A2/O生化处理

合集下载

《2024年A2-O法处理10000m3-d生活污水工艺设计》范文

《2024年A2-O法处理10000m3-d生活污水工艺设计》范文

《A2-O法处理10000m3-d生活污水工艺设计》篇一A2-O法处理10000m3-d生活污水工艺设计一、引言随着城市化进程的加快,生活污水的排放量日益增加,给环境带来了严重的污染问题。

为了有效处理生活污水,保障环境卫生和人民健康,本设计以A2/O法为核心,针对日处理量达到10000m3的生活污水进行处理工艺设计。

二、A2/O法概述A2/O法(Anaerobic-Anoxic-Oxic)是一种集脱氮、除磷和去除有机物于一体的污水处理技术。

其工作原理是将厌氧(Anaerobic)、缺氧(Anoxic)和好氧(Oxic)三种环境下的微生物在反应器内合理组合,实现对生活污水的全面处理。

该方法具有运行成本低、效果好、能耗小等优点,因此在本工艺设计中得到了广泛应用。

三、设计思路针对本工程,我们将结合A2/O法,按照预处理、生化处理、沉淀及深度处理等流程,进行10000m3/d生活污水的工艺设计。

预处理部分主要是为了去除污水中较大颗粒的悬浮物和沉淀物;生化处理部分则主要依靠A2/O法进行脱氮除磷;沉淀部分则用于去除悬浮物和生物污泥;深度处理部分则进一步去除水中的杂质,确保出水水质达到国家标准。

四、具体工艺流程1. 预处理阶段:主要包括格栅拦截和沉淀。

利用格栅截留污水中的大颗粒悬浮物,减少对后续处理的冲击负荷;然后进行自然沉淀或气浮工艺去除一部分有机物和颗粒物质。

2. A2/O生化处理阶段:首先将预处理后的污水送入厌氧区,此处主要通过产酸菌进行有机物的酸化过程;然后进入缺氧区,进行反硝化脱氮过程;最后进入好氧区,通过硝化菌进行硝化反应,并进一步去除有机物和进行除磷过程。

3. 沉淀阶段:在沉淀池中,利用重力沉降原理去除活性污泥和生物污泥等悬浮物。

4. 深度处理阶段:采用过滤、消毒等工艺进一步去除水中的杂质和细菌,确保出水水质达到国家排放标准。

五、设备选型与布局根据工艺流程,选择合适的设备进行布局。

主要包括格栅机、沉淀池、A2/O反应器、鼓风机、曝气装置、过滤器和消毒设备等。

简述AA0工艺及其优缺点

简述AA0工艺及其优缺点

简述AA0工艺及其优缺点一、概念A2/O工艺(AAO工艺、AAO法),是英文Anaerobic-Anoxic-Oxic第一个字母的简称(厌氧-缺氧-好氧),是一种常用的生化污水处理工艺,具有同步脱氮除磷的作用,多用于二级污水处理,也可用于三级污水处理,后续增加深度处理(如砂滤、RO、混床等)后,产水可作为中水回用。

该法是20世纪70年代,由美国的一些专家在AO法脱氮工艺基础上开发的。

二、简介1、厌氧段(DO<0.2mg/L):原污水与从沉淀池排出的含磷回流污泥同步进入,在配水槽内完成混合,经一定时间(1~2h)的厌氧分解,回流污泥中的聚磷微生物(聚磷菌等)释放出磷,满足细菌对磷的需求,同时去除部分BOD,部分有机物进行氨化;(1)氨化作用(ammonification)又叫脱氨作用,微生物分解有机氮化物产生氨的过程。

很多细菌、真菌和放线菌都能分泌蛋白酶,在细胞外将蛋白质分解为多肽、氨基酸和氨(NH3)。

其中分解能力强并释放出NH3的微生物称为氨化微生物。

氨化微生物在有氧(O2)或无氧条件下,均可分解蛋白质和各种含氮有机物,分解作用较强的主要是细菌。

2、缺氧段(DO≤0.5mg/L):前端污水流入缺氧池,池中的反硝化细菌以污水中未分解的含碳有机物为碳源,将好氧池内通过内循环(流量一般为2倍的原污水流量)回流进来的硝酸根还原为N2而释放。

(1)还原反应,放热,在无氧或缺氧条件下进行。

①硝酸盐(NO3-)还原为亚硝酸盐(NO2-)NO3-+ 4 H+ + 4 e-→ 2 NO2-+ 2 H2O②亚硝酸盐(NO2-)还原为一氧化氮(NO):2 NO2-+ 4 H+ + 2 e-→ 2 NO + 2 H2O③一氧化氮(NO)还原为一氧化二氮(N2O):2 NO + 2 H+ + 2 e-→ N2O + H2O④一氧化二氮(N2O)还原为氮气(N2):N2O + 2 H+ + 2 e-→ N2 + H2O(2)大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸。

A2O工艺生化池计算公式过程

A2O工艺生化池计算公式过程

流量/ 扬程 转速/
功率/kW
效率 NPSHr 重量
(m3·h) /m (r·min-1) 轴功率 配用功率 /% /m /kg
675 10.1 735
24.2
30

77 3.4 1200
8. 需氧量计算 ①. 平均时需氧量 设 a’=0.5,b’=0.15
O2 a'Q平Sr b'VX V 0.51000080 /1000 0.15 2564 2250 /1000 1265.35kgO2 / d 52.7kgO2 / h ②. 最大时需氧量
转速 升压 流量
电动机
机组最大重量 主机重量
/r·min-1 /kPa /m3·h-1 型号 功率/kW
/kg
/kg
800 53.9 1314 Y225L-4 37
1120
1320
12. 曝气器数量计算 ①. 曝气器个数 m S 570 1620个 l 0.352 式中 m -------曝气器数量,个;
的性能参数表 3 中:
表 3 200QW400-10 型潜水排污泵性能参数
流量/ 扬程 转速/
功率/kW
效率 重量
(m3·h) /m (r·min-1) 轴功率 配用功率 /% /kg
400 10
1470 13.09 18.5 81.2 660
③. 混合液回流泵 混合液回流量
QR R内Q 215000=30000m3 / d 1250m3 / h 0.35m3 / s
7. 厌氧缺氧池设备选择
①. 厌氧池、缺氧池搅拌设备
查《实用环境工程手册》,选取 JBG-3 型立式环流搅拌机,该机的性能参
数及外形参数分别列于下表 2 中:

《2024年A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷》范文

《2024年A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷》范文

《A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷》篇一A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷一、引言随着城市化进程的加速,生活污水的处理已成为环境保护的重要课题。

其中,低C/N比生活污水因其处理难度大、脱氮除磷效果差等问题,一直是污水处理领域的难点。

A2/O-曝气生物滤池工艺作为一种新型的污水处理技术,具有处理效率高、运行成本低等优点,被广泛应用于低C/N比生活污水的处理。

本文将就A2/O-曝气生物滤池工艺在脱氮除磷方面的实践进行详细探讨。

二、A2/O-曝气生物滤池工艺简介A2/O-曝气生物滤池工艺是一种集生物脱氮、除磷、有机物去除于一体的污水处理技术。

该工艺通过厌氧、缺氧、好氧三个阶段的交替运行,实现污水中氮、磷等营养物质的去除。

其中,曝气生物滤池作为好氧段的核心部分,通过生物膜的作用,实现对污水中有机物、氮、磷等污染物的去除。

三、脱氮除磷原理及实践1. 脱氮原理及实践A2/O工艺中的缺氧段和好氧段是实现脱氮的关键。

在缺氧段,反硝化细菌将硝酸盐还原为氮气,实现脱氮。

而在好氧段,通过曝气生物滤池中的生物膜作用,氨氮被氧化为硝酸盐。

实际运行中,通过调整进水C/N比、污泥回流比等参数,优化硝化反硝化过程,提高脱氮效率。

2. 除磷原理及实践除磷主要依靠生物除磷和化学沉淀相结合的方式。

在厌氧段,聚磷菌通过吸收低分子有机物并释放磷酸盐,实现生物除磷。

而在好氧段,通过投加化学药剂(如铁盐、铝盐等),与污水中的磷酸盐反应生成沉淀物,实现化学除磷。

实际运行中,通过调整进水磷浓度、化学药剂投加量等参数,优化除磷效果。

四、实践效果分析经过实际运行数据的分析,A2/O-曝气生物滤池工艺在处理低C/N比生活污水方面具有显著的脱氮除磷效果。

具体表现在以下几个方面:1. 脱氮效果显著:通过优化硝化反硝化过程,提高脱氮效率,使出水中的氮含量达到国家排放标准。

2. 除磷效果稳定:通过生物除磷和化学沉淀相结合的方式,实现稳定高效的除磷效果,使出水中的磷含量达到较低水平。

A2-O工艺原理、特点及效果改进措施

A2-O工艺原理、特点及效果改进措施

技术解析 | A2/O工艺原理、特点及效果改进措施作者:一气贯长空A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。

A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。

该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。

工艺原理1、首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。

2、在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。

3、在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。

A2O工艺设计

A2O工艺设计

一.A 2/O 工艺的设计 1.1 A 2/O 工艺说明根据处理要求,我们需计算二级处理进水碳氮比值和总磷与生化需氧量的比值,来判断A 2/O 工艺是否适合本污水处理方案。

1. 设计流量:Q =54000m³/d=2250 m³/h原污水水质:COD =330mg/L BOD =200 mg/L SS =260 mg/L TN =25 mg/L TP =5 mg/L一级处理出水水质:COD =330×(1-20%)=264mg/L BOD =200×(1-10%)=180mg/L SS =260×(1-50%)=130 mg/L二级处理出水水质:BOD =10mg/L SS =10 mg/L NH3-N =5mg/L TP ≤1 mg/L TN =15 mg/L COD=50 mg/L 其中:2.1325330==TN COD >8 025.02005==BOD TP <0.06 符合A 2/O 工艺要求,故可用此法。

1.2 A 2/O 工艺设计参数BOD5污泥负荷N =0.15KgBOD5/(KgMLSS ‧d)好氧段DO =2 缺氧段DO ≤0.5 厌氧段DO ≤0.2回流污泥浓度Xr =1000011001000000=⨯mg/L 污泥回流比R =50% 混合液悬浮固体浓度 X ==+r ·1X R R 10000·5.15.0=3333mg/L混合液回流比R 内:TN 去除率yTN =%10025825⨯-=68%R 内=TNTNy 1y -×100%=212.5% 取R 内=200%1.3设计计算(污泥负荷法)硝化池计算(1) 硝化细菌最大比增长速率m ax μ=0.47e0.098(T-15)m ax μ =0.47⨯e0.098⨯(T-15)=0.3176d -1(2) 稳定运行状态下硝化菌的比增长速率μN =,max 11N z N K N μ+=0.42615151⨯+=0.399d -1(3) 最小污泥龄 θc mθcm =1/μN =10.399=2.51d (4) 设计污泥龄 d c θd c θ=mC FD θ⨯d d c 04.951.232.1=⨯⨯=θ 为保证污泥稳定 , d c θ取20d 。

(完整)A2 O生化处理工艺对污水的处理

(完整)A2 O生化处理工艺对污水的处理

A2/O生化处理工艺对污水的处理王宏刚王咏摘要:某奶牛养殖场因生产工艺改变,导致过量COD排入废水收集系统,使污水处理站不能正常运转。

为达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A 要求,需对现有污水处理系统进行改扩建,以满足现有水量和水质处理要求。

该奶牛养殖场污水CODCr浓度高,可生化性强,应用EGSB 反应器,采用典型A2 /O生化处理工艺,辅以臭氧深度氧化处理,可以实现排放水达到《城镇污水处理厂污染物排放标准》一级A 标准.奶牛养殖场周边无农田灌溉条件,必须将养殖废水深度处理后达标排放。

应用本工艺,不仅实现排放水达标,而且为企业争取了更宽松的发展环境,极大地促进了企业的发展.关键词:EGSB 反应器; A2/O工艺; 臭氧氧化河北某奶牛养殖场拥有奶牛5500 头,2008 年建有一座污水处理站并投入运行,设计考虑采用砂床干清粪饲养方式,挤奶厅的污水和粪浆分别收集,涉及水源主要为挤奶厅冲洗水及部分生活污水,粪浆进行堆肥。

污水处理采用好氧悬挂链生物处理工艺,出水COD≤100 mg/L。

2010 年该厂改造现有生产工艺,改干清粪为水冲粪,以保证砂子的回收利用,并因此导致过量COD排入废水收集系统,污水处理站不能正常运转,出水超标。

为达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A 要求,需对现有污水处理系统进行改扩建,以满足现有水量和水质处理要求.1 原污水处理工艺原有污水处理系统的设计基于奶牛养殖基地采用干清粪方式,涉及水源主要为挤奶厅冲洗水及部分生活污水,水质较好.设计水量≤1200 m3/d,进水COD≤1200 mg/L,废水生化性较好,pH 为6~9,BOD/COD>0. 35。

原污水处理工艺流程如图1 所示.图1 原污水处理工艺流程2 改扩建污水处理工艺选择奶牛场工艺改造后污水主要来源有: 奶牛养殖场挤奶台废水、降温喷淋水、牛棚粪污水等。

A20生化池

A20生化池

`` 一、A/O工艺1.基本原理A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N (NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

2.A/O内循环生物脱氮工艺特点根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:(1)效率高。

该工艺对废水中的有机物,氨氮等均有较高的去除效果。

当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。

(2)流程简单,投资省,操作费用低。

该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。

尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。

(3)缺氧反硝化过程对污染物具有较高的降解效率。

如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。

A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷

A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷

A2-O-曝气生物滤池工艺处理低C-N比生活污水脱氮除磷A2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷随着经济的快速发展和城市化进程的加速,生活污水排放量不断增加,给环境带来了巨大的压力。

其中,有机氮和磷元素是生活污水中的主要污染物之一,对水体生态环境造成严重危害。

为了有效处理低C/N比生活污水中的氮和磷,生物滤池工艺成为一种重要的处理方法。

本文将重点介绍A2/O-曝气生物滤池工艺在低C/N比生活污水脱氮除磷中的应用。

A2/O-曝气生物滤池工艺是一种较为成熟的生物处理工艺,其主要由A段、An段、O段和F段组成。

其中,An段和O段共同构成了A2/O反硝化除磷环节,而A段和F段分别负责生物好氧处理和沉淀。

该工艺通过这四个阶段的有机负荷变化,使得废水中的有机物和氮、磷元素得到了高效处理。

在低C/N比生活污水处理过程中,A2/O-曝气生物滤池工艺具有以下几点优势。

首先,该工艺采用了A2/O反硝化除磷环节,能够同时去除废水中的氮和磷。

其中An段通过硝化硝氮为外源电子供体,实现了氮的去除;O段则利用缺氧条件下的反硝化反应将剩余的氮转化为氮气,并将废水中的磷元素同时沉降。

这种设计能够实现高效去除污水中的氮磷元素。

其次,A2/O-曝气生物滤池工艺具有较好的稳定性和适应性。

由于低C/N比生活污水的化学需氧量和氨氮浓度较低,A段和An段不会出现营养物质过剩的问题,避免了滤池偶氮和反硝化之间的相互影响,提高了系统运行的稳定性。

同时,该工艺对于废水中的有机物和悬浮物都具有一定的降解能力,适用于各种类型的生活污水处理。

此外,A2/O-曝气生物滤池工艺具有较低的投资和运行成本。

相比于传统的生物处理工艺,A2/O-曝气生物滤池工艺不需要额外添加化学药剂,处理过程主要依赖于微生物的自我降解和转化,成本相对较低。

此外,该工艺占地面积相对较小,适用于一些用地有限的城市地区。

然而,A2/O-曝气生物滤池工艺仍然存在一些问题和不足之处。

污水处理A2O工艺 二级生物处理

污水处理A2O工艺 二级生物处理
在好氧池中,有机物被微生物生化氧化,而继续下降;有机物被氨化 继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N浓度 增加,而磷随着聚磷菌的过量摄取,也以较快的速度下降。 沉淀池-污泥与水分离。
2 A O工艺特性曲线
A2O脱氮除磷工艺设计参数
停留 MLSS/(mg· L-1)
工 艺 名 称
污 泥 泥 龄
悬 浮 固 体 浓 度
污 泥 负 荷 ︵ ︶
时间/h
厌 氧 区
缺 氧 区 2.2h
好 氧 区 5.2h
污 泥 回 流 比
混 合 液 回 流 比
F/M
16.7
SRO
0.15 1.1h KgB OD5/ (Kg MLS S· d)
50%~ 100%
200%
进水
厌氧池 缺氧池 回流污泥 好氧池 沉淀池
出水
剩余污泥
在首段厌氧池主要进行磷的释放,使污水中磷的浓度升高,溶解性的 有机物被细胞吸收而使污水中的BOD的浓度下降;另外部分NH3-N因 细胞的合成得以去除,使污水中的NH3-N浓度下降。
在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中 带入的大量NO3-N和NO2-N还原为氮气释放至空气,因BOD浓度继续 下降,NO3-N浓度大幅度下降,而氮的变化很小。
生物除磷基本原理
聚磷菌厌氧释磷过程
多聚磷酸盐 分解 ATP 分解
聚磷菌细胞
胞内碳源 PHB ADP+磷酸盐+能量 发酵 简单有 合成 机底物
+
聚磷菌细胞
大分子有机物
聚磷菌细胞
聚磷菌好氧吸磷过程
CO2+H2O + O2 胞内碳源PHB TCA循环 +

A2-O工艺反硝化除磷的实现及性能的研究

A2-O工艺反硝化除磷的实现及性能的研究

A2-O工艺反硝化除磷的实现及性能的研究A2/O工艺反硝化除磷的实现及性能的研究摘要:反硝化除磷技术是目前污水处理领域的一项重要技术,可以有效地处理含有高浓度氮和磷的废水。

本文通过研究A2/O工艺中的反硝化除磷机制,分析了该技术的实际应用及其性能表现。

研究结果显示,A2/O工艺反硝化除磷具有高效去除氮磷的特点,同时还具备适应性强、操作稳定等优点。

本文着重介绍了该技术的关键步骤、工艺参数及控制策略,为实际工程应用提供了一定的参考。

第一章引言反硝化除磷技术是指通过细菌的代谢途径,将废水中的硝酸盐和磷酸盐转化为氮气和固体磷,从而实现废水兼顾脱氮和除磷的目的。

该技术在污水处理领域得到广泛应用,对保护水体环境、提高水质具有重要意义。

第二章 A2/O工艺反硝化除磷机制A2/O工艺是一种常用的生化处理方法,其主要通过好氧、缺氧和厌氧三个阶段的处理来实现废水的除磷和脱氮。

在A2/O工艺中,磷一般是在好氧区进行除磷,而反硝化作用则发生在缺氧和厌氧区。

由于硝化和反硝化反应同时进行,因此可以实现废水的脱氮除磷。

第三章 A2/O工艺反硝化除磷的实际应用通过对多个中小型污水处理厂的实际应用情况进行调研,发现A2/O工艺反硝化除磷在实际处理过程中具有较好的效果。

该工艺可以快速去除氮磷,提高废水处理的效率。

此外,A2/O工艺还具备适应性强、操作稳定等优点。

第四章 A2/O工艺反硝化除磷性能研究为了进一步评估A2/O工艺反硝化除磷的性能,开展了一系列实验。

结果表明,该工艺能够在较短的时间内去除废水中的氮磷,同时能够保持较高的除磷效果。

第五章 A2/O工艺反硝化除磷的关键步骤及工艺参数通过分析A2/O工艺反硝化除磷的关键步骤和工艺参数,提出了一系列的控制策略。

这些控制策略能够改善工艺的稳定性和性能表现,并提供了一定的指导意义。

第六章结论与展望本文通过研究A2/O工艺反硝化除磷技术,表明该技术在废水处理领域具有很好的应用前景。

在未来的研究中,可以进一步优化工艺参数和控制策略,提高A2/O工艺反硝化除磷的性能表现。

A O工艺原理 特点及效果改进措施

A O工艺原理 特点及效果改进措施

A2/O工艺原理、特点及效果改进措施A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。

A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。

该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。

1、首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。

2、在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。

3、在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显着下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。

A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。

厌氧池和好氧池联合完成除磷功能。

(1)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

a2 o工艺流程

a2 o工艺流程

a2 o工艺流程
《A2O工艺流程》
A2O工艺流程是一种常用的污水处理工艺,其名称来源于Anoxic-Oxic-Anoxic的首字母缩写。

这一工艺流程通过一系列
的生化作用,将污水中的有机物质和氮、磷等污染物去除,同时达到净化水体的目的。

A2O工艺流程一般包括预处理、生化处理和后处理等环节。

首先,污水经过预处理,去除大颗粒杂质和沉淀污泥,之后进入生化处理环节。

在生化处理环节中,污水先进入无氧区域(Anoxic),在此区域中缺氧条件下,使得一部分有机物质被分解为矿化底物和氨氮。

随后,污水进入有氧区域(Oxic),在此区域中,细菌利用有氧环境中的氧气对污水进行氧化降解,将底物和氨氮氧化为硝酸盐。

最后,经过后处理环节,去除水中的磷等余留污染物,使得出水达到排放标准。

A2O工艺流程具有操作简单、占地面积小、处理效果稳定等
优点,因此在城市污水处理厂和工业废水处理中得到广泛应用。

同时,随着环保要求的不断提高,A2O工艺流程也在不断完
善和改进,以适应不同水质和不同用途的处理需要。

总之,A2O工艺流程作为一种成熟的污水处理工艺,为净化
水环境、保护生态环境发挥着重要作用,也为水资源的可持续利用提供了有力支持。

相信随着技术的不断进步,A2O工艺
流程将在未来发展中发挥更大的作用,为人们创造更洁净的生活环境。

A2O工艺流程及工艺原理

A2O工艺流程及工艺原理

A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。

该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。

但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。

工艺流程及工艺原理1、A2/O工艺流程A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧—缺氧—好氧生物脱氮除磷工艺的简称。

A2/O工艺于70年代由美国专家在厌氧—好氧磷工艺(A~/O)的基础上开发出来的,该工艺同时具有脱氮除磷的功能。

该工艺在好氧磷工艺(A/O)中加一缺氧池,将好氧池流出的一部分混合液回流至缺氧池前端,该工艺同时具有脱氮除磷的目的。

A2/O工艺流程图如图4.4.1所示。

2.工艺原理首段厌氧池,流入原污水及同步进入的从二沉池回流的含磷污泥,本池主要功能为释放磷,使污水中P的浓度升高,溶解性有机物被微生物细胞吸收而使污水中的BOD5浓度下降;另外,NH3-N因细胞的合成而被去除一部分,使污水中的NH3-N浓度下降,但NO3-N含量没有变化。

在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入大量NO3-N和NO2-N还原为N2释放至空气,因此BOD5浓度下降,NO3-N浓度大幅度下降,而磷的变化很小。

在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,P随着聚磷菌的过量摄取,也以较快的速度下降。

A2/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NO3-N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。

生物膜A2/O工艺处理生活污水

生物膜A2/O工艺处理生活污水

该工艺对水质、水量的变化具有较强 的适应性,能够在不同的工况下保持 较高的去除效率。
脱氮除磷
高效脱氮
通过合理的缺氧、好氧布局和污 泥回流设计,生物膜A2/O工艺 能够高效地去除氮元素,满足排
放标准。
除磷效果好
通过在好氧段添加除磷剂或者采 用生物除磷技术,该工艺能够实
现良好的除磷效果。
优化运行参数
针对不同的水质条件,生物膜 A2/O工艺可以通过调整运行参 数实现更好的脱氮除磷效果。
智能化运营管理
建立智能化运营管理系统,实时监测工艺运 行状态,及时发现和解决异常问题,提高污 水处理厂的运营管理水平。
政策与法规的支持
制定相关政策
政府应制定相关政策,鼓励和支持生物膜A2/O工艺在生活污水处 理领域的应用和推广。
完善法规标准
建立健全相关法规和标准,规范生物膜A2/O工艺的设计、建设和 运营管理,确保处理效果和出水水质达标。
05
生物膜A2/O工艺的未来发展 与挑战
技术创新与改进
高效生物膜反应器
设计
研发新型生物膜反应器,提高生 物膜附着和活性,增强有机物降 解效率和脱氮除磷效果。
智能化控制技术
引入物联网、大数据和人工智能 等先进技术,实现生物膜A2/O工 艺的智能化控制,优化工艺运行 参数,提高处理效率。
高效微生物筛选与
生物膜A2/O工艺处理生活污 水的案例分析
某市污水处理厂的应用实例
处理规模
该污水处理厂设计处理能力为10万吨/日,采用生物膜A2/O工艺进行生活污水处理。
工艺流程
污水首先进入预处理阶段,通过格栅和沉砂池去除大颗粒物和砂粒,然后进入生物反应池 。生物反应池分为厌氧、缺氧和好氧三个区,通过微生物降解有机物,并脱氮除磷。处理 后的污水经过沉淀池和消毒池,达标后排放。

A2O工艺在废水处理中的应用

A2O工艺在废水处理中的应用
A2工艺机理简介
二、 A2/O工艺优缺点及其它改良工艺 三、 A2/O工艺在废水处理中的研究现状
四、展望
在污水生物处理过程中包含了一系列不同的净化机制,最 重要的是含碳化合物的降解、硝化反应、反硝化反应、生 物除磷反应及悬浮物的分离。
脱氮除磷机理
混合液内循环比R的影响
从好氧池流出的混合液,很大一部分要回流到缺氧段进行 反硝化脱氮。混合液内循环比的大小直接影响反硝化脱氮 效果,由于前置反硝化,总氮去除率直接和内循环比R相 关。但内循环比R太大时则混合液回流的动力消耗太大, 造成运行费用大大提高。
污泥回流比r
回流污泥是从二沉池底流回到厌氧池,靠回流污泥维持各 段污泥浓度,使之进行生化反应。如果污泥回流比r太小, 则影响各段的生化反应速率,反之回流比r太高,导致回流 污泥将大量NOx一N带入厌氧池,引起反硝化菌和聚磷微生 物产生竞争,因反硝化速度大于磷的释放速度,反硝化菌 抢先消耗掉快速生物降解的有机物进行反硝化,当反硝化 脱氮完全后聚磷菌才开始进行磷的释放,不利于除磷。权 衡上述污泥回流比的大小对A2/O工艺的影响,一般采用污 泥回流比r为(60-100)%为宜,最低也应在40%以上。
A2/O工艺由于具有相对于其他同步脱氮除磷工艺构造简单、 总水力停留时间短、运行费用低、控制复杂性小、不易产 生污泥膨胀等优点,并作为将传统活性污泥污水处理厂改 建为具有脱氮除磷功能的污水处理厂时最易改造成的工艺, 目前已经成为我国城市污水处理厂中主流的同步脱氮除磷 工艺。
图3 A2/O工艺流程图
展望
(1)深入揭示生物除磷脱氮的生物学机理,进一步认识各条件 下的微生物菌种,为除磷脱氮的工艺设计和改造提供理论依 据和指导;
(2)引入自动控制和传感器等其它领域的技术,提高生物处理 的可控程度和运行的可靠、稳定,使处理系统向高效、低能 耗方向发展。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档