聚合酶链式讲义反应(pcr)
聚合酶链式反应PCR基本原理
• ④两引物间不应存在互补序列,尤其是防止3′ 端旳互补重叠。
• ⑤引物与非特异扩增序列旳同源性<70%。
• ⑥引物旳3′端碱基一定要与模板互补配对;而 5′则可相对不严,甚至还可做某些修饰。
• 2、PCR旳模板
• 欲扩增旳核酸片段是PCR旳模板。
• 能够是DNA,也能够是RNA。当用RNA作模板时, 首先要进行逆转录生成cDNA,然后再进行正 常旳PCR循环。
3、耐热旳DNA聚合酶
• 在PCR反应中,DNA聚合酶是最关键旳原因 之一。TaqDNA聚合酶是目前PCR中应用最广 泛旳耐热DNA聚合酶。
• TaqDNA聚合酶旳功能是:以DNA为模板,以 四种dNTP为原料,以引物3′端为出发点, 按5′→3′旳方向,以碱基配对方式合成 新旳DNA链。
寡核苷酸。
• 引物决定PCR扩增产物旳特异性和长度。 • PCR引物旳设计与PCR反应旳成败关系亲密。 • PCR反应中旳引物有两条,即5′端引物和3′
端引物,分别与相应旳模板链互补。
• 引物设计遵照下列原则:
• ①引物长度一般为15~30个核苷酸。
• ②引物中碱基旳分布尽量随机,尽量防止多聚 嘌呤或多聚嘧啶。
二、PCR旳基本原理
• PCR技术实际上是DNA旳体外扩增技术。 • 其原理类似于DNA在体内旳复制过程。 • 反应条件――模板DNA、寡核苷酸引物、DNA
聚合酶、四种dNTP原料和合适旳缓冲液体系, 在一定旳温度下,经过反复旳过程,就能够 完毕DNA旳体外合成。
• 这些过程都是经过控制温度来实现旳,即经 过 变 化 温 度 引 起 变 性 ( denature ) 、 退 火 ( annealing ) 和 延 伸 ( extension ) , 使 DNA得以复制。
聚合酶链式反应pcr实验报告 -回复
聚合酶链式反应pcr实验报告-回复聚合酶链式反应(PCR)实验报告引言:PCR,全称为聚合酶链式反应(Polymerase Chain Reaction),是一种用于迅速扩增DNA序列的技术,由凯里穆利斯于1983年首次提出,并于1985年由Mullis和Faloona首次报道。
PCR具有高灵敏度、高特异性、高效率等优点,广泛应用于基因组学、医学诊断、法医学鉴定、分子进化等领域。
实验目的:本实验旨在通过PCR技术,对DNA序列进行扩增,并测试PCR反应的影响因素,如模板DNA浓度、引物浓度、反应体系中酶和核苷酸的用量等,以优化PCR反应条件。
实验材料和方法:1.实验材料:1.1 模板DNA:提供两个已知DNA序列的模板,标记为M1和M2。
1.2 引物:两对特异性引物,标记为F1/R1和F2/R2。
1.3 PCR试剂盒:包括酶、缓冲液、dNTPs等。
1.4 ddH2O:去离子水。
1.5 1.5琼脂糖凝胶:用于电泳分析。
2.实验操作:2.1 PCR反应体系的配制:- M1反应:加入4μL M1模板DNA、1μL F1引物(10μM)、1μL R1引物(10μM)、12.5μL PCR Master Mix和6.5μL ddH2O,总体积为25μL。
- M2反应:加入4μL M2模板DNA、1μL F2引物(10μM)、1μL R2引物(10μM)、12.5μL PCR Master Mix和6.5μL ddH2O,总体积为25μL。
2.2 PCR反应条件设置:- 初始变性:94,4分钟。
- 变性:94,30秒。
- 结合:56,30秒。
- 延伸:72,1分钟。
- 延伸终止:72,7分钟。
- 等待:4。
2.3 PCR扩增:连续重复步骤2.2中的变性、结合和延伸步骤30次。
2.4 电泳分析:将PCR产物与DNA量标Marker混合,用1.5琼脂糖凝胶电泳分析。
实验结果:1. PCR扩增结果:在实验过程中,通过PCR成功扩增了M1和M2的DNA序列。
PCR Protocol
聚合酶链式反应(PCR,Polymerase Chain Reaction)是一种分子生物学技术,通过特定的引物和DNA聚合酶,将特定的DNA片段在体外进行快速、特异的扩增。
以下是PCR的原理、所需试剂和耗材、实验仪器、准备工作、实验方法、注意事项、常见问题及解决方法。
一、PCR的原理PCR技术的基本原理是通过对DNA的双链进行特异性解旋,然后在DNA聚合酶的作用下,以解开的每一条单链为模板,将特定的引物与单链的5’端和3’端结合,形成起始复合物。
在适宜的温度和条件下,DNA聚合酶将从引物3’端开始延伸DNA链,并通过反复变性-延伸循环,实现DNA片段指数级扩增。
二、所需试剂和耗材1.引物:用于与模板DNA结合,指示DNA聚合酶从何位置开始延伸。
引物可以是人工合成的寡核苷酸,也可以是从RNA或天然DNA中提取的。
2.DNA模板:被扩增的DNA片段的原始双链分子。
3.DNA聚合酶:催化DNA复制的酶,如Taq DNA聚合酶。
4.dNTPs(脱氧核糖核苷三磷酸):DNA合成的原材料,包括dATP、dTTP、dCTP、dGTP。
5.缓冲液:调节反应液的pH值,一般含有Mg2+离子以及其他辅助因子。
6.耐高温的DNA分离酶抑制剂:防止在高温下DNA被破坏。
7.DEPC水:用于制备无RNA酶的水。
三、实验仪器1.基因扩增仪(PCR仪):用于完成PCR的变性-延伸循环。
2.微量移液器:用于精确添加PCR反应液。
3.离心管:用于混合和离心PCR反应液。
4.水浴锅:用于PCR反应液保温。
5.电泳仪和电泳槽:用于分析扩增的DNA片段。
6.显微镜:观察细胞和组织样品。
7.分光光度计:用于测量DNA和RNA的浓度。
四、准备工作1.了解PCR的基本原理和步骤。
2.设计和制备引物:根据目的基因序列设计特异性引物。
3.准备基因组DNA或cDNA:从细胞或组织中提取基因组DNA或通过反转录制备cDNA。
4.缓冲液和其他试剂的准备:根据PCR试剂清单准备所有必需的试剂。
PCR(聚合酶链式反应)技术与应用
PCR(聚合酶链式反应)技术与应用一.PCR技术的原理聚合酶链式反应(PCR)是一种选择性体外扩增DNA或RNA片段的方法,即通过试管中进行的DNA复制反应,是极少量的基因组DNA或RNA样品中的特定基因片段在短短几小时内扩增上百万倍。
其反应原理与细胞内DNA复制相似,但PCR反应体系要简单得多,主要包括DNA靶序列、与DNA靶序列单链3’末端互补的合成引物、4种dNTP、耐热DNA聚合酶及适合的缓冲体系。
与细胞内的DNA复制相似,PCR也是一个重复地进行DNA模板解链、引物与模板DNA结合、DNA聚合酶催化形成新的DNA链的过程,这些过程都是通过控制反应体系的温度来实现的。
PCR包括下列三步反应:(1)变性(denaturation):将反应体系混合物加热到94℃维持较短时间(大约15~30s),是目标DNA双螺旋的氢键断裂,形成单链DNA作为反应的模板。
(2)退火(annealing):将反应体系冷却至特定温度(引物的T m值左右或以下),引物与DNA模板的互补区结合,形成模板-引物复合物。
必须精确的计算退火的温度以保证引物只与相对应的序列结合。
由于模板链分子较引物复杂得多,加之引物量大大超过模板DNA的数量,因此,DNA模板单链之间互补结合的机会很少。
(3)延伸(elongation):将反应体系的温度提高到72℃并维持一段时间,引物在耐热DNA聚合酶的作用下,以引物为固定起点,以四种单核苷酸(dNTP)作为底物,合成新的DNA链。
因此,在这一阶段的末期,两条单链模板DNA又形成新的双链,且双链中的新生DNA单链具有各种不同的延伸长度。
以上三步作为一个循环重复进行,每一个循环的产物作为下一循环的模板。
因此,在第二轮循环中进行变性、退火、延伸这三步反应。
如此循环20次,原始DNA将扩增约106倍,而循环30次后将达109倍。
而所有上述过程将在1~2h内完成。
经过扩增后的DNA产物为大多介于引物与原始DNA相结合的位点之间的片段,而在反应前几轮循环产生的超过引物结合位点的较长链的DNA的比例将随着循环不断地进行稀释至可以忽略的程度。
聚合酶链式反应(PCR)
聚合酶链式反应(PCR)聚合酶链式反应(Polymerase Chain Reaction,PCR)是一种体外扩增特异性DNA片段的技术。
经数小时反应就将特定的DNA片段扩增数百万倍。
PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。
基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。
一、PCR基本原理:DNA的半保留复制是生物进化和传代的重要途径。
双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。
在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。
但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶,不仅操作烦琐,而且价格昂贵,制约了PCR技术的应用和发展。
耐热DNA聚合酶--Taq酶的发现对于PCR的应用有里程碑的意义,该酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。
PCR扩增靶DNA的过程类似于体内DNA的半保留复制,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
利用人工合成的一对寡核苷酸引物,分别与待扩增DNA片段的两侧翼序列互补,在DNA聚合酶催化下,以靶DNA序列为模板,四种dNTP为原料,经过高温变性、低温退火和中温延伸“三步曲”的循环,使靶DNA片段经过30个循环周期后达到百万倍的扩增。
《DNA 片段的 PCR 扩增》 讲义
《DNA 片段的 PCR 扩增》讲义一、PCR 扩增的基本原理PCR,即聚合酶链式反应(Polymerase Chain Reaction),是一种在体外快速扩增特定 DNA 片段的技术。
其基本原理基于 DNA 半保留复制的机制。
我们知道,DNA 由两条互补的链组成。
在 PCR 反应中,首先将待扩增的 DNA 双链加热至高温(通常在 90-95°C),使双链解离成为单链,这个过程称为变性。
然后,降低温度(通常在 50-65°C),加入一对与目标 DNA 片段两端序列互补的引物。
引物会与单链 DNA 模板结合,这一步称为退火。
接下来,将温度升高到 70-75°C,在耐热 DNA 聚合酶(如 Taq 聚合酶)的作用下,以单链 DNA 为模板,从引物的 3'端开始按照碱基互补配对原则合成新的 DNA 链,这一过程称为延伸。
这样,经过一个循环,原来的一个 DNA 分子就变成了两个。
通过多次重复上述变性、退火和延伸的循环,DNA 片段得以指数级扩增。
二、PCR 扩增所需的材料和试剂1、模板 DNA这是要被扩增的 DNA 片段,可以是从细胞、组织中提取的基因组DNA,也可以是经过反转录得到的 cDNA。
2、引物引物是一小段短的单链 DNA 或 RNA 序列,通常长度在 18-30 个核苷酸。
它们与目标 DNA 片段两端的序列互补,决定了 PCR 扩增的起始位置和扩增的区域。
3、耐热 DNA 聚合酶如前面提到的 Taq 聚合酶,能够在高温下保持活性,催化 DNA 合成。
4、 dNTPs(脱氧核糖核苷三磷酸)包括 dATP、dCTP、dGTP 和 dTTP,是合成新 DNA 链的原料。
5、缓冲液提供合适的 pH 值和离子强度,以维持反应体系的稳定性和酶的活性。
6、镁离子(Mg2+)对聚合酶的活性至关重要,其浓度需要适当优化。
三、PCR 反应体系的配置1、确定反应体积根据实验需求和所用仪器,确定 PCR 反应的总体积,常见的有20μL、25μL、50μL 等。
聚合酶链式反应pcr实验报告
聚合酶链式反应pcr实验报告PCR实验报告引言:聚合酶链式反应(PCR)是一种常用的分子生物学技术,通过PCR可以在体外快速扩增DNA片段。
PCR技术的应用广泛,包括基因定量表达分析、基因突变鉴定、DNA遗传分析等。
本实验旨在通过PCR技术扩增目标DNA片段,并检测扩增产物,从而深入了解PCR的原理和操作步骤。
材料与方法:1. DNA提取试剂盒:包括裂解液、蛋白水解酶、去蛋白酶、洗涤缓冲液、洗涤试剂、洗涤溶液、洗涤瓶、洗涤纸、溶解液等。
2. PCR试剂盒:包括DNA模板、引物、酶、缓冲液、dNTPs等。
3. 扩增仪:用于PCR反应的温度控制与循环。
步骤:1. DNA提取和纯化:1. 将待提取的样品(如细胞、组织等)加入裂解液,并进行适当的荧光素酶处理,通过高速离心分离出DNA。
2. 添加去蛋白酶去除蛋白质,再加入洗涤缓冲液洗涤DNA沉淀物。
3. 使用洗涤试剂和洗涤溶液重复洗涤程序,最后用溶解液溶解DNA。
2. PCR扩增反应:1. 准备PCR反应体系,将DNA模板、引物、酶、缓冲液、dNTPs等按照一定比例混合在一起。
2. 将PCR反应管置于扩增仪中,设定合适的温度梯度和反应循环次数。
3. 进行PCR反应,通过温度梯度和循环过程使DNA扩增。
3. 扩增产物检测:1. 将PCR扩增产物取出,使用琼脂糖凝胶电泳进行分析。
2. 准备琼脂糖凝胶,将扩增产物与DNA分子量标准样品一同加载到琼脂糖凝胶槽中。
3. 开启电泳设备,进行电泳分离,根据扩增产物的大小和形态进行分析和鉴定。
结果与讨论:本实验成功地通过PCR技术扩增了目标DNA片段,并通过琼脂糖凝胶电泳分析了扩增产物。
PCR反应的条件对于扩增产物的准确性和效率起着关键作用。
合理设计和优化PCR反应的条件,包括引物浓度、DNA模板浓度、PCR循环温度参数等,可以提高扩增的产物质量和得率。
琼脂糖凝胶电泳分析结果显示,扩增产物的大小与预期的目标DNA片段大小相一致。
聚合酶链式反应pcr
聚合酶链式反应pcr
1 聚合酶链式反应PCR
聚合酶链式反应(PCR)是一种允许大量翻倍指定的DNA序列的分
子生物技术。
通过利用特殊的酶(聚合酶)将两个DNA片段分别相互“拉伸”,重复地迭代扩增,合成更长的片段。
1.1 PCR的原理
PCR主要利用DNA聚合酶的功能来调控DNA片段的重复扩增与合成。
扩增过程分为三个步骤,即引物扩增、双螺旋扩增、保守分裂。
引物
扩增过程中,首先将扩增片段与反转录引物结合起来,DNA聚合酶将其复制到双螺旋结构;双螺旋扩增过程中,DNA聚合酶会主动分裂双螺旋,然后重复复制双螺旋,产生DNA序列的复制品;最后,保守分裂过程中,会继续分裂DNA双螺旋,直到完成指定的扩增任务。
1.2 PCR的应用
PCR技术有着广泛的应用,主要包括临床诊断应用、筛检、疾病分子检测等。
其中,PCR已经被广泛应用在心脑血管疾病、肿瘤、感染性疾病以及遗传病的检测上,准确可靠地检测出各种疾病的抗原。
另外,PCR技术在基因组学研究中也有广泛应用,可以用来进行基因鉴定、基因表达研究、比较基因组研究等。
在微生物学研究中,PCR技术也可以用来识别和遗传分类各种细菌和病毒,可以研究它们的源头和传播路径。
由此可见,聚合酶链式反应PCR技术无疑是一种重要而有用的分子生物技术,它已经得到广泛的应用,在诊断、疾病研究以及基因组学研究中发挥着重要作用。
聚合酶链式反应
聚合酶链式反应简介聚合酶链式反应(PCR)是一种重要的分子生物学技术,被广泛应用于基因分析、基因工程、医学诊断等领域。
PCR 能够快速、高效地扩增特定DNA片段,使得原本数量有限的DNA样本得以增加,从而便于进行后续实验。
PCR的核心原理是利用DNA聚合酶酶活性,通过不断重复三个步骤(变性、退火、延伸),在适宜的反应条件下,将目标DNA序列扩增至数百万份的数量。
依靠PCR技术,无需使用传统的细菌培养方法,仅需少量DNA样本和简单的实验设备,即可实现高效扩增目标DNA。
PCR反应步骤反应体系构建PCR反应所需的关键成分包括目标DNA模板、DNA聚合酶、引物(primer)、核苷酸和反应缓冲液。
引物是一对短的DNA片段,其序列与目标DNA序列上的起始和终止部分的互补序列匹配。
反应缓冲液是维持PCR反应过程中所需酶活性的化学平衡和适宜pH的缓冲物质。
变性PCR反应开始时,反应体系中的DNA样本被放置在高温环境中(通常为94-98摄氏度),使其双链DNA解离为两条单链DNA。
这个步骤可以通过加热反应体系来实现,高温会断裂氢键,使DNA的双链解开。
退火在反应体系降温至适宜的温度范围时(通常为50-65摄氏度),引物与目标DNA序列上的互补区域结合形成稳定的双链结构。
引物的选择非常重要,其应与目标DNA序列完全匹配,以确保选择性扩增。
延伸DNA聚合酶将新的核苷酸从反应缓冲液中获得,并在目标DNA的3’末端上依次加入。
这个过程被称为延伸,其速率与延伸温度和所用聚合酶的酶活性相关。
通常延伸温度为60-72摄氏度。
经过以上三个步骤的循环反复进行,每一轮都会使目标DNA序列数量翻倍。
因此,PCR可以在短时间内扩增出大量的目标DNA片段。
PCR应用PCR技术在生物学研究、医学诊断、疾病预防和基因工程等领域有着广泛的应用。
基因分析PCR被广泛用于分析基因的结构和功能。
通过PCR,可以快速扩增出感兴趣的DNA片段,然后进行测序分析、限制性酶切或其他分子生物学实验,以研究目标基因的结构和功能。
聚合酶链式反应
2、时间
第一次变性应给予足够时间( 分钟) 第一次变性应给予足够时间(5 ~ 7分钟) 每一个步骤所需时间取决于扩增片段的长度, 每一个步骤所需时间取决于扩增片段的长度,一 般为复性时间一般为30~ 般为复性时间一般为30~60sec 30 延伸时间:1Kb以内的DNA片段 延伸时间1min 以内的DNA片段, 1min( 延伸时间:1Kb以内的DNA片段,延伸时间1min(
PCR反应原理和反应过程 一、PCR反应原理和反应过程
DNA的体外复制包括3个步骤: DNA的体外复制包括3个步骤: 的体外复制包括 • 变性(denaturation):94 °C ~95 °C 变性(denaturation) • 退火(annealing):40 °C ~70 °C 退火(annealing) • 延伸(extension):72 °C 延伸(extension) 3个步骤作为PCR的一个循环,每当完成一 个步骤作为PCR的一个循环, PCR的一个循环 个循环,一个分子的模板被复制为二个, 个循环,一个分子的模板被复制为二个, 产物量以指数形式增长。 产物量以指数形式增长。
PCR技术的创建 PCR技术的创建
Khorana(1971)等提出在体外经DNA变性, Khorana(1971)等提出在体外经DNA变性,与适当引物 等提出在体外经DNA变性 杂交,再用DNA聚合酶延伸,克隆DNA的设想。 DNA聚合酶延伸 DNA的设想 杂交,再用DNA聚合酶延伸,克隆DNA的设想。 1983年,Mullis发明了PCR技术 发明了PCR技术, Khorana的设想得到 1983年,Mullis发明了PCR技术,使Khorana的设想得到 实现。 实现。 1988年Saiki等将耐热DNA聚合酶 Taq)引入了PCR 等将耐热DNA聚合酶( PCR技 1988年Saiki等将耐热DNA聚合酶(Taq)引入了PCR技 术 1989年美国 Science》杂志列PCR 年美国《 1989年美国《Science》杂志列PCR 为十余项重大科 学发明之首,比喻1989年为PCR爆炸年,Mullis 1989年为PCR爆炸年,Mullis荣获 学发明之首,比喻1989年为PCR爆炸年,Mullis荣获 1993年度诺贝尔化学奖。 1993年度诺贝尔化学奖。 年度诺贝尔化学奖
聚合酶链式反应(PCR)基本操作步骤
聚合酶链式反应(PCR)聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外酶促合成特异DNA片段的一种方法,为最常用的分子生物学技术之一。
典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。
其主要步骤是:将待扩增的模板DNA置高温下(通常为93℃-94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA 聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。
PCR能快速特异扩增任何已知目的基因或DNA片段,并能轻易在皮克(pg)水平起始DNA混合物中的目的基因扩增达到纳克、微克、毫克级的特异性DNA片段。
因此,PCR 技术一经问世就被迅速而广泛地用于分子生物学的各个领域。
它不仅可以用于基因的分离、克隆和核苷酸序列分析,还可以用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析,遗传病和传染病的诊断,肿瘤机制的探索,法医鉴定等诸多方面。
通常,PCR 在分子克隆和DNA分析中有着以下多种用途:(1) 生成双链DNA中的特异序列作为探针;(2) 由少量mRNA生成cDNA文库;(3) 从cDNA中克隆某些基因;(4) 生成大量DNA以进行序列测定;(5) 突变的分析;(6) 染色体步移;(7) RAPD、AFLP、RFLP等DNA多态性分析等。
一、试剂准备1. DNA模版2.对应目的基因的特异引物3.10×PCR Buffer4.2mM dNTPmix:含dATP、dCTP、dGTP、dTTP各2mM5.Taq酶二、操作步骤1.在冰浴中,按以下次序将各成分加入一无菌0.5ml离心管中。
聚合酶链式反应
聚合酶链式反应(PCR)一、实验目的1、了解PCR反应的基本原理。
2、了解PCR反应的优化条件和PCR的应用。
3、掌握PCR产物纯化的方法。
实验原理PCR是一种选择性体外扩增DNA或RNA的技术。
1990年,Kary B.Mullis发明了PCR技术,并因此在1995年荣获诺贝尔化学奖。
PCR技术使分子生物学研究一下子获得了突破,并且随着PCR技术的日趋完善,PCR技术在人类生活中的应用也越来越广泛。
PCR、分子克隆和DNA序列分析构成了现代分子生物学实验工作的基础。
PCR反应包括三个基本步骤:①变性:目的双链DNA片段在94℃下解链;②退火:两中寡核苷酸引物在适当温度(50℃左右)下与模板上的目的序列通过氢键配对;③Tap DNA聚合酶在最适温度下(72℃),以目的DNA 合成。
这三个基本步骤组成一轮循环,理论上每一轮循环将使目的DNA扩增一倍。
这些经合成产生的DNA又可作为下一轮循环的模板,所以经25~35轮循环就可使目的DNA片段扩增达106倍。
二、器材与试剂1.器材:移液器,EP管,热盖PCR仪,电泳仪,量筒,锥形瓶,微波炉,电子天平,紫外照色仪2.试剂:引物,模板,Taq DNA聚合酶,原料(dNTPs),缓冲液与Mg2+,H2O, 2*PCRmix溶液,DNA染料三、实验步骤1、 PCR反应⑴在EP管中依次下列试剂(50μl反应体系)试剂用量/μl灭菌H2O 35.5PCR反应缓冲液 5DNTP(4种,每种浓度10μmol/L) 2上游引物 2下游引物 2模板DNA 1Taq 0.5PCR引物设计PCR反应中有两条引物,即5′端引物和3′引物。
设计引物时以一条DNA单链为基准(常以信息链为基准),5′端引物与位于待扩增片段5′端上的一小段DNA序列相同;3′端引物与位于待扩增片段3′端的一小段DNA序列互补PCR缓冲液(PCrBuffer)用于PCR的标准缓冲液见PCR操作范例。
于72℃时,反应体系的pH值将下降1个单位,接近于7.2。
聚合酶链式反应(pcr)在医药方面的应用
聚合酶链式反应(pcr)在医药方面的应用聚合酶链式反应(PCR)在医药方面的应用PCR是一种重要的分子生物学技术,广泛应用于医药领域。
它通过扩增特定DNA序列,使得微量DNA得以放大,为后续的基因测序、基因表达分析、疾病诊断等提供了强有力的工具。
以下是PCR在医药方面的主要应用:1. 疾病诊断PCR在诊断疾病方面有着广泛的应用。
通过分析患者样本中的病原体DNA,可以快速检测出病原体的存在,如细菌、病毒、真菌等。
PCR可以非常精确地检测病原体,有助于准确诊断感染性疾病,并指导药物治疗。
传染病诊断PCR可以用于诊断各种传染病,如流感、艾滋病、乙肝、结核等。
通过提取患者样本中的病原体DNA,利用PCR技术扩增目标基因片段,再通过凝胶电泳等方式检测扩增产物,可以快速准确地确定病原体的存在。
遗传病诊断PCR还可以用于遗传病的诊断。
遗传病是由基因突变引起的疾病,PCR可以通过扩增突变的DNA序列,检测患者是否携带相关的遗传突变。
这对于家族遗传病的筛查、预测和婴儿基因检测非常重要,有助于指导遗传咨询和生育决策。
2. 基因测序和基因分型PCR在基因测序和基因分型方面也发挥着重要作用。
通过PCR扩增目标基因片段,可以获取足够的DNA量,以进行后续的测序和分型分析。
基因测序PCR扩增后的基因片段可以经过测序仪进行测序,使得科研人员可以了解该基因的具体序列。
基因测序有助于研究基因功能、疾病机制等,为药物研发和个体化治疗提供了基础数据。
基因分型PCR扩增后的基因片段可以进行基因型分析,即检测基因上的某些位点是否存在突变。
基因分型可以用于疾病易感性预测、药物代谢能力评估等,为个体化治疗做出准确预测。
3. 基因表达分析PCR可以用于研究基因表达水平,即某个基因在特定条件下的表达量。
通过PCR扩增目标基因的转录本(mRNA),可以对基因表达进行定量分析,了解特定条件下基因的表达差异,从而揭示疾病发生和发展的机制。
实时定量PCR (qPCR)PCR的一种变种是实时定量PCR (quantitative PCR, qPCR)。
聚合酶链式反应(PCR)
聚合酶链式反应(PCR)第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。
PCR基本原理是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。
在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA模板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。
反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。
因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。
1.模板DNA的变性模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合为下轮反应作准备。
变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些,故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。
对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。