铁电物理简介_

合集下载

第七章 铁电物理.ppt

第七章 铁电物理.ppt
第七章 铁电物理
本章提要
铁电体物理学研究的核心问题是自发极化。 本章主要介绍有关铁电体物理学的一些基本 概念;自发极化产生的机制;铁电相变与晶 体的结构变化;极化状态在各种外界条件下 的变化,即介电响应、压电、热释电、电致 伸缩、光学效应等;最后适当介绍铁电物理 效应的实验研究。
7.1铁电物理的一般性质
自发极化能被外电场重行定向是铁电体最重 要的判据,也是铁电体具有许多独特性质的 主要原因
3. 电畴结构
晶体内部在退极化电场的作用下,就会分裂 出一系列自发极化方向不同的小区域,使其 各自所建立的退极化电场互相补偿,相到整 个晶体对内、对外均不呈现电场为止。这些 由自发极化方向相同的晶胞所组成的小区域 便称为电畴,分隔相邻电畴的界面称为畴壁
极化反转过程中电畴的运动可以用实验的方法 动态地观察到。如果把电场沿着钛酸钡晶体的
自发极化轴加到图7-1(a)所示的试样上,实验
表明,与电场方向一致的电畴并不通过其畴壁 的侧向移动以牺牲反向畴为代价进行扩张,而 是在反向畴内部沿着试样的边缘靠近电极处生 长出许多极化方向与电场方向一致的尖劈状新 畴。新畴成核后便在电场作用下向前推进,穿 透整个试样,如图7-4所示。电场增强时,新 畴不断出现,不断向前发展波及整个反向畴, 最终便把这种反向电畴变成与外场方向一致, 并与相邻的同向畴结合为一个体积更大的同向 畴。
由于铁电性的出现或消失,总伴随着晶格结构 的改变,所以这是个相变过程。当晶体从非铁 电相(称顺电相)向铁电相过渡时,晶体的许 多物理性质皆成反常现象。对于第一级相变, 伴随有潜热发生,对于第二级相变,则出现比 热的突变。铁电相中自发极化强度是和晶体的 铁电相低。
图7-4 钛酸钡晶体反向畴中尖劈状新畴 的成核和扩展
铁电体的畴过程还可以用加上电场后电畴反 转过程所产生的电流脉冲波形来研究。如果 把前沿很陡的矩形电压脉冲加到晶体上。脉 冲的宽度比极化反转所需的时间长,脉冲的 振幅足够大,以保证试样的极化强度能被外 场反向,这时流过试样的瞬时电流便便正比 于,其波形如图7-6所示

材料物理与性能学课件:铁电物理与性能-

材料物理与性能学课件:铁电物理与性能-
圖6.4示出了所討論的壓電振子.它的長度為l,寬度為w,厚 度為t,並滿足l>>w>>t,上下主表面被有電極以施加並取出 電信號。當電信號頻率適當時,振子沿長度方向振動。
6.3.1.3 壓電材料的種類
1)晶體
自從第一個鐵電體羅息鹽發現以後,鐵電體就作為重要的壓電 材料得到應用.雖然非鐵電性的壓電晶體石英以其高穩定、 低損耗特性在頻率選擇和控制方面佔優勢,但從總體來看, 實用的壓電材料大部分是鐵電體,尤以壓電陶瓷用量最大, 具有鐵電性的晶體很多,其分類如下:
KDP在室溫下的結構如圖6.2所示,其結構可以看成由2套磷酸 根四面體組成的體心四方點陣和2套鉀離子陣心四方點陣套構 在一起形成的。
6.2.2 位移型相變鐵電體
許多氧化物鐵電體都是位移型鐵電體。鈦酸鋇就屬於這類鐵電 體,並且研究的也比較透徹。下麵就對鈦酸鋇鐵電體發生鐵 電相變時晶體結構變化的特點加以闡述。
圖6.5為熱釋電傳感器的構造,光線從(l)窗進入,經過(2) 濾光片到達(3)熱釋電元件,從而產生電信號,電信號經過 (4)引線輸出。
工作原理:熱釋電紅外感測器的窗口接收光線,濾波片對自然 界中的白光信號具有抑制作用,因此,只有特定波長的紅外 信號才能透過濾波片照射在熱釋電元件上。熱釋電元件被光 照後,由於熱釋電元件的上下表面受到的光照不同,產生電 子,並且形成電流,使兩塊黑色塗膜產生不同的熱釋電。電 流經過場效應管後放大輸出電壓信號。
6.1.2.2 鐵電體的電疇
鐵電體在整體上體現出呈現自發極化,這意味著在其正負端分 別有一層正的和負的束縛電荷.在晶體內部束縛電荷產生的 電場與極化反向(稱為退極化電場)使靜電能升高。在受機 械約束時,伴隨著自發極化的應變還將使應變能增加,均勻 極化的狀態是不穩定的,晶體將分成若干個社區域,每個社 區域內部電偶極子具有同一方向,但各個社區域之間電偶極 子方向有可能不同,這些社區域稱為電疇或疇。疇的間界叫 疇壁。疇的出現使晶體的靜電能和應變能降低,但疇壁的存 在引入了疇壁能。總自由能取極小值的條件決定了電疇的穩 定構型。當無外電場時,電疇無規則,所以淨極化強度為零。 而當施加外電場時,與電場方向一致的電疇長大,而其他電 疇變小,因此,極化強度隨電場強度變大而變大。

铁电物理简介_

铁电物理简介_
2012-9-29
第五个阶段:96年开始铁电薄膜和铁电薄膜器件 20
与存储记忆有关的物理问题 —集成铁电物理学
Fatigue(疲劳), Retention(保持), Imprint (印记), Domain Structure(电畴结构), Switching Process(开关过程), Stress Effect(应力效应), Size Effect(尺寸效 应), Irradiation Effect(辐照效应), Forming Gas(形成气氛), High Dielectric Materials(高介电材料), Electrode Effect (电极效应) (Heterojunction), Leakage Current(漏电流), Breakdown(击 穿)
2012-9-29 26
SrBi2Ta2O9中的保持(Pr—t)
2012-9-29
27
3.印记(Imprint)
• 电滞回线的对称
性改变,某一极 化状态剩余极化 增加而在另一状 态减少,产生印 记。
2012-9-29
28
产生印记的原因
• 顶电极、底电极材料不同。 • 顶电极和底电极不同热处理经历使上下两薄膜电 • •
电常数的界面层,d/=d/I+d/F • 2.晶粒尺寸影响:畴结构的变化(由多畴变为 单畴) • 在大晶粒膜到小晶粒膜时 Phys. Rev. B 54, R14337,( 1996); Phys. Rev. B 55, 3485, (1997) • 3.界面层应力:外延生长薄膜有1000MP的应 力存在 • J. A. P. 81, 1392, (1997); J. A. P. 83, 1610( 1998) 2012-9-29 36

第七章铁电物理

第七章铁电物理
自发极化能被外电场重行定向是铁电体最重 要的判据,也是铁电体具有许多独特性质的 主要原因
3. 电畴结构
晶体内部在退极化电场的作用下,就会分裂 出一系列自发极化方向不同的小区域,使其 各自所建立的退极化电场互相补偿,相到整 个晶体对内、对外均不呈现电场为止。这些 由自发极化方向相同的晶胞所组成的小区域 便称为电畴,分隔相邻电畴的界面称为畴壁
T
c
式中 为特性温度,它一般略低于居
里点;c称为居里常数;而代表电子极
化对介电常数的贡献,在过渡温度时
可以忽略。
具有铁电的晶体可以分为两大类
一类是以磷酸二氢钾为代表的,具有氢 键,它们从顺电相到铁电相的过渡是无 序到有序的相变
另一类则以钛酸钡为代表的,从顺电相 到铁电相的过渡,是由于其中两个子晶 格发生相对位移
的状态处在图上的O点
O点经A点达到B点:
沿着晶体某一可能产生自发极化的方向加上电场, 当电场超过电畴反转的临界电场时(图上的A点), 与外场方向不一致的反平行畴与正交畴中便有许多 新畴产生。随着新畴的不断生产和90°畴壁的侧向 移动,与电场方向不一致的畴逐渐消失,沿着电场 方向的电畴逐渐扩大,直到晶体中所有电畴均转向 外电场方向,整个晶体变成一个单一的极化畴
二、铁电体电滞回线
铁电体的自发极化在外电场作用下的重行定 向并不是连续发生的,而是在外电场超过某
一临界场强时发生的。这就使得极化强度P 滞后于外加电场E。当电场发生周期性变化 时,P和E之间便形成电滞回线关系
1.铁电体的电滞回线
假客观存在铁电体在外电场为零时,晶体中的各电 畴互相补偿,晶体对外的宏观极化强度为零,晶体
铁电相是极化的有序状态,顺电相是极化的 无序状态;顺电相所在的温度恒比铁电相所 在的温度高

第四章铁电与压电物理

第四章铁电与压电物理

第四章铁电与压电物理I.铁电晶体有些晶体在一定温度范围内具有自发极化,而且自发极化的方向可因外电场的作用而转向,这样晶体被称为铁电体.铁电体的名称并非晶体中含铁,而是因为和铁磁体具有磁滞回线一样,铁电体具有电滞回线,一般的介电晶体当电场缓慢增加再反向的过程中不出现滞后现象.铁电体在做电子计算技术中的记忆元件和开关线路的元件都有重要应用.不少铁电体也是重要的压电体.近年来,又发现某些铁电体中的多畴结构可使非线性效应比单畴结构增强许多倍(在非线性光学部分再讲),这对于激光倍频器件和光参量振荡器件的制作是一值得注意的研究课题,另外研究铁电体的相变以及电畴生长有助于一般相变理论的发展.本章首先介绍铁电体的一般性质和实验结果,然后介绍铁电体的宏观热力学理论,它与实验规律符合较好,缺点是比较抽象,再讲铁电体的微观理论其物理图像比较具体,但定量计算结果尚不能与实验符合得好,还有待于进一步发展.因此本章重点放在用宏观理论讨论铁电体的一些重要性质.§4.1铁电体的一般性质在结晶学课里已讲到晶体的对称性可以划分为32种类型,在无中心对称的21种晶体类型中除432点群外其余20种都有压电效应,而这20种压电晶体中又有10种具热释电现象,热释电晶体是具有自发极化的晶体,但因表面电Array荷的抵偿作用,其极化电矩不能显示出来,只有当温度改变,电矩(即极化强度)发生变化,才能显示固有的极化,这可以通过测量一闭合回路中流动的电荷来观测.热释电就是指改变温度才能显示电矩的现象,铁电体又是热释电晶体中的一小类,其特点就是自发极化强度可以因电场作用而反向,因而极化强度部和电场E之间形成电滞回线(图4.1),是铁电体的一个主要特性.(1)电滞回线晶体的结构与缺陷课里,讲到铁电体中有电畴存在,每个电畴的极化强度只能沿一个特定的晶轴方向,为简单起见,设极化强度的取向只能沿一种晶轴的正向或负向,即这种晶体中只有一种电畴,极化方向互成180︒,当外电场不存在,即E=0时,晶体的总极化强度为零,即晶体中两类电畴极化强度方向互相反平行,当电场加到晶体时,极化强度与电场方向一致的电畴变大,而与之反平行方向的电畴则变小.这样总极化强度P 随外电场增加而增加(图4.1OAB 曲线),电场强度的继续增大,最后使晶体中电畴都取向一致时,极化强度达到饱和(曲线上C 点).再继续增加外电场,则极化强度随电场线性增加,与一般电介质相同),将线性部分外推到电场为零时,在纵轴部上的截距P s 即称为饱和极化强度,或自发极化强度,如电场开始减小,则P 也随之减小,在E=0时,存在剩余极化强度P r ,当电场反向达E c 时,剩余极化全部消失(P=0).反向电场再增大,极化强度就开始反向,E c 称矫顽电场强度(与矫顽磁场强度相对应),以后当电场继续沿负方向增加时,极化强度又可达反向饱和值,然后电场再由负值逐渐变为正值时,极化强度沿回线另一支回到C 点,形成闭合回线.电滞回线可以用图4.2的装置显示出来,以铁电晶体作介质的电容C x 上的电压V x 是加在示波器的水平电极板上,与C x 串联一个恒定电容C y (即普通电容),C y 上的电压V y 加在示波器的垂直电极板上,很容易证明V y 与铁电体的极化强度P 成正比,因而示波器显示的图像,纵坐标反映P 的变化,而横坐标V x 与加在铁电体上的外电场面成正比,因而就可直接观测到P-E 的电滞回线.下面证明V y 和P 的正比关系,因y xxy x y C C C C V V ==ωω11(4.1) 式中ω为图中电源V 的因频率[又见电磁学讲义]dSC x 0εε=ε为铁电体的介电常数,ε0为真空的介电常数,S 为平板电容C x 的面积,d 为平等平板间距离,代入(4.1)式得:xx y y C SV dC SV 00εεεε==(4.2)V2.4 图电滞回线的显示装置根据电磁学讲义P=ε0(ε-1)E ≈ε0εE=ε0xE (4.3)对于铁电体ε>>1,故有后一近似等式,代入(4.2)式,P C S V yy =(4.4)因S 与C y 都是常数,故V y 与P 成正比.(2)居里点T c当温度高于某一临界温度T c 时,晶体的铁电性消失,这一温度称为铁电体的居里点,由于铁电体的消失或出现总是伴随着晶格结构的转变,所以是个相变过程,已发现铁电体存在二种相变,一级相变伴随着潜热的产生,二级相变呈现比热的突变,而无潜热发生,又铁电相中自发极化总是和电致形变联系在一起,所以铁电相的晶格结构的对称性要比非铁电相为低.如果晶体具有两个或多个铁电相时,最高的一个相变温度称为居里点,其它则称为转变温度.(3)居里――外斯定律由于极化的非线性,铁电体的介电常数不是常数,而是依赖于外加电场的,一般以OA 曲线(图4.1)在原点的斜率代表介电常数,即在测量介电常数ε时,所以外电场很小,铁电体在过渡温度附近时,介电常数具有很大的数值,数量级达104~105,当温度高于居里点时,介电常数随温度变化的关系遵守居里――外斯定律.∞+-=εεECT C(4.5)式中T 0称特征温度,一般低于或等于居里点,C 称为居里常数,而ε∞代表电子位移极化对介电常数的贡献,因为ε∞的数量级为1,所以在居里点附近ε∞可以忽略不计.§4.2 常用铁电体的实验规律铁电晶体大致可以分为四种类型:罗息盐(洒石酸盐)型,KDP 型,TGS 型,氧化物型(包括钙钛矿型及变形钙钛矿型),各类型中部分晶体的居里温度(T C )及饱和极化强度数据列于表4.1中.表4.1表中P s值除以3⨯105即可得以库仑/米2为单位的数值.前三种类型(即罗息盐型,KDP型和TGS型)晶体易溶于水,易潮解,力学性质软,居里温度低,熔点低,而钙钛矿型及钛铁矿型晶体不溶于水,力学性质硬,居里点高,熔点高.下面可述几种常用的也是上述几种类型中晶体的实验结果.(1)罗息盐(NaKC4H4O6⋅4H2O酒石酸钾钠)罗息盐是酒石酸钾钠的复盐,具有两个过渡温度,-18︒C及23︒C,只有在此两温度之间才有铁电性,高于23︒C或低于-18︒C时,它具有正交晶系的正菱面体结构,在铁电相时晶体的对称性降低是单斜结构(a轴与c轴不再垂直),只能沿一个轴极化,即原来正菱面体a 轴的正向或负向.罗息盐沿三个轴a、b、c方向的介电常数,如图4.3所示,沿a轴方向的介电常数εa 在过渡温度附近可高达~4000︒C,在高于23︒C的温度正域,εa和温度的关系是满足居里――外斯定律.11T T C a -=ε式中C 1=2240K ,T 1=296K ,在温度低于-18︒C 时,也有22T T C a -=ε式中C 2=1180K ,T 2=55K罗息盐的自发极化强度和温度的关系如图4.4下面的一条曲线,如果将罗息盐中的氢用氘替代,则自发极化强度变大,并且铁电性的范围也变宽,如图4.4上面的一条曲线. 罗息盐在相变时,比热发生突变,但没有潜热,因而是第二级相变.3.4 图的关系方向的介电常数和温度罗息盐沿三晶轴c b a 、、 4.4 图250260270280290)(K T 300310和温度的关系罗息盐的自发极化强度(2)磷酸二氢钾(KH 2PO 4)磷酸二氢钾只有一个过渡温度,即居里点T c =123K ,在此温度之上,它具有正方系结构(三个互相垂直的轴是a, b, c ),而T c 以下,对称性降低变为正交晶系(三个互相垂直的轴是a, b, c )的正菱面体结构,自发极化是沿c 轴发生和罗息盐一样只有一个极化轴,并且也是二级相变的铁电体.图4.5和图4.6分别表示KH 2PO 4的饱和极化强度P s 以及介电常数ε和温度的关系,在温度高于居里点时,介电常数遵从居里――外斯定律0T T C-+=εε式中εa =4.5, T 0=121K, C=3100K .衍射实验表明KH 2PO 4的铁电性质与氢键有关.(3)钛酸钡的晶体结构在已发现的铁电体中算是最简单的一种,由于它的化学性能和力学性能的稳定,在室温就有显著的铁电性,又容易制成各种形状的陶瓷(即多晶体)元件,具有很大的实用价值.从晶格结构来看,钛酸钡中的氧形成八面体,而钛位于氧八面体的中央,钡则处在8个氧八面体的间隙里,如图4.7(a)所示,具有氧八面体结构的化合物很多,统称为氧八面体族,钛酸钡属于八面体族中一个子族,钙钛矿型,这一族的化学式可以写成ABO 3,其中A 代表一价或二价的金属,B 代表四价或五价的金属,对钛酸钡,钡是二价金属,钛是四价金属,原胞结构如图4.7(b)所示,在高于-20︒C 的非铁电相具有立方结构,Ba 2+离子处于立方体项角,Ti 4+离子在体心,而O 2-离子在面心上,因每一项角离子是八个原胞所共有,因此每个原胞平均有一个Ba 2+离子,又每一个面心离子是两个原胞所共有,因此每个原胞平均有三个O -2,另外每个原胞有一个Ti 4+,三种离子数目正好满足ABO 3分子式.5.4 图0100105110115)(K T 120125和温度的关系的s P PO KH 426.4 图50100150200250)(K T 300系的介电常数和温度的关42PO KH(a) 氧八面体的排列(b)原胞图4.7BaTiO3的晶体结构当温度降至120︒C时,其结构转变为正方晶系(a=a<c>c/a=1.01),自发极化沿c轴产生如图4.8(a),呈现显著铁电性,当温度降至0︒C±5︒C附近时,晶体结构转变为正交晶系(a=b=c),仍具铁电性质,自发极化方向沿原来三立方体的[011]方向[图4.8(b)],也即原来两个a轴都变成极化轴.如温度继续降低至-80 ︒C±8︒C附近,晶体结构变为三角系,仍具铁电性质,极化沿原来立方体[111]方向,即原来三个a轴都成为极化轴,如图4.8(c).(a) [001] (b) [011] (c) [111]图4.8钛酸钡的自发极化方向综上所述,钛酸钡有三个铁电相,三个过渡温度,最高的一个(120︒C)称居里点.温度愈低,晶格对称性愈低,而极化轴的数目增加,表4.2列出三个铁电相的温度范围内自发极化方向以及对应的晶体结构.表4.2钛酸钡的介电常数和温度的关系示意如图4.9,在三个过渡温度都出现反常增大,有两点和罗息盐, KH2PO4不同:(1)罗息盐和KH2PO4沿极化轴的介电常数大于其垂直于极化轴的介电常数(见图4.3和4.6),而BaTiO3沿极化轴方向的介电常数εc则远小于垂直极化轴的介电常数εa,例如在室温附近εc约为160左右,εa约为4000左右,εc远小于εa可能表明:在外场作用下,BaTiO 3中的离子易产生垂直于极化轴方向的位移.(2)在三个相变温度附近,介电常数(图4.9)和饱和极化强度(图4.10)在升温和降温时并不重合,这是相变过程中的热滞现象,当温度高于T c (120︒C )时,介电常数与温度之间关系满足居里――外斯定律.T T C-=ε式中C=1.7⨯105K ,与罗息盐,KH 2PO 4不同之处是T 0不等于居里点温度,此处T c -T 0=10︒C左右(见表4.3).10.4 图816124200180-150-120-90-60-30-03024609012015026/10cm C P s -⨯)(C T温度的关系钛酸钡自发极化强度和9.4 图862490130170210250310-⨯x E )(K T 29033010370410*系的介电常数和温度的关3BaTiO* 后来的测量在120︒C 的相变也观察到热滞现象.图4.11是测量结果,在120︒C 居里点附近也有明显热滞现象,而且P s 有突变,罗息盐与KH 2PO 4在居里点附近P s 是连续变化的.钛酸钡从非铁电相转变为铁电相时有潜热发生,从正方结构转为正交结构以及从正交结构转为三方结构时都有潜热发生,是属于第一级相变.上述热滞现象就是一级相变特征.此外在稍高于居里点(120︒C )的温度,施加很强的交变电场于钛酸钡,还会出现如图4.12所示的双电滞回线.这种回线的出现也是第一级的特征,当温度稍高于居里点1~2︒C 时,如无外电场,钛酸钡不具有铁电性,但当加上电场增至一定临界值后,晶体的极化强度迅速增加(AB 段),将电场减小到一定程度后,晶体又变成非铁电铁,在电场反向时,也出现一个对称的电滞回线.关系曲线的双电滞回线E P BaTiO 3-12.4 图E11.4 图8.44.52.40.60102030405060706.68090120100)/(2cm C P s )(C T 1102.78.7温度的关系钛酸钡自发极化强度和3BaTiO§4.3 铁电体的相变热力学实验结果表明铁电体从非铁电相转为铁电相或从一个铁电相转为另一铁电相,总是伴有结构的变化.从热力学的观点,这是一个相变问题,不论其微观机制如何,总可以采用热力学的方法来处理.下面可以看到微观理论目前尚存在许多困难,而热力学理论对铁电体宏观性质作出的一些结论能很好概括铁电性的实验事实.根据热力学第一定律:一个热力系统的内能的变化(dU)等于系统从外界吸收的热量(dQ)和外界对系统所作的功(dW)即:dU=dQ+dW (4.6)代入(4.6)式得dU=TdS+dW=TdS+SdT-SdT+dW=d(ST)-SdT+dW或 d(U-ST)=-SdT+dW (4.7) 即dF=SdT+dW (4.8)式中F=U-ST 称为系统的自由能.现在考虑外界对铁电体所作的功dW ,为简单起见,第一只考虑应力等于零的情形,也就是不考虑应力所作的功,只考虑外电场所作的功,第二只考虑单极化轴的情形,且外电场E 与极化轴有相同方向,也就是相当于一维的情形.由于电介质中能量密度的表式为[参考电磁学讲义]εε0222'D ED U == D 为电位移,因而EdD DdDdU ==εε0'又D=ε0E+P, dD=ε0dE+dP ,代入上式得:dW Edp E d dU =+=)2('20ε (4.9)电介质中能量密度的增加也就是外电场对电介质所作的功.可以分成两部分,ε0E 2/2为在真空中形成电场E 时所作的功,d(ε0E 2/2)为电位移变化dD 时,真空中电场能密度的变化,EdP 是电介质中极化强度变化dP 时,外电场所作功,称极化功,将(4.9)代进(4.8)式得Edb E d ST ST U d dF ++-=-=)2()(20ε将ε0E 2/2并入内能U 中即得dF=-SdT+Edb (4.10)此为铁电体的热力学基本方程.上式表明自由能F 是温度T 和极化强度P 的函数,即F=F(T c )并有T P F E ⎪⎭⎫ ⎝⎛∂∂= (4.11)PT F S ⎪⎭⎫ ⎝⎛∂∂-=从电滞回线看出,电场强度与极化强度之间存在非线性关系,电场强度可用极化强度展开为F=f(P)=C 2P+C 3P 2+C 4P 3+C 5P 4+C 6P 5… (4.12)根据TP F E ⎪⎭⎫⎝⎛∂∂=求积分得:++++==4433220413121)()(P C P C P C T F TP F (4.13)式中F 0(T)是P=0时的自由能,系数C 与温度有关,又因为在极化强度反向时,晶体的自由能保持不变,故(4.12)式中只能包含P 的偶次项:6644220614121P C P C P C F F ++=- (4.14) 如果能求得C 2、C 4、C 6…等与温度的关系,即可得到各种温度下F 与P 之间的函数关系.晶体处于平衡状态时,其自由能为极小,通过自由能值在自由能曲线F(P)中的分析情况,即可解释铁电体相变时的各种性质.系数C 2、C 4、C 6的确定C 2可用居里――外斯曲线求得,当T>T c ,介电常数服从ε上=C/(T-T 0),根据(4.3)式极化系数χ=ε,故有χ上=C/(T-T 0) (4.15)χ上和ε分别表示居里温度以上的极化系数与介电常数,按(4.11), (4.13)有+++=⎪⎭⎫ ⎝⎛∂∂=+++=⎪⎭⎫ ⎝⎛∂∂=4624256342531P C P C C P F P C P C P C P F E TTχ (4.16)当T>T 0,P s =0,电场引起的极化强度很小,故有C 2=1/χ上=(T-T 0)/C (4.17)C 4和C 6可以通过测量T<T 0时自发极化强度P s 及E=0时的极化系数求得,即从(4.15), (4.16)和(4.17)有(T-T 0)/C+C 4P s 2+C 6P s 4=0, (T-T 0)/C+3C 4P s 2+5C 6P s 4=1/χE=0 (忽略P 的高次项) (4.18)S 可从自发极化强度和温度的关系曲线(§4.2节)测得,极化系数χE=0就从零场下的介电常数的测量获得,然后从(4.18)可解得C 4和C 6,实验测得C 4、C 6的数值很小,和温度的关系也很小,可近似视为常数.在给定温度下,热平衡状态时的自发极化强度P s 的数值由自由能F 为极小值的条件来确定,即0)(56342=+++=∂∂ P C P C P C PF(4.19a) 053)(4624222≥+++=∂∂ P C P C C PFT (4.19b) P s =0总是满足(4.19a)的,对于T>T 0时的非铁电相正是所要求的解,则据(4.19b)必须C 2>0,当T<T c 时,有自发极化存在,P s =0不是所要求的解,此时自由能应为极大值(因∂F/∂P=0),即∂F 2/∂P 2<0,故必须C 2<0,因此要显示铁电性,要求C 2(T)当温度自T c 以上降至T c 以下时,连续地从正值变为负值,(4.17)式C 2=(T-T c )/C 中,只要T c =T 0,即能满足这一要求,而且当T=T c 时,C 2=0.前面已讲铁电体有两种相变,第一级相变有潜热产生,第二级相变无潜热产生,但比热有突变.下面用热力学理论分别对这两种相变及其实居里点附近的宏观特性加以说明. (一)第二级相变罗息盐及磷酸二氢钾等属于这种情形.前面已知道当T=T c 时,C 2=0,如果C 4, C 6…在居里点上下均为正值,则可以证明这样的相变居于第二级相变.(4.19a)可以写成:P(C 2+C 4P 2+C 6P 4+…)=0在C 2由正值变为负值的前提下,自发极化强度P s ≠0的解应由下式决定:C 2+C 4P s 2+C 6P s 4+…=0 (4.20)这是满足自由能极小的条件,如果在居里点附近C 4, C 6均为正值,并忽略P 4以上的高次项,则有:P s 2=-C 2/C 4 (4.21)由于C 2是温度的连续函数,P s 也必为温度的连续函数,而且在T=T c 时,因C 2=0,故P s =0,按(4.11)和(4.14)式:+⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂-=T C P T C P S T F S s s 442204121(4.22)S 为未极化时(P s =0)晶体的熵,又因C 4, C 6…近似与温度无关,故有:⎪⎭⎫⎝⎛∂∂-=-T C P S S s 22021 (4.23)当T=T 0时,P s =0,所以在过程中熵不变,即无潜热产生.比热是一克分子物体当温度升高1︒C 时所需的热量,即比热应为T(∂S/∂T),按(4.23),T=T c 时比热的变化应为TT C P T T S T S T c cT T s c T T c ∂⎥⎦⎤⎢⎣⎡∂∂-∂=⎪⎭⎫⎝⎛∂∂-∂∂==220(21 (4.24)将(4.17)及(4.21)式代入上式,得到比热的变化为242C C T c是一常数,说明相变时系统的比热有突变. 又按(4.21)P s =-C 2/C 4=(T c -T)/C (4.25)当T>T c 时,P s 为虚数,即不存在P s =0的解; 当T<T c 时,有P s =0的解,图4.13示出二级相变中P s 随温度的变化,且按(4.24)式,c cT T s s T T s T P P T P ==⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂222必须有固定值,而此时P s =0,故(∂P s /∂T)=∞,即图4.13中T c 处曲线斜率应为无穷大.二级相变的自由能与极化强度的关系如图4.14所示.当T>T c 时,自由能在P s =0处有极小值,在P s =0 和P s ≠0处不可能同时出现两个极小值,即无两相并存的现象. 现在来讨论二级相变时的极化系数χ,在居里点以上,(4.17)式给出:1/χ上=C 2=(T-T c )/C另外在居里点温度以下按(4.15)式 E=(∂F/∂P)T =C 2P+C 4P 3 (忽略部分高次项)1/χ下=(∂F/∂P)T =C 2+3C 4P 2 (4.26)χ下代表居里点之下的极化系数,因电场较弱,故P=P s ,将(4.21)式代入(4.26)式得到:1/χ下=C 2+3C 4(-C 2/C 4)=-2C 2=2(T c -T)/C (4.27)(4.17)与(4.27)给出了在居里温度上下极化系数的倒数和温度的关系,示于图4.15(a)中,值得注意的是在铁电区1/χ斜率正好为非铁电区的两倍,图4.15(b)给出了TGS 晶体的结果,与理论一致.b15.4 图10201552550.0-25.0-03025.05.075.0)(C T T c -13.4 图随温度的变化二极相变中s P 14.4 图曲线二极相变中自由能函数a 15.4 图(二)第一级相变钛酸钡从非铁电相到铁电相的转变是属于第一级相变.前面已经证明自由能表式中系数C 2在居里点以下为负值,系数C 4为正值时,铁电体的相变为二级相变,若在居里点以下C 2, C 4均为负值,而系数C 6为正值时,则可证明铁电体的相变是一级相变,即相变过程有潜热产生,两相可以同时并存.一级相变在T c 附近时,自由能同时存在二个极小值,即在P s =0和P s ≠0处,如图4.16所示,可以看出在T=T c 时两个极小值位于同水平.即F(T c , P s )=F(T c , 0)再从(4.13)式得到cT T s s s P C P C P C =⎪⎭⎫ ⎝⎛+++= 6644226141210 (4.28) 及由自由能极小为条件0=⎪⎭⎫⎝⎛∂∂=cT T P F 得到:0==c T T P (4.29)()046242=+++=c T T s s P C P C C(4.30)16.4 图PF F -曲线一级相变中自由能函数由(4.28)和(4.30)式可得()()6242622642163343C C C C C P C C P ccT T sT T s==-===因而 (4.31)043)(64≠-±==C C P c T T s (4.32) 因C 4为负值,C 6为正值,故(4.32)式为实数解,(4.29)和(4.32)说明T=T c 时P s =0突变为P s ≠0,也就是说自发极化强度发生不连续变化(如图4.17),而二级相变中P s 是连续变化的.又由(4.23)式可知在居里点温度熵也有突变,故有潜热产生,而P s =0和P s ≠0两个解的同时存在说明非铁电相与铁电相可以两相同时并存,故属于一级相变.由于两相可以并存,还能说明相变时(如图4.10和4.11所示)热滞现象的存在,因为晶体从居里点以上(自由能极小值在P s =0处)降温至T=T c 时,P s =0的极小值并未消失,因而晶体仍可保留非铁电相,直到降至该极小值变为极大值的温度才产生铁电相.此时T 1<T c .反之,如果从铁电相存在的温度升上去,当T=T c 时,P s ≠0的自由能值仍然存在,直到某一温度(T 2>T c )该极小值消失时才又从铁电相转为非铁电相,T 1≠T 2≠T c 就是热滞现象.前面已经讲过P s =0处自由能从极小值变为极大值时C 2必经由正值变为负值,C 2=0对应的温度T 1是P s =0处既非极大也非极小的(即022=∂∂P F)温度也即C 2=(T-T 0)/C 中的T 0.从图4.16可以看出T=T c 是两相自由能极小值相等时的温度,显然T 0(=T 1)<T c ,这与§4.2中实验规律是一致的,即BaTiO 3与罗息盐和KH 2PO 4不同.T 0<T c .现在再看居里点上下的极化系数χ,同考虑第二级相变时之方法类似,当T>T 0时,由于电场引起的极化强度很小,自由能中P 的高次项可以忽略不计,则有2221)()(P C T F P T F =-⋅αC T T C P F c T T 02221-==⎪⎪⎭⎫ ⎝⎛∂∂=> 上χ (4.33) 当T<T c 时,自发极化发生不连续变化,要计入P 4和P 6的贡献,P 6以上的高次项仍忽略不计,此时:6644220614121)(),(P C P C P C T F P T F ++=- 因而:4624222531s s T T P C P C C P F c++=⎪⎪⎭⎫ ⎝⎛∂∂=< 下χ (4.34) 将(4.31)式中有关项代入(4.34)式中得到CT T C C C C C C C C 02626644244)3(5)43(31-==+-+= 下χ (4.35) 图4.18示出1/χ与温度的关系,由于T 0≠T c ,故在T c 处1/χ≠0,与二级相变不同.曾经指出,在稍高于居里温度时,如以很强的交变电场施于钛酸钡晶体,会出现第一级相变特征的双电滞回线,今以自由能函数说明之,在第一级相变中当T=T c ,无外电场做功时,F(T c , P s )=F 0(T c , 0),当T>T c 时,施加外电场E ,非铁电相的自由能降低为(T(T)-E(P),当降低到等于居里点T c 时F 0(T c )的值,晶体发生相变,出现自发极化,此称为感应相变,显然,这种感应相变在电场弱时不会发生,所以晶体显示图4.12的双滞回线.§4.4 铁电体相变的微观机制由于铁电现象和铁磁现象外表上的相似,很容易联想到它们内在微观机制的类似.最早的铁电体微观理论就是认为自发极化的产生是由于分子的固有偶极子转向并通过洛仑兹内场相互带动而趋于相同方向的结果.这个理论可以定性地说明若干现象,例如高于居里点的居里――外斯定律,低于居里温度下自发极化的产生等.但定量结果与实验结果差异太大,例如,关于罗息盐的饱和极化强度,从其中H 2O 分子的固有偶极矩计算得的P s 值,比实验值大了40倍,另外有许多具有极性分子的液体和水并非铁电体,而无固有偶极矩的钛酸钡倒是具有显著的铁电性质.因而以后固有偶极子转向的微观理论没有再发展.实验表明,从非铁电相到铁电相的过渡总伴随着晶格结构的改变,并且晶体的对称性总是降低了,铁电现象可能同离子偏离于平衡点的位移有关.由于离子偏离平衡点,晶体中出现了偶极矩,而偶极矩间的互作用使得离子过渡到新的平衡位置因而结构发生了变化并产生固定值的极化强度.下面分述两种典型铁电体的微观机制.(一)KH2PO4的自发极化从160K时的结构表明,铁电性的出现是和质子(H+)位移有关.KH2PO4的结构如图4.19所示.这个结构中,同铁电性质有关系的组元是(PO4)3-和H+,而K+在相变过程中位置没有改变.(PO4)3-形成四面体结构,四个氧在四面体的顶角上,磷在中央.在整个晶体中,这些面体排列成层状,而每一层上,这些四面体及排成正方形.此外每个(PO4)3-又在四个其它的(PO4)3-所组成的四面体的中央,这从图上中央的一个(PO4)3-最容易看出,这些四面体的(PO4)3-是由氢键联系起来的中央四面体上部顶角上的氧和相邻两个四面体下部顶角上的氧由氢键联结,这个四面体下部顶角上的氧又和另外两个相邻的四面体上部顶角上的氧联结.这样,平均地讲,有两个H+属于一个(PO4)3-组成(H2PO4)-,质子H+的位置并不是在两个氧联线的正中,而是偏于某个氧的一方如图4.20所示,这样在氧的联线上,每个质子有两个势能相等的两个平衡位置.图4.19KH2PO4和原胞结构现在来考虑一个(H2PO4)-,每个(PO4)3-的周围有四个键,即有四根氧的联线,质子在此联线上的两个平衡位置,一个接近于所考虑的(PO4)3-,另一个位置则远离它.每一根氧的联线上只有一个质子,这样质子在(PO4)3-周围四根氧的联线上的分布方法共有6种分布,相应于两个质子是在接近于所考虑的(PO4)3-的位置上,把这种情况看作是(H2PO4)-,而把一个或三个质子接近的,分别看作是(HPO4)2-或H3PO4,斯莱特指出在KH2PO4的结构中,(HPO4)2-或H3PO4组态比(H2PO4)-所需的能量高得多,因而出现的几率小得多,因而只考虑后一种情况.在(H2PO4)-中,接近于(PO4)3-的两个质子都在“上”方(+C方向),或者都在“下”方(-C方向)的情况,分别有一种可能,其余四种可能则对应一个接近的质子在“上”方,另一个在“下”方.(PO4)3-和质子相成电矩,如两个质子全在上方,总偶极矩沿+C轴; 中两个质子全在“下”方,则总偶矩沿-C轴.其它四种情况总偶极矩方向垂直于c轴,当晶格对称性降低(即从正方系转为正交系结构)时,两个质子全在“上”方或全在“下”方的分布所对应的能量比其它四种分布为低,出现的几率较大,所以晶体沿c轴极化.这种质子化的相变过程已为一系列X证实射线中子衍射工作所证实.这个理论常被称为质子的化理论.可以说明KH2PO4的一系列性质.例如介电常数 对温度的依赖关系,相变时熵的突变等.。

第22讲7-3铁电体物理效应

第22讲7-3铁电体物理效应
对于逆压电效应,其应变 x与电场强度 E (V/m)的关系为: x = d E
6
压电效应与压电常数
对于正和逆压电效应,压电常数d在数值 上是相同的,
D x d X E
D, E
为矢量,
为张量 x, X
7
标量、矢量和张量
标量:与方向无关,如密度、质量、温度 等; 矢量:既有大小又有方向,如力、速度、 电场强度等; 张量:简单的说,张量概念是矢量概念和 矩阵概念的推广,标量是零阶张量,矢量是一 阶张量,矩阵(方阵)是二阶张量,而三阶张 量则好比立体矩阵,更高阶的张量用图形无法 表达。
和媒质的介电常数和导磁率
(2)色散现象
晶体的折射率与光的频率(波长)有关,这就 是色散现象 由于电子的质量比原子核的质量小得多,因此, 可以近似地把原于核看成是固定不动的。此外, 又由于电子运动的速度比光速小得多,所以电 磁波对原子的主要作用表现为电磁波的电场E 对原子中电子的作用。
32
色散现象
一. 压电效应 对于不存在对称中心的晶体,加在晶体 上的外力除了使晶体发生形变以外,同时, 还将改变晶体的极化状态,在晶体内部建立 电场,这种由于机械力的作用而使介质发生 极化的现象称为正压电效应。反之,如果把 外电场加在这种晶体上,改变其极化状态, 晶体的形状也将发生变化,这就是逆压电效 应。二者统称为压电效应。
晶体的热释电效应实际上是一种热-电耦合效 应,进一步分析热释电效应可以像压电效应 一样列出晶体的热释电方程:
T Di ij E j pi T
S pi Ei C E T T


p i 为热释电常数
24
热释电效应与弹性边界条件
如果晶体是在机械夹持状态下加热的,即晶体的 体积和外形被强制地保持不变,这时所观察到的 热释电效应为第一类热释电效应 如果晶体在机械自由状态下加热,那么晶体将因 受热膨胀而产生应变,这种应变将通过压电效应 产生电位移而叠加在第一类效应上,这种由于热 膨胀通过压电效应耦合而产生的附加热释电效应 称为第二类热释电效应 自由晶体受热时的热释电效应是第一类效应和第 二类效应之和 25

铁电性(材料物理性能)

铁电性(材料物理性能)

• •

Ti4+
O-
•° • •• • • ° • • •° • • •

7
°



例2:具有极性轴或结构本身具有自发极化的结构 + + + + + 正 电 荷 层 与 负 电 荷 层 交 替 排 列
固 有 偶 极 子
+ +
+
+ -
+
+ -
+
+
纤锌矿(ZnS)结构在(010)上投影
一、铁电体
是一类特殊的电介质材料,在一定温度范围内含有能自发极化,并且 发极化方向可随外电场作可逆转动的晶体。
1、铁电体的特点
1)铁电体是非线性介质 即极化强度和外施电压的关系是非线性的。
P 0 E
备注:线性介质
没有外加电场时,介质的极化强度等于零。 有外电场时,介质的极化强度与宏观电场E 成正比。
1
2)铁电体是极性晶体
即其极化状态并非由外电场所引起,而是由晶体内部结构特点所 引起,晶体中每个晶胞内存在固有电偶极矩。
注意:铁电晶体一定是极性晶体,但并非所有的极性晶体都是铁电体
2
3)铁电体的极化是自发极化
A.按相转变的自发极化机构铁电体分两类 :
第一类是位移型,其自发极化同一类离 子的亚点阵相对于另一类亚点阵的整体 位移相联系。 位移型铁电体的结构大多同钙钛矿结构 及钛铁矿结构紧密相关。钛酸钡是典型 的钙钛矿型的铁电体。 Ba2+ Ti4+ O-
• •




°
°


O-

第六章 铁电物理与性能学

第六章 铁电物理与性能学

铁电相变
位移型相变铁电体

(不涉及化学键的破坏,新相和旧相之间存 在明显的晶体学位相关系)

以BaTiO3为例
钛酸钡不同温度下的晶胞结构变化示意图
位移型相变铁电体
以典型铁电材料——钛酸钡BaTiO3晶体为例,介绍其自发极化的微观模型
BaTiO3晶体从非 铁电性到铁电性的 过渡总是伴随着晶 体立方→四方的改 变,因此提出了一 种离子位移理论, 认为自发极化主要 是晶体中某些离子 偏离了平衡位置, 使得单位晶胞中出 现了电偶极矩造成 的
第六章 铁电物理与性能
Ferroelectrics
基本定义
具有自发极化强度,自发极化强度能 在外加电场下反转 或:具有电滞回线和具有电畴的特 点的材料为铁电体
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗息 盐中发现的,而罗息盐是在1665年被法国药 剂师薛格涅特在罗息这个地方第一次制备出 来。
(3)压电聚合物
聚二氟乙烯(PVF2 )是目前发现的压电效应较强的聚合物 薄膜,这种合成高分子薄膜就其对称性来看,不存在压电效应, 但是它们具有“平面锯齿”结构,存在抵消不了的偶极子。经延 展和拉伸后可以使分子链轴成规则排列,并在与分子轴垂直方向 上产生自发极化偶极子。当在膜厚方向加直流高压电场极化后, 就可以成为具有压电性能的高分子薄膜。这种薄膜有可挠性,并 容易制成大面积压电元件。这种元件耐冲击、不易破碎、稳定性 好、频带宽。为提高其压电性能还可以掺入压电陶瓷粉末,制成 混合复合材料(PVF2—PZT)。

4.4铁电性(材料物理性能)解析

4.4铁电性(材料物理性能)解析
复习:
1、介电击穿的类型
P Pr
2、影响介电击穿的因素
Ps B
C
本节内容:
一、铁电体,铁电体的特点 二、铁电体的居里外斯定律
EC
A
O E
三、铁电性的特点
1
一、铁电体
是一类特殊的电介质材料,在一定温度范围内含有能自发极化,并且 发极化方向可随外电场作可逆转动的晶体。
1、铁电体的特点
1)铁电体是非线性介质 即极化强度和外施电压的关系是非线性的。
表示晶体极性链 的两种方法
-
+ -
+ 9
极 化 轴 C
+ -
+ -
+
+ -
-
+ +
-
+
-
4)铁电体具有铁电性 在一些电介质晶体中,晶胞的结构使正负电荷重心不重 合而出现电偶极矩,产生不等于零的电极化强度,使晶体 具有自发极化。
晶体的这种性质叫铁电性(ferroelectricity)。
与铁磁体的磁滞回线形状类似,所以人们把这类晶体称为 铁电体(其实晶体中并不含有铁) 当铁电体的晶胞自发极化而出现电矩时,相邻晶胞的电矩 可以同向排列形成电畴,并出现铁电性; 相间反向排列而成为反铁电性。
22
3)电滞回线的意义
A.判定铁电体的依据 铁电材料在外加交变电场作用下都能形成电滞回线,不同材料和不同 工艺条件对电滞回线的形状都有很大的影响。 B.由于有剩余极化强度,因而铁电体可用来作信息存储、图象显示。 目前已经研制出一些透明铁电器件,如铁电存储和显示器件、光阀,全 息照相器件等,就是利用外加电场使铁电畴作一定的取向,使透明介质 的光学性质变化。
Pr Ps Pr EC

铁电体应用

铁电体应用

铁电体应用铁电体是一种以具有特定电容性的材料组成的物理构件,它的主要功能是具有在电场中的变形,并产生电磁感应效应,它可以用来存储和转移电能,在很多领域有广泛的应用,从而满足了不同科技领域的需要。

一、电磁兼容能力铁电体具有特殊的电磁兼容能力,它可以防止电路中的高电压以及低电压的冲击,保护完整的电子系统的安全。

此外,它还可以起到反射电磁波的作用,有效抵抗干扰,保证电子系统的正常工作。

二、驱动和控制应用铁电体的电磁特性可以被用来驱动和控制微型电机,比如,它可以用来控制手机振动器,例如手机震动器。

铁电体在电池供电时,可以不断收发电流,实现连续微小电流的控制。

三、隔离应用此外,铁电体也可以用于隔离电路中的高频信号,能够有效抑制辐射,保护上层电路免受损害。

例如,铁电隔离器可以用于发射机的空中数据传输系统,可以有效的进行数据的传输和接收,减少线上电磁干扰以及受到的信号衰减。

四、储能应用铁电体具有良好的电容性能,可以用作电池的储能组件,可以迅速的存储及转移电能,例如,可以用于蓄电池的起动,驱动小型发动机,或者用于汽车电子系统,以期获得高效率的服务。

五、消费电子应用铁电体也可以用于消费电子应用,比如:电视、电脑、汽车、摄影和游戏等电子产品。

它可以帮助保护电子系统的安全,防止静电放电,防止火花等危害,以及提升产品的品质。

六、宽频应用铁电体还可以用于宽频应用,用于高频无线电设备。

它能够帮助增强宽频信号的传播距离及清晰度,并能有效抗干扰,例如:用于广播系统、收音机、电视天线、导航系统等,能够实现有效的信号传输。

铁电体的应用非常广泛,它不仅可以应用于电子、电气和机械领域,而且还可以用于宽频、消费电子和安全防护等领域,能够满足不同客户的需求。

因此,铁电体越来越受到消费者的青睐,它将成为未来电子产品发展的重要的一部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五个研究阶段: 第一阶段(1920—1939年) 两种铁电结构材料,即罗息盐和KH2PO4系列; 第二阶段(1940—1958年) Landau铁电唯象phenomenological理论开始建立 ,并趋于成熟;
第三阶段(1959—70年代) 铁电软模(Soft-Mode)理论出现和基本完善; 第四阶段(80年代至今) 主要研究各种非均匀系统。
2012-9-29
30
极化翻转(新电畴成核,生长)
• 极化开关:极化方向相
反的铁电畴成核、成长、 合并过程 • 新畴首先在铁电/电极界 面成核,再向前生长 (速度103 m/s) t=d/v=106m/103m/s=1 ns 再向側面生长并合并长大 直至全部反转 (t=E-3/2=20ns to 1μ)
2012-9-29 32
5.应力效应(Stress Effect)
• 薄膜的应力是薄膜中重要参数之一,它不
仅影响薄膜的性能,而且影响电子器件的 可靠性。 • 应力可改变影响膜的力学、电学、光学、 相变性质;造成膜开裂和从衬底上撕裂, 甚至传到衬底永久失效;膜应力限制了膜 的厚度。 • 应力也将改变畴结构;居里点和开关性质。
铁电体
电滞现象与电滞回线(以钛酸钡为例)
P
t 120 C
o
P
t 120 C
o
Ps
B
A
Pr
o
E
C
o
Pr
E
D
Ps
温度较高时,电极 化强度与电场强度 成正比。
2012-9-29
温度较低时,电极化强度与 电场强度不成正比,而是滞 后于电场强度的变化,形成 电滞回线。
8
重要特征:铁电体的电滞回线 (hysteresis loop )
• 剩余极化Pr随极化开
22
2012-9-29
23
铁电疲劳的可能起因
• Tagantsev et al J.A.P 90,1387,(2001) • 畴壁钉扎机制 • 反相畴仔晶成核抑制 • 电子空穴从电极注入,产生passive表面层 • 氧空位重新分布,造成电极界面电荷集聚,
显示”local imprint” • 电极面积减少引起可开关极化的减少
18
2012-9-29
2. 研究内容:bulk materials
自发极化是怎样产生的?
thin films
核心问题 自发极化 spontaneous polarization
自发极化与晶体结构和电子结构有什么关系?
在各种外界条件作用下极化状态怎样变化? 特殊的物理性质和应用
2012-9-29 19
2012-9-29
24
在大电压下疲劳的恢复
2012-9-29
25
2.铁电保持(Retention)
• 保持是铁电电容单元保持存储在其中电荷q
(1 或0)的能力. • 在写信息后,极化电荷与时间的关系Pr—t • 通常在105秒后,Pr损失小于5% • 保持损失在第一秒中达15-20%, • 保持性能与外加电场及其频率有关 • 保持与电畴的弱钉扎有关 Appl.Phys.Lett. 73, 3674 (1998)
2012-9-29 33
薄膜中应力的引入

制膜过程温度变化引入的热应力 th=[Ef/(1-f)](f-s)(Td-T) 热膨胀系数,Ef杨氏模量,泊松比,Td沉积温度 • 内应力 当原子排列很紧密(比平衡态时)产生压缩应力 当原子排列较平衡态为松时产生张应力 • 与膜沉积过程有关:与衬底和膜之间不匹配,温度、压 力、浓度、杂质 • 外应力 • 居里点相变过程引入,绝大多数膜密度增加, • e=[Ef/(1-f)] (V/3V) • V/V膜中体积变化 Appl.Phys.Lett.76,3103,(2000); APL 2012-9-29 34 80,2961(2002);
2012-9-29 31
极化开关研究的意义
• 极化反转快慢是由畴
界运动速度(畴界动 性)决定,与材料的 结构、应力、缺陷有 关。 开关研究的意义:1。 研究电畴的成核、成 长、合并及与材料结 构、缺陷有关,开关 动力学。 2.存储器读写速度。


APL 76,369 (2001) APL 80,2961 (2002)
个可能的取向,其取向可以随电场而改变。 • 。有一电滯回线 • 。TC 居里温度 • 。热释电,压电,电光,声光,非线性光 学,铁电,介电性能
2012-9-29
10
铁电体的几个功能效应:
压电效应:在某些晶体的特定方向施加压力, 相应的表面上出现正或负的电荷,而且电荷密 度与压力大小成正比。
热电效应:极化随温度改变的现象
16
2012-9-29
17
铁电存储器 非挥发性铁电随机存储器(NvFeRAM) (Non-volatile Ferroelectric Random Access Memory)
• 即使在电源中断的情况,存储的信息也不会丢失 • 铁电体不仅作为电容而且是存储器的一部分
• • • • •
低电压运作(1.0-5.0V), 低功耗 小尺寸, 仅为EEPROM单元 的20% 抗辐射。(军用,卫星通讯) 高速:200ns 读取时间 易与其它Si器件集成
电常数的界面层,d/=d/I+d/F • 2.晶粒尺寸影响:畴结构的变化(由多畴变为 单畴) • 在大晶粒膜到小晶粒膜时 Phys. Rev. B 54, R14337,( 1996); Phys. Rev. B 55, 3485, (1997) • 3.界面层应力:外延生长薄膜有1000MP的应 力存在 • J. A. P. 81, 1392, (1997); J. A. P. 83, 1610( 1998) 2012-9-29 36
2012-9-29 21
1. 铁电疲劳(Fatigue)
关循环数N而逐渐减 少为疲劳 Pr--N • 铁电疲劳与存储器 使用寿命直接有关, 一般存储器要求 在 109—1012次开关后, Pr下降 < 10% • 产生极化疲劳的原 因 • Appl.Phys.Lett.73 ,788(1998);J.App 2012-9-29
2012-9-29
5
Born in Warsaw on November 7, 1867
Marie died of leukaemia in July, 1934
A Nobel Prize Pioneer at the Panthéon
The ashes of Marie Curie and her husband Pierre have now been laid to rest under the famous dome of the Panthéon, in Paris, alongside the author Victor Hugo, the politician Jean Jaurès and the Resistance fighter Jean Moulin. Through her discovery of radium, Marie Curie paved the way for nuclear physics and cancer therapy. Born of Polish parents, she was a woman of science and courage, compassionate yet stubbornly determined. Her research work was to cost her her life.
6.尺寸效应(Size Effect)
• 薄膜厚度,晶粒大小对薄膜性能的影响 • 意义:提高存储密度,减少电容的尺寸,
降低使用电压,需用减少薄膜厚度。 • 厚度减小:薄膜Pr减小,Ec增加 • 晶粒减小:能隙增大,光学性能变化
2012-9-29
35
尺寸效应的机制
• 1.界面层效应:铁电薄膜与电极之间有一层低介
压电现象和电致伸缩的应用: 压电现象可用来变机械振动为电振荡,电致 伸缩可变电振荡为机械振动。
2012-9-29 13
二、铁电探测器
1、铁电热电探测器 A、原理 优点: 响应 速度快、 可在室温下 工作。
2012-9-29
14
B、器件设计
2012-9-29
15
C、探测器效果图
2012-9-29
2012-9-29 26
SrBi2Ta2O9中的保持(Pr—t)
2012-9-29
27
3.印记(Imprint)
• 电滞回线的对称
性改变,某一极 化状态剩余极化 增加而在另一状 态减少,产生印 记。
2012-9-29
28
产生印记的原因
• 顶电极、底电极材料不同。 • 顶电极和底电极不同热处理经历使上下两薄膜电 • •
Sodium Potassium Tartrate Tetrahydrate
1920年 法国人Valasek发现罗息盐的 特异的 非线性介电性能,导致了“铁电性”概念的出现. 1920年成为铁电物理学研究开始的象征?
2012-9-29
目前,世界上存在200多种铁电体
2
铁电体的晶体结构:ABO3 (ABF3) perovskite structure octahedra with A2+B4+ or A1+B5+
非线性光学效应、电光效应、光折变效应等
2012-9-29
11
2012-9-29
12
压电体
一、压电体
压电现象: 某些离子型晶体的电介质,由于结晶点 阵的有规则分布,当发生机械变形时, 能产生电极化现象,称为压电现象。
电致伸缩: 晶体在带电或处于电场中时,其大小发 生变化,即伸长或缩短,是压电现象的 逆现象。
相关文档
最新文档