初中九年级上册数学 《图形的旋转》旋转PPT(第2课时)优质课件PPT
合集下载
九年级上册23.1图形的旋转(共19张PPT)
![九年级上册23.1图形的旋转(共19张PPT)](https://img.taocdn.com/s3/m/04bac39b4128915f804d2b160b4e767f5acf808b.png)
知识要点
AAA
EEE
FF BB
D
OOO
CCC
旋转的性质
1、对应点到旋转中心的距离相等.
2、对应点与旋转中心所连线段的夹角等于旋转角.
3、旋转前、后的图形全等.
例题讲解
△A′OB′是△AOB绕点O按逆时针方向旋转得
到的.已知∠AOB=20°, ∠ A′OB =24°,
AB=3,OA=5,则A′B′ =
一个具有这种关系的角。相等
由例1归纳:旋转不改变图形的形状 和大小 ,
但图形上的每个点同时都按相同的方式转动相 同的角度。旋转前后两个图形对应点到旋转中 心的距离 相等 ;对应点与旋转中心的连线所 成的角都等于旋转角;对应线段__相__等____, 对应角___相_等_______.
检测反馈
1、判断
A1
线 对应线段之间
C
B
两条对应线段的夹角都是旋转角
图中对应的线段:
___A_C_和__A_1_C_、__B__C_和__B_1_C_、__A__B_和__A_1.B1
面 旋转前后的 到什么结论?
A'
A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线: AO=A'O ,BO=B'O ,CO=C'O
一个图形经过旋转
①图形上的每一个点到旋转中心的距离相等. ( × )
②图形上可能存在不动点.
(√ )
③图形上任意两点的连线与其对应点的连线相等.
( √)
检测反馈
2、如图是正六边形,这个图案可以看做是由
__△_A__O__B_____“基本图案”通过旋转得到的.
人教版数学九年级上册 23.1图形的旋转(课件19张PPT)
![人教版数学九年级上册 23.1图形的旋转(课件19张PPT)](https://img.taocdn.com/s3/m/29cd4fff7fd5360cba1adbfe.png)
解:(1)旋转中心是A;
M. E
(2)旋转了60度;
BD
C
(3)点M转到了AC的中点位置上.
思考:图形的旋转是由什么 决定的 ?
由旋转中心、角度 和方向决定.
课堂回顾:这节课,主要学习了什么?
旋转的概念:
在平面内,将一个图形绕着一个定点沿某个方 向转动一个角度,这样的图形运动称为旋转
旋转的性质:
2次 1200 , 2400
还可以看做是几个菱形通 过几次旋转得到的?每次 旋转了多少度?
33个个 11次次 1680000
例2 :如图,ABC是等边三角形,D是BC上一点,
ABD经过 旋转后到达ACE的位置。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)如果M是AB的中点,那么经过上述旋
A
转后,点M转到了什么位置?
下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移
动;③方向盘的转动;④水龙头开关
的转动;⑤钟摆的运动;⑥荡秋千运
动.
A.2
B.3Biblioteka C.4 D.5平移和旋转的异同: 1、相同:都是一种运动;运动前后 不改变图形的形状和大小
2、不同
运动方向
平移
直线
运动量 的衡量 移动一定距离
旋转
顺时针或 逆时针
可以看作是一个花瓣连续4次旋转 所形成的,每次旋转分别等于720 , 1440 , 2160 , 2880
练习2:本图案可以看做是一个菱形通过几次
旋转得到的?每次旋转了多少度?
5次
600, 1200, 1800, 2400, 3000
也可以看做是二个相邻菱 形通过几次旋转得到的? 每次旋转了多少度?
人教版九年级数学上册《图形的旋转》旋转PPT精品课件
![人教版九年级数学上册《图形的旋转》旋转PPT精品课件](https://img.taocdn.com/s3/m/f901c3f62dc58bd63186bceb19e8b8f67c1cefcd.png)
巩固练习
解: (1)如图所示,A1B1C1所求作三角形。 (2)如图所示,△A2B2C2所求作三角形。
课堂小结
旋转作图的步骤: (1)明确旋转的三个要素:旋转中心、旋转方向、旋转角度; (2)确定关键点,并且找出旋转后的对应点; (3)顺次连接对应点。
人教版九年级数学上册
谢谢
因此在CB的延长线上取点F,使BF=DE,
则△ABF为旋转后的图形。
课堂检测
如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达 △ACE的位置。
① 试说出旋转中心、旋转方向及旋转角度? 点A、逆时针、60°
② ∠DAE等于多少度? 60°
A
③ △DAE是什么三角形? 等边三角形
M
旋转中心相同,旋转角度不同 所得图形位置不同
A2
C1
0
A1
B1
A
B
C
假设网格内的方格是正方形
探索新知
选择不同的旋转中心, 不同的旋转角 旋转同一图案 会出现不同的效果。
C1
A2
0
A1
B1
A
B
C
假设网格内的方格是正方形
探索新知
示例一
探索新知
示例二
巩固练习
1.下列图形中,绕某个点旋转180°后能与自身重合的有( A )
E
(4)∠B的对应角是____∠__A_C_E_; (5)旋转角度为____6_0_°___;
B
D
C
(6)△ACE的形状为__直__角__三__角__形___;
课堂检测
如图,D是等边△ABC内一点,将△ADC绕C点逆时针旋转,使得A、D两点
的对应点分别为B、E,则旋转角为多少度?图中除△ABC外,还有别的等边
人教版九年级上册数学课件图形的旋转优秀ppt课件
![人教版九年级上册数学课件图形的旋转优秀ppt课件](https://img.taocdn.com/s3/m/7f636aebaf45b307e87197d0.png)
/
A A´
这个定B 点称为旋转中心,
所转动的角称B为O旋转角O. A C´
旋转的三要素:
旋转中心, 旋转方向,
旋B转/ 角度.
人教版九年级上册数数学学课件课图件形2的3.旋1图转形优的秀旋p p转t课(共件41张PPT)
人教版九年级上册数数学学课件课图件形2的3.旋1图转形优的秀旋p p转t课(共件41张PPT)
C
A
O
D
B
则线段CD即为所求作.
简单的旋转作图
图形的旋转作法
例3 如图,△ABC绕C点旋转后,顶 点A得对应点为点D. 试确定顶点B对 应点的位置以及旋转后的三角形.
E
A
D 则△DEC即为所求作.
B
C
3、如图,ΔDEF是由△ABC绕某一中心旋转一定 的角度得到,请你找出这旋转中心.
C
A
D
B
E
.O
人教版九年级上册数数学学课件课图件形2的3.旋1图转形优的秀旋p p转t课(共件41张PPT)
认识旋转
B/
A
0
/
A
0 60
35
O
人教版九年级上册数数学学课件课图件形2的3.旋1图转形优的秀旋p p转t课(共件41张PPT)
B
人教版九年级上册 数学 课件 23.1图形的旋转(共41张PPT)
认识旋转
A
B
B´
C0
100
A´
O
C´
人教版九年级上册 数学 课件 23.1图形的旋转(共41张PPT)
人教版九年级上册数数学学课件课图件形2的3.旋1图转形优的秀旋p p转t课(共件41张PPT)
认旋识转旋的转概念
23.1 图形的旋转(共19张PPT)人教版初中数学九年级上册
![23.1 图形的旋转(共19张PPT)人教版初中数学九年级上册](https://img.taocdn.com/s3/m/0e10504e53d380eb6294dd88d0d233d4b14e3f87.png)
A.30° B.45° C.90° D.135°
解析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知, OB、OD是对应边,∠BOD是旋转角,所以,旋转角为90°.故选C.
合作探究
A
. A′
△ABC是如何运动 到△A′B′C的位置?
.
绕点C逆时针旋转45°.
B′
... ห้องสมุดไป่ตู้5°
CM
B
根据上图填空.
第二十三章 旋 转
23.1 图形的旋转
情境引入
这些运动有什么共同的特点?
观察与思考
问题 观察下列图形的运动,它有什么特点?
O
0
45
B
A
思考:怎样来定
义这种图形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到6时,时 针转动了__1_8_0__度.
证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
由旋转的性质,可得
A1B=AB=BC,∠A=∠A1=∠C,∠A1BD= ∠CBC1, 在△BCF与△BA1D中,
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
例4 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将 △ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2, CE=3则∠BE′C=___1_3_5___度.
怎样来定义 这种图形变换?
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
知识要点
旋转的定义
在平面内,将一个图形绕一 个定点按某个方向转动一个角 度,这样的图形运动称为旋转.
解析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知, OB、OD是对应边,∠BOD是旋转角,所以,旋转角为90°.故选C.
合作探究
A
. A′
△ABC是如何运动 到△A′B′C的位置?
.
绕点C逆时针旋转45°.
B′
... ห้องสมุดไป่ตู้5°
CM
B
根据上图填空.
第二十三章 旋 转
23.1 图形的旋转
情境引入
这些运动有什么共同的特点?
观察与思考
问题 观察下列图形的运动,它有什么特点?
O
0
45
B
A
思考:怎样来定
义这种图形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到6时,时 针转动了__1_8_0__度.
证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
由旋转的性质,可得
A1B=AB=BC,∠A=∠A1=∠C,∠A1BD= ∠CBC1, 在△BCF与△BA1D中,
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
例4 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将 △ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2, CE=3则∠BE′C=___1_3_5___度.
怎样来定义 这种图形变换?
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
知识要点
旋转的定义
在平面内,将一个图形绕一 个定点按某个方向转动一个角 度,这样的图形运动称为旋转.
九年级上23.1图形的旋转课件(共12张PPT)
![九年级上23.1图形的旋转课件(共12张PPT)](https://img.taocdn.com/s3/m/f503382c6c85ec3a87c2c551.png)
议一议:
如图所示,如果把钟表的指针看作四边形 AOBC,它绕O点按顺时针方向旋转得到四边 形DOEF.在这个旋转过程中:
1.旋转中心是什 么?旋转角是什么? 2.经过旋转,点A,B 分别移动到什么位置? 3.AO与DO的长有什么关 系?BO与EO呢? 4.角AOD与角BOE有什 么大小关系?
旋转的基本性质
(1)旋转不改变图形的大小和形状. (2)图形上的每一点都绕旋转中心沿 相同方向转动了相同的角度. (3)两组对应点分别与旋转中心的连 线所成的角相等,且等于旋转 角. (4)对应点到旋转中心的距离相等.
例1:钟表的分针匀速旋
转一周需要60分. (1)指出它的旋转中心; (2)经过20分,分针旋转 了多少度?
120
解:
(1)它的旋转中心是钟表 的轴心; (2)分针匀速旋转一周需要60 分,因此旋转20分,分针 360 旋转的角度为 20 120
60
做一做: 在图中,正方形ABCD与正方形 EFGH边长相等,这个图案可以看作 是哪个“基本图案”通过旋转得到 的
.
随堂练习:
本图案可以看做是一个菱形通过几次 旋转得到的?每次旋转了多少度?
(1)上面情景中的转动现 象,有什么共同ห้องสมุดไป่ตู้特征?
(2)钟表的指针、秋千在 转动过程中,其形状、大小、 位置是否发生变化呢?
将一个平面图形F上的每一个点, 绕这个平面内一定点O旋转同一 个角α(即把图形F上的每一个 点与定点的连线绕定点O旋转角 α),图形的这种变换叫做旋 转(cricumrotate),这个定点 O叫旋转中心,角α叫做旋转角。 原位置的图形F叫做原像,新位
数学人教版九年级上册23.1《图形的旋转》课件 (共13张PPT)
![数学人教版九年级上册23.1《图形的旋转》课件 (共13张PPT)](https://img.taocdn.com/s3/m/5078afa9dd88d0d233d46ad4.png)
点,即它们旋转后的位置.
A
D
E
还有别的办
法吗?
E′ B
C
△ABE′为旋转后的图形.
7/2/2019
课堂小结
1. 旋转的定义:在平面内,把一个图形绕某一个定点 转动一个角度的图形变换称为旋转. 这个定点称为
这旋转节中课心你,学转动到的了角什称为么旋知转识角?.
2. 旋转的性质: ① 旋转前、后的图形全等. ② 对应点到旋转中心的距离相等. ③ 对应点与旋转中心所连线段的夹角等于旋转角.
④ 3.旋转应用(如作图)
7/2/2019
作业:P62-63第3,5,9
7/2/2019
祝老师们工作胜 利、身体健康!
祝同学们学习进 步,中考胜利!
7/2/2019
旋转角是_∠_A__O_D__,___∠_B__O_E_,__ ∠COF ;
7/2/2019
探究活动
A
B'
C'
B
A'
探旋究转的问性题质:
O
C
1.在图形的旋转过程中,哪些发生了改变?哪些没有发
生改变旋? 转前、后的图形全等;
2.分别连结对应点A、A'与旋转中心O,量一量线段OA与
线段对OA应',它点们到有旋什转么中关心系?的任距意离找一相对等对; 应点,量一下
南康六中 黄过房
探索新知
钟表的指针在不停地转动,如图,从3时到5时,时针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
如图,风车风轮的每个叶片在风的吹动下转动到新的位置,以上这 些现象有什么共同特点呢?
7/2/2019
指针、叶片等看作图形.
人教版九年级数学上册课件:23.1图形的旋转_(共29张PPT)
![人教版九年级数学上册课件:23.1图形的旋转_(共29张PPT)](https://img.taocdn.com/s3/m/250d0216a98271fe910ef983.png)
在平面内,将一个图形绕着一个定点沿 某个方向转动一个角度,这样的图形运 动称为旋转。
这个定点称为旋转中心,转动的角称
为旋转角。
A
B
旋转角
o
旋转中心
如果一个图形沿着一条直线对折,两侧的 图形能够完全重合,这个图形就是轴对称图形。
钟表的指针在不停地转动,如图,从3时到5时,时 针转动了多少度?
12 11 10
9
8 76
1 2 3
4 5
时针转了60°
物体绕定点 转动
风车风轮的每个叶片在风的吹动下转动到新的位置。 以上这些现象有什么共同的特点?
归纳定义
把一个图形绕着某一定点O转动一个角度 的图形变换叫做旋转.这个定点O叫旋转中心, 转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这 两个点P和P′叫做这个旋转的对应点.
复习:
平移的定义:在平面内,将一个图形沿某个方向移动一
定的距离,这样的图形运动称为平移. 平移不改变图形的形状和大小, 平移由移 动的方向和距离决定.
平移的性质:经过平移,对应点所连的线段平行且相
等;对应线段平行且相等,对应角相等.
在平面内,将一个图形整体沿某个方向 移动一定的距离,这样的图形运动叫做平 移。
9
8 76
1 2 3
4 5
旋转角度是90°
12 11 10
9
8 76
1 2 3
4 5
旋转角度是30°
3.如图,杠杆绕支点转动撬起重物,杠杆 的旋转中心在哪里?旋转角是哪个角?
A
B/ O
B
A/
旋转中心在支点O 旋转角为∠AOA/
实践探究
A 在硬纸板上,挖一个三角形洞,再挖一个小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源自课堂小结旋转的作图
作旋转图形 确定旋转中心
作图基本步骤五步
找两条对应点所连线段的 垂直平分线的交点
•如图,在平面直角坐标系xOy中,△AOB可以看作△OCD经过若干次图形的变 化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程.
本题源于《教材帮》
在如图所示的平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3), B(1,1),C(5,1). (1) 把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;
新知探究
例 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中心,把 △ADE顺时针旋转90°,画出旋转后的图形.
图(1)
旋转作图的基本步骤
(1)确定旋转中心、旋转方向和旋转角. (2)找出图形的关键点,一般是图形中的转折点,例如,多边形的关键点
是它的顶点. (3)作旋转后的对应点,方法如下:
图形的旋转
第2课时
知识回顾
1.旋转的三要素: 旋转中心,旋转方向和旋转角度.
2.旋转的性质: ① 旋转前后的图形全等; ② 对应点到旋转中心的距离相等; ③ 对应点与旋转中心所连线段的夹角等于旋转角.
学习目标 1.复习旋转及旋转图形的概念及性质; 2.能够根据旋转的基本性质解决实际问题和进行简单作图.
(1)旋转中心不变,改变旋转角(如图).
β α
O
O
两个旋转中,旋转中心不变, ________改变了,产生了_______的旋转效果.
(2)旋转角不变,改变旋转中心.
O1
α
α O2
两个旋转中,旋转角不变,__________改变了,产生了_______的旋转效果.
我们可以利用旋转中心不变,改变旋转角;旋转角不变,改变旋转中心设 计许多美丽的图案.
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2 ,请画出△A2B2C2;
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (3)判断以O,A1,B为顶点的三角形的形状. (无须说明理由)
如图,画出△ABC绕点O顺时针旋转120°后得到的△A'B'C'.
A
O
B
C
如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B,C,D 的对应点的位置,作出旋转后的四边形.
B
C
A
D
O
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (1)将△ABC向下平移5个单位长度后得到△A1B1C1 ,请画出△A1B1C1;
①连:连接图形的每个关键点与旋转中心; ②转:把连线绕旋转中心按旋转方向旋转相同的角度(作旋转角); ③截:在作得的角的另一边截取与关键点到旋转中心的距离相等的线
段,得到各个关键点的对应点; (4)按原图形的顺序连接这些对应点,所得到的图形就是旋转后的图形. (5)写出结论,说明作出的图形即为所求的图形.
作旋转图形 确定旋转中心
作图基本步骤五步
找两条对应点所连线段的 垂直平分线的交点
•如图,在平面直角坐标系xOy中,△AOB可以看作△OCD经过若干次图形的变 化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程.
本题源于《教材帮》
在如图所示的平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3), B(1,1),C(5,1). (1) 把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;
新知探究
例 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中心,把 △ADE顺时针旋转90°,画出旋转后的图形.
图(1)
旋转作图的基本步骤
(1)确定旋转中心、旋转方向和旋转角. (2)找出图形的关键点,一般是图形中的转折点,例如,多边形的关键点
是它的顶点. (3)作旋转后的对应点,方法如下:
图形的旋转
第2课时
知识回顾
1.旋转的三要素: 旋转中心,旋转方向和旋转角度.
2.旋转的性质: ① 旋转前后的图形全等; ② 对应点到旋转中心的距离相等; ③ 对应点与旋转中心所连线段的夹角等于旋转角.
学习目标 1.复习旋转及旋转图形的概念及性质; 2.能够根据旋转的基本性质解决实际问题和进行简单作图.
(1)旋转中心不变,改变旋转角(如图).
β α
O
O
两个旋转中,旋转中心不变, ________改变了,产生了_______的旋转效果.
(2)旋转角不变,改变旋转中心.
O1
α
α O2
两个旋转中,旋转角不变,__________改变了,产生了_______的旋转效果.
我们可以利用旋转中心不变,改变旋转角;旋转角不变,改变旋转中心设 计许多美丽的图案.
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2 ,请画出△A2B2C2;
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (3)判断以O,A1,B为顶点的三角形的形状. (无须说明理由)
如图,画出△ABC绕点O顺时针旋转120°后得到的△A'B'C'.
A
O
B
C
如图,四边形ABCD绕点O旋转后,顶点A的对应点为E,试确定B,C,D 的对应点的位置,作出旋转后的四边形.
B
C
A
D
O
如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4, 1),C(3,3). (1)将△ABC向下平移5个单位长度后得到△A1B1C1 ,请画出△A1B1C1;
①连:连接图形的每个关键点与旋转中心; ②转:把连线绕旋转中心按旋转方向旋转相同的角度(作旋转角); ③截:在作得的角的另一边截取与关键点到旋转中心的距离相等的线
段,得到各个关键点的对应点; (4)按原图形的顺序连接这些对应点,所得到的图形就是旋转后的图形. (5)写出结论,说明作出的图形即为所求的图形.