完整版定弦定角最值问题教师版
线段最值系列之(一)——定弦定角,定最值
线段最值系列之(一)——定弦定角,定最值一条线段的两个端点和该线段外一动点构成的角(动点是角的顶点),不随点的运动而变化,即该动角的度数恒定不变,称为“定弦定角”问题。
该线段称“定弦”,该运动的定值角称“定角”。
先复习两个基础知识点知识点1、如下图,(1)以AB为直径的⊙O上有一动点,则∠APB恒为90°,反之,当∠APB=90°时,点P一定在以AB为直径的圆上。
(2)如下图,在⊙O外有一点C,则点C到⊙O上点的最小距离和最大距离的确定:过点C与圆心O的线与圆的两个交点,如图,即CP长为最小值,CE长为最大值。
知识点2、如下图,(1)在⊙O中,弦CD一定时,则该弦所对劣弧(或优弧)上的圆周角∠CTD就一定;反之,当∠CTD为一定值时,点T一定在以CD为弦的圆上。
(2)如下图,在⊙O外有一点A,射线AO与圆的交点分别为点T和点E,则点A到圆的最小距离是AT的长,最大距离是AE的长。
下面,以两道典型例题来说明定弦定角在解一类线段最值题目中的应用。
例1:如图,在Rt△ABC ,∠ABC=90° ,AB=4, BC=6 ,P是△ABC 内部的一个动点,且满足∠PAB=∠PBC , 则线段CP的长度的最小值是 .(您的点赞,就是给予作者一份信心,别忘了,给作者一个鼓励,点个赞哦!)下面还有,继续……变式练习:如图,在Rt△ABC ,∠ABC=90° ,AB=4,BC=6, P是△ABC所在平面上的一个动点,且满足∠APB=90° , 则线段CP长度的取值范围是 .例2:如图,已知点E , F为等边△ABC边AB 、AC上的两动点,且AF=BE ,:连接CE , BF交于点T, 若等边△ABC的边长为6 ,则AT的长度的最小值是 .。
(完整版)定弦定角最值问题(教师版)
定弦定角最值问题(答案版)【例1】(2016 •新观察四调模拟1)如图,△ABC中,AC = 3 , BC = 4J2,/ ACB = 45° D为△ABC内一动点,O O ACD的外接圆,直线BD交O O于P点,交BC于E点,弧AE= CP, 则AD的最小值为()解:J/ CDP = Z ACB = 45°•••/ BDC = 135 ° (定弦定角最值)如图,当AD过O时,AD有最小值•••/ BDC = 135 °•••/ BO'C = 90 °•△ BO C为等腰直角三角形.•./ ACO = 45 °+ 45 °= 90 °•AO = 5又OB = O'C= 4•- AD = 5 —4 = 1【例2】如图,AC = 3,BC = 5,且/ BAC = 90° D为AC上一动点,以AD为直径作圆,连接当CE过圆心O时,CE有最小值为-J3 2BD交圆于E点,连CE,贝U CE的最小值为()169解:连接AE•/ AD为O O的直径•••/ AEB = / AED = 90 °•E点在以AB为直径的圆上运动C. .2D. ,414 2A. 1B. 21)如图,在△ ABC 中,AC = 3,BC = 4 . 2,/ ACB = 45° AM IIBC ,点P 在射线AM 上运动,连 BP 交厶APC 的外接圆于 D ,则AD 的最小值为()A . 1 ■_W【练】(2015 •江汉中考模拟-.oAB4..3c交aB 223 *0CD2B . 6 33 A . 12 6,3C . 12 3.3D . 6 A.-啕诂目隹丹丘it 按丿E 易汞丄片虾・圧戸二上*虾・宴罠厶乂肚的叢丸丽希 则点芒駆腼閉壯\ AB=1^, ^ACB=XT,R^AMB =<M *・当^c^t^jsfn 中屯肘* 点闭肋睡琥大.此01氐册?两梅三甸肪CV2樁+玄皿L*X2括X (2』J"・&+M ,放说3,【练】(2014 •洪山区中考模拟 1)如图,O O 的半径为1,弦AB = 1,点P 为优弧AB 上一动点,••• AD 的最小值为 5 — 4= 1 % /■…/【例3】(2016 •勤学早四调模拟 1)如图,O O 的半径为2,弦AB 的长为2... 3,点P 为优弧上一动点,AC 丄AP 交直线PB 于点C ,则△ ABC 的面积的最大值是(.⑼M 救学早呵H 權H n »)才闻,®。
中考数学几何模型重点突破讲练专题28 圆中的定弦定角和最大张角模型(教师版)
深入思考
(3)如图③,在 ABC 中,ห้องสมุดไป่ตู้ A 、 Ð B 、 C 均小于 120 ,用直尺和圆规作它的强等角点 Q .(不写作法,保
留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法:
①直角三角形的内心是它的等角点;
②等腰三角形的内心和外心都是它的等角点;
③正三角形的中心是它的强等角点;
故答案为:100、130 或 160.
(2)选择①:
连接 PB, PC
∵ DB DC
= DC
∴ DB
∴ BPD CPD
∵ APB BPD 180 , APC CPD 180
∴ APB APC
∴ P 是 ABC 的等角点.
选择②
连接 PB, PC
根据垂直平分线的性质和作图方法可得:BD=CD=BC
最大。
当 AQB 的外接圆与边 PE 相切于点 Q 时, AQB 最大。
'
'
'
'
【证明】如图 28-6,作 AQB 的外接圆⊙O,设点 Q 为 PE 上不同与 Q 点的任意一点,连接 Q A 、Q B ,Q A
与⊙O 交于点 D,连接 BD,
ADB AQ ' B, AQB ADB
专题 28 圆中的定弦定角和最大张角模型
【模型 1】定弦定角模型
如图 28-1,在 ABC 中,BC 的长为定值 a , A 为定角度,
(1)确定点 A 的运动轨迹,有 3 种情况:
①如图 28-2,当 90 时,点 A 的运动轨迹为优弧���(不与 B、C 点重合);
②如图 28-3,当 90 时,点 A 的运动轨迹为⊙O(不与点 B、C 重合);
定弦定角最值问题
定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。
【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。
(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。
)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
④确定圆心位置,计算隐形圆半径。
⑤求出隐形圆圆心至所求线段定点的距离。
⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。
【例1】(2016 ·新观察四调模拟1)如图,△ABC中,AC=3,BC=4 2 ,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD 的最小值为()A.1 B.2 C.2 D.41 4 2解:∵∠CDP=∠ACB=45°∴∠BDC=135°(定弦定角最值)如图,当AD过O′时,AD有最小值∵∠BDC=135°∴∠BO′ C=90°∴△BO′C为等腰直角三角形∴∠ACO′=45 °+45°=90°∴AO′=5又O′ B=O′C=4 ∴AD=5-4=1【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD 交圆于E 点,连CE,则CE的最小值为()A.13 2 B.13 2 C.5 D.169解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动当CE过圆心O′时,CE有最小值为13 2【练】(2015 ·江汉中考模拟1)如图,在△ABC中,AC=3,BC=4 2 ,∠ACB=45°,AM∥BC,点P 在射线AM上运动,连BP 交△APC的外接圆于D,则AD的最小值为()A.1 B.2C.2 D.4 2 3解:连接CD∴∠PAC=∠PDC=∠ACB=45°∴∠BDC=135°如图,当AD过圆心O′时,AD有最小值∵∠BDC=135°∴∠BO′ C=90°∴O′ B=O′ C=4又∠ACO′=90 °∴ AO ′= 5∴AD 的最小值为 5- 4= 1【例 3】(2016 ·勤学早四调模拟 1) 如图,⊙ O 的半径为 2,弦 AB 的长为 2 3 ,点 P 为优弧 AB 上一动点, AC ⊥ AP 交直线 PB 于点 C ,则△ ABC 的面积的最大值是() A .12 6 3 B . 6 3 3 C .12 3 3 D . 6 4 3【练】(2014 ·洪山区中考模拟 1)如图,⊙ O 的半径为 1,弦 AB =1,点 P 为优弧 AB 上一动点, AC ⊥ AP 交直线 PB 于点 C ,则△ ABC 的最大面积是( )A .【例 5】如图,A (1,0)、B (3,0),以 AB 为直径作⊙ M ,射线 OF 交⊙ M 于E 、 F 两点, C 为弧 AB 的中点, D 为 EF 的中点.当射线绕 O 点旋转时, CD 的最小值为 ______ 解 :连接 DM∵ D 是弦 EF 的中点∴DM ⊥EF∴点 D 在以 A 为圆心的, OM 为直径的圆上运动 当 CD 过圆心 A 时, CD 有最小值 连接 CM∵ C 为弧 AB 的中点∴ CM ⊥ AB∴ CD 的最小值为 2 1练 】如图, AB 是⊙ O 的直径, AB =2,∠ABC =60°, P 是上一动点, D 是 AP 的中点,连接 CD ,则 CD 的最小值为 _________ 解 :连接 OD∵ D 为弦 AP 的中点∴OD ⊥AP∴点 D 在以 AO 为直径的圆上运动 当 CD 过圆心 O ′时, CD 有最小值 过点 C 作 CM ⊥ AB 于 M ∵OB =OC ,∠ ABC =60°∴△ OBC 为等边三角形∴ OM = 1 , CM = 322∴ O ′ C = 74∴ CD 的最小值为 7 142 B . C .D . 2。
九年级讲义:定弦定角最值问题秘籍
九年级讲义:定弦定角最值问题令狐采学【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。
【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。
(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。
)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
④确定圆心位置,计算隐形圆半径。
⑤求出隐形圆圆心至所求线段定点的距离。
⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。
【例1】如图,△ABC中,AC=3,BC=,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.D.【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()A.B.C.5D.【练】如图,在△ABC中,AC=3,BC=,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2C.D.【例3】如图,⊙O的半径为2,弦AB的长为,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是()A.B.C.D.【练】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A.B.C.D.【例4】如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为_________例题4 例题5 图8【例5】如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________【练】如图8,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________针对练习:1.如图,在动点C与定长线段AB组成的△ABC中,AB=6,AD⊥BC于点D,BE⊥AC于点E,连接DE.当点C在运动过程中,始终有,则点C到AB的距离的最大值是_________2.如图,已知以BC为直径的⊙O,A为弧BC中点,P为弧AC上任意一点,AD⊥AP交BP于D,连CD.若BC=8,则CD的最小值为___________。
初中九年级数学教案-定弦定角模型的最值问题-优秀奖
课题:定弦定角模型的最值问题
准
备
教学过程设计
(设计意图:这道题综合性很强,包含三大类型问题:定弦定角问题,双动点最值问题,点圆之间距离最值问题,通过这道题的分析让学生掌握定弦定角模型的最值问题)
教学反思
1、本节课是九年级总复习中的“定弦定角模型的最值问题”专题,综合性很强,通过这道题的分析,让学生了解定弦定角模型,并从中找到隐形圆,这是重点和难点,也是解决这类题的关键入口
2、学生对双动点问题不熟悉,学生可以从这道题当中体验转化的思想把不熟悉的双动点问题转化为我们熟悉的单动点问题最终转化点圆距离问题
3、定弦定角模型有关问题是一个难点,学生们要学会从题目中构造出模型,以后也还要多加练习。
(2021年整理)九年级讲义:定弦定角最值问题秘籍
九年级讲义:定弦定角最值问题秘籍(推荐完整)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级讲义:定弦定角最值问题秘籍(推荐完整))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级讲义:定弦定角最值问题秘籍(推荐完整)的全部内容。
九年级讲义:定弦定角最值问题秘籍(推荐完整)编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望九年级讲义:定弦定角最值问题秘籍(推荐完整)这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈九年级讲义:定弦定角最值问题秘籍(推荐完整)〉这篇文档的全部内容.九年级讲义:定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变.【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆.(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆.)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
完整版定弦定角最值问题教师版
定弦定角最值问题(答案版)△45°=【例1】(2016·新观察四调模拟1)如图,△ABC中,AC3,BC为==,∠,ACBD24,CP于E点,弧AE=△ACD的外接圆,直线BD交⊙O于P点,交BCABC内一动点,⊙O为的最小值为()则AD.B.2CD.A.12241?4=45°:∵∠CDP=∠ACB解135°(定弦定角最值)∴∠BDC=AD有最小值过O′时,如图,当AD 135°∵∠BDC==BO90°′C∴∠BO′C∴△为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=4∴AD=5-4=1【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()162?21313?.D.B.5A.C 9解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动13?2 CE有最小值为CE过圆心O′时,当42,∠ACB=45°,3,BC=AM∥BC,AC如图,在(2015【练】·江汉中考模拟1)△ABC中,=点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2242?3 .D .CCD解:连接=∠ACB=45°∴∠PAC=∠PDC135°BDC=∴∠AD有最小值如图,当AD过圆心O′时,135°∵∠BDC=90°∴∠BO′C=4 B′=O′C=∴O又∠=90°ACO′5′=∴AO1=5-4∴AD的最小值为32AB例【3】(2016·勤学早四调模拟1)如图,的长为P,点的半径为2,弦AB为优弧⊙O ABC的面积的最大值是()C上一动点,AC⊥AP交直线PB于点,则△3633?12312?66?334?..AC.B . D·洪山区中考模拟1)如图,⊙O的半径为1,弦AB=1,点P为优弧【练】(2014AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()12.A. B 2233..C D 24为弧于E、F两点,CAB(3,0),以为直径作⊙M,射线OF交⊙M,【例5】如图,A(10)、B__________的中点.当射线绕O点旋转时,CD的最小值为AB的中点,D为EF解:连接DM的中点D是弦EF∵EF∴DM⊥为直径的圆上运动为圆心的,OM∴点D在以A有最小值时,CD当CD过圆心A连接CM AB 的中点∵C为弧⊥AB∴CM CD的最小值为∴12?的中点,连接AP是60°,P是上一动点,D,∠AB【练】如图,是⊙O的直径,AB=2ABC=__________ 的最小值为CD,则CDOD解:连接D为弦AP的中点∵OD⊥AP∴在以AO为直径的圆上运动∴点D CD有最小值′当CD过圆心O时,过点C作CM⊥AB于M∵OB=OC,∠ABC=60°∴△OBC为等边三角形13,CM=∴OM=22.7=C∴O′417的最小值为CD∴?24练习:如图,在动点C与定长线段AB组成的△ABC中,AB=6,AD⊥BC于点D,BE⊥AC于点E,DE2 _________AB 的距离的最大值是到CDE连接.当点在运动过程中,始终有,则点C?AB2。
(word完整版)高中三角函数最值问题难题
(word完整版)⾼中三⾓函数最值问题难题⾼中三⾓函数最值问题难题⼀、直接应⽤三⾓函数的定义及三⾓函数值的符号规律解题例1:求函数y =xx x x x x x x cot |cot ||tan |tan cos |cos ||sin |sin +++的最值分析:解决本题时要注意三⾓函数值的符号规律,分四个象限讨论。
解:(1)当x 在第⼀象限时,有sin cos tan cot 4sin cos tan cot x x x xy x x x x =+++=(2)当x 在第⼆象限时,有sin cos tan cot 2sin cos tan cot x x x xy x x x x =+++=----(3)当x 在第三象限时,有sin cos tan cot 0sin cos tan cot x x x xy x x x x =+++=--(4)当x 在第四象限时,sin cos tan cot 2sin cos tan cot x x x xy x x x x=+++=----综上可得此函数的最⼤值为4,最⼩值为-2. ⼆、直接应⽤三⾓函数的有界性(sin 1,cos 1x x ≤≤)解题例1:(2003北京春季⾼考试题)设M 和m 分别表⽰函数cos 13x -1y=的最⼤值和最⼩值,则M m +等于()(A )32(B )32-(C ) 34-(D )-2解析:由于cos y x =的最⼤值与最⼩值分别为1,-1,所以,函数cos 13x -1y=的最⼤值与最⼩值分别为32-,34-,即M m +=32-+(34-)=-2,选D.例2:求3sin 1sin 2x y x +=+的最值(值域)分析:此式是关于sin x 的函数式,通过对式⼦变形使出现12sin 3yx y -=-的形式,再根据sin 1x ≤来求解。
解:3sin 1sin 2x y x +=+,即有sin 23sin 1sin 3sin 12y x y x y x x y +=+?-=-12(3)sin 12sin 3yy x y x y --=-?=-。
轨迹问题之定角对定边 定弦定角最值问题(含答案) (PDF版)
定弦定角最值问题----20190828【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。
【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。
(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。
)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
④确定圆心位置,计算隐形圆半径。
⑤求出隐形圆圆心至所求线段定点的距离。
⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。
【例1】(2019·模拟)如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E 点,弧AE=CP,则AD的最小值为()A.1 B.2 C.2D.241-4解:∵∠CDP=∠ACB=45°∴∠BDC=135°(定弦定角最值)如图,当AD过O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴△BO′C为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=4∴AD=5-4=1【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为16()A.213-B.213+C.5 D.9解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动当CE过圆心O′时,CE有最小值为213-【练】(2015·江汉中考模拟1)如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-解:连接CD∴∠P AC =∠PDC =∠ACB =45°∴∠BDC =135°如图,当AD 过圆心O ′时,AD 有最小值∵∠BDC =135°∴∠BO ′C =90°∴O ′B =O ′C =4又∠ACO ′=90°∴AO ′=5∴AD 的最小值为5-4=1【例3】(2016·勤学早四调模拟1)如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+2019【练】(·洪山区中考模拟 1)如图,⊙O 的半径为 1,弦 AB =1,点 P 为优弧 AB 上一动点, AC ⊥AP 交直线 PB 于点 C ,则△ABC 的最大面积是( )A .21B .22C .23D .43【例5】如图,A (1,0)、B (3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________解:连接DM∵D 是弦EF 的中点∴DM ⊥EF∴点D 在以A 为圆心的,OM 为直径的圆上运动当CD 过圆心A 时,CD 有最小值连接CM∵C 为弧AB 的中点∴CM ⊥AB∴CD 的最小值为12-【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________解:连接OD ∵D 为弦AP 的中点∴OD ⊥AP ∴点D 在以AO 为直径的圆上运动当CD 过圆心O ′时,CD 有最小值 过点C 作CM ⊥AB 于M∵OB =OC ,∠ABC =60° ∴△OBC 为等边三角形∴OM =21,CM =23∴O ′C =47∴CD 的最小值为2147-定弦定角1.(安徽)如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为()A .23B .2C .13138D .131312故选B.3.(宜兴模拟)如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P从点P向半径OA引垂线PH交OA于点H,设△OPH的内心为I,当点P在弧AB上从点A 运动到点B时,内心I所经过的路径长为.4.等腰直角△ABC 中,∠C =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为.答案:2-52(点H 在以BC 为直径的圆上)5.直线y =x +4分别与x 轴、y 轴相交与点M 、N ,边长为2的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P ,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是.A.1B.2C.332 D.3答案:D (点C 在以AB 为弦的圆上)8.(外国语模拟)如图,以正方形ABCD 的边BC 为一边向内部做一等腰△BCE ,BE=BC ,过E 做EH ⊥BC ,点P 是Rt △BEH 的内心,连接AP ,若AB=2,则AP 的最小值为________.答案:22π(点P 在以BC 为弦的圆上)9.(江阴期中)如图,以G (0,1)为圆心,半径为2的圆与x 轴交于A 、B 两点,与y 轴交于C 、D 两点,点E 为⊙G 上一动点,CF ⊥AE 于F ,当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长为________.答案:π33(点F 在以AC 为直径的圆上)10.(南长区二模)如图,矩形OABC 的边OA 、OC分别在x 轴、y 轴上,点B 的坐标为(7,3),点E 在边AB 上,且AE=1,已知点P 为y 轴上一动点,连接EP ,过点O 作直线EP 的垂线段,垂足为点H ,在点P 从点F(0,254)运动到原点O 的过程中,点H 的运动路径长为________.答案:π425(点H 在以OE 为直径的圆上)。
九年级讲义:定弦定角最值问题(3)(2)
【例1】如图,△ABC中,AC=3,BC= ,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为( )
A.1
B.2
C.
D.
【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为( )
A.
B.
C.5
D.
【练】如图,在△ABC中,AC=3,BC= ,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为( )
A.1
B.2
C.
D.
【例3】如图,⊙O的半径为2,弦AB的长为 ,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是( )
【练】如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________
针对练习:
1.如图,在动点C与定长线段AB组成的△ABC中,AB=6,AD⊥BC于点D,BE⊥AC于点E,连接DE.当点C在运动过程中,始终有 ,则点C到AB的距离的最大值是_________
A.
B.
C.
D.
【练】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是(4】如图,边长为3的等边△ABC,D、E分别为边BC、AC上的点,且BD=CE,AD、BE交于P点,则CP的最小值为_________
【例5】如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________
九年级讲义:定弦定角最值问题秘籍
九年级道义:定弦定角最值问题之阳早格格创做【定弦定角题型的辨别】有一个定弦,一个主动面,一个从动面,定弦所对于的弛角牢固没有变.【题目典型】图形中普遍供一个从动面到一个定面线段少度最值问题,普遍波及定弦定角最值问题【解题本理】共弧所对于的圆周角相等,定弦的共侧二个圆周角相等,则四面共圆,果此动面的轨迹是圆.(线段共侧的二面对于线段的弛角相等,则那二面以及线段的二个端面共圆.)【普遍解题步调】①让主动面动一下,瞅察从动面的疏通轨迹,创造从动面的疏通轨迹是一段弧.②觅找没有变的弛角(那个时间普遍是找出弛角的补角,那个补角普遍为45°、60°大概者一个决定的三角函数的对于角等)③找弛角所对于的定弦,根据三面决定隐形圆.④决定圆心位子,估计隐形圆半径.⑤供出隐形圆圆心至所供线段定面的距离.⑥估计最值:正在此前提上,根据面到圆的距离供最值(最大值大概最小值).【例1】如图,△ABC中,AC=3,BC=,∠ACB=45°,D为△ABC内一动面,⊙O为△ACD的中接圆,曲线BD接⊙O于P面,接BC于E面,弧AE=CP,则AD的最小值为()A.1B.2C.D.【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC 上一动面,以AD为曲径做圆,对接BD接圆于E面,连CE,则CE的最小值为()A.B.C.5D.【练】如图,正在△ABC中,AC=3,BC=,∠ACB=45°,AM∥BC,面P正在射线AM上疏通,连BP接△APC的中接圆于D,则AD的最小值为()A.1B.2C.D.【例3】如图,⊙O的半径为2,弦AB的少为,面P为劣弧AB上一动面,AC⊥AP接曲线PB于面C,则△ABC 的里积的最大值是()A.B.C.D.【练】如图,⊙O的半径为1,弦AB=1,面P为劣弧AB 上一动面,AC⊥AP接曲线PB于面C,则△ABC的最大里积是()A.B.C.D.【例4】如图,边少为3的等边△ABC,D、E分别为边BC、AC上的面,且BD=CE,AD、BE接于P面,则CP 的最小值为_________例题4 例题5 图8 【例5】如图,A(1,0)、B(3,0),以AB为曲径做⊙M,射线OF接⊙M于E、F二面,C为弧AB的中面,D为EF 的中面.当射线绕O面转动时,CD的最小值为__________【练】如图8,AB是⊙O的曲径,AB=2,∠ABC=60°,P是上一动面,D是AP的中面,对接CD,则CD的最小值为__________针对于训练:1.如图,正在动面C取定少线段AB组成的△ABC中,AB=6,AD⊥BC于面D,BE⊥AC于面E,对接DE.当面C正在疏通历程中,末究有,则面C到AB的距离的最大值是_________2.如图,已知以BC为曲径的⊙O,A为弧BC中面,P为弧AC上任性一面,AD⊥AP接BP于D,连CD.若BC=8,则CD的最小值为___________。
九年级讲义:定弦定角最值问题
九年级讲义:定弦定角最值问题【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916 【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .43 【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________【例5】如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________O ABC DP2.如图,已知以BC 为直径的⊙O ,A 为 BC 中点,P 为 AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________3.直线y=x+4分别与x轴、y轴相交于点M、N,边长为2的正方形OABC一个顶点O在坐标系的顶点,直线AN与MC相交于点P,若正方形绕着点O旋转一周,则点P到点(0,2)长度的最小值是_______4、已知∠MON=300,矩形ABCD的顶点A、D分别是OM、ON上的动点,且AD=2,AB=3,则线段OB长度的最大值为___________变式:已知∠MON=450,矩形ABDC的顶点A、C分别是OM、ON上的动点,且AC=2,AB=1,则线段OB长度的最大值为___________。
几何中最值定值问题教师版精编版
【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A .21+B .5C .1455 5D .52【答案】A 。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大, 此时,∵AB=2,BC=1,∴OE=AE=12AB=1。
DE=2222AD AE 112=+=+=, ∴OD 的最大值为:21+。
故选A 。
例2.在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA 上截取BE=BN ,连接EM 。
∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM 。
在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM ,BM=BM , ∴△BME ≌△BMN (SAS )。
九年级讲义:定弦定角最值问题
九年级讲义:定弦定角最值问题【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916 【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .43 【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________【例5】如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【练】如图,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________O ABC DP2.如图,已知以BC 为直径的⊙O ,A 为BC 中点,P 为AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________。
13、定弦定角最值问题
22九年级讲义:定弦定角最值问题主要是体现在题目中出现了固定度数的角对着固定长度的线段时隐含着一个固定大小的圆,此时定线段为隐圆的一条弦,定角为弦所对的一个圆周角,借助隐圆来分析问题极其方便,关键是要先发现隐含着的特殊度数的角。
【例1】如图,△ABC中,AC=3,BC=4 ,∠ACB=45°,D 为△ABC内一动点,⊙O为△ACD的外接圆,直线BD 交⊙O于P 点,交BC 于E 点,弧AE=CP,则AD 的最小值为()【例2】如图,AC=3,BC=5,且∠BAC=90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE,则CE 的最小值为()【练】如图,在△ABC中,AC=3,BC=4 ,∠ACB=45°,AM∥BC,点P 在射线AM 上运动,连BP 交△APC的外接圆于D,则AD 的最小值为()【例3】如图,⊙O的半径为2,弦AB 的长为2 ,点P 为优弧AB 上一动点,AC3⊥AP交直线PB 于点C,则△ABC的面积的最大值是()【练】如图,⊙O的半径为1,弦AB=1,点P 为优弧AB 上一动点,AC⊥AP交直线PB 于点C,则△ABC的最大面积是()【例4】如图,边长为3 的等边△ABC,D、E 分别为边BC、AC 上的点,且BD=CE,AD、BE 交于P 点,则CP 的最小值为【例 5】如图,A(1,0)、B(3,0),以 AB 为直径作⊙M,射线 OF 交⊙M 于E、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕 O 点旋转时,CD 的最小值为【练】如图,AB 是⊙O的直径,AB=2,∠ABC=60°,P 是上一动点,D 是AP 的中点,连接CD,则CD 的最小值为针对练习:1.如图,在动点 C 与定长线段 AB 组成的△ABC 中,AB=6,AD⊥BC于点 D,BE⊥AC于点E,连接 DE.当点 C 在运动过程中,始终有DEAB 2 ,则点 C 到 AB 的2距离的最大值是3332.如图,已知以BC 为直径的⊙O,A 为B C 中点,P 为 AC上任意一点,A D⊥AP 交BP 于D,连CD.若BC=8,则CD 的最小值为3.如图,在⊙O中,弦AD 等于半径,B 为优弧AD 上的一动点,等腰△ABC的底边BC 所在直线经过点D,若⊙O的半径为1,则OC 的长不可能为()A. 2- B. -1 C.2 D. +13.如图,E,F是正方形A B C D的边A D上两个动点,满足A E=D F.连接C F交B D 于G,连接B E交A G于点H.若正方形的边长为2,则线段D H长度的最小值是( ).23.如图,在Rt⊿ABC中,∠BAC=90º,AB=AC,BC=4 ,点D 是AC 边上一动点,连接BD,以AD 为直径的圆交BD 于E,连接CE,则线段CE 长的最小值为( )4.如图,直径 AB、CD 的夹角为 60 º,P 为⊙O一的个动点(不与点 A、B、C、D 重合)。
九年级讲义:定弦定角最值问题秘籍之欧阳家百创编
九年级讲义:定弦定角最值问题欧阳家百(2021.03.07)【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。
【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。
(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。
)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
④确定圆心位置,计算隐形圆半径。
⑤求出隐形圆圆心至所求线段定点的距离。
⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。
【例1】如图,△ABC中,AC=3,BC=,∠ACB=45°,D 为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.D.【例2】如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()A.B.C.5D.【练】如图,在△ABC中,AC=3,BC=,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2C.D.【例3】如图,⊙O的半径为2,弦AB的长为,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是()A.B.C.D.【练】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A.B.C.D.【例4】如图,边长为3的等边△ABC,D、E分别为边BC、AC 上的点,且BD=CE,AD、BE交于P点,则CP的最小值为_________例题4 例题5 图8【例5】如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF 交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________【练】如图8,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________针对练习:1.如图,在动点C与定长线段AB组成的△ABC中,AB=6,AD⊥BC于点D,BE⊥AC于点E,连接DE.当点C在运动过程中,始终有,则点C到AB的距离的最大值是_________ 2.如图,已知以BC为直径的⊙O,A为弧BC中点,P为弧AC 上任意一点,AD⊥AP交BP于D,连CD.若BC=8,则CD的最小值为___________。
定弦定角最值问题
定弦定角最值问题(教师版)work Information Technology Company.2020YEAR定弦定角最值问题(答案版)【例1] (2016 •新观察四调模拟1)如图,△ABC 中,AC=3, BC= 4迈,ZACB = 45\ D 为厶 ABC 内•动点,OO 为△ACD 的外接圆,直线BD 交00于P 点,交BC 于E 点,弧AE=CP.则 AD 的最小值为(〉B ・2解:VZCDP=Z^CB = 45°:丄BDC= 135° (定弦定角最值) 如图,当AD过时,AD 有最小值 ・・•乙BDC= 135°・・.乙BOQ 90。
为等腰直角三角形・・・ ZACO r = 45° + 45° = 90°・・.AO' = 5又 O ,B = OU4/.AD = 5-4= 1【例2】如图,AC = 3, BC = 5,且乙B4C = 90。
,D 为AC 上一动点,以AD 为直径作圆,连接 BD 交圆于E 点,连竺,则CK 的杲小值为()A . V13-2 /AD 为(DO 的直径・・・乙AEB=乙AED = 90°•••E 点在以他为直径的圆上运动当CE 过圆心O 时,C£有最小值为加-2A ・1 9【练】(2015江汉中考模拟1)如图,在△ABC 中,AC = 3. BC= 4^2 f AACB = 45\ AM// BC,点P 在射线AM 上运动,连BP 交△APC 的外接圆于0则AD 的杲小值为()C . V2D . 4佢-3 ---- M解「连接CD・・.ZPAC=乙PDC= ZACB = 45°・・・乙BDC= 135°如图,当AD 过圆心O 时,4D 有最小值V ZBDC= 135°・・・乙BO'C = 90°・・.O I B = O ,C = 4又乙 ACO' = 90°.\AO f = 5・・.AQ 的最小值为5-4=1 \/'、 __________ /【例3】(2016動学早四调模拟1)如图,OO 的半径为2,弦血的长为2羽、点P 为优弧AB 上一动点,AC 丄AP 交直线皿于点C,贝IJAABC 的面积的杲大值是() C . 12 + 3JJ故选 B.D . 6 + 4“ ・(2016劫学早四H 模拟一TlO )如图,©O 篱龜\^5=2 C 到曲的更樹證丸 此时ZUBC 为[练】(2014P 为优弧A 〃上一动--2V32 • ・A C A/2-2V3-4 ••B D /BC 点,C 为弧 【练1如图,加是 【例5】如图,A(l, 0)、8(3, 0).以AB 为直径作OM,射线OF 交乜AB 的中点,》为£尸的中点•当射线绕。
九年级讲义:定弦定角最值问题秘籍
九年级讲义:定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。
【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。
(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。
)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。
②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。
④确定圆心位置,计算隐形圆半径。
⑤求出隐形圆圆心至所求线段定点的距离。
⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。
【例1】如图,△ABC 中,AC =3,BC =24,∠ACB =45°,D 为△ABC 内一动点,⊙O 为△ACD 的外接圆,直线BD 交⊙O 于P 点,交BC 于E 点,弧AE =CP ,则AD 的最小值为( )A .1B .2C .2D .2441-【例2】如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( )A .213-B .213+C .5D .916 【练】如图,在△ABC 中,AC =3,BC =24,∠ACB =45°,AM ∥BC ,点P 在射线AM 上运动,连BP 交△APC 的外接圆于D ,则AD 的最小值为( )A .1B .2C .2D .324-【例3】如图,⊙O 的半径为2,弦AB 的长为32,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的面积的最大值是( )A .3612+B .336+C .3312+D .346+【练】如图,⊙O 的半径为1,弦AB =1,点P 为优弧AB 上一动点,AC ⊥AP 交直线PB 于点C ,则△ABC 的最大面积是( )A .21 B .22 C .23 D .43 【例4】如图,边长为3的等边△ABC ,D 、E 分别为边BC 、AC 上的点,且BD =CE ,AD 、BE 交于P 点,则CP 的最小值为_________例题4 例题5 图8【例5】如图,A(1,0)、B(3,0),以AB 为直径作⊙M ,射线OF 交⊙M 于E 、F 两点,C 为弧AB 的中点,D 为EF 的中点.当射线绕O 点旋转时,CD 的最小值为__________【练】如图8,AB 是⊙O 的直径,AB =2,∠ABC =60°,P 是上一动点,D 是AP 的中点,连接CD ,则CD 的最小值为__________针对练习:1.如图,在动点C 与定长线段AB 组成的△ABC 中,AB =6,AD ⊥BC 于点D ,BE ⊥AC 于点E ,连接DE .当点C 在运动过程中,始终有22 AB DE ,则点C 到AB 的距离的最大值是_________2.如图,已知以BC 为直径的⊙O ,A 为弧BC 中点,P 为弧AC 上任意一点,AD ⊥AP 交BP 于D ,连CD .若BC =8,则CD 的最小值为___________O ABC DP。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定弦定角最值问题(答案版)
【例11 (2016 •新观察四调模拟 1)如图,△ ABC中,AC = 3 , BC = 4j2,/ ACB = 45° D为△
ABC内一动点,O O为^ ACD的外接圆,直线 BD交O O于P点,交BC于E点,弧AE= CP, 则AD的最小值为(
D. 741 4^2
解:•••/ CDP = / ACB = 45°
•••/ BDC = 135 ° (定弦定角最值)
如图,当AD过0时,AD有最小值
•••/ BDC = 135 °
•••/ BOC = 90 °
•- △ BOC为等腰直角三角形
:丄 ACO = 45。
+ 45 °= 90 °
••• AO = 5
又 O B = O 'C= 4
• AD = 5 — 4= 1
【例21如图,AC = 3,BC = 5,且/ BAC = 90° D为AC上一动点,以 AD为直径作圆,连接 BD交圆于E 点,连CE,贝y CE的最小值为(
2 C. 5
•/ AD为O 0的直径
•••/ AEB = / AED = 90 °
••• E点在以AB为直径的圆上运动
当CE过圆心 0时,CE有最小值为J13
1)如图,在△ ABC 中,AC = 3,BC = 4运,/ ACB = 45° AM II BC,【练1 (2015 •江汉中考模
拟
BP交△APC的外接圆于
点P在射线AM上运动,连
A . 1
B
. C. ©
解:连接CD
FAC = Z PDC = Z ACB = 45 °
BDC =
135 °
•••/
如图,当AD过圆心0时,AD有最小值
•••/ BDC = 135°
•••/ BO 'C =
90°
又/ ACO = 90°
••• AO = 5
• AD的最小值为 5 — 4= 1
4P M
D
【例3】(2016 •勤学早四调模拟 1)如图,O O的半径为2,弦AB的长为2/,点P为优弧AB
上一动点,AC丄AP交直线PB于点C,则△ ABC的面积的最大值是(
C. 12 3^3
A. 12 6^3
B. 6 3 品
+ 口016®学早佩®删一11帕如開,(50汩丰径etr:;■带』5凹艮尢?Jb点P糊:亚甘用上一
可
皿:丄处交直线戸母干怎G刚&1F匚的面积的眾"A灌是<
A. 12+6 C L2+J 75
*
构诂H色BE崔歿扭摘汞眇三上P, 発罠二/肚的衆如杞.刖点C負的匪
离最俎丁堪£=2再・厶CA町…'点芒在O席上.斗仙=60%当点f为阀;曲旳中百时.点
£至].松們距fflS丸1 此梅二勺豚CV=2祷+3』^^c=|x2^X(27143)=6+3^/5*
【练】(2014 •洪山区中考模拟 1)如图,O0的半径为1,
AC丄AP交直线PB于点C,
C. 2
则△ ABC的最大面积是(
2
也
4
A(1 , 0)、B(3, 0),以AB为直径作O M,射线OF交OM于E、F两点,C为弧
为EF的中点.当射线绕 O点旋转时,CD的最小值为___
•••点D在以A为圆心的,OM为直径的圆上运动当CD过圆
心 A时,CD有最小值
连接CM
••• C为弧AB的中点
••• CM 丄 AB
••• CD的最小值为近1
【练】如图,AB是O O的直径,AB = 2,Z ABC = 60°
•/ D为弦AP的中点
••• OD 丄 AP
•••点D在以AO为直径的圆上运动当CD过圆心 O'时,CD有最小值过点C作CM丄AB于M •/ OB = OC,/ ABC = 60° •••△ OBC为等边三角形
1J3
••• OM = -,CM =二
3
22
【例5】如
图,
•/ D是弦EF的中点
•••DM 丄 EF
P是上一动点, D是AP的中点,连接
B
O'C =
4
••• CD的最小值为旦
4练习:
如图,在动点 C与定长线段AB组成的△ ABC
连接DE .当点C在运动过程中,始终有
AB 中,AB= 6,AD丄BC于点D , BE丄AC于点E ,
DE 屯,则点C到AB的距离的最大值是________________ 2。