化工原理天大版传热
化工原理修订版天津大学上下册课后答案
化工原理-修订版-天津大学-上下册课后答案上册第一章 流体流动习题解答1. 某设备上真空表的读数为13.3×103 Pa ,试计算设备内的绝对压强与表压强。
已知该地区大气压强为98.7×103 Pa 。
解:真空度=大气压-绝压3(98.713.3)10atm p p p Pa =-=-⨯绝压真空度表压=-真空度=-13.3310Pa ⨯2. 在本题附图所示的贮油罐中盛有密度为960 kg/m 3的油品,油面高于罐底9.6 m ,油面上方为常压。
在罐侧壁的下部有一直径为760 mm 的圆孔,其中心距罐底800 mm ,孔盖用14 mm 的钢制螺钉紧固。
若螺钉材料的工作应力取为32.23×106 Pa ,问至少需要几个螺钉?解:设通过圆孔中心的水平液面生的静压强为p ,则p 罐内液体作用于孔盖上的平均压强9609.81(9.60.8)82874p g z Pa ρ=∆=⨯⨯-=(表压)作用在孔盖外侧的是大气压a p ,故孔盖内外所受的压强差为82874p Pa ∆=作用在孔盖上的净压力为2282575(0.76) 3.7644p p d N ππ=∆=⨯⨯=⨯410 每个螺钉能承受的最大力为:p62332.23100.014 4.96104F N π=⨯⨯⨯=⨯钉螺钉的个数为433.7610/4.96107.58⨯⨯=个所需的螺钉数量最少为8个3. 某流化床反应器上装有两个U 管压差计,如本题附图所示。
测得R 1=400 mm ,R 2=50 mm ,指示液为水银。
为防止水银蒸气向空间扩散,于右侧的U 管与大气连通的玻璃管内灌入一段水,其高度R 3=50mm 。
试求A 、B 两处的表压强。
解:U 管压差计连接管中是气体。
若以2,,g H O Hg ρρρ分别表示气体、水与水银的密度,因为g Hg ρρ,故由气柱高度所产生的压强差可以忽略。
由此可以认为A C p p ≈,B D p p ≈。
化工原理_上下册_修订版_(夏清__陈常贵_着)_天津大学出版社 第四章 传热(新)
一、对流传热速率方程和对流传热系数
(一)对流传热速率方程 若以流体和壁面间的对流传热为例,对流传热速率方程可以 表示为
式中
dQ:局部对流传热速率,W; dS: 微分传热面积,m2; T: 换热器的任一截面上热流体的平均温度,℃; Tw:换热器的任一截面上与热流体相接触一侧的壁面温度,℃; α : 比例系数,又称局部对流传热系数,W/(m2· ℃)。
第四章 传
热
1
4.1 概述
传热:由温差引起的能量传递。 自发过程:热量从高温传递到低温。
一、化工生产的传热问题
化工生产需要大规模地改变物质的化学性质和物理性质,而 这些性质的变化都涉及热能的传递。 化学反应:向反应器提供热量或从反应器移走热量; 蒸发、蒸馏、干燥:按一定的速率向这些设备输入热量;
高温或低温设备:隔热保温,减少热损失;
空气自然 气体强制 对流 对流 5~25 20~100 水自然 对流 20~ 1000 水强制 对流 1000~ 15000 水蒸汽 冷凝 5000~ 15000 有机蒸 汽冷凝 500~ 2000 水沸腾 2500~ 25000
34
§4-3-3 保温层的临界厚度
t1 t f 总推动力 Q ln r0 r1 1 总热阻 2L 2Lr0
7
三、间壁式换热和间壁式换热器
冷、热流体被固体壁面所隔开,分别在固体壁面两侧 流动。冷、热 流体通过间壁进行热量交换。 1、套管式换热器
8
2、列管式换热器
9
单程列管式换热器
1— 外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
双程列管式换热器
1—壳体 2—管束 3—挡板 4—隔板
10
牛顿冷却定律。
化工原理天大版第四章-传热2..
图4-1 混合式冷凝器 (a)并流低位冷凝器 (b)干式逆流高位冷凝器
1一外壳 2一淋水板 3、8一气压管 4一蒸汽进口
5一进水口6-不凝气出口 7一分离罐
蓄热式换热是在 蓄热器中实现热交换 的一种换热方式。蓄 热器内装有固体填充 物(如耐火砖等),热 、冷流体交替地流过 蓄热器,利用固体填 充物来积蓄和释放热 量而达到换热的目的 。通常在生产中采用 二个并联的蓄热器交 替地使用,如图所示 。
氨蒸气
烟道气
~1000
适用温度,℃
0~80
>30
0~—15
<—15~—30
谢谢!
化工原理天大版第四章-传热2..
重点: ①单层、多层平壁,圆筒壁热传导速率方程 及应用; ②换热器能量衡算,总传热速率方程和总传 热系数的计算; ③对流传热系数的影响因素; 难点:
1. 对流传热机理;
2. 圆筒壁换热器的传热;
4.1 概 述
4.1.1 传热基本方式 4.1.2 冷热流体热交换的方式 4.1.3 典型的间壁式换热器 4.1.4 传热速率和热通量 4.1.5 稳态传热和非稳态传热
①热流体将热量传到壁面一侧②热量通过固体壁面的
热传导③壁面另一侧将热量传给冷流体
热对流---热传导---热对流
①结构简单,传热面积增减自如。因为它由标准构件组合而成, 安装时无需另外加工。
②传热效能高。它是一种纯逆流型换热器,同时还可以选取合 适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此 它的传热效果好。液-液换热时,传热系数为 870~1750W/(m 2·℃)。这一点特别适合于高压、小流量、低传热系数流体的换热。 套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约 为 管壳式换热器 的5倍;管接头多,易泄漏;流阻大。
天津大学《化工原理》课程设计报告
《化工原理》课程设计报告真空蒸发制盐系统卤水分效预热器设计学院天津大学化工学院专业化学工程与工艺班级2014学号3014207018姓名孙国铭指导教师马红钦化工流体传热课程设计任务书专业化学工程与工艺班级化工1班姓名孙国铭学号(编号)3014207018(一)设计题目:真空蒸发制盐系统卤水分效预热器设计(二)设计任务及条件1、蒸发系统流程及有关条件见附图。
2、系统生产能力:60 万吨/年。
3、有效生产时间:300天/年。
4、设计内容:Ⅱ效预热器(组)第12345678 台预热器的设计。
5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。
6、卤水为易结垢工质,卤水流速不得低于0.5m/s。
7、换热管直径选为Φ38×3mm。
(三)设计项目1、由物料衡算确定卤水流量。
2、假设K计算传热面积。
3、确定预热器的台数及工艺结构尺寸。
4、核算总传热系数。
5、核算压降。
6、确定预热器附件。
7、设计评述。
(四)设计要求1、根据设计任务要求编制详细设计说明书。
2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。
设计说明书的编制按下列条目编制并装订:(统一采用A4纸,左装订)(1)标题页,参阅文献1附录一。
(2)设计任务书。
(3)目录。
(4)说明书正文设计简介:设计背景,目的,意义。
由物料衡算确定卤水流量。
假设K计算传热面积。
确定预热器的台数及工艺结构尺寸。
核算总传热系数。
核算压降。
确定预热器附件。
设计结果概要或设计一览表。
设计评述。
(5)主要符号说明。
(6)参考文献。
(7)预热器设计条件图。
主要参考文献1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 20022. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 20073. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 20014. 机械制图自学内容:参考文献1,第一章、第三章及附录一、三;参考文献2,第五~七章;参考文献3,第1、3、4、5、11部分。
天津大学《化工流体流动与传热》、《化工传质与分离过程》、《化工原理(上、下册)》课程设计教学大纲
《化工流体流动与传热》《化工传质与分离过程》《化工原理(上、下册)》课程设计教学大纲天津大学化工学院化工系2003年9月《化工流体流动与传热》/《化工传质与分离过程》/《化工原理(上、下册)》课程设计教学大纲一、课程性质、目的和任务《化工流体流动与传热》、《化工传质与分离过程》、《化工原理(上、下册)》课程设计(以下统称化工原理课程设计)是化工类及其相近专业的综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初步尝试。
通过化工原理课程设计,要求学生能综合运用《化工流体流动与传热》、《化工传质与分离过程》、《化工原理(上、下册)》课程和有关先修课程所学知识,进行融会贯通的独立思考,在规定的时间内完成指定的化工设计任务,从而得到化工工程设计的初步训练。
通过化工原理课程设计,使得学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。
此外,通过化工原理课程设计,还可以使学生树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风。
二、教学基本要求化工原理课程设计不同于平时作业,在设计中需要学生自己作出决策,即自己确定方案、选择流程、查取资料、进行过程和设备计算,并要对自己的选择作出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。
化工原理课程设计强调工程观点、定量运算和设计能力的训练、强调理论与实际相结合,提高分析问题、解决问题的能力。
化工原理课程设计的基本要求如下:(1)熟悉查阅文献资料、搜集有关数据、正确选用计算公式。
(2)在兼顾技术上先进可行、经济上合理的前提下,综合分析设计任务要求,确定工艺流程,进行设备选型,并提出保证过程正常、安全运行所需要的检测和计量参数。
(3)准确迅速地进行工艺过程计算和主要设备的工艺尺寸计算。
(4)用精练的语言、简洁的文字、清晰的图表来表达设计思想和计算结果。
三、教学内容《化工流体流动与传热》或《化工原理(上册)》课程设计内容包括:(1)换热器的设计;(2)搅拌器的设计;(3)蒸发器的设计。
天大化工传递过程课件-第六章 传热概论与能量方程
化学工业出版社
一、热传导
(1)气体的热导率
气体
~ k
p 无关(极高、极低压力除外)
T ~k
组分i的
摩尔分
n
常压气体混合物
ki
yi
M
1/ i
3
km
i 1 n
数
yi
M
1/ i
3
组分i的
i 1
摩尔质
化学量工业出版社
一、热传导
(2)液体的热导率
k
液体
T
~p ~k
无关 除水和甘油外
金属液体的热导率比一般的液体要高。 纯液体的热导率比其溶液的要大。
0 oC 时的 导热系数
k k0 1 t
大多数金属材料, < 0
温度系数
注意
大多数非金属材料, >0
k f (温度场的位置) k 一般为平均导热系数。
若沿各方向的导热系数相等 —多维导热同性。
化学工业出版社
二、对流传热
对流传热是由流体内部各部分质点发生宏观运动 和混合而引起的热量传递过程,因而对流传热只能 发生在流体内部。
t
u
r sin
t
*[
1 r2
(r2 r
t ) r
1
r 2 sin
(sin
t
)
1
r 2 sin 2
2t
2
]
q
c p
化学工业出版社
]dxdydz
(导入-导出)z
q z [( A)z ]dxdydz
总的导热速率差
天津大学化工原理答案(第二版)完整
绪 论1. 从基本单位换算入手,将下列物理量的单位换算为SI 单位。
(1)水的黏度μ=0.00856 g/(cm·s) (2)密度ρ=138.6 kgf ·s 2/m 4(3)某物质的比热容C P =0.24 BTU/(lb·℉) (4)传质系数K G =34.2 kmol/(m 2·h ·atm) (5)表面张力σ=74 dyn/cm(6)导热系数λ=1 kcal/(m ·h ·℃)解:本题为物理量的单位换算。
(1)水的黏度 基本物理量的换算关系为1 kg=1000 g ,1 m=100 cm则 )s Pa 1056.8s m kg 1056.81m 100cm 1000g 1kg s cm g 00856.044⋅⨯=⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=--μ(2)密度 基本物理量的换算关系为1 kgf=9.81 N ,1 N=1 kg ·m/s 2则 3242m kg 13501N s m 1kg 1kgf N 81.9m s kgf 6.138=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅=ρ(3)从附录二查出有关基本物理量的换算关系为1 BTU=1.055 kJ ,l b=0.4536 kg o o 51F C 9=则()C kg kJ 005.1C 95F 10.4536kg 1lb 1BTU kJ 055.1F lb BTU 24.0︒⋅=⎥⎦⎤⎢⎣⎡︒︒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡︒=p c (4)传质系数 基本物理量的换算关系为 1 h=3600 s ,1 atm=101.33 kPa则()kPa s m kmol 10378.9101.33kPa 1atm 3600s h 1atm h m kmol 2.34252G ⋅⋅⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅⋅=-K(5)表面张力 基本物理量的换算关系为1 dyn=1×10–5 N 1 m=100 cm则m N 104.71m 100cm 1dyn N 101cm dyn 7425--⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡=σ (6)导热系数 基本物理量的换算关系为 1 kcal=4.1868×103 J ,1 h=3600 s 则()()C m W 163.1C s m J 163.13600s 1h 1kcal J 104.1868C h m kcall 132︒⋅=︒⋅⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⨯⎥⎦⎤⎢⎣⎡︒⋅⋅=λ 2. 乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即()()()LL10CB4E 3048.001.121078.29.3ραμZ D G A H -⨯=式中 H E —等板高度,ft ;G —气相质量速度,lb/(ft 2·h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25 mm 的拉西环,其数值分别为0.57、-0.1及1.24。
天津大学《化工流体流动与传热》教学大纲
★面向21世纪课程教材★化工流体流动与传热教学大纲天津大学化工学院化工系2003年4月《化工流体流动与传热》课程教学大纲64 学时4 学分一、课程性质、目的和任务本课程及其后续课程《化工传质与分离过程》,是为培养面向21世纪高等化工创新人才的需要而建立的新课程体系中的主干课程。
本课程将传统的《化工原理》与《化工传递过程基础》有机地融为一体,依据传递过程的理论体系和单元操作的共性组合而成。
本课程属于化工类及其相近专业的一门主干课,为学生在具备了必要的高等数学、物理、物理化学、计算技术等基础知识之后必修的技术基础课。
本课程担负着由理论到工程、由基础到专业的桥梁作用,是化工类及其相近专业许多专业课程的重要基础课程,本课程教学水平的高低,对化工类及相近专业学生的业务素质和工程能力的培养起着至关重要的作用。
本课程属工科科学,用自然科学的原理(主要为动量、热量传递理论)考察、解释和处理化学工程中的实际问题,研究方法主要是理论解析和在理论指导下的实验研究。
本课程强调工程观点、定量运算和设计能力的训练;强调理论与实际相结合;强调提高分析问题、解决问题的能力和综合能力。
学生通过本课程学习,应能够运用动量和热量传递的基本理论,解决流体流动、流体输送、沉降分离、过滤分离、液体搅拌、过程传热、蒸发等单元操作过程的计算及设备选择等问题,并为后续专业课程的学习奠定基础。
二、教学基本要求本课程在第五学期(四年制)开设。
教材内容分为课堂讲授、学生自学和学生选读三部分,其中课堂讲授部分由教师在教学计划学时内进行课堂教学,作为基本要求内容;学生自学部分由学生在教师的指导下,利用课外时间进行自学,作为一般要求内容;学生选读部分由学生根据自己的兴趣及能力,进行课外选读,不作要求。
本课程教学计划总学时64学时(其中课堂讲授62学时,机动2学时);学生自学12学时;课程设计1周。
本课程采用课后习题,每次课后留2~3个练习题,由学生独立完成,教师可根据情况布置综合练习题和安排习题讨论课。
第三章 传热天津大学出版社
第三章传热1.燃烧炉的内层为460mm厚的耐火砖,外层为230mm厚的绝缘砖。
若炉的内表面温度t1为1400℃,外表面温度t3为100℃。
试求导热的热通量及两砖间的界面温度。
设两层砖接触良好,已知耐火砖的导热系数为λ1=0.9+0.0007t,绝缘砖的导热系数为λ2=0.3+0.0003t。
两式中t可分别取为各层材料的平均温度,单位为℃,λ单位为W/(m·℃)。
1、解:热通量q及界面温度t2由:又已知:℃℃mm mm代入联立解之得:℃代入q式得(W/m2)答:q=1689W/㎡,t2=949℃2.蒸汽管道外包扎有两层导热系数不同而厚度相同的绝热层,设外层的平均直径为内层的两倍。
其导热系数也为内层的两倍。
若将二层材料互换位置,假定其它条件不变,试问每米管长的热损失将改变多少?说明在本题情况下,哪一种材料包扎在内层较为适合?解:δ相同:平均直径:∵∴有每米管长的热损失q′更换材料以前,每米管长热损失q′∴即:q′=1.25q故原保温好。
3.设计一燃烧炉,拟用三层砖,即耐火砖、绝热砖和普通砖。
耐火砖和普通砖的厚度为0.5m 和0.25m。
三种砖的系数分别为1.02 W/(m·℃)、0.14 W/(m·℃)和0.92 W/(m·℃),已知耐火砖内侧为1000℃,外壁温度为35℃。
试问绝热砖厚度至少为多少才能保证绝热砖温度不超过940℃,普通砖不超过138℃。
若t1=138ºC解得b2=0.250m答:b2=0.25m4.某燃烧炉的平壁由耐火砖、绝热砖和普通砖三种砌成,它们的导热系数分别为1.2W/(m·℃),0.16 W/(m·℃)和0。
92 W/(m·℃),耐火砖和绝热转厚度都是0.5m,普通砖厚度为0.25m。
已知炉内壁温为1000℃,外壁温度为55℃,设各层砖间接触良好,求每平方米炉壁散热速率。
答:Q/S=247.81W/m25.在外径100mm的蒸汽管道外包绝热层。
天津大学版 化工原理 第四章 5传热计算课件
t2逆max=T1, t2并max=T2, t2 并<t 2逆
t1
T2 t2并 t1
(b)冷却介质的出口温度:
A
t2↑→用量↓→操作费用↓, 但 △tm↓→A↑→设备费↑ (c)流速的选择:u↑→α↑→K↑→A↓→设备费↓,
但△p阻↑→操作费↑
(2).操作型问题
• 已知换热器的传热面积A及有关尺寸,冷热流体的进口 温度、流动方式,求冷热流体的出口温度
•
G1′cp1( T1-T2′)= 2G2cp2(t2′-t1)
•
t2′-t1= G1cp1/2G2cp2 ( T1-T2′)
(b)
• 根据水量增加之前的条件计算
•
G1cp1/ G2cp2 = t2-t1/ T1-T2=(90-15)/(120-80)=1.88
• 将此值代入(b)式,得
• t2′- t1=(1.88/2)( T1-T2′)=0.94* (T1-T2′)
qm1c p1 t2 t1 85 20 2.17 q m2 c p2 T1 T2 100 70
T2
c.并流较易控制流体的出口温度 t1
t2并 t1
A
(2)错流和折流时的平均温差
简单折流
一种流体作折流流动, 另一种流体不折流,或 仅沿一个方向流动。
错流
错流是指两流体在间壁两 侧彼此的流动方向垂直;
复杂折流
若两种流体都作折流流 动或既有错流又有折流, 称为复杂折流。
错流或折流时的平均温差,通常是先按逆流求 算,然后再根据流动型式加以修正
(1)查取:从手册和专著中获得,如《化工工艺设 计手册》
(2)实验测定
五、壁温的估算
若管内外流体的平均温度分别为ti和to,给热系数分别为 a i
化工原理答案(天津大学版)
化⼯原理答案(天津⼤学版)化⼯原理课后习题解答(夏清、陈常贵主编.化⼯原理.天津⼤学出版社,2005.)第⼀章流体流动 (3)第⼆章流体输送机械 (23)第三章机械分离和固体流态化 (32)第四章传热 (42)第五章蒸馏 (56)第六章吸收 (65)第七章⼲燥 (70)第⼀章流体流动1.某设备上真空表的读数为13.3×103 Pa,试计算设备内的绝对压强与表压强。
已知该地区⼤⽓压强为98.7×103 Pa。
解:由绝对压强= ⼤⽓压强–真空度得到:设备内的绝对压强P绝= 98.7×103 Pa -13.3×103 Pa=8.54×103 Pa设备内的表压强P表= -真空度= - 13.3×103 Pa2.在本题附图所⽰的储油罐中盛有密度为960 ㎏/?的油品,油⾯⾼于罐底6.9 m,油⾯上⽅为常压。
在罐侧壁的下部有⼀直径为760 mm 的圆孔,其中⼼距罐底800 mm,孔盖⽤14mm的钢制螺钉紧固。
若螺钉材料的⼯作应⼒取为39.23×106 Pa ,问⾄少需要⼏个螺钉?分析:罐底产⽣的压⼒不能超过螺钉的⼯作应⼒即P油≤ σ螺解:P螺= ρgh×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nσ螺= 39.03×103×3.14×0.0142×nP油≤ σ螺得n ≥ 6.23取n min= 7⾄少需要7个螺钉3.某流化床反应器上装有两个U 型管压差计,如本题附图所⽰。
测得R1= 400mm ,R2 = 50 mm,指⽰液为⽔银。
为防⽌⽔银蒸汽向空⽓中扩散,于右侧的U 型管与⼤⽓连通的玻璃管内灌⼊⼀段⽔,其⾼度R3 = 50 mm。
试求A﹑B两处的表压强。
分析:根据静⼒学基本原则,对于右边的U管压差计,a–a′为等压⾯,对于左边的压差计b–b′为另⼀等压⾯,分别列出两个等压⾯处的静⼒学基本⽅程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.2 冷热流体热交换的方式
1.直接接触式换热 2.蓄热式换热 3.间壁式换热
对某些过程,例如气体的冷 却或水蒸气的冷凝等,可使热、冷 流体直接混合进行热交换。这种换 热方式的优点是传热效果好,设备 结构简单。所采用的设备称为混合 式换热器。显然,仅对于工艺上允 许两流体互相混合的情况,才能采 用这种换热方式。直接接触换热的 机理比较复杂,它在进行传热的同 时往往伴有传质过程。
蓄热式换热器
蓄热器结构简单,且可耐 高温,因此多用于高温气体的 加热。其缺点是设备体积庞大 ,且不能完全避免两种流体的 混合,所以这类设备在化工生 产中使用得不太多
换热器是实现传热过程的
基本设备。为便于讨论传热的基 本原理。
右图为简单的套管式换热器
。它是由直径不同的两根管子同 心套在一起构成的。冷、热流体 分别流经内管和环隙而进行热的 交换。图4-5为单程列管式换热 器。一流体由左侧封头5的接管4 进入换热器内,经封头与管板6 间的空间(分配室)分配至各管内 ,流过管束2后,由另一端的接 管流出。另一流体由壳体右侧的 接管3进入,壳体内装有数块挡
图4-1所示的为混合式冷凝器
,其中图(b)较为常见,称为干式Βιβλιοθήκη 逆流高位冷凝器,被冷凝的蒸汽与
冷却水在器内逆流流动,上升蒸汽
与自上部喷淋下来的冷却水相接触
而冷凝,冷凝液与冷却水沿气压管
向下流动。由于冷凝器通常与真空
蒸发器相连,器内压强为10~
20kPa,因此气压管必须有足够的 高度,一般为10-11m。
单程列管式换热器
流体流经管间环隙称为壳程, 该流体称为壳程流体
流体流经管束称为管程, 该流体称为管程流体
此图 为简单 的套管 式换热 器。它 是由直 径不同 的两根 管子同 心套在 一起构 成的。 冷、热 流体分 别流经 内管和 环隙而 进行热 的交换。
优点:
(1)管束可以抽出,以方便清洗管、壳程; (2)介质间温差不受限制; (3)可在高温、高压下工作,一般温度小 于等于
图4-1 混合式冷凝器 (a)并流低位冷凝器 (b)干式逆流高位冷凝器
1一外壳 2一淋水板 3、8一气压管 4一蒸汽进口
5一进水口6-不凝气出口 7一分离罐
蓄热式换热是在 蓄热器中实现热交换 的一种换热方式。蓄 热器内装有固体填充 物(如耐火砖等),热 、冷流体交替地流过 蓄热器,利用固体填 充物来积蓄和释放热 量而达到换热的目的 。通常在生产中采用 二个并联的蓄热器交 替地使用,如图所示 。
450度,压力小于等于6.4兆帕; (4)可用于结垢比较严重的场合; (5)可用于管程易腐蚀场合。 缺点:
(1)小浮头易发生内漏; (2)金属材料耗量大,成本高20%; (3)结构复杂
化工传热过程中的实际情况
流体流过固体表面时发生对流和热传导联合 作用的传热过程 习惯上把流体与固体壁面间的传热,统称为对 流传热,又称给热。
三、热辐射(辐射传热)
物体受热引起内部原子激发,将热能转变为辐 射能以电磁波形式向周围发射,当遇到另一个 能吸收辐射能的物体时,辐射能部分或全部被 吸收又重新变为热能。
4.1.1 传热基本方式
一、热传导(导热)
由于物质的分子、原子或电子的运动,使热
量从物体内高温处向低温处的传递过程。 导热条件:温度差 特点:不依靠宏观混合运动;
在气体、液体、固体中都能发生;
二、热对流(对流传热)
流体各部分之间发生相对位移而引起的热传递 特点:仅发生在流体中;质点的相对位移;
强制对流:由于泵、风机等外力作用而引起的流体 流动称为强制对流,在强制对流情况下进行热量传 递过程称为强制对流传热 自然对流:由于流体各部分温度的不均而形成了密 度的差异使流体发生相对运动而传热,这种过程称 为自然对流传热
板7,使流体在壳与管束间沿挡板作折流流动,而从另一端的壳体 接管流出。通常,把流体流经管束称为流经管程,将该流体称为管 程(或管方)流体;把流体流经管间环隙称为流经壳程,将该流体称 为壳程(或壳方)流体。由于管程流体在管束内只流过一次,故称为
4.1.3 典型的间壁式换热器
套管式换热器
内管 外管
此图为简 单的套管式换 热器。它是由 直径不同的两 根管子同心套 在一起构成的。 冷、热流体分 别流经内管和 环隙而进行热 的交换。
③结构简单,工作适应范围大,传热面积增减方便,两侧流体 均可提高流速,使传热面的两侧都可以有较高的传热系数;缺点是 单位传热面的金属消耗量大,检修、清洗和拆卸都较麻烦,在可拆 连接处容易造成泄漏。为增大传热面积、提高传热效果,可在内管 外壁加设各种形式的翅片,并在内管中加设刮膜扰动装置,以适应 高粘度流体的换热。
2. 圆筒壁换热器的传热;
4.1 概 述
4.1.1 传热基本方式 4.1.2 冷热流体热交换的方式 4.1.3 典型的间壁式换热器 4.1.4 传热速率和热通量 4.1.5 稳态传热和非稳态传热
化工生产中的传热过程
传热过程:系统内温度的差异使热量从高温 向低温转移的过程。 化工生产对传热的要求
①强化传热过程 ②削弱传热过程
第四章 传热
4.1 化工生产传热过程及常见换热器 4.2 热传导 4.3 对流传热 4.4 传热过程的计算 4.5 换热器的选择及传热过程的强化
重点: ①单层、多层平壁,圆筒壁热传导速率方程 及应用; ②换热器能量衡算,总传热速率方程和总传 热系数的计算; ③对流传热系数的影响因素; 难点:
1. 对流传热机理;
①热流体将热量传到壁面一侧②热量通过固体壁面的
热传导③壁面另一侧将热量传给冷流体
热对流---热传导---热对流
①结构简单,传热面积增减自如。因为它由标准构件组合而成, 安装时无需另外加工。
②传热效能高。它是一种纯逆流型换热器,同时还可以选取合 适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此 它的传热效果好。液-液换热时,传热系数为 870~1750W/(m 2·℃)。这一点特别适合于高压、小流量、低传热系数流体的换热。 套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约 为 管壳式换热器 的5倍;管接头多,易泄漏;流阻大。