贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第四章至第六章【圣才出品】
贾俊平统计学第7版课后习题答案
1.针对性强,解决难点。精选人大、中央财大等名校统计学院的初试和复试的考研真 题,既注重基础知识的掌握,又对一些难题、易错题目给出了详细的解析。本书特别适用于 参加研究生入学考试和复试指定考研参考书目为贾俊平主编的《统计学》的考生。
贾俊平《统计学》课后习题答案在线阅读:https:///cUb7v8DC
编著的。该书基本遵循贾俊平的《统计学》(第 7 版)的章目编排,共分 14 章,精选了 40 余所高校近年的考研真题,并提供了详细的参考答案。 目录 第 1 章 导 论 第 2 章 数据的搜集 第 3 章 数据的图表展示 第 4 章 数据的概括性度量 第 5 章 概率与概率分布 第 6 章 统计量及其抽样分布 第 7 章 参数估计 第 8 章 假设检验 第 9 章 分类数据分析 第 10 章 方差分析 第 11 章 一元线性回归 第 12 章 多元线性回归 第 13 章 时间序列分析和预测 第 14 章 指 数
贾俊平《统计学》课后习题答案在线阅读:https:///cUb7v8DC
【解析】数据的测量尺度有四种:①分类尺度,即名义尺度。按照事物的某种属性对其进行 平行的分类,数据表现为类别,如“性别”。②顺序尺度。对事物类别顺序的测度,数据表 现为有序的类别,如“产品登记”“受教育程度”。③差距尺度。对事物类别或次序之间间 距的测度,没有绝对零点,数据表现为数字。④比例尺度。对事物类别或次序之间间距的测 度,有绝对零点,数据表现为数字。 8 以下关于参数和统计量的说法正确的是( )。[中央财经大学 2011 研] A.总体参数是随机变量 B.样本统计量都是总体参数的无偏估计量 C.对一个总体参数进行估计时,统计量的表达式是唯一的 D.样本统计量是随机变量 【答案】D 【解析】参数是用来描述总体特征的概括性数字度量,研究者所关心的参数通常有总体平均 数、总体标准差、总体比例等,由于总体数据通常是不知道的,所以参数是一个未知的常数。 无偏性是指估计量抽样分布的数学期望等于被估计的总体参数,并非所有的估计量都具有无 偏性。对总体参数进行估计时,用不同估计方法得到的估计量可能不同。统计量是根据样本 数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数,是随机变量。 9 以下哪一种情形涉及定性数据的收集?( )[中山大学 2012 研] A.质量控制工程师测量电灯泡的寿命 B.社会学家通过抽样调查来估计广州市市民的平均年收入 C.运动器材厂家在区分各大俱乐部棒球选手是左撇子还是右撇子时做的调查 D.婚礼策划公司通过抽样调查来估计上海市市民举办婚礼的平均开销 【答案】C
统计学贾俊平第四版第七章课后答案目前最全
7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。
7.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】
第7章参数估计7.1 考点归纳【知识框架】【考点提示】(1)置信区间的含义理解(选择题、简答题考点);(2)估计量的三个评价标准(判断题、填空题、简答题考点);(3)区间估计的步骤(简答题考点)、总体参数的区间估计选择恰当的统计量(计算题考点);(4)必要样本容量的影响因素、计算(简答题、计算题考点)。
【核心考点】考点一:参数估计的基本原理1.置信区间(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。
(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。
(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。
一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。
2.评价估计量的标准(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ∧)=θ。
(2)有效性:估计量的方差尽可能小。
(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。
【提示】本考点常见考查方式:①直接考查置信水平为95%的置信区间的含义;②置信度、估计可靠性、置信区间的关系及应用;③置信区间的特点;④给出估计量的具体含义,判断体现了什么标准;⑤直接回答估计量的三个评价标准及具体含义(简答题)。
考点二:一个总体参数的区间估计表7-1 一个总体参数的区间估计【总结】一个总体参数的估计及所使用的分布见图7-1:图7-1 一个总体参数的估计及所使用的分布【真题精选】设总体X~N(μ,σ2),σ2已知,样本容量和置信水平固定,对不同的样本观测值,μ的置信区间的长度()。
[对外经济贸易大学2018研]A.变长B .变短C .保持不变D .不能确定 【答案】C【解析】在正态总体方差已知的条件下,μ的置信区间为/2x z ±ασ所以置信区间长度为/22Z α,当样本容量和置信水平固定时,置信区间长度保持不变。
贾俊平《统计学》复习笔记课后习题详解及典型题详解(参数估计)【圣才出品】
∧
定义:点估计是用样本统计量θ的某个取值直接作为总体参数 θ 的估计值。 局限性:一个点估计值的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点 估计值无法给出估计的可靠性的度量,因此不能完全依赖于一个点估计值,而应围绕点估计 值构造总体参数的一个区间。 (2)区间估计 区间估计的基本思想:在点估计的基础上,给出总体参数估计的一个区间范围,该区间 通常由样本统计量加减估计误差得到。进行区间估计时,根据样本统计量的抽样分布能够对 样本统计量与总体参数的接近程度给出一个概率度量。 置信区间:在区间估计中,由样本统计量所构造的总体参数的估计区间。
著性水平表示区间估计的不可靠概率。置信度愈大(即估计的可靠性愈大),则置信区间相
应也愈大(即估计准确性愈小)。
3.评价估计量的标准
2 / 57
圣才电子书
(1)无偏性
十万种考研考证电子书、题库视频学习平台
指估计量抽样分布的数学期望等于被估计的总体参数。
∧
∧
∧
设总体参数为 θ,所选择的估计量为θ,若有 E(θ)=θ,则称θ为 θ 的无偏估计量。
1 / 57
圣才电子书 十万种考研考证电子书、题库视频学习平台
置信下限:置信区间的最小值。
置信上限:置信区间的最大值。
置信水平(也称为置信度或置信系数):将构造置信区间的步骤重复多次,置信区间中
包含总体参数真值的次数所占的比例。
∧
∧
区间估计的数学定义:若用两个统计量θ1(x1,x2,…,xn)和θ2(x1,x2,…,xn)
存在“可能包含”或“可能不包含”的问题。
③在实际问题中,进行估计时往往只抽取一个样本,此时所构造的是与该样本相联系的
贾俊平《统计学》考研真题(含复试)与典型习题详解(数据的概括性度量)【圣才出品】
2.统计学期中考试非常简单,为了评估简单程度,教师记录了 9 名学生交上考试试卷
的时间如下(分钟)
33 29
45 60 42 19 52 38 36[东北财经大学
2012 研]
(1)这些数据的极差为( )。
A.3.00
B.-3.00
C.41.00
D.-41.00
【答案】C
【解析】数据按从小到大排序结果如下:
A.0.38
B.0.40
C.0.54
D.2.48
【答案】A
【解析】离散系数也称为变异系数,它是一组数据的标准差与其相应的平均数之比。其
计算公式为: vs
s x
。得到 vs
22.85 0.38 。 12.45
9.已知某工厂生产的某零件的平均厚度是 2 厘米,标准差是 0.25 厘米。如果已知该 厂生产的零件厚度为正态分布,可以判断厚度在 1.5 厘米到 2.5 厘米之间的零件大约占 ( )。[浙江工商大学 2011 研]
圣才电子书 十万种考研考证电子书、题库视频学习平台
5.随机变量 X 的方差为 2,随机变量 Y=2X,那么 y 的方差是( )。[中央财经大学 2011 研]
A.1 B.2 C.4 D.8 【答案】D
【解析】Var(cX ) c2Var(X ) 22 2 8
7.设 X1,X2,…,X n 为随机样本,则哪个统计量能较好地反映样本值的分散程度( )。
[中山大学 2012 研] A.样本平均 B.样本中位数 C.样子书
【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】集中趋势是指 一 组 数 据 向 某 一 中 心 值 靠 拢 的 程 度 ,它 反 映 了 一 组 数 据 中 心
贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】
第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。
(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。
为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。
(3)统计量是样本的一个函数。
由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。
2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。
3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。
4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。
统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。
5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。
贾俊平统计学 第七版 课后思考题
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
《统计学》完整袁卫-贾俊平
总体 N
N1 N2
n1
n2
样本 n
n1 n2 nk
等额
k
n ni
i 1
等比例
n1
Ni N
n
··· ···
N k nk
最优
n1
Ni
2 i
Ni
2 iBiblioteka n整群抽样方法:首先把总体中的N个单位划分成为若干个群, 并要求每个群对整个总体都具有代表性,然后对群进 行简单随机抽样,并对抽中群内的所有单位进行调查 研究。
1. 描述统计
关于搜集、展示一批数据,并反映这 批数据特征的各种方法,其目的是为 了正确地反映总体的数量特点。
2. 推断统计 根据样本统计量估计和推断总体参 数的技术和方法。
描述统计是推断统计的前提, 推断统计是描述统计的发展。
二、数据
(一) 为何需要数据 ?
统计学要研究各种随机变量,通过对这些随机变量的 观察所获取的数据包含了我们所需的信息,这些信息 能有助于我们在许多场合中做出更为正确的决策。
就是把定量数据按从大到小或从小到大的顺序排列, 把定性数据按习惯的文字顺序排列,便于我们研究其 条理。
统计分组
对于定性数据就是依据属性的不同将数据划分成若干 组,对于定量数据就是依据属性数值的不同将数据划 分成若干组。
组内同质性,组间差异性。
频数分布编制
分组的关键 变量的选择,选择与研究的问题有关的 变量 。 组限的确定。应遵循穷尽和互斥原则 。
就是把政府机构、各种组织和公司所公布的数据作为 来源,这种数据往往是次级数据。 2. 设计一次试验以获取必要的数据。
例如,在检验洗衣机洗净程度的研究中,研究人员通 过实际洗涤脏衣服,来研究哪种牌子的洗衣机效果最 佳。
贾俊平《统计学》复习笔记课后习题详解及典型题详解(数据的图表展示)【圣才出品】
②列联表和交叉表
由两个或两个以上变量交叉分类的频数分布表也称为列联表。
二维的列联表(两个变量交叉分类)也称为交叉表。
③比例(构成比)、百分比和比率
比例是一个样本(或总体)中各个部分的数据与全部数据之比,通常用于反映样本(或
二、品质数据的整理与展示 1.分类数据的整理与图示 分类数据本身就是对事物的一种分类,为对数据及其特征有一个初步的了解,在整理时 首先列出所分的类别,然后计算出每一类别的频数、频率或比例、比率等,形成一张频数分 布表,最后根据需要选择适当的图形进行展示。 (1)频数与频数分布 ①频数与频数分布 频数又称为次数,是各组占有的单位个数,将总体所有单位按一定标志进行归类排列, 称为频数分布。频数(频率)愈大的组所对应的标志值,它对于总体标志平均水平所起的作 用也愈大;反之,频数(频率)愈小的组所对应的标志值对于总体标志平均水平所起的作用
总体)的构成或结构。将比例乘以 100 得到的结果称为百分比,用%表示。比率是样本(或
总体)中各不同类别数据之间的比值,其比值可能大于 1。
(2)分类数据的图示
统计图是统计数据直观的表现形式,可以将复杂的数据用生动的图形表现出来,因而绘
制并使用好统计图就成为统计分析的基本功。常见的分类数据展示图形有条形图、帕累托图、
三、数值型数据的整理与展示 1.数据分组
4 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)数据分组的概念和目的 数据分组是根据统计研究的需要,为了观察数据的分布特征,将原始数据按照某种标准 划分成不同的组别,分组后的数据称为分组数据。经分组后再计算出各组中数据出现的频数, 就形成了一张频数分布表。在分组时,如果按照性别、质量等级等定性指标分组,称为按品 质标志分组;如果按照数量或数值等定量指标分组,称为按数量标志分组。 (2)数据分组的方法 ①单变量值分组:把每一个变量值作为一组,这种分组通常只适合离散变量,且在变量 值较少的情况下使用; ②组距分组:将全部变量值依次划分为若干个区间,并将这一区间的变量值作为一组。 在组距分组中,一个组的最小值称为下限;一个组的最大值称为上限。适用于连续变量或变 量值较多的情况。 (3)分组和编制频数分布表的具体步骤 ①确定组数 一般情况下,一组数据所分的组数不应少于 5 组且不多于 15 组,即 5≤K≤15。实际应 用时,可根据数据的多少和特点及分析的要求来确定组数。 ②确定各组的组距 组距是一个组的上限与下限的差。组距可根据全部数据的最大值和最小值及所分的组数 来确定,即组距=(最大值-最小值)÷组数。 注意:为便于计算,组距宜取 5 或 10 的倍数,而且第一组的下限应低于最小变量值, 最后一组的上限应高于最大变量值。 ③根据分组整理成频数分布表 (4)组距分组的注意事项
贾俊平《统计学》章节题库(含考研真题)(数据的图表展示)【圣才出品】
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】茎叶图是保留并反映原始数据分布的图形,它由茎和叶两部分构成,其图形是 由数字组成的。ACD 三项都需要对原始数据进行处理,求得一些测度值之后再作出图形。
8.对于 100 名学生某一门课程的成绩,若想得到四分之一分位数、中位数与四分之三 分位数,以下哪种描述统计的办法更有效?( )[中山大学 2012 研]
A.直方图 B.茎叶图 C.饼图 D.点图
4 / 33
圣才电子书
【答案】B
十万种考研考证电子书、题库视频学习平台
12.饼图的主要用途是( )。 A.反映一个样本或总体的结构 B.比较多个总体的构成 C.反映一组数据的分布 D.比较多个样本的相似性 【答案】A 【解析】饼图是用圆形及圆内扇形的角度来表示数值大小的图形。它主要用于表示一个 样本(或总体)中各组成部分的数据占全部数据的比例,对于研究结构性问题十分有用。
【解析】直方图、饼图描述的数值型数据是分组数据,而茎叶图描述的是未分组的数值
型数据,点图描述的是两个变量之间的关系。茎叶图保留了原始数据的信息,可以计算其分
位数。
9.某外商投资企业按工资水平分为四组:1000 元以下,1000~1500 元;1500~2000 元;2000 元以上。第一组和第四组的组中值分别为( )。[首经贸 2009 研]
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 3 章 数据的图表展示
一、单项选择题 1.对于大批量的数据,最适合描述其分布的图形是( )。[中国海洋大学 2018 研] A.条形图 B.茎叶图 C.直方图 D.饼图 【答案】C 【解析】在应用方面,直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。 条形图是用宽度相同的条形的高度或长短来表示数据多少的图形;饼图是用圆形及圆内扇形 的角度来表示数值大小的图形,它主要用于表示一个样本(或总体)中各组成部分的数据占 全部数据的比例。
贾俊平《统计学》(第7版)考研真题与典型题详解-第4章 数据的概括性度量【圣才出品】
第4章数据的概括性度量一、单项选择题1.一组数据的峰度系数为3.5,则该数据的统计分布应具有的特征是()。
[中央财经大学2018研]A.扁平分布B.尖峰分布C.左偏分布D.右偏分布【答案】B【解析】峰度系数用来度量数据在中心的聚集程度。
在正态分布情况下,峰度系数值是3。
大于3的峰度系数说明观察量更集中,有比正态分布更短的尾部;小于3的峰度系数说明观测量不那么集中,有比正态分布更长的尾部,类似于矩形的均匀分布。
2.某企业男性职工占80%,月平均工资为450元,女性职工占20%,月平均工资为400元,该企业全部职工的平均工资为()。
[中央财经大学2015研] A.425元B.430元C.435元D.440元【答案】D【解析】企业全部职工的平均工资=男性职工比例×男性月平均工资+女性职工比例×女性月平均工资=80%×450+20%×400=440(元)。
3.15位同学的某门课程考试成绩中,70分出现3次,80分出现4次,85分出现6次,90分出现2次,则他们成绩的众数为()。
[华中农业大学2015研] A.80B.85C.81.3D.90【答案】B【解析】众数是一组数据中出现次数最多的变量值。
题中,85分出现次数最多,故成绩的众数为85分。
4.一组样本的变异系数(CV)等于10,样本均值为5,则样本方差为()。
[厦门大学2014研]A.2B.4C.0.5D.2500【答案】D【解析】变异系数是一组数据的标准差与其相应的平均数之比,因而样本标准差=样本均值×变异系数=5×10=50,样本方差=50×50=2500。
5.现抽取了10个同学,每个同学的月生活费数据排序后为:660,750,780,850,960,1080,1250,1500,1630,2000。
则中位数的位置为()。
[重庆大学2013研]A.5.5B.5C.4D.6【答案】A【解析】中位数是将样本排序后处于中间位置的数据,总共有10个样本,因此中位数的位次=(1+10)/2=5.5。
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第九章至第十一章【圣才出品】
第9章分类数据分析9.1考点归纳【知识框架】【考点提示】(1)χ2统计量的计算公式及应用(计算题考点);(2)拟合优度检验(一个分类变量)和独立性检验(两个分类变量)(简答题、计算题考点);(3)列联表中的相关测量:三个系数的计算公式、特点及应用(选择题、简答题、计算题考点)。
【核心考点】考点一:χ2统计量(1)χ2统计量计算公式22()o e ef f f χ-=∑f o 表示观察值频数,用f e 表示期望值频数。
(2)χ2统计量的特征①χ2≥0;②χ2统计量的分布与自由度有关;③χ2统计量描述了观察值与期望值的接近程度。
(3)χ2分布与自由度的关系χ2分布随着自由度的增加而向右倾斜,且逐渐趋近于对称的正态分布。
考点二:列联表中的相关测量表9-1列联表的测量指标【真题精选】当列联表中的两个变量相互独立时,计算的相关系数c()。
[中国海洋大学2018研]A.等于1B.大于1C.等于0D.小于0【答案】C【解析】两个随机变量独立,则这两个随机变量不相关,反之不成立。
9.2课后习题详解一、思考题1.简述列联表的构造与列联表的分布。
答:(1)列联表的构造:列联表是将两个以上的变量进行交叉分类的频数分布表。
(2)列联表的分布:列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。
2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。
答:(1)构造列联表:对三个生产厂甲、乙、丙提供的学习机的A、B、C三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。
抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。
表9-2(2)提出检验问题根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。
(3)进行检验建立假设:H0:次品类型与厂家生产是独立的;H1:次品类型与厂家生产不是独立的。
2023统计学第七版贾俊平课后习题答案
2023统计学第七版贾俊平课后习题答案第一章1.1 习题答案1.答案:根据题意,我们需要求得这 60 个挑选出来的人中有多少个人来自纽约市,而纽约市占比是 5%,所以答案应为 $60 \\times 0.05 = 3$2.答案:根据题意,我们需要求得这 60 个挑选出来的人中有多少个人来自纽约市并且是女性,而纽约市总体中女性的占比是 53%,所以答案应为 $60 \\times 0.05 \\times 0.53 = 1.59$1.2 习题答案1.答案:根据题意,我们需要求得这家电视公司进入市场的概率。
已知电视公司市场占有率为 10%,而市场占有率的补集为失败率,所以电视公司进入市场的概率为1−0.10=0.902.答案:根据题意,我们需要求得这两家公司都进入市场的概率。
已知电视公司进入市场的概率为 0.90,而两家公司都进入市场的概率为两者概率相乘,所以两家公司都进入市场的概率为 $0.90 \\times 0.90 = 0.81$第二章2.1 习题答案1.答案:根据题意,我们需要求得两次抛掷硬币都为正面向上的概率。
已知硬币正面朝上的概率为 0.5,而两次抛掷硬币都为正面向上的概率为两者概率相乘,所以两次抛掷硬币都为正面向上的概率为 $0.5 \\times 0.5 = 0.25$2.答案:根据题意,我们需要求得至少一次抛掷硬币为正面向上的概率。
已知硬币正面朝上的概率为 0.5,而至少一次抛掷硬币为正面向上的概率为 1 减去两次都为背面向上的概率,所以至少一次抛掷硬币为正面向上的概率为 $1 - (0.5 \\times 0.5) = 0.75$2.2 习题答案1.答案:根据题意,我们需要求得至少一辆汽车需要检测两次才能检查到故障的概率。
已知单次检测不到故障的概率为 0.1,而至少一辆汽车需要检测两次才能检查到故障的概率为 1 减去两次都未检测到故障的概率,所以至少一辆汽车需要检测两次才能检查到故障的概率为 $1 - (0.1 \\times 0.1) = 0.99$2.答案:根据题意,我们需要求得两辆车都不需要检测两次才能检查到故障的概率。
统计学贾俊平考研知识点总结
统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
三、比较总体、样本、参数、统计量和变量:(1)总体是包含所研究的全部个体的集合。
通常是我们所关心的一些个体组成,如由多个企业所构成的集合,多个居民户所构成的集合。
《统计学》(贾俊平第七版)课后题及答案-统计学 贾俊平第七版
第一章导论1.什么是统计学?统计学是搜集、处理、分析、解释数据并从中得出结论的科学。
2.解释描述统计与推断统计。
描述统计研究的是数据搜集、处理、汇总、图表描述、概括与分析等统计方法。
推断统计研究的是如何利用样本数据来推断总体特征的统计方法。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照计量尺度可分为分类数据、顺序数据和数值型数据;按照数据的搜集方法,可以分为观测数据和试验数据;按照被描述的现象与实践的关系,可以分为截面数据和时间序列数据。
4.解释分类数据、顺序数据和数值型数据的含义。
分类数据是只能归于某一类别的非数字型数据;顺序数据是只能归于某一有序类别的非数字型数据;数值型数据是按照数字尺度测量的观测值,其结果表现为具体的数值。
5.举例说明总体、样本、参数、统计量、变量这几个概念。
总体是包含所研究的全部个体的集合,样本是从总体中抽取的一部分元素的集合,参数是用来描述总体特征的概括性数字度量,统计量是用来描述样本特征的概括性数字度量,变量是用来说明现象某种特征的概念。
6.变量可分为哪几类?变量可分为分类变量、顺序变量和数值型变量。
分类变量是说明书屋类别的一个名称,其取值为分类数据;顺序变量是说明十五有序类别的一个名称,其取值是顺序数据;数值型变量是说明事物数字特征的一个名称,其取值是数值型数据。
7.举例说明离散型变量和连续型变量。
离散型变量是只能去可数值的变量,它只能取有限个值,而且其取值都以整位数断开,如“产品数量”;连续性变量是可以在一个或多个区间中取任何值的变量,它的取值是连续不断的,不能一一列举,如“温度”等。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关、由别人调查和试验而来、已经存在并会被我们所利用的资料为二手资料。
使用时要评估资料的原始搜集人、搜集目的、搜集途径、搜集时间且使用时要注明数据来源。
2.比较概率抽样和非概率抽样的特点。
举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
贾俊平《统计学》考研真题(含复试)与典型习题详解(数据的搜集)【圣才出品】
第2章数据的搜集一、单项选择题1.为了调查某校学生的购书费用支出,从各年级的学生中分别抽取100名学生,组成样本进行调查,这种抽样方法属于()。
[浙江工商大学2011研]A.简单随机抽样B.分层抽样C.系统抽样D.整群抽样【答案】B【解析】简单随机抽样就是即使从包括N个单位的抽样框中随机地、一个个地抽取n个单位作为样本,每个单位的入样概率是相等的;分层抽样是将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本,将各层的样本结合起来,对总体的目标量进行估计;系统随机抽样也称为机械随机抽样或等距离随机抽样。
它是先将总体中各单位按一定的顺序排列,然后每隔一定的距离抽取一个单位构成样本;整群抽样又称聚类抽样,是将总体中若干个单位合并为组,这样的组称为群,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查。
2.为调查在中国的省会城市和4个直辖市的居民年收入,需要从这些城市的居民中抽取一个样本,你认为以下四种抽样方式哪一种会得到更有代表性的样本?( )。
[中山大学2011研]A.简单随机抽样B.整群抽样C.系统随机抽样D.分层随机抽样【答案】D【解析】在规模较大的调查中,很少直接采用简单随机抽样,一般是把这种方法和其他抽样方法结合在一起使用;整群抽样又称聚类抽样,是将总体中若干个单位合并为组,这样的组称为群,抽样时直接抽取群,然后对中选群中的所有单位全部实施调查;系统随机抽样也称为机械随机抽样或等距离随机抽样。
它是先将总体中各单位按一定的顺序排列,然后每隔一定的距离抽取一个单位构成样本;分层抽样是将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本,分层抽样在实践中得到了广泛的应用。
3.某政府机构想尽快了解社会公众对其出台的一项政策的态度,最恰当的数据搜集方式是( )。
[中央财经大学2011研]A.面访B.深度访谈C.计算机辅助电话调查D.邮寄调查【答案】C【解析】面访即调查者直接走访被调查者,当面听取被调查者的意见。
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第一章至第三章【圣才出品】
第1章导论1.1考点归纳【知识框架】【考点提示】(1)统计学的目的(选择题考点);(2)描述统计和推断统计的区分、参数估计和假设检验的区分(选择题考点);(3)统计数据类型、分类、各自特点及其具体应用(选择题、简答题考点)(非常重要);(4)统计学中的基本概念(选择题、简答题考点)。
【核心考点】考点一:统计数据的类型(见表1-1)表1-1统计数据的类型【注意】①分类数据和顺序数据说明的是事物的品质特征,其结果均表现为类别,因而也统称为定性数据或称品质数据;数值型数据说明的是现象的数量特征,因此也称为定量数据或数量数据。
②对不同类型的数据采用不同的统计方法来处理和分析。
对分类数据可以计算出各类别的频率,而数值型数据则可以进行数学运算。
【真题精选】1.在对数据进行汇总时,往往将男性用“1”来表示,女性用“0”来表示,所以将性别视为数值型变量。
[对外经济贸易大学2018研]【答案】×【解析】数值型变量是说明事物数字特征的一个名称,其取值是数值型数据,数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值;分类变量是说明事物类别的一个名称,其取值是分类数据,分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
性别是分类变量,为便于统计处理,对于分类变量可以用数字代码来表示各个类别。
2.下列数据不属于时间序列数据的是()。
[四川大学2016研]A.1990~2014年我国每年进出口总额B.2014年某品牌手机在中国各个省市的销售量C.成都市2014年每个月的PM2.5月平均浓度D.某股票在2015年1月的日收盘价【答案】B【解析】时间序列数据是在不同时间收集到的数据,这类数据是按时间顺序收集到的,用于描述现象随时间变化的情况。
本题中B项是在相同的时间点、不同的空间上获得的数据,属于截面数据。
考点二:统计中的基本概念1.总体和样本(1)总体、个体(2)样本、样本量2.参数和统计量(1)参数:用于描述总体特征,是未知的常数。
统计学(贾俊平版)重点
弟一早统计:收集、处理、分析、解释数据并从数据中得岀结论得科学。
数据仁分类数据对事物进行分类得结果数据,表现为类别,用文字来表述、例如,人口按性别分为男.女两类2.顺序数据对事物类别顺序得测度,数据表现为类别,用文字来表述例如,产品分为一等品、二等品、三等品、次品等3.数值型数据对事物得精确测度,结果表现为具体得数值、例如:身高为175cm , 168cm,183cm总体-所研究得全部元素得集合,其中得每一个元素称为个体-分为有限总体与无限总体、有限总体得范围能够明确确定, 且元素得数目就是有限得、无限总体所包插得元素就是无限得,不可数得样本-从总体中抽取得一部分元素得集合-构成样木得元素数目称为样木容量参数:描述总体特征。
有总体均值(卩).标准差(。
)总体比例(n)统计量: 描述样木特征。
样本标准差⑸,样木比例(P)变量:说明现象某种特征,分类,顺序,数值型:离散型,连续型。
经验,理论描述统计研究得就是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计就是研究如何利用样本数据进行推断总体特征第二章间接数据(查询得)与直接数据:调查(通常就是对社会现象而言得)普查信息全而完整。
再一个就是实验。
概率抽样:也称随机抽样。
按一定得概率以随机原则抽取样本,抽取样本时使每个单位都有一定得机会被抽中-每个单位被抽中得概率就是己知得,或就是可以计算出来得-当用样本对总体目标量进行估计时,要考虑到每个样木单位被抽中得概率简单随机抽样:从总体N个单位中随机地抽取Z?个单位作为样本,每个单位入抽样本得概率就是相等得分层抽样:优点:保证样木得结构与总体得结构比较相近将抽样单位按某种特征或某种规则划分为不同得层,然后从不同得层中独立.随机地抽取样本,从而提高估计得精度-组织实施调查方便-既可以对总体参数进行估计,也可以对各层得目标量进行估计整群抽样:将总体中若干个单位合并为组(群),抽样时直接抽取群, 然后对中选群中得所有单位全部实施调查优点:抽样时只需群得抽样框,可简化工作量-调查得地点相对集中,节省调查费用,方便调查得实施-缺点就是统计得精度较差系统抽样:将总体中得所有单位(抽样单位)按一定顺序排列,在规定得范圉内随机地抽取一个单位作为初始单位,然后按事先规定好得规则确定其它样本单位-先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k, r+2k…等单位操作简便,可提高估计得精度多阶段抽样:先抽取群,但并不就是调查群内得所有单位,而就是再进行一步抽样,从选中得群中抽取出若干个单位进行调查-群就是初级抽样单位,第二阶段抽取得就是最终抽样单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章数据的概括性度量
4.1考点归纳
【知识框架】
【考点提示】
(1)集中趋势、离散趋势的度量指标,包括每个指标的含义、计算公式、特点、意义、适用范围(选择题、简答题、计算题考点);
(2)众数、中位数和平均数三个指标的特点和应用场合,偏态分布下三个指标的关系(选择题、简答题、计算题考点);
(3)分布形状的测度指标:偏态系数和峰态系数的数值含义(选择题、简答题考点)。
(4)标准分数的计算公式及应用(选择题、简答题、计算题考点);
(5)经验法则、切比雪夫不等式的具体应用(选择题考点)。
【核心考点】
考点一:集中趋势的度量
表4-1集中趋势度量指标
【注意】不同偏态程度的分布中集中趋势度量指标的关系:①对称分布中,众数、中位数和平均数相等;②左偏分布中,数据存在极小值,拉动平均数向极小值一方靠,而众数和中位数不受极值的影响,有_x<M e<M o;③右偏分布中,数据存在极大值,必然拉动平均数向极大值一方靠,因此M o<M e<_x。
【知识拓展】不同的教材分位数的计算公式不同,除了表中的计算公式,一种比较精确的计算公式:下四分位数Q L的位置=(n+1)/4,上四分位数Q U的位置=(3n+1)/4。
【真题精选】
假定标志值所对应的权数都缩小1/10,则算术平均数(
)。
[浙江财经大学2019研]
A.不变
B.无法判断
C.缩小百分之一
D.扩大十倍
【答案】A
【解析】假设标志值为x,其对应的权数为f,则算术平均数为_
x=∑xf/∑f;若各权数都缩小1/10,则新的算术平均数为110110x
f xf x x f f '===∑∑∑∑考点二:离散程度的度量
数据的离散程度反映了各变量值远离其中心值的程度,离散程度越小,代表性就越好。
表4-2离散程度的度量指标
【注意】①表中方差和标准差的计算公式均为样本数据的方差和标准差。
若为总体数据,则分母应为n。
②标准差系数,也称变异系数或离散系数。
③表中平均差、样本方差、样本标准差仅给出了未分组数据的计算公式,分组数据的计算公式实质是等于未分组数据的计算公式,会运用即可。
【真题精选】
异众比率[名词解释,对外经济贸易大学2018研]
答:异众比率是指总体中非众数频数与总体全部频数之比,即非众数组的频数占总频数
的比例,用V r 表示。
其计算公式为:
1i
m m r i i
f f f V f f -==-∑∑∑式中,∑f i 为变量值的总频数;f m 为众数组的频数。
异众比率主要用于衡量众数对一组数据的代表程度。
异众比率越大,说明非众数组的频数占总频数的比重越大,众数的代表性越差;异众比率越小,说明非众数组的频数占总频数的比重越小,众数的代表性越好。
异众比率适合测度分类数据的离散程度。
考点三:分布形状的测度
偏态是对数据分布对称性的测度,峰态是对数据分布平峰或尖峰程度的测度。
表4-3偏态系数和峰态系数。