=,33122(8)5ln s -=, 因为157262(8)()0210ln s s --=>,所以实数k 的取值范围是92(1,]105ln +. 证明(3)由(1)可知,当1a =时,有1x lnx -, 当且仅当1x =时取等号.令21x k=,则有22111ln k k -,其中*k N ∈,2k . 整理得:21111121111(1)1lnkk k k k k k k-=->-=-+--, 当2k =,3,⋯,n 时,11221212ln >-+-,11231313ln >-+-,⋯,11211lnn n n>-+-,上面1n -个式子累加得:12(23)11ln n n n⨯⨯⋯⨯>--+.*n N ∈且2n , 即2212(23)n n ln n n-+⨯⨯⋯⨯>.命题得证.30.(2021春•荔湾区校级月考)已知数列{}n a 的前n 项和为n S ,11a =,当2n 时,121n n S S -=+.数列{}n b 满足121111222n n n n b b b n a a a --++⋯+=-+. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式;(3)若数列{}n b 的前n 项和为n T ,求证:n n S T .【解答】解:(1)解:11a =,当2n 时,121n n S S -=+①,2211213S a S ∴=+=+=,即22a =, 又121n n S S +=+②,由②-①可得:12(2)n n a a n +=, 又2122a a ==也适合,∴数列{}n a 是首项为1,公比为2的等比数列,12n n a -∴=;(2)解:数列{}n b 满足121111222n n n n b b b n a a a --++⋯+=-+③, ∴当1n =时,有1111b b a ==, 当2n 时,有112212112(1)22n n n n b b b n a a a ----++⋯+=--+④, 对式子④左右两边同时乘以12可得:112112122n n n n b b b n a a a ---++⋯+=-+⑤,由③-⑤可得:1nb n a =, 1n b na n ∴==(2)n ,又当1n =时也适合, n b n ∴=;。
利用函数证明数列不等式
利用函数证明数列不等式要证明数列不等式,我们可以利用函数进行证明。
下面我们将对两种不同类型的数列不等式进行探讨。
第一种类型的数列是递增数列。
递增数列是一种严格单调递增的数列。
为了证明递增数列的不等式,我们可以使用函数的性质。
假设我们有一个递增数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递增的,所以我们可以得出 f(x) < f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an < an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) > 0 ,那么说明函数是递增的。
这也意味着数列{an} 中的元素也是递增的。
通过证明函数的导数大于零,我们可以得出数列 {an} 中的元素是递增的,从而证明数列的不等式。
第二种类型的数列是递减数列。
递减数列是一种严格单调递减的数列。
为了证明递减数列的不等式,我们同样可以使用函数的性质。
假设我们有一个递减数列 {an},我们可以定义一个函数 f(x) = an,其中 x 是自然数的索引。
由于数列是递减的,所以我们可以得出 f(x) > f(y) ,其中 x < y。
为了证明数列不等式,我们需要证明对于任意的自然数 x 和 y ,都有 an > an+1、我们可以使用函数的导数来对函数进行分析。
假设函数 f(x) 是连续的,我们可以计算出它的导数 f'(x)。
如果对于所有的 x ,有 f'(x) < 0 ,那么说明函数是递减的。
这也意味着数列{an} 中的元素也是递减的。
通过证明函数的导数小于零,我们可以得出数列 {an} 中的元素是递减的,从而证明数列的不等式。
在使用函数证明数列不等式时,我们需要注意以下几点:1.函数的定义域和应用范围必须与数列的范围一致。
高考数学数列不等式证明题放缩法十种方法技巧总结(无师自通)
1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n !求证.2)1(2)1(2+<<+n S n n n例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1−+>++++n n n f f f ! 例3 求证),1(221321N n n n C C C Cn n nn n n ∈>⋅>++++−!.例4 已知222121n a a a +++=L ,222121n x x x +++=L ,求证:n n x a x a x a +++!2211≤1.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>−++++n n ! 例6 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+−++++=∗n N n a nn a n x f xx x x 给定!求证:)0)((2)2(≠>x x f x f 对任意∗∈N n 且2≥n 恒成立。
例7 已知112111,(1).2n nna a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L)例8 已知不等式21111[log ],,2232n n N n n ∗+++>∈>L 。
2[log ]n 表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=−−n a n na a b b a n n n 求证.3,][log 222≥+<n n b ba n再如:设函数()x f x e x =−。
(Ⅰ)求函数()f x 最小值;(Ⅱ)求证:对于任意n N ∗∈,有1().1nn k k ene =<−∑ 例9 设n n na )11(+=,求证:数列}{n a 单调递增且.4<n a3. 部分放缩例10 设++=a na 21111,23a aa n ++≥L ,求证:.2<n a例11 设数列{}n a 满足()++∈+−=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有:2)(+≥n a i n ; 21111111)(21≤++++++na a a ii !. 4 . 添减项放缩例12 设N n n∈>,1,求证)2)(1(8)32(++<n n n . 例13 设数列}{n a 满足).,2,1(1,211!=+==+n a a a a nn n 证明12+>n a n 对一切正整数n 成立;5 利用单调性放缩: 构造函数例14 已知函数223)(x ax x f −=的最大值不大于61,又当]21,41[∈x 时.81)(≥x f (Ⅰ)求a 的值;(Ⅱ)设∗+∈=<<N n a f a a n n ),(,21011,证明.11+<n a n 例15 数列{}n x 由下列条件确定:01>=a x ,,211⎟⎟⎠⎞⎜⎜⎝⎛+=+n n n x a x x N n ∈. (I) 证明:对2≥n总有a x n≥;(II) 证明:对2≥n 总有1+≥n n x x6 . 换元放缩例16 求证).2,(1211≥∈−+<<∗n N n n n n例17 设1>a ,N n n ∈≥,2,求证4)1(22−>a n a n.7 转化为加强命题放缩例18 设10<<a ,定义a a a a a nn +=+=+1,111,求证:对一切正整数n 有.1>n a 例19 数列{}n x 满足.,212211nx x x x n n n +==+证明.10012001<x例20 已知数列{a n}满足:a 1=32,且a n=n 1n 13na n 2n N 2a n 1∗≥∈--(,)+- (1)求数列{a n }的通项公式;(2)证明:对一切正整数n 有a 1•a 2•……a n <2•n!8. 分项讨论例21 已知数列}{n a 的前n 项和n S 满足.1,)1(2≥−+=n a S n n n(Ⅰ)写出数列}{n a 的前3项321,,a a a ; (Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8711154<+++ma a a !.9. 借助数学归纳法例22(Ⅰ)设函数)10( )1(log )1(log )(22<<−−+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数n p p p p 2321,,,,!满足12321=++++n p p p p !,求证:np p p p p p p p n n −≥++++222323222121log log log log !10. 构造辅助函数法例23 已知()f x = 2ln 243x x +−,数列{}n a 满足()()*11 2 ,0211N n a f a n an ∈=<<−++(1)求()f x 在⎥⎦⎤⎢⎣⎡−021,上的最大值和最小值; (2)证明:102n a −<<; (3)判断n a 与1()n a n N ∗+∈的大小,并说明理由.例24 已知数列{}n a 的首项135a =,1321n n n a a a +=+,12n =L,,.(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x>,21121(1)3n na x xx ⎛⎞−−⎜⎟++⎝⎠≥,12n =L ,,; (Ⅲ)证明:2121n n a a a n +++>+L .例25 已知函数f(x)=x 2-1(x>0),设曲线y=f(x)在点(x n ,f(x n ))处的切线与x 轴的交点为(x n+1,0)(n∈N *). (Ⅰ) 用x n 表示x n+1; (Ⅱ)求使不等式1n n x x +≤对一切正整数n 都成立的充要条件,并说明理由;(Ⅲ)若x 1=2,求证:.31211111121−≤++++++n n x x x !例1 解析 此数列的通项为.,,2,1,)1(n k k k a k !=+=2121)1(+=++<+<k k k k k k ∵,)21(11∑∑==+<<∴nk n n k k S k ,即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2ba ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里3,2=n 等的各式及其变式公式均可供选用。
微专题。用导数证明数列型不等式
微专题。
用导数证明数列型不等式方法1:利用不等式1-≤lnx≤x-1,(x>1)证明数列型不等式背景知识:n=2×3×…×n,lnn=ln2+ln3+…+lnn-11.求证:1+1/2+…+1/n<lnn<1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1),(n≥2,n∈N*)证明:在不等式中令x>1,1-x≤lnx≤x-1,n=2,3,…,n,可得个不等式,相加可以得证。
ln2+ln3+…+lnn-1≤1+1/2+…+1/nln2+ln3+…+lnn-1>1+1/2+…+1/n+(1/n+1)+(1/n+2)+…+(1/2n-1)2.求证:n≥2,n∈N*,时,2×3×…×n<n^n-1证明:2×3×…×n<2×2×…×2=n^(n-1)3.求证:ln(n^2+1)<1+2lnn!(n≥2,n∈N*)证明:由lnx0),令x=n^2+1,则有ln(n^2+1)<2n^2/(n^2+1)2n^2/(n^2+1)<2lnn。
即n^2/(n^2+1)<lnn。
整理得ln(n^2+1)<1+2lnn!4.已知函数f(x)=xlnx,g(x)=x^2+x-a(a∈R)Ⅰ)若直线x=t(t>0)与曲线y=f(x)和y=g(x)分别交于A,B 两点,且曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,求a的取值范围;Ⅱ)设Sn=1/2+1/3+…+1/n,证明:ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2Sn解:(Ⅰ)f(x)=xlnx,(x>0),∴f′(x)=1+lnx,∵曲线y=f(x)在点A处的切线与y=g(x)在点B处的切线相互平行,∴f′(t)=g′(t)在(0,+∞)有解,即lnt=a-t在(0,+∞)有解,∵t>0,∴a>0.令x=e,则得t=e,∴a=e-1 Ⅱ)当x∈(0,e)时,F′(x)>0,F(x)单调递增,其中F(x)=ln(x^2+1),则有ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<F(2)+F(3)+…+F(n),由于F(x)单调递增,故F(2)+F(3)+…+F(n)<∫(1,n)F(x)dx,又因为F(x)在(0,+∞)上单调递增,故∫(1,n)F(x)dx<∫(1,n)F(n)dx=nF(n)-ln(n^2+1)/2,所以ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<nlnn-ln(n^2+1)/2,即ln(2^2+1)+ln(3^2+1)+…+ln(n^2+1)<2(1/2+1/3+…+1/n)=2Sn。
第19炼 利用函数证明数列不等式 Word版含解析
第19炼 利用函数证明数列不等式利用函数证明不等式是在高考导数题中比较考验学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数,数列,不等式连接在一起,也是近年来高考的热门题型。
一、基础知识: 1、考察类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。
(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。
其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 3、常见恒成立不等式:(1)ln 1x x <- 对数→多项式 (2)1x e x >+ 指数→多项式4、关于前n 项和的放缩问题:求数列前n 项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第k 项与第1n k -+项的和为常数的特点(2)错位相减:通项公式为“等差⨯等比”的形式(例如2nn a n =⋅,求和可用错位相减)(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且na 裂开的某项能够与后面项裂开的某项进行相消。
注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑。
5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。
6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系) 二、典型例题: 例1: 已知函数()()2ln f x x a x x=+--在0x =处取得极值(1)求实数a 的值(2)证明:对于任意的正整数n ,不等式23412ln(1)49n n n +++++>+都成立解:(1)()'121f x x x a =--+0x =为()f x 的极值点()'10101f a a ∴=-=⇒=(2)思路一:联想所证不等式与题目所给函数的联系,会发现在()()2ln 1f x x x x=+--中,存在对数,且左边数列的通项公式22111n n a n n n +⎛⎫==+ ⎪⎝⎭也具备()f x 项的特征,所以考虑分析()ln 1x +与2x x +的大小关系,然后与数列进行联系。
证明数列不等式的几种常用方法
限于 一种思 路 和方法 , 而是善 于灵 活变通 , 开辟 新思 路 、 方法 . 新 例 5 已知 函数 厂 )=x+3 ≠ 1 ( ( )
=
三
2
2
h t在 ( , () 1 +∞) 上为增 函数 ,
I f I 1 o, 厅 f n 一 I )>I )= 即 ()=l£ l ( l (
ht >
t
点评 : 题 通 过 对 =^ 变 形 , 用 裂 项 求 本 n 的 利 >o ,
u n
・ . .ຫໍສະໝຸດ 和 法化 为 “ 续 相 差 ” 式 , 而达 到 证 明题 目的 , 连 形 从
7 . 6
‘ 数学之友>
21 年第 2 期 01 4
设 )=h l
・ .
.
一
1
一
,
=
_( )= 1 ,戈 ’
+
_0 -< .
,
・ . .
: ÷ £ ’ f < ( . £ : 1 < ) , -. 则 . .
设 ) 一 , =
‘ 数学之友>
2 1 年第 2 期 01 4
证 明数列不等式 的几种常 用方法
解 题 探 索 V
颜 笑天
( 江苏省灌云高级中学城 西分校 , 20 ) 2 20 2
不等式和数列都是高中数学 的重要 内容 , 这两 点( 川 , +) 处 的切 线 斜率 为: ( ) k=3:。 + + 个重点知识的联袂、 交汇融合 , 能考查学生对知识 2 , . 更 x 又‘过点( ,) 。 o0 和( ) 的斜率为 k ) =: 的综合理解与运用 的能力. 这类交汇题充分体现了 + '. . 结论 + = + +2川 成立. . 3 l x “ 以能力立意” 的高考命题指导思想和“ 在知识 网络 ( )。 2 ’ 函数 ^ = + , > . () 当 O时单调递增 ,
数列中的不等式的证明
数列中的不等式的证明证明数列中的不等式的一般方法包括数学归纳法和放缩法。
数学归纳法可以直接应用于正整数相关的命题,包括数列不等式。
但有些数列不等式必须经过加强后才能使用数学归纳法证明。
放缩法包括单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。
能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然。
第一种证明方法是直接应用数学归纳法。
例如,对于函数$f(x)=-x+ax$在$(0,1)$上为增函数的情况,可以通过数学归纳法求出实数$a$的取值集合$A$,并比较数列$\{a_n\}$中相邻两项$a_{n+1}$和$a_n$的大小。
另一个例子是已知数列$\{a_n\}$中$a_1=2$,$a_{n+1}=(2-1)(a_n+2)$,可以求出数列的通项公式,并证明$2<b_n\leq a_{4n-3}$,其中$b_n=3a_{2n+1}/(2a_{2n}+3)$。
第二种证明方法是放缩法。
例如,已知数列$\{a_n\}$中$a_n+(a_{n+1}+2)a_n+2a_{n+1}+1=3$,$a_1=-2$,可以证明$-1a_{2n-1}$。
另一个例子是已知函数$f(x)=ax-x$的最大值不大于$/428$,且在$x\in[1,1]$时$f(x)\geq11/428$,可以求出$a$的值,并证明$a_n<2n+111$,其中$a_{n+1}=f(a_n)$。
综上所述,证明数列中的不等式可以通过数学归纳法和放缩法两种方法进行。
具体方法包括直接应用数学归纳法、加强命题后应用数学归纳法、单项放缩、裂项放缩、并项放缩、舍(添)项放缩、排项放缩和利用基本不等式放缩。
在使用放缩法时,需要根据具体情况选择合适的方法进行证明。
1.若数列{b_n}中b_1=2,b_{n+1}=\frac{3-b_n}{2},证明b_n>0且b_n<\frac{2}{3}。
2.用数学归纳法证明:对于任意正整数n,有1+2+3+\cdots+n\leq n^2.3.已知a_1=1,a_{n+1}=\sqrt{a_n+6},证明a_n<3.4.设数列{a_n}的通项公式为a_n=\frac{1}{n(n+1)},求证\sum_{k=1}^n\frac{1}{k}-\ln(n+1)<1.5.已知数列{a_n}为等差数列,数列{b_n}为等比数列,且a_1=b_1,a_2=b_2,a_3=b_3,求证a_n\leq b_n。
数列、函数与不等式——第3部分 不等式证明
数列、函数与不等式及其试题设计三、不等式证明 方法总结:不等式的性质及常用的证明方法主要有:比较法、分析法、综合法、反证法、换元法、判别式法、放缩法、数学归纳法等八种方法.要明确这虹各种方法证明不等式的步骤及应用范围.若能够较灵活的运用常规方法(即通性通法)、运用数形结合、函数等基本数学思想,就能够证明不等式的有关问题.1、比较法:作差比较:0A B A B -≤⇔≤;作商比较:()10A A B B B ≤⇔≤>或()10AB B≥<.作差比较的步骤:①作差:对要比较大小的两个数(或式)作差.②变形:对差进行因式分解或配方成几个数(或式)的完全平方和. ③判断差的符号:结合变形的结果及题设条件判断差的符号.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小. 2、综合法:由因导果.3、分析法:执果索因.基本步骤:要证……只需证……,只需证…… ①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件.②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达.4、反证法:正难则反.5、放缩法:将不等式一侧适当的放大或缩小以达证题目的. 放缩法的方法有:①添加或舍去一些项,如:a n >; ②将分子或分母放大(或缩小);③利用基本不等式,如:2lg 3lg 5log 3lg 5()lg 42+⋅<=(1)2n n ++;④利用常用结论:=<;21111(1)1k k k k k<=---;21111(1)1k k k k k >=-++(程度大);22111111()(1)(1)2111k k k k k k <==--+-+-;(程度小) 6、换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知222x y a +=,可设cos ,sin x a y a θθ==; 已知221x y +≤,可设cos ,sin x r y r θθ==(01r ≤≤); 已知22221x y a b +=,可设cos ,sin x a y b θθ==;已知22221x y a b -=,可设,tan cos a x y b θθ==;7、构造法:通过构造函数、方程、数列、向量、不等式或图形来证明不等式; 8、数学归纳法法:数学归纳法法证明不等式在数学归纳法中专门研究.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.证明不等式不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面.如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点.在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等.比较法是证明不等式最常用最基本的方法.分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:正难则反原则,即若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯;简单化原则,即寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式.凡是“至少”、“唯一”或含有否定词的命题适宜用反证法.换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题.含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件.有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度. 总之,不等式证明方法多种多样,试题灵活多变,要解答好该类试题,关键是要做到“熟能生巧”、“以不变应万变”。
不等式的推导和证明方法
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
数列不等式的证明举例
1. 已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n b 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈ 分析:本例(1)通过把递推关系式转化成等比型的数列;第(2)关键在于找出连续三项间的关系;第(3)问关键在如何放缩。
解:(1)121+=+n n a a ,)1(211+=+∴+n n a a 故数列}1{+n a 是首项为2,公比为2的等比数列。
n n a 21=+∴,12-=n n a(2)n n b n b b b b a )1(44441111321+=---- ,n n nb n b b b 24)(21=∴-+++n n nb n b b b =-+++2)(221 ①1121)1()1(2)(2+++=+-++++n n n b n n b b b b ②②—①得n n n nb b n b -+=-++11)1(22,即1)1(2+-=-n n b n nb ③ 212)1(++=-+∴n n nb b n ④④—③得112-++=n n n nb nb nb ,即112-++=n n n b b b 所以数列}{n b 是等差数列(3)1111212211211-++=-<-=n n n n a a 设132111++++=n a a a S ,则)111(211322n a a a a S ++++< )1(21112+-+=n a S a3213212112<-=-<++n n a a a S点评:数列中的不等式要用放缩来解决难度就较大了,而且不容易把握,对于这样的题要多探索,多角度的思考问题。
2. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若1a =则当n ≥2时,!n n b a n >⋅.分析:第(1)问是和自然数有关的命题,可考虑用数学归纳法证明;第(2)问可利用函数的单调性;第(3)问进行放缩。
数列型不等式的证明
数列型不等式证明的常用方法一.放缩法数列型不等式证明是前见年高考中的一个热点,在多省试题中常常作为压轴题出现。
放缩法是数列不等式证明的一个重要方法,它具有很强的技巧性的特点,学生往往无从下手,下面总结放缩法证明的一些常用技巧,例如归一技巧、抓大放小技巧、回头追溯技巧、利用函数性质技巧,仅供参考.1 归一技巧归一技巧,指的是将不容易求和的和式中的所有项或假设干项全部转化为同一项,或是将和式的通项中的一局部转化为同一个式子〔或数值〕,既到达放缩的目的,使新的和式容易求和. 归一技巧有整体归一、分段归一。
例如 设n 是正整数,求证121211121<+++++≤nn n . 【证明】111122n n n +++++1211112222n nn n n n ≥++⋅⋅⋅⋅⋅⋅++个12=.另外:111122n n n+++++11111n nn n n n <++⋅⋅⋅⋅⋅⋅++个1=. 【说明】在这个证明中,第一次我们把11n +、12n +、12n这些含n的式子都“归一〞为12n,此时式子同时变小,顺利把不易求和的111122n n n+++++变成了n个12n的和,既将式子缩小,同时也使缩小后的式子非常容易求和,这就是“归一〞所到达的效果。
而不等式右边的证明也类似.1.1整体归一放缩法中,如果通过将所有项转化为同一项而到达放缩目的的,称之为“整体归一〞.例 1.数列{}na的各项均为正数,n S为其前n项和,对于任意*Nn∈,总有2,,n n na S a成等差数列.(Ⅰ)求数列{}na的通项公式;(Ⅱ) 设数列{}n b的前n项和为n T,且2lnnnn axb=,求证:对任意实数(]ex,1∈〔e是常数,e=⋅⋅⋅〕和任意正整数n,总有n T< 2;〔Ⅰ〕解:由:对于*Nn∈,总有22n n nS a a=+①成立∴21112n n nS a a---=+〔n ≥ 2〕②①--②得21122----+=nnnnnaaaaa∴()()111----+=+nnnnnnaaaaaa∵1,-nnaa均为正数,∴11=--nnaa〔n ≥ 2〕∴数列{}na是公差为1的等差数列又n=1时,21112S a a =+, 解得1a =1∴n a n =.(*N n ∈)〔Ⅱ〕证明:∵对任意实数(]e x ,1∈和任意正整数n ,总有2ln nn n a x b =≤21n. 〔放缩通项,整体归一〕 ∴()nn n T n 11321211112111222-++⋅+⋅+<+++≤ 〔放缩通项,裂项求和〕21211131212111<-=--++-+-+=nn n例2.数列{}n a 中的相邻两项212k k a a -,是关于x 的方程2(32)320k k x k x k -++⋅=的两个根,且212(123)k k a a k -=≤,,,.〔I 〕求1a ,2a ,3a ,7a ; 〔II 〕求数列{}n a 的前2n 项和2n S ;〔Ⅲ〕记sin 1()32sin nf n n ⎛⎫=+ ⎪⎝⎭,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++…,求证:15()624n T n ∈*N ≤≤ 【分析】〔1〕略. 12a =;34a =;58a =时;712a =. 〔II 〕略. 2nS 2133222n n n ++=+-.〔III 〕此题应注意到以下三点,①(){1,2}f n ∈,且()f n 具有周期性. (){1,2}f n ∈,这就有()(1){1,1}f n -∈-,()f n 虽有周期性,可周期为2π. 这就使当n 很大时,和式通项(1)212(1)f n n na a +--的符号增加了不确定性.②很显然,当4n ≥时,213n a n -=,22nn a =;当3n ≤时,212n n a -=,23n a n =.纵然没有符号的问题,通项132n n ⋅如何求和?也需要解决.③112116T a a ==,2123411524T a a a a =+=,此题相当于证明12()n T T T n ∈*N ≤≤.基于以上三点,我们可以看到:1n T T ≤等价于从第二项开场的项之和为非负数,可否考虑将第三项开场的项缩小,此时可以做两方面的“归一〞,一是符号“归一〞,二是分母的局部“归一〞,两者都是要到达容易求和的目的. 【解答】 当3n ≥时,(1)3456212111(1)6f n n n n T a a a a a a +--=+-++,345621211116n n a a a a a a -⎛⎫+-++ ⎪⎝⎭≥从第三项起“归一〞为负=)2312431921(6416143nn ⋅+⋅⋅+⋅-⋅+ =)21241231(6164161132-⋅+⋅+⋅-⋅+n n 2341111116626222n ⎛⎫>+-++⎪⋅⎝⎭ (3,4,5,…,n “归一〞为2)11662n =+⋅ 16>, 至于不等式右边原理一样:(1)5678212511(1)24f n n n n T a a a a a a +--=--++5678212511124n n a a a a a a -⎛⎫-+++ ⎪⎝⎭≤(从第四项起“归一〞为正34551111249234235232n n =-++++⋅⋅⋅⋅⋅⋅34511112492922n ⎛⎫<-+++ ⎪⋅⎝⎭(4,5,…,n “归一〞为3)512492n =-⋅524<.又112116T a a ==,2123411524T a a a a =+=,原结论成立 1.2 分段归一放缩法中,如果我们把和式分为假设干段,每一段中的各个项都转化为同一项而到达放缩并容易求和的目的的,称之为“分段归一〞.例 3 数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S .〔1〕求数列{}n b 的通项公式;〔2〕求证:对任意的n N *∈有21122n n S n +≤≤+成立.分析:〔1〕略. 1n b n=. 〔2〕此问可以用数学归纳法证明,也可以用“分段归一〞的放缩法解答. 【解答】左边证明21111232n n S =+++⋅⋅⋅⋅⋅⋅+1111111111111()()()()2345678916212n n -=+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅++11128162111111111111()()()()2448888161622n nn n -≥+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅+个个12111112222n =++++⋅⋅⋅⋅⋅⋅+个=1+2n这里我们以12,212,312,412,……,12n 为界,将和式111232n ++⋅⋅⋅⋅⋅⋅+分为n 段,每段1121i -++1122i -++ (1)2i +〔1,2,3,,i n =⋅⋅⋅〕,每段中的数对缩小归一为12i ,这就使每一段的数缩小后和为12,从而得证.至于不等号右边,原理类似:21111232n n S =+++⋅⋅⋅⋅⋅⋅+1111111111111111()()()()2345678915221212n n n n--=+++++++++⋅⋅⋅++⋅⋅⋅⋅⋅⋅+++⋅⋅⋅+++-111111128816211111*********()()()()()224444881616222n n n n n----≤++++++++⋅⋅⋅+++⋅⋅⋅++⋅⋅⋅⋅⋅⋅++⋅⋅⋅++个个16个 11111112nn =++++⋅⋅⋅⋅⋅⋅++个 12nn =+12n ≤+【说明】此题我们需要关注到不等号两边的性质:一方面,12111+1222n n =++⋅⋅⋅+个,接着我们把不等式中间的和式除1外的局部拆分成n 段,每段都不小于12;另一方面,1111122n n +=++⋅⋅⋅++个1,接着我们把不等式中间的和式除12n外的局部拆分成n 段,每段都不大于1;在归一放缩时,我们需要注意到题设的条件和式子的性质,它是我们考虑如何归一、往哪个地方归一的关键. 2 抓大放小在将和式通项中,我们保存式子主要的、数值较大的局部,去掉次要的、数值相对较小的局部,以便到达放缩和容易求和的目的,这种放缩技巧,我们称之为“抓大放小〞技巧.例如求证:2232322212132<++++++++nnn通项放缩为 nnn nn 22<+, 求和即证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求实数 a 的值 (2)证明:对于任意的正整数 n ,不等式 2
3 4 4 9
n 1 ln(n 1) 都成立 n2
例 2: 已知函数 f x ax ln x 1
2
(1)当 a
1 时,求函数 f x 的单调区间 4
(2)当 x 0, 时,函数 y f ( x) 图像上的点都在 实数 a 的取值范围 (3) 求证:1
例 5:已知函数 f ( x) x ln( x a) 的最小值为 0,其中 a 0 。 (1)求 a 的值 (2)若对任意的 x [0,) ,有 f ( x) kx 成立,求实数 k 的最小值
2
(3)证明:
2i 1 ln(2n 1) 2(n N
i 1
例 7:函数 f ( x) sin x . (1)若 f ( x) 1 ax cos x 在 0, 上恒成立,求实数 a 的取值范围; (2)证明: f (
2 (n 1) 3 2 (n 1) . ) f( ) ... f ( ) 2n 1 2n 1 2n 1 4(2n 1)
n
2
*
)
例 6: 已知函数 f ( x) ln x x 1, x 0, , g ( x) x ax
3
(1)求 f ( x ) 的最大值; (2)证明不等式:
1 2 n n
n
n
e n 。 e 1 n
n
x
指数→多项式
4、关于前 n 项和的放缩问题:求数列前 n 项公式往往要通过数列的通项公式来解决,高中 阶段求和的方法有以下几种: (1)倒序相加:通项公式具备第 k 项与第 n k 1 项的和为常数的特点 (2)错位相减:通项公式为“等差 等比”的形式(例如 an n 2 ,求和可用错位相减)
2n 5 2
.
例 4:设函数 f x x a ln x 1 ,其中 a R 。:
2
(1)当 a 0 时,讨论函数 f ( x) 在其定义域上的单调性; (2)证明:对任意 的正整数 n ,不等式 ln n 1
k
k 1
n
1
2
1 都成立。 k3
Байду номын сангаас
ln 2 nx , Sn x F1 x F2 x n3
x 0 所表示的平面区域内,求 y x 0
2 4 8 1 1 2 3 3 5 5 8
2n 1 n 1 e(其中 n N , e 2 1 2n 1
是自然对数的底数)
7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢 (等比数列,裂项相消等) 8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件 的联系) 二、典型例题: 例 1: 已知函数 f x ln x a x x 在 x 0 处取得极值
n
(3)等比数列求和公式 (4)裂项相消:通项公式可裂为两项作差的形式,且 an 裂开的某项能够与后面项裂开的某 项进行相消。 注: 在放缩法处理数列求和不等式时, 放缩为等比数列和能够裂项相消的数列的情况比较多 见,故优先考虑。 5、大体思路:对于数列求和不等式,要谨记“求和看通项” ,从通项公式入手,结合不等号 方向考虑放缩成可求和的通项公式。 6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成 立不等式,往往提供了放缩数列的方向
1
(2)求证:
e
1
1
2
e
1
2
3
e
1
3
n
e
1
n
7 2e
例 9:已知函数 f x
ln x x
1 e
(1)设 g x f x ln x m ,讨论函数 g x 在区间 , e 2 上的零点个数
(2)记 Fn x
第 19 炼 利用函数证明数列不等式
利用函数证明不等式是在高考导数题中比较考验学生灵活运用知识的能力, 一方面以函 数为背景让学生探寻函数的性质, 另一方面体现数列是特殊的函数, 进而利用恒成立的不等 式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数,数列,不 等式连接在一起,也是近年来高考的热门题型。 一、基础知识: 1、考察类型: (1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源: (1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式。 (2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向。其 中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式 3、常见恒成立不等式: (1) ln x x 1 对数→多项式 (2) e x 1
例 3: 已知函数 f ( x)
x(1 a ln x) ( x 1) x 1
2
(1)当 a 0 时,讨论 g ( x) ( x 1) f x 的单调性; (2)当 a 1 时,若 f ( x) n 恒成立,求满足条件的正整数 n 的值; (3)求证: 1 1 2 1 2 3 1 nn 1 e
例 8: 定义: 若y 已知 f x e :
ax
f x 在 k , 上为增函数, 则称 f x 为 “ k 次比增函数” , 其中 k N , k x
(1)当 a
f x 1 时,求函数 g x 在 m, m 1 m 0 上的最小值 2 x