精选七年级数学上册有理数找规律解答题难题专题训练

合集下载

七年级上册规律题专题训练1【有理数训练题库】

七年级上册规律题专题训练1【有理数训练题库】

七年级上册规律题专题训练1一、计算题(共28题;共232分)1.观察+ =(1-)+(-)=1-=(1)计算:+ + +……+ =(2)计算:2.阅读下面文字:对于( )+( )+17 +( ),可以按如下方法计算:原式=[(-5)+( )]+[(-9)+( )]+( )+[(-3)+( )]=[(-5)+(-9)+17+(-3)]+[( )+( )++( )]=0+( )=-1 .上面这种方法叫拆项法.仿照上面的方法,请你计算:(-2018 )+(-2017 )+(-1 )+4036.3.计算题:(1)(2)4.阅读下列内容,然后解答问题:因为:所以:问题:计算:(1)(2)(3)5.已知1- = , - = , - = , - = ………根据这些等式求值。

请你仔细观察,并找出其奥妙,再计算:6.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.7.请先阅读下列一组内容,然后解答问题:因为:所以:计算:① ;②8.观察下列计算=1﹣, = ,= - ,= ﹣…(1)第5个式子是________;第n个式子是________.(2)从计算结果中找规律,利用规律计算.+ +…+(3)计算+…+(4)计算+ +…+9.用简单方法计算下列各题。

① ②10.已知:实数a、b满足条件+(ab﹣2)2=0.试求+ + +…+的值.11.阅读下面的文字,回答后面的问题:求的值.解:令将等式两边同时乘以5得到:②-①得:∴即问题:(1)求的值;(2)求的值;12.观察下列各式:-1× =-1+- × =- +- × =- +…(1)你能探索出什么规律?(用文字或表达式)(2)试运用你发现的规律计算:(-1× )+(- × )+(- × )+…+(- × )+(- × )13.观察下列等式=1- ,= - ,= - ,将以上三个等式两边分别相加得:+ + =1- + - + - =1- = .(1)猜想并写出:的结果.(2)直接写出下列各式的计算结果:① + + +…+ .② + + +…+ .(3)探究并计算:+ + +…+ .14.计算.15.阅读下面材料:(1+ )×(1-)= × =1,(1+ )×(1+ )×(1-)×(1-)= × × × = × × × =1×1=1.根据以上信息,求出下式的结果.(1+ )×(1+ )×(1+ )×…×(1+ )×(1-)×(1-)×(1-)×(1-)×…×(1-).16.已知实数,满足:,且,求的值.17.在进行二次根式化简时,我们有时会碰上如一样的式子,其实我们还可以将其进一步化简: ①, ②,③.以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:④.(1)请用上面介绍的两种不同方法化简.(2)试用上述方法化简: .18.先阅读,再解题:因为,,,…所以参照上述解法计算:.19.阅读材料,求值:解:设,将等式两边同时乘以2得:将下式减去上式得即(1)请你仿照此法计算:①② (其中为正整数)(2)求的值.20.阅读下列材料,然后回答问题:在进行类似于二次根式的运算时,通常有如下两种方法将其进一步化简:方法一:方法二:(1)请用两种不同的方法化简: ;(2)化简: .21.阅读下面计算过程:请解决下列问题:(1)根据上面的规律,请直接写出=________;(2)利用上面的解法,请化简:;(3)你能根据上面的知识化简吗?若能,请写出化简过程.22.观察下列式子变形过程,完成下列任务:(1)类比上述变形过程的基本思路,猜想的结果并验证;(2)算:.23.计算下列各式(1)________;(2)________;(3)________;(4)根据所学知识找到计算上面算式的简便方法,请你利用你找到的简便方法计算下式:24.观察下列有规律的数:,,,,,…根据规律可知(1)第个数是________,第个数是________(为正整数);(2)是第________个数;(3)计算.25.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).26.如果有理数、满足,试求…… 的值.27.如果有理数a,b满足,试求的值。

华师版七上数学精选找规律专题18道-附答案和考点详解

华师版七上数学精选找规律专题18道-附答案和考点详解

华师版七上数学精选找规律专题18道一.选择题(共6小题)1.观察图中正方形四个顶点所标的数字的规律,可知数2018应标在( )A .第504个正方形的左下角B .第505个正方形的左上角C .第504个正方形的右下角D .第505个正方形的右上角2.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( ) A .61()2mB .71()2mC .81()2mD .121()2m3.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .60584.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .2945.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,⋯,你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:20203的个位数字是()A .1B .3C .7D .96.观察式子:3211=,332212(12)3+=+=,33322123(123)6++=++=,3333221234(1234)10+++=+++=,⋯,根据你发现的规律,计算3333335678910+++++的结果是( ) A .2925B .2025C .3225D .2625二.填空题(共4小题)7.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).8.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,⋯⋯,移动2019次后,该点所对应的数是 .9.古希腊数学家把数1,3,6,10,15,21,⋯叫做三角数,它有一定的规律性.若把第一个三角数记为1a ,第二个三角数记为2a ⋯,第n 个三角数记为n a ,计算12a a +,23a a +,34a a +,⋯由此推算399400a a += .10.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是 .三.解答题(共8小题)11.观察下列等式的规律,解答下列问题:1122()212a =+,2122()223a =+,3122()234a =+,4122()245a =+,⋯⋯. (1)第5个等式为 ;第n 个等式为 (用含n 的代数式表示,n 为正整数); (2)设112S a a =-,234S a a =-,356S a a =-,⋯⋯,100820152016S a a =-.求1231008S S S S +++⋯⋯+的值.12.如图,将连续的奇数1,3,5,7⋯按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若17x=,则a b c d+++=.(2)移动十字框,用x表示a b c d+++=.(3)设M a b c d x=++++,判断M的值能否等于2020,请说明理由.13.探索规律:观察下面由※组成的图案和算式,并解答问题21342+==213593++==21357164+++==213579255++++==(1)试猜想13579..19++++++=;试猜想13579922222++++⋯+=;(2)试猜想13579(21)(21)(23)n n n+++++⋯+-++++=;(3)写出过程,请用上述规律计算出最后数值并用科学记数法表示100110031005..19971999+++++.14.观察下面三行数:2-,4,8-,16,32-,64 ⋯①0,6,6-,18,30-,66⋯②1-,2,4-,8,16-,32⋯③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系? (3)取每行数的第十个数,计算这三个数的和.15.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推. (1)阴影部分的面积是 ; (2)如果继续分割下去,部分的面积为 ;(3)受此启发,请你求出711112482+++⋯+的值.16.探究与应用: 观察下列各式: 13+=2135++= 21357+++= 213579++++= 2⋯⋯问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(1)(3)(5)(7)(2019)-+-+-+-+⋯+-.(结果用科学记数法表示) 17.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:1132321123232323236--=-===⨯⨯⨯⨯,反之,这个式子仍然成立,即:1132321162323232323-===-=-⨯⨯⨯⨯ (1)问题发现 观察下列等式:①1212111121212122-==-=-⨯⨯⨯⨯, ②13232112323232323-==-=-⨯⨯⨯⨯, ③14343113434342334-==-=-⨯⨯⨯⨯,⋯, 猜想并写出第n 个式子的结果:1(1)n n =+ .(直接写出结果,不说明理由) (2)类比探究将(1)中的的三个等式左右两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯,类比该问题的做法,请直接写出下列各式的结果:①111112233420192020+++⋯+=⨯⨯⨯⨯ ; ②1111122334(1)n n +++⋯+=⨯⨯⨯+ ; (3)拓展延伸 计算:1111133********+++⋯+⨯⨯⨯⨯. 18.某餐厅中,一张桌子可坐6人,有以下两种摆放方式: (1)当有n 张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?华师版七上数学精选找规律专题18道参考答案与试题解析一.选择题(共6小题)1.观察图中正方形四个顶点所标的数字的规律,可知数2018应标在( )A .第504个正方形的左下角B .第505个正方形的左上角C .第504个正方形的右下角D .第505个正方形的右上角【分析】根据数字在图形上的变化,寻找规律即可求解. 【解答】解:观察图形的数字的变化规律,可知 (101)423+÷=⋯∴数10应标在第3个正方形的左上角;(141)433+÷=⋯∴数14应标在第4个正方形的左上角;⋯(20181)45043+÷=⋯∴数2018应标在第505个正方形的左上角;故选:B .【点评】本题考查了图形的变化规律,解决本题的关键是根据数字的变化寻找规律. 2.一根1m 长的绳子,第1次剪去一半,第2次剪去剩下绳子的一半.如此剪下去,剪第8次后剩下的绳子的长度是( ) A .61()2mB .71()2mC .81()2mD .121()2m【分析】根据题意归纳总结得到一般性规律,确定出所求即可. 【解答】解:第一次剪去全长的12,剩下全长的12, 第二次剪去剩下的12,剩下全长的2111222⨯=, 第三次再剪去剩下的12,剩下全长的23111222⨯=,如此剪下去,第8次后剩下的绳子的长为8881111()()222m ⨯==. 故选:C .【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.3.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A .6055B .6056C .6057D .6058【分析】设第n 个图形有n a 个〇(n 为正整数),观察图形,根据各图形中〇的个数的变化可找出“13(n a n n =+为正整数)”,再代入2019a =即可得出结论. 【解答】解:设第n 个图形有n a 个〇(n 为正整数),观察图形,可知:1131a =+⨯,2132a =+⨯,3133a =+⨯,4134a =+⨯,⋯, 13(n a n n ∴=+为正整数), 20191320196058a ∴=+⨯=.故选:D .【点评】本题考查了规律型:图形的变化类,根据各图形中〇的个数的变化找出变化规律“13(n a n n =+为正整数)”是解题的关键.4.中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是( )A .10B .89C .165D .294【分析】根据计数规则可知,从右边第1位的计数单位为05,右边第2位的计数单位为15,右边第3位的计数单位为25,右边第4位的计数单位为35⋯⋯依此类推,可求出结果. 【解答】解:321025153545294⨯+⨯+⨯+⨯=, 故选:D .【点评】本题考查用数字表示事件,理解“逢五进一”的计数规则是正确计算的前提. 5.观察下列各式:133=,239=,3327=,4381=,53243=,63729=,⋯,你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:20203的个位数字是() A .1B .3C .7D .9【分析】根据题意可得出尾数每4个一循环,进而求出答案.【解答】解:133=,239=,3327=,4381=,53243=,63729=,⋯,∴尾数每4个一循环,3,9,7,1,20204505÷=,20203∴的个位数字是:1.故选:A .【点评】本题考查了规律型:数字的变化类,有理数的乘方,尾数特征,观察得到每4个数为一个循环组依次进行循环是解题的关键.6.观察式子:3211=,332212(12)3+=+=,33322123(123)6++=++=,3333221234(1234)10+++=+++=,⋯,根据你发现的规律,计算3333335678910+++++的结果是( ) A .2925B .2025C .3225D .2625【分析】根据题意找到规律:3333322(1)1234(1234)[]2n n n n ++++⋯+=++++⋯+=即可.【解答】解:3211=,332212(12)3+=+=, 33322123(123)6++=++=, 3333221234(1234)10+++=+++=,⋯,3333321234(1234)n n ∴+++⋯+=++++⋯+, 3333335678910+++++333333333(123410)(1234)=+++⋯+-+++ 22(123410)(1234)=++++⋯+-+++ 2210(101)4(41)[][]22⨯+⨯+=-225510=- 2925=.故选:A .【点评】本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化寻找规律. 二.填空题(共4小题)7.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 41n + 个涂有阴影的小正方形(用含有n 的代数式表示).【分析】观察不难发现,后一个图案比前一个图案多4个涂有阴影的小正方形,然后写出第n 个图案的涂有阴影的小正方形的个数即可.【解答】解:由图可得,第1个图案涂有阴影的小正方形的个数为5, 第2个图案涂有阴影的小正方形的个数为5219⨯-=, 第3个图案涂有阴影的小正方形的个数为53213⨯-=,⋯,第n 个图案涂有阴影的小正方形的个数为5(1)41n n n --=+. 故答案为:41n +.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多4个基础图形”是解题的关键.8.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,⋯⋯,移动2019次后,该点所对应的数是 1010 .【分析】先表示出前6次移动后所对应的数,从而得出第n 次移动后,若n 为偶数,则对应的点表示的数为2n-,若n 为奇数,则对应的点表示的数为12n +,据此求解可得.【解答】解:第1次移动后对应的数为1, 第2次移动后对应的数为1-, 第3次移动后对应的数为2, 第4次移动后对应的数为2-, 第5次移动后对应的数为3, 第6次移动后对应的数为3-,⋯⋯∴第n 次移动后,若n 为偶数,则对应的点表示的数为2n -; 若n 为奇数,则对应的点表示的数为12n +, 当2019n =时,该点所对应的数为2019110102+=, 故答案为:1010.【点评】本题主要考查数字的变化规律,解题的关键是根据前几次的移动得出第n 次移动后,若n 为偶数,则对应的点表示的数为2n -,若n 为奇数,则对应的点表示的数为12n +的规律.9.古希腊数学家把数1,3,6,10,15,21,⋯叫做三角数,它有一定的规律性.若把第一个三角数记为1a ,第二个三角数记为2a ⋯,第n 个三角数记为n a ,计算12a a +,23a a +,34a a +,⋯由此推算399400a a += 51.610⨯或160000 .【分析】首先计算12a a +,23a a +,34a a +的值,然后总结规律,根据规律可以得出结论. 【解答】解:21242a a +==;2233693a a +=+==;234610164a a +=+==;⋯∴21(1)n n a a n ++=+;∴25399400400160000 1.610a a +===⨯.故答案为:51.610⨯或160000.【点评】本题考查的是规律发现,根据计算12a a +,23a a +,34a a +的值可以发现规律为21(1)n n a a n ++=+,发现规律是解决本题的关键.10.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是 184 .【分析】正方形中的四个数字之间具有的规律是:左下方格中的数字比左上方格中的数字大2,右上方格中的数字比左上方格中的数字大4,且左下方格中的数字与右上方格中的数字的乘积等于左上方格中的数字与右下方格中数字的和.利用此规律结论可求. 【解答】解:依据正方形中的四个数字之间具有的规律,可得:131511m ⨯=+, 184m ∴=.故答案为:184.【点评】本题主要考查了数字的变化的规律,有理数的混合运算,正确发现数字的规律是解题的关键.三.解答题(共8小题)11.观察下列等式的规律,解答下列问题:1122()212a =+,2122()223a =+,3122()234a =+,4122()245a =+,⋯⋯. (1)第5个等式为122()256+ ;第n 个等式为 (用含n 的代数式表示,n 为正整数); (2)设112S a a =-,234S a a =-,356S a a =-,⋯⋯,100820152016S a a =-.求1231008S S S S +++⋯⋯+的值.【分析】(1)根据规律写出结论,再将第n 个式子化简;(2)分别计算112S a a =-,234S a a =-,356S a a =-,⋯⋯,100820152016S a a =-.再代入所求式子,可得结论.【解答】解:(1)由题意得:5122()256a =+;122()21n a n n ∴=++;故答案为:122()256+,122()21n n ++;(2)由(1)可知111n a n n =++, 1121111(1)()12233S a a ∴=-=+-+=-,234111111()()344535S a a =-=+-+=-,356111111()()566757S a a =-=+-+=-,⋯⋯⋯1008201520161111()()2015201620162017S a a =-=+-+ 1120152017=-, 1231008S S S S ∴+++⋯+,1111111(1)()()()3355720152017=-+-+-+⋯+-,112017=-, 20162017=. 【点评】此题考查数字的变化规律,利用数字之间的联系与运算的方法,得出规律,进一步利用规律,解决问题.12.如图,将连续的奇数1,3,5,7⋯按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a ,b ,c ,d ,x 表示. (1)若17x =,则a b c d +++= 68 . (2)移动十字框,用x 表示a b c d +++= .(3)设M a b c d x =++++,判断M 的值能否等于2020,请说明理由.【分析】观察图1,可知:12a x =-,2b x =-,2c x =+,12d x =+. (1)当17x =时,找出a 、b 、c 、d 的值,将其相加即可求出结论;(2)由12a x =-、2b x =-、2c x =+、12d x =+,即可求出a b c d +++的值;(3)根据2020M =,即可得出关于x 的一元一次方程,解之即可求出x 的值,由x 为偶数即可得出M 不能为2020.【解答】解:观察图1,可知:12a x =-,2b x =-,2c x =+,12d x =+. (1)当17x =时,5a =,15b =,19c =,29d =, 515192968a b c d ∴+++=+++=.故答案为:68.(2)12a x =-,2b x =-,2c x =+,12d x =+, (12)(2)(2)(12)4a b c d x x x x x ∴+++=-+-++++=.故答案为:4x .(3)M 的值不能等于2020,理由如下: 令2020M =,则42020x x +=, 解得:404x =. 404是偶数不是奇数,∴与题目x 为奇数的要求矛盾,M ∴不能为2020.【点评】本题考查了规律型中数字的变化类以及一元一次方程的应用,解题的关键是:(1)将a 、b 、c 、d 四个数相加;(2)观察图1,用含x 的代数式表示出a 、b 、c 、d ;(3)由2020M =,列出关于x 的一元一次方程.13.探索规律:观察下面由※组成的图案和算式,并解答问题 21342+== 213593++== 21357164+++== 213579255++++==(1)试猜想13579..19++++++= 100 ; 试猜想13579922222++++⋯+= ; (2)试猜想13579(21)(21)(23)n n n +++++⋯+-++++= ; (3)写出过程,请用上述规律计算出最后数值并用科学记数法表示 100110031005..19971999+++++.【分析】(1)根据题目中数字的特点,可以求得所求式子的值; (2)根据题目中式子的特点可以求得所求式子的值; (3)根据题目中的例子和式子的特点可以求得所求式子的值. 【解答】解:(1)213579..1910100++++++==,2135799135995012502222222+++⋯+++++⋯+===, 故答案为:100,1250;(2)2223113579(21)(21)(23)()(2)2n n n n n +++++++⋯+-++++==+, 故答案为:2(2)n +;(3)100110031005..19971999+++++ (1351999)(135999)=+++⋯+-+++⋯+ 22199919991()()22++=-221000500=-(1000500)(1000500)=+⨯- 1500500=⨯ 750000=57.510=⨯.【点评】本题考查数字的变化类、有理数的混合运算、科学记数法,解答本题的关键是明确题意,发现题目中数字的变化特点,求出所求式子的值. 14.观察下面三行数:2-,4,8-,16,32-,64 ⋯①0,6,6-,18,30-,66⋯②1-,2,4-,8,16-,32⋯③(1)第①行数按什么规律排列? (2)第②③行数与第①行数有什么关系?(3)取每行数的第十个数,计算这三个数的和.【分析】(1)观察可看出第一行的数分别是2-的一次方,二次方,三次方,四次方⋯且奇数项是负数,偶数项是正数,用式子表示规律为:(2)n -;(2)观察可知,第②行数比第①行相对应的数大2;第③行数是第①行相对应的数的12; (3)根据规律分别求得第10个数的值,再求其和即可. 【解答】解:(1)(2)n -;(2)第②③行数与第①行数的关系为:第②行数比第①行相对应的数大2;第③行数是第①行相对应的数的12; (3)第一行的第十个数为:1024; 第二行的第十个数为:1026; 第三行的第十个数为:512; 102410265122562++=.故这三个数的和为:2562.【点评】此题主要考查学生对规律型题的掌握情况,做此类题要求学生对给出的条件仔细观察从而找出规律.15.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推. (1)阴影部分的面积是164; (2)如果继续分割下去,部分的面积为 ;(3)受此启发,请你求出711112482+++⋯+的值.【分析】(1)根据图形和题意,可以得到阴影部分的面积;(2)根据图形和题意,可以得到部分的面积;(3)根据图形和题目中式子的特点,可以计算出所求式子的值. 【解答】解:(1)由题意可得, 阴影部分的面积是:611()264=,故答案为:164; (2)由题意可得, 部分的面积为:1()2n ,故答案为:1()2n ;(3)711112482+++⋯+ 7112=-77212-= 1281128-=127128=. 【点评】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中数字的变化特点,求出所求式子的值. 16.探究与应用: 观察下列各式: 13+= 22135++= 21357+++= 213579++++= 2⋯⋯问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(1)(3)(5)(7)(2019)-+-+-+-+⋯+-.(结果用科学记数法表示) 【分析】(1)根据从1开始连续n 个奇数和等于奇数的个数n 的平方即可得;(2)根据以上所得规律列式表示即可; (3)先提取负号,再利用所的规律求解可得. 【解答】解:(1)2132+= 21353++= 213574+++= 2135795++++=⋯⋯故答案为:2、3、4、5;(2)第n 个等式为21357(21)n n ++++⋯++=; (3)原式(135792019)=-+++++⋯+ 21004=-61.00801610=-⨯.【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出从1开始连续n 个奇数和等于奇数的个数n 的平方的规律.17.小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减.”如:1132321123232323236--=-===⨯⨯⨯⨯,反之,这个式子仍然成立,即:1132321162323232323-===-=-⨯⨯⨯⨯ (1)问题发现 观察下列等式: ①1212111121212122-==-=-⨯⨯⨯⨯, ②13232112323232323-==-=-⨯⨯⨯⨯, ③14343113434342334-==-=-⨯⨯⨯⨯,⋯, 猜想并写出第n 个式子的结果:1(1)n n =+ 111n n -+ .(直接写出结果,不说明理由) (2)类比探究将(1)中的的三个等式左右两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯,类比该问题的做法,请直接写出下列各式的结果:①111112233420192020+++⋯+=⨯⨯⨯⨯ ; ②1111122334(1)n n +++⋯+=⨯⨯⨯+ ; (3)拓展延伸 计算:1111133********+++⋯+⨯⨯⨯⨯. 【分析】(1)根据题目中的式子可以写出第n 个式子的结果;(2)①根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; ②根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值; (3)根据题目中式子的特点,可以求得所求式子的值. 【解答】解:(1)由题目中的式子可得, 111(1)1n n n n =-++, 故答案为:111n n -+; (2)①111112233420192020+++⋯+⨯⨯⨯⨯ 111111112233420192020=-+-+-+⋯+-112020=- 20192020=, 故答案为:20192020; ②1111122334(1)n n +++⋯+⨯⨯⨯+ 11111111223341n n =-+-+-+⋯+-+ 111n =-+ 1nn =+, 故答案为:1nn +; (3)1111133********+++⋯+⨯⨯⨯⨯ 11111111(1)23355799101=⨯-+-+-+⋯+-11=⨯-(1)21011100=⨯210150=.101【点评】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.18.某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)当有n张桌子时,两种摆放方式各能坐多少人?(2)一天中午餐厅要接待98位顾客共同就餐,但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?【分析】能够根据桌子的摆放发现规律,然后进行计算判断.【解答】解:(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是64(1)42+-=+.n n第二种中,有一张桌子是6人,后边多一张桌子多2人,即62(1)24n n+-=+.(2)中,分别求出两种对应的n的值,或分别求出25n=时,两种不同的摆放方式对应的人数,即可作出判断.打算用第一种摆放方式来摆放餐桌.因为,当25⨯+=>n=时,425210298当25n=时,22545498⨯+=<所以,选用第一种摆放方式.【点评】关键是通过归纳与总结,得到其中的规律.。

人教版七年级数学上册小专题练习四《有理数-探索规律题》(含答案)

人教版七年级数学上册小专题练习四《有理数-探索规律题》(含答案)

人教版七年级数学上册小专题练习四《有理数-探索规律题》一、选择题1.观察下列各式: - 2x ,4x 2, - 8x 3,16x 4, - 32x 5,…则第n 个式子是( )A.- 2n - 1x nB.( - 2)n - 1x nC.- 2n x nD.( - 2)n x n2.下图是一个运算程序的示意图,若开始输入x 的值为125,则第2 016次输出的结果为( )A.125B.25C.1D.53.如图是由一些点组成的图形,按此规律,第n 个图形中点的个数为( )A.n 2+1B.n 2+2C.2n 2+2D.2n 2 - 14.如图,下列每个图都是由若干个点组成的形如三角形的图案,每条边(包括两个顶点)有n 个点,每个图案的总点数是S ,按此推断S 与n 的关系式为( )A.S=3nB.S=3(n - 1)C.S=3n - 1D.S=3n +15.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A.135B.170C.209D.2526.有一列数a 1,a 2,a 3,a 4,…,a n ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a 1=2,则a 2018的值为( )A.2B.- 1C.12D.2018 7.a 是不为1的有理数,我们把称为a 的差倒数,如2的差倒数为=﹣1,﹣1的差倒数=,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2019的值是( )A .5 B.﹣ C . D .8.如下表,从左到右在每个小格子中都填入一个整数..,使得其中任意三个相邻..格子中所填整数之和都相等,则第2014个格子中的数为( )A.3B.2C.0D.-19.已知一列数:1,-2,3,-4,5,-6,7,…将这列数排成下列形式:按照上述规律排下去,那么第100行从左边数第5个数是( )A.-4955B.4955C.-4950D.495010.计算:,,,,,归纳各计算结果中的个位数字规律,猜测22022-1的个位数字是()A.1 B.3 C.7 D.5二、填空题11.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c=________.12.观察下列等式:1=12,1+3=22, 1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2 015=_________.13.已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.14.如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为.15.观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.16.正整数按如图的规律排列.请写出第20行,第21列的数字.参考答案1.答案为:D2.答案为:D.3.答案为:B4.答案为:B.5.答案为:C6.答案为:C7.答案为:D.8.答案为:B;解析:已知其中任意三个相邻格子中所填整数之和都相等,则3+a+b=a+b+c,a+b+c=b+c-1,所以a=-1,c=3,按要求排列顺序为,3,-1,b,3,-1,b,…,再结合已知表得:b=2,所以每个小格子中都填入一个整数后排列是:3,-1,2,3,-1,2,…,得到:每3个数一个循环,则:2014÷3=670余3,因此第2011个格子中的数为2.故选B9.答案为:B10.答案为:B11.答案为:110.12.答案为:10082.13.答案为:21014.答案为:1解析:依次求出每次输出的结果,根据结果得出规律,即可得出答案.解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1010,即输出的结果是1,故答案为:115.答案为:﹣.解析:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.16.答案为:420;。

七年级数学上册《第一章-有理数》有理数找规律专题练习题-(新版)新人教版(含知识点)

七年级数学上册《第一章-有理数》有理数找规律专题练习题-(新版)新人教版(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学有理数找规律专题1.观察下面的每列数,按某种规律在横线上适当的数。

(1)-23,-18,-13,______,________; ; (2)2345,,,8163264--,_______,_________; 2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.3.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是( )A. 2B. 4C. 6D. 84.一根lm 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )A.31()2m B. 51()2m C. 61()2m D. 121()2m5.下面一组按规律排列的数:1,2,4,8,16.......,第2011个数应是( )A. 22011B. 22011-1C.22010D .以上答案不对 6.观察,寻找规律(1) 0.12=________,12=_________,102=__________,1002=___________;(2)0.13=_________,13=_________,103=__________,1003=___________; 观察结果,你发现什么了?7.观察下列三行数:第一行:-1,2,-3,4,-5…… 第二行:1,4,9,16,25,…… 第三行:0,3,8,15,24,…… (1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系? (3)取每行的第10个数,计算这三个数的和. 变式:8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示. 有规律排列的一列数:1,-2,3,-4,5,-6,7,-8...... (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2012是不是这列数中的数?如果是,是第几个数?9.如果对于任意非零有理数a,b 定义运算如下:a △b=ab +1,那么(-5)△(+4)△(-3)的值是多少?11.先完成下列计算:1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.12.如果1+2-3-4+5+6-7-8 +9+……,是从1开始的连续整数中依次两个取正, 两个取负写下去的一串数,则前2012个数的和是多少?依照以上各式成立的规律,使44a b a b +--=2成立,则a+b 的值为____________ 14.观察下列各式:12+1=1×2 22+2=2×3 32+3=3×4请把你猜想到的规律用自然数n 表示出来___________________ 15.老师在黑板上写出三个等式:52-32=8×2,92-72=8×4,152-32=8×27王华接着又写了两个具有同样规律的算式:112-52 =8×12,152-72=8×22(1)请你写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出反映上述算式的规律.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2 22+(2×3)2+32 =(2×3+1)232+(3×4)2 +42=(3×4+1)2(1)写出第6个式子的值; (2)写出第n个式子.18.研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1 =9=323×5+1=16=42 4×6+1 =25=52请你找出规律用公式表示出来:___________________1. (2011浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”()A.28B.56C.60D. 1242. (2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.3. (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆. (用含 n 的代数式表示)2020-2021七年级上册4. (2011湖南常德)先找规律,再填数:1111111111111111,,,,122342125633078456 (111)+_______.2011201220112012+-=+-=+-=+-=-=⨯则5.(2011湖南益阳)观察下列算式:① 1 × 3 - 22= 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1 ④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.6.研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52…………, (1) 请用含n 的式子表示你发现的规律:___________________. (2) 请你用发现的规律解决下面问题 计算11111(1)(1)(1)(1)(1)13243546911+++++⨯⨯⨯⨯⨯的值第1个图形第 2 个图形第3个图形第 4 个图形人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

精选七年级数学上册有理数找规律解答题难题专题训练

精选七年级数学上册有理数找规律解答题难题专题训练

精选七年级数学上册有理数找规律解答题难题专题训练一、解答题1.我们知道13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,13+23+33+43=100=14×42×52…… (1)猜想:13+23+33+…+(n -1) 3+n 3=14×( ) 2×( ) 2.(2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.2.有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n 是正整数)来表示;则有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是,是第几个数?3.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=11x x ,求y 1的值.当x 1>0时,y 1=11x x =11x x =1;当x 1<0时,y 1=11x x =11x x =﹣1,所以y 1=±1 (1)若y 2=11x x +22x x ,求y 2的值 (2)若y 3=11x x +22x x +33x x ,则y 3的值为 ;(3)由以上探究猜想,y 2016=11x x +22x x +33x x +…+20162016x x 共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .4.(1)填空:(a −b)(a +b )=______ ;(a −b)(a 2+ab +b 2)= ______ ;(a −b)(a 3+a 2b +ab 2+b 3)= ______ ;(2)猜想:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)= ______ (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.5.仔细阅读下面的例题,找出其中规律,并解决问题:例:求2342017122222++++++的值.解:令S =2342017122222++++++ ,则2S =23452018222222++++++ , 所以2S ﹣S =201821- ,即S=201821-,所以2342017122222++++++=201821-仿照以上推理过程,计算下列式子的值:① 234100155555++++++ ② 234520161333333-+-+-++6.你会求(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a −1)(a +1)=a 2−1(a −1)(a 2+a +1)=a 3−1(a −1)(a 3+a 2+a +1)=a 4−1(1)由上面的规律我们可以大胆猜想,得到(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)=________利用上面的结论,求(2)22018+22017+22016+⋅⋅⋅+22+2+1的值;(3)求52018+52017+52016+⋅⋅⋅+52+4的值.7.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:⑴第4个图中共有_________根火柴,第6个图中共有_________根火柴;⑵第n 个图形中共有_________根火柴(用含n 的式子表示)⑶若f(n)=2n−1(如f(−2)=2×(−2)−1,f(3)=2×3−1),求f(1)+f(2)++f(2017)2017的值. ⑷请判断上组图形中前2017个图形火柴总数是2017的倍数吗,并说明理由? 8.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++-------- 9.观察以下等式: 第1个等式:101011212++⨯=, 第2个等式:111112323++⨯=, 第3个等式:121213434++⨯=, 第4个等式:131314545++⨯=,第5个等式:14141 5656++⨯=,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.10.先观察:1﹣122=12×32,1﹣132=23×43,1﹣142=34×54,…(1)探究规律填空:1﹣1n2=×;(2)计算:(1﹣122)•(1﹣132)•(1﹣142)…(1﹣120152)11.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?12.观察下列三行数:0,3,8,15,24,…①2,5,10,17,26,…②0,6,16,30,48,…③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和13.观察下列各式:(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……由上面的规律:(1)求25+24+23+22+2+1的值;(2)求22011+22010+22009+22008+…+2+1的个位数字.(3)你能用其它方法求出12+122+123+⋯+122010+122011的值吗?14.有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.15.观察下列等式:第1个等式:1111(1) 1323a==-⨯第2个等式:21111() 35235a==-⨯第3等式:31111() 57257a==-⨯第4个等式:41111() 79279a==-⨯请解答下列问题:(1)按以上规律写出第5个等式:a5==.(2)用含n的式子表示第n个等式:a n==(n为正整数).(3)求a1+a2+a3+a4+…+a2018的值.16.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按这个方法放满整个棋盘就行。

初一数学上册有理数找规律题型专题练习

初一数学上册有理数找规律题型专题练习

初一数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为.5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为.二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为.3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为, 第n个数为.四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律 确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:21,43,65,87,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个 位数字是 ;3. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律1. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,…这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52…………,(1)请用含n的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型1.观察下列三行数:(课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2.观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:第1个图形 第2个图形 第3个图形 第4个图形它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第n 个“广”字中的棋子个数是________6.同样大小的黑色棋子按如图所示的规律摆放:(1) 第5个图形有多少颗黑色棋子? 图案1 图案2 图案3 ……… … 第1幅 第2幅 第3幅 第n 幅 第1个 第2个 第3个 第4个(2)第几个图形有2013颗棋子?说明理由。

部编数学七年级上册专题04有理数运算中的规律探究(解析版)含答案

部编数学七年级上册专题04有理数运算中的规律探究(解析版)含答案

专题04 有理数运算中的规律探究1.观察下列等式:第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø……请解答下列问题:(1)按以上规律列出第5个等式:5a =________=_______(2)用含有n 的式子表示第n 个等式:(n 为正整数)n a =______=_______(3)求12341000a a a a a ++++¼+的值.【答案】(1)1911´,1112911æö´-ç÷èø(2)()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)100201【解析】【分析】(1)根据所给的等式的形式求解即可;(2)根据所给的等式,进行总结可得出规律;(3)利用(2)中的规律进行求解即可.(1)解:观察等式找到规律,第5个等式为: 511119112911a æö==´-ç÷´èø故答案为:1911´,1112911æö´-ç÷èø(2)解:Q 第1个等式:111111323a æö==´-ç÷´èø第2个等式:2111135235a æö==´-ç÷´èø第3个等式:3111157257a æö==´-ç÷´èø第4个等式:4111179279a æö==´-ç÷´èø第5个等式:511119112911a æö==´-ç÷´èø……第n 个等式:()()1111212122121n a n n n n æö==´-ç÷-´+-+èø故答案为:()()12121n n -´+,11122121n n æö´-ç÷-+èø(3)解:12341000a a a a a ++++¼+=11123æö´-ç÷èø+111235æö´-ç÷èø+111257æö´-ç÷èø…+1992011112æö´-ç÷èø11111112335199201æö=-+-+×××+-ç÷èø1112201æö=-ç÷èø12002201=´100201=【点睛】本题主要考查数字的变化规律,解题的关键是由所给的等式总结出存在的规律并灵活运用.2.先阅读下列式子的变形规律:111122=-´;1112323=-´;1113434=-´;1111111113111223342233444++=-+-+-=-=´´´然后再解答下列问题:【注:第(1)小题直接写结果,不用写过程】(1)类比计算:1910=´______,120192020=´______,归纳猜想:若n 为正整数,那么猜想()11n n =+______.(2)知识运用,选用上面的知识计算111112233420192020++++´´´´LL 的结果.(3)知识拓展:试着写出111113355779+++´´´´的结果.【答案】(1)11910-;1120192020-;111n n -+(2)20192020(3)49【解析】【分析】(1)根据题意分解形式求解即可;(2)根据式子规律求解即可;(3)将113´分解成11123æö-ç÷èø的形式,其余各式比照该分解形式进行分解,然后求和计算即可.(1)解:由题意知111910910=-´1112019202020192020=-´()11111n n n n =-´++故答案为:11910-;1120192020-;111n n -+.(2)解:1111······+12233420192020+++´´´´1111111111 (223342018201920192020)=-+-+-++-+-211200=-20192020=(3)解:111113355779+++´´´´11111111111123235257279æöæöæöæö=-+-+-+-ç÷ç÷ç÷ç÷èøèøèøèø11111111123355779æö=-+-+-+-ç÷èø11129æö=´-ç÷èø49=【点睛】本题考查了数字类规律的探究.解题的关键在于概括出分解运算规律.3.(1)观察下列各式:123456733,39,327,381,3243,3729,32187,=======L1234561313,13169,132197,1328561,13371293,134826809,======L根据你发现的规律回答下列问题:①20223的个位数字是___________;9913的个位数字是___________;②9943的个位数字是___________;5543的个位数字是___________;(2)自主探究回答问题:①997的个位数字是___________,557的个位数字是___________;②9952的个位数字是___________,5552的个位数字是___________.(3)若n 是自然数,则9955n n -的个位上的数字( )A .恒为0B .有时为0,有时非0C .与n 的末位数字相同D .无法确定【答案】(1)①9;7 ②7;7 (2)①3;3 ②8;8 (3)A【解析】【分析】(1)根据已知式子可以得到末尾数字4个一循环,据此解得即可;(2)可以先列出7的乘方及2的乘方的式子,可以得到末尾数字4个一循环,据此解得即可;(3)根据(1)(2)中的结论可知99n 与55n 个位上的数字相同即可得出答案.【详解】解:(1)①Q 123456733,39,327,381,3243,3729,32187,=======L\3的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环20224505 (2)¸=Q \20223的个位数字是9;Q 1234561313,13169,132197,1328561,13371293,134826809,======L\13的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424 (3)¸=Q \9913的个位数字是7;故答案为:9;7;②由①可知尾号为3的数的乘方的个位数字依次是3,9,7,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9943的个位数字是7,5543的个位数字是7;故答案为:7;7;(2)①123456777497343724017168077117649...======Q ,,,,,\7的乘方的个位数字依次是7,9,3,1,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\997的个位数字是3,557的个位数字是3故答案为:3;3②123456222428216232264...======Q ,,,,,\2的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环\52的乘方的个位数字依次是2,4,8,6,以此4个数为一个循环依次进行循环99424...355413 (3)¸=¸=Q ,\9952的个位数字是8,5552的个位数字是8故答案为:8;8(3)由(1)(2)中的结论可知99n 与55n 个位上的数字相同\9955n n -的个位上的数字恒为0故选A .【点睛】本题考查数字的变化规律,找出数字之间的规律是解题的关键.4.观察下列各式:3312189+=+=,而2332(12)9,12(12)+=\+=+;33312336++=,而23332(123)36,123(123)++=\++=++;33331234100+++=,而233332(1234)100,1234(1234)+++=\+++=+++;(1)猜想并填空:3333312345++++=_______2=_______;(2)根据以上规律填空:3333123n ++++=L _______2=_______;(3)求解:333331617181920++++.【答案】(1)(1+2+3+4+5),225(2)()123n ++++L ,()212n n +éùêúëû(3)29700【解析】【分析】观察题中一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,据些规律来求解.(1)根据上述规律填空即可求解;(2)根据上述规律填空,然后把123n ++++L 变为2n 个()1n +相乘来求解;(3)对所求的式子前面加上1到15的立方和,然后根据上述规律分别求出1到15的立方和与16到20的立方和,再求出两数相减即可求解.(1)解:由题意可知:()2333331234512345225++++=++++=.故答案为:(1+2+3+4+5),225;(2)解:()()()1121211222n n n n n n n n +éùæö+++=+++-++-+=éùç÷êúëûèøëûQ L L ()()22333311231232n n n n +éù\+++=++++=êúëûL L .故答案为:()123n ++++L ,()212n n +éùêúëû;(3)解:333331617181920++++()()333333331232012315=+++-+++L L()()221232012315=+++-+++L L 22210120=-29700=故答案为:29700.【点睛】本题考查了探究数字规律,主要要求学生综合运用观察、想象、归纳、推理概括等思维方式,运用总结的规律解决问题的能力.找出规律是解答关键.5.爱读书的乐乐在读一本古书典籍上有这么一段记载:相传大禹治水时,“洛水”中出现了一个神龟,其背上有美妙的图案,史称“洛书”.用现在的数字翻译出来,就是三阶幻方,三阶幻方是最简单的幻方,又叫九宫格,其对角线、横行、纵向的数字之和均相等,这个和叫做幻和,正中间那个数叫中心数,且幻和恰好等于中心数的3倍.如图1,是由1、2、3,4、5、6、7、8、9所组成的一个三阶幻方,其幻和为15,中心数为5.(1)如图2所示,则幻和=______;(2)若b=4,c=6,求a的值;(3)通过研究问题(1)和(2),利用你发现的规律,将5,7,-5,3,9,-1,11,-3,1这九个数字分别填入图3的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】(1)-6(2)8(3)图形见解析(答案不唯一)【解析】【分析】(1)根据幻和等于九宫格中最中心数的3倍即可得答案;(2)根据b=4先求出第二行第三列的数字,根据c=6求出第一行第三列的数字,根据对角线求出第一行第一列的数字,最后根据第一行三个数字之和等于幻和即可求解;(3)根据九宫格中所有数字相加,其和为幻和的3倍先求出中心数为3,幻和为9,进一步将数据分成5与1一组,7与-1一组,-5与11一组,9与-3一组,按照此条件分组将数据填入九宫格中即可.(1)解:由题意可知:幻和等于九宫格中最中心数的3倍,∴图2中幻和=-2×3=-6.(2)解:由(1)知幻和为-6,当b=4,c=6时:第二行第三列的数字为:-6-b-(-2)=-6-4+2=-8,第一行第三列的数字为:-6-(-8)-c=-6+8-6=-4,根据对角线可知:第一行第一列的数字为:-6-(-2)-6=-10,∴a=-6-(-10)-(-4)=-6+10+4=8.(3)解:将图3中的九宫格分别标记为A~I,如下图所示:由于九宫格中横行、纵向的数字之和均相等,其和叫做幻和,∴九宫格中所有数字相加,其和为幻和的3倍,∴幻和=(5+7-5+3+9-1+11-3+1)÷3=9,又幻和为九宫格中最中心数的3倍,∴最中心的E代表的数为3,∵对角线、横行、纵向的数字之和是幻和的3倍,∴A+I=6,B+H=6,C+G=6,D+F=6,故5与1一组,7与-1一组,-5与11一组,9与-3一组,只需要满足此条件写出来九宫格必然满足题目要求,取A=5、B=7时,此时I=1,H=-1,G=9,C=-3,D=-5,F=11,如下图所示(答案不唯一):【点睛】本题主要考查数字的变化规律,读懂题意,解题的关键是掌握幻方的定义及幻和与中心数的关系即可.6.探究规律,完成相关题目.将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等.如图所示的三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到33´的方格中得到的,其每一行,每一列,每一条对角线上的三个数字之和都相等.(1)设下面的三阶幻方中间的数字是m (其中m 为正整数),请用含m 的代数式将下面的幻方填充完整;(2)若设(1)幻方中9个数的和为S ,则S 与中间的数字m 之间的数量关系为______;(3)现要用9个数:-40,-30,-20,-10,0,10,20,30,40构造一个三阶幻方,请将构造的幻方填写在下面33´的方格中.【答案】(1)答案见解析;(2)9m S =;(3)答案见解析【解析】【分析】(1)由第3列的三个代数式的和为3,m 再利用每行,每列,每一条对角线上的三个代数式之和相等逐一填好其余的空格,即可得到答案;(2)由每行,每列,每一条对角线上的三个代数式之和相等,可得()3123,S m m m =++++-从而可得答案;(3)由(2)的规律先确定最中间的数据0, 把-40,-30,-20,-10,0,10,20,30,40按从小到大的顺序排列,再把第2,4,6,8个数据放在四角的位置,再根据每行,每列,每一条对角线上的三个数之和相等,填好其余空格即可.【详解】解:(1)1m +4m -3m +2m +m 2m -3m -4m +1m -(2)由每行每列及对角线上的三个代数式的和相等可得:()31239,S m m m m =++++-=故答案为:9.S m =(3)幻方如图所示(答案不唯一):10-4030200-20-3040-10【点睛】本题考查的是数或代数式的排列的规律的探究,有理数的加减运算,整式的加减运算,掌握以上知识是解题的关键.7.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是 A .(+3)+(+2)=+5;B .(+3)+(﹣2)=+1;C .(﹣3)﹣(+2)=﹣5;D .(﹣3)+(+2)=﹣1②一机器人从原点O 开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是 .(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为2018(A 在B 的左侧,且折痕与①折痕相同),且A 、B 两点经折叠后重合,则A 点表示 B 点表示 .③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为 .(用含有a ,b 的式子表示)【答案】(1)①D ; ②﹣1009(2)①﹣2015; ②﹣1008,1010;③2a b+【解析】【分析】(1)①根据有理数的加法法则即可判断;②探究规律,利用规律即可解决问题;(2)①根据对称中心是1,即可解决问题;②由对称中心是1,AB =2018,可知A 点是1左边距1为1009个单位的点表示的数,B 点是1右边距1为1009个单位的点表示的数,即可求出点A 、B 所表示的数;③利用中点坐标公式即可解决问题.(1)解:①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D .②一机器人从数轴原点处O 开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是(﹣1)+(+2)+(﹣3)+(+4)+…+(+2016)+(﹣2017)=1×1008+(﹣2017)=﹣1009,故答案为:﹣1009.(2)①若折叠纸条,表示﹣1的点与表示3的点重合, 132-+=1,∴对称中心为1,∴2017﹣1=2016,∴1﹣2016=﹣2015,∴表示2017的点与表示﹣2015的点重合,故答案为:﹣2015;②∵对称中心为1,AB =2018,∴点A 所表示的数为:1﹣20182=﹣1008,点B 所表示的数为:1+20182=1010,故答案为:﹣1008,1010;③若数轴上折叠重合的两点的数分别为a ,b ,折叠中间点表示的数为2a b+;故答案为:2a b+.【点睛】本题考查了数轴、有理数的加减混合运算、折叠等知识,理解题意,灵活应用所学知识是解决问题的关键.8.观察下面三行数:2,4-,8,16-,32,64-,……; ①0,6-,6,18-,30,66-,……; ②1-,2,4-,8,16-,32,……; ③观察发现:每一行的数都是按一定的规律排列的.通过你发现的规律,解决下列问题.(1)第①行的第8个数是________,第n 个数是________;(2)第②行的第n 个数是________,第③行的第n 个数是________;(3)取每行数的第10个数,计算这三个数的和.【答案】(1)256-;1(1)2n n +- ;(2)1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)1538-【解析】【分析】(1)第①行有理数是按照1(1)2n n +-排列的;(2)第②行为第①行的数减2;第③行为第①行的数的一半的相反数,分别写出第n 个数的表达式即可;(3)根据各行的表达式求出第10个数,然后相加即可得解.【详解】解:(1)第①行的有理数分别是﹣1×2, ﹣1×22,23, ﹣1×24,…,故第8个数是861522´=-﹣,第n 个数为(﹣2)n (n 是正整数);故答案为:256-;1(1)2n n +- ;(2)第②行的数等于第①行相应的数减2,即第n 的数为1(1)22n n +--(n 是正整数),第③行的数等于第①行相应的数的一半的相反数,即第n 个数是11(1)2()2n n +-´-或1(1)2n n --(n 是正整数);故答案为:1(1)22n n +--, 11(1)2()2n n+-´-或1(1)2n n --;(3)∵第①行的第10个数为101011(1)22--=,第②行的第10个数为1022--,第③的第10个数为1099(1)22-=,所以,这三个数的和为:101092(22)2-+--+1024(10242)512=-+--+102410242512=---+1538=-【点睛】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.9.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7-6|=7-6;|6-7|=-6+7;|-6-7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7+2|=;②|-12+15|=;(2)用简单的方法计算:|13-12|+|14-13|+|15-14|+……+|12021-12020|.【答案】(1)①7+2;②1125-;(2)20194042【解析】【分析】(1)①②根据正数的绝对值等于本身,负数的绝对值是其相反数可得答案;(2)根据绝对值的性质化简,再相互抵消可得答案.【详解】解:(1)①∵7+20> ,∴|7+2|=7+2;②∵11025-+< ,∴|-12+15|=1125-;(2)原式=11111111+...+23344520202021-+-+-- ,1122021=- ,=20194042.【点睛】本题考查有理数的混合运算,熟练地掌握运算法则和绝对值的性质是解题关键.10.给定一列数,我们把这列数中的第一个数记为1a ,第二个数记为2a ,第三个数记为3a ,以此类推,第n 个数记为n a (n 为正整数).例如下面这列数1,3,5,7,9中,11a =,23a =,35a =,47a =,59a =.规定运算1123(:)n n sum a a a a a a =+++¼¼+,即从这列数的第一个数开始依次加到第n 个数,如在上面这列数中:1312313(:)59sum a a a a a =++=++=.(1)已知一列数-1,2,-3,4,-5,6,-7,8,-9,10.则110(:)sum a a =______.(2)已知一列有规律的数:1(1)1-´,2(1)2-´,3(1)3-´,4(1)4-´,¼¼,按照规律,这列数可以无限的写下去.①求12021(:)sum a a 的值.②是否有正整数n 满足等式1(:)50n sum a a =-成立?如果有,请直接写出n 的值.如果没有,请说明理由.【答案】(1)5;(2)①-1011;②n =99.【解析】【分析】(1)直接根据题中所给定义运算进行求解即可;(2)①由题意可知()12341,2,3,4, (1)n a a a a a n =-==-==-×,由此可得20212021a =-,然后求解即可;②由题意易得()12345....150nn -+-+-++-×=-,进而求解即可.【详解】解:(1)由题意得:110(:)123456789105sum a a =-+-+-+-+-+=,故答案为5.(2)解:由题意得:()12341,2,3,4, (1)n a a a a a n =-==-==-×,∴12021(:)sum a a =-1+2-3+4···+2020-2021=1×1010-2021=-1011.②由题意得:()12345....150nn -+-+-++-×=-,∴当n 为奇数时,则有11502n n -´-=-,解得:n =99,当n 为偶数时,则有1502n ´=-,解得:100n =-,(不符合题意,舍去),∴综上所述:n =99.【点睛】本题主要考查含乘方的有理数混合运算及数字规律问题,熟练掌握含乘方的有理数混合运算及数字规律问题是解题的关键.11.细心观察下面三个图形,按下述方法找出规律.(1)分别写出前面三个图形四角中四个数的积分别是 、 、 ;(2)分别写出前面三个图形四角中四个数的和分别是、、;(3)请你说明你发现的规律找出第四个正方形中的数,并说明理由.【答案】(1)24,60,120;(2)-10,-13,-16;(3)191,理由见解析【解析】【分析】(1)根据有理数乘法的性质计算,即可得到答案;(2)根据有理数加法的性质计算,即可得到答案;(3)根据有理数乘法和加法的性质计算,并结合前三个图形的数字规律,即可完成求解.【详解】(1)(-1)×(-2)×(-3)×(-4)=24;(-1)×(-3)×(-5)×(-4)=60;(-1)×(-4)×(-5)×(-6)=120;故答案为:24,60,120;(2)(-1)+(-2)+(-3)+(-4)=-10;(-1)+(-3)+(-5)+(-4)=-13;(-1)+(-4)+(-5)+(-6)=-16;故答案为:-10,-13,-16;(3)(-1)×(-5)×(-6)×(-7)=210;(-1)+(-5)+(-6)+(-7)=-19;∵第1个正方形中的数()241014=+-= 第2个正方形中的数()601347=+-=第3个正方形中的数()12016104=+-=∴第四个正方形中的数()21019191=+-=.【点睛】本题考查了有理数加减法、乘法,以及数字规律的知识;解题的关键是熟练掌握有理数加减法和乘法的性质,结合数字规律,从而完成求解.12.一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位到达点A 2;第二次从点A 2向左移动3个单位,再向右移动4个单位到达点A 3;第三次从点A 3向左移动5个单位,再向右移动6个单位到达点A 4,…,点P 按此规律移动,那么:(1)第一次移动后这个点P 在数轴上表示的数是 ;(2)第二次移动后这个点P 在数轴上表示的数是 ;(3)第五次移动后这个点P 在数轴上表示的数是 ;(4)这个点P 移动到点An 时,点An 在数轴上表示的数是 .【答案】(1)﹣1;(2)0;(3)3;(4)﹣2+n .【解析】【分析】(1)根据题意可得第一次移动后这个点P 在数轴上表示的数是﹣1;(2)第二次移动后这个点P 在数轴上表示的数是2120-+´=;(3)第五次移动后这个点P 在数轴上表示的数是2153-+´=;(4)这个点P 移动到点An 时,点An 在数轴上表示的数212n n -+´=-+.【详解】解:(1)记某次向左移动m 个单位长度,则向右移动()1m +个单位长度,从而每次移动的实际量为:123411,m m -+=-+=-++=∵一跳蚤P 从数轴上表示﹣2的点A 1开始移动,第一次先向左移动1个单位,再向右移动2个单位∴211-+=-,即第一次移动后这个点P 在数轴上表示的数是﹣1故答案为﹣1(2)∵2120,-+´=∴第二次移动后这个点P 在数轴上表示的数是0故答案为0(3)∵2153,-+´=∴第五次移动后这个点P 在数轴上表示的数是3故答案为3(4)∵212n n -+´=-+,∴这个点P 移动到点An 时,点An 在数轴上表示的数是﹣2+n 故答案为﹣2+n ,【点睛】本题考查的是点在数轴上的移动规律的探究,有理数的加法运算,掌握数轴上点的移动后对应的数的变化规律是解题的关键.13.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请写出满足上述规律的第6行等式:__________;(2)请猜想1+3+5+7+9+…+39=_____;(写出具体数值)(3)请猜想1+3+5+7+9+…+(2n ﹣1)+(2n +1)=_____;(用含n 的式子表示)(4)请用上述规律计算:51+53+55+…+87+89.(写出计算过程)【答案】(1)1+3+5+7+9+11=62;(2)400;(3)(n +1)2;(4)1400【解析】(1)类比得出第6行等式为:1+3+5+7+9+11=62;(2)由图形可知,从1开始的连续奇数的和等于奇数的个数的平方,然后根据此规律求解即可;(3)利用(1)(2)的规律推出一般规律即可;(4)用从1到89的连续奇数的和减去从1到49的连续奇数的和,进行计算即可得解.【详解】解:(1)第6行等式:1+3+5+7+9+11=62;(2)1至39共有(39+1)÷2=20个奇数,∴1+3+5+7+9+…+39=202=400;(3)1+3+5+7+9+…+(2n -1)+(2n +1)=22112n ++æöç÷èø=(n +1)2;(4)51+53+55+…+87+89=1+3+5+7+…+87+89-(1+3+5+7+…+47+49)=2289149122++æöæö-ç÷ç÷èøèø=452-252=2025-625=1400.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,解决问题.14.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,124,6K K ==,……按此规律排列下去,第n 个图形中实心圆的个数表示为Kn .(1)n K =______(用n 表示):100K =_______(2)我们在用“*”定义一种新运算:对于任意有理数a 和正整数n .规定*2n na K a K a n -++=,例如:223336|36|(3)*2322K K --+-+--+-+-===-.①计算:(26.6)*10-的值;②比较:3*n 与(3)*n -的大小.【答案】(1)2(n +1),202;(2)①-22;②3☆n >(-3)☆n 【解析】【分析】(1)由图形可知:第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,…由此得出第n 个图形中有2(n +1)个实心圆,进一步代入求得答案即可;(2)①根据规定的运算顺序与计算方法,转化为有理数的混合运算计算即可;②根据规定的运算顺序与计算方法分别计算得出结果比较得出结论即可.【详解】解:(1)Q 第1个图形中有4个实心圆,第2个图形中有6个实心圆,第3个图形中有8个实心圆,¼2(1)n K n \=+;1002(1001)202K =´+=;(2)①(26.6)-*10101026.6|26.6|2K K --+-+=26.6(2102)|26.6(2102)|2--´++-+´+=22=-;②n Q 是正整数,224n K n \=+…;3\*n3|3|2n n K K -++=332n nK K -++=3=,(3)-*n3|3|2n n K K --+-+=332n nK K ---+=3=-.n>-*n.所以3*(3)【点睛】此题考查图形的变化规律,有理数的混合运算,找出图形的运算规律,理解规定的运算方法是解决问题的关键.。

七年级数学上册有理数找规律题型专题练习

七年级数学上册有理数找规律题型专题练习

七年级数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为 .3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:,,,,…… ,它们是按一定规律排列的. 那么这一组21436587数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;3. 若,,,… ;则的值为 .1113a =-2111a a =-3211a a =-2014a 六、算式型规律1. 已知22223322333388+=⨯+=⨯,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,...这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1)请用含n 的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算的值11111(1)(1)(1)132********+++++⨯⨯⨯⨯⨯ 七、数列阵型1.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?第1个图形第2个图形第3个图形第4个图形(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2. 观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第个n 图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.图案1图案2图案3…………第1幅第2幅第3幅第n 幅5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第个“广”字中的棋子个数是________n 6.同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由。

2024-2025学年七年级数学上册第1章有理数重难点专项训练[含答案]

2024-2025学年七年级数学上册第1章有理数重难点专项训练[含答案]

第1章有理数——重难点内容范围:1.1~1.2一、单选题1.下列各组数中,互为相反数的是( )A .2024-和2024-B .2024和12024C .2024-和2024D .2024-和120242.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲亚洲欧洲非洲南美洲最低海拔/m 415-28-156-40-其中最低海拔最小的大洲是( )A .亚洲B .欧洲C .非洲D .南美洲3.一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5-C .3-D .104.若2|30|m n -++=,则2m n +的值为( )A .﹣4B .﹣1C .0D .45.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .2a -<B .1b <C .a b >D .a b->二、填空题6.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如下表.数字形式123456789纵式横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:,则“”表示的数是 .7.已知a b 、互为相反数,、c d 为倒数,且3m =,则()202422024a b cd m ++-+的值为 .8.函数1y x x a =-+-的最小值为3,则a 的值为 .9.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为6-,b ,3,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对应刻度5.4cm .(1)该数轴上的一个单位长度对应刻度尺上的cm ;(2)数轴上点B 所对应的数b 为 .10.如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数2023-将与圆周上的数字 重合.三、解答题11.把下列各数填入相应的集合中:()0.75-+,14æö--ç÷èø,29%-,0.332-,45-,0,200-,1.010010001…,273æö-+ç÷èø,0.3,()5-+.整数集合{ …}负有理数集合{ …}非正分数集合{ …}12.把下列各数在数轴上表示出来,并将各数按从小到大的顺序排列,用“<”连接.123, 12-,()3-+,3-,0.13.(1)比较下列各式的大小:23-+ 23-+;1123-+- 1123--;05+- 05-;(2)通过(1)的比较,请你分析归纳出当a ,b 为有理数时,a b +与a b +的大小关系.(3)根据(2)中你得出的结论,求当55x x +=-|时,求x 的取值范围.14.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是【M ,N 】美好点的是_;写出【N ,M 】美好点H 所表示的数是_.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?15.当代印度著名诗人泰戈尔在《世界上最遥远的距离》中写道,世界上最遥远的距离,不是瞬间便无处寻觅,而是尚未相遇,便注定无法相聚.距离是数学、天文学、物理学中的热门话题,唯有对宇宙距离进行测量,人类才能掌握世界尺度.我们可以从图形和代数化简两个角度来计算距离:①已知点A B ,在数轴上分别表示有理数a b ,,A B ,两点之间的距离表示为||AB a b =-,例如|2|x -表示x 到2的距离,而|1||(1)|a a +=--则表示a 到1-的距离;②我们知道:()(0)00(0)x x x x x x >ìï==íï-<î,于是可以用这一结论来化简含有绝对值的代数式.例如化简|1||2|x x ++-时,可先令10x +=和20x -=,分别求得=1x -,2x =(称1-和2分别为|1||2|x x ++-的零点值),在实数范围内,零点值=1x -和2x =可将全体实数分成不重复且不遗漏的如下3种情况:①1x <-;②12x -£<;③2x ³.从而化简|1||2|x x ++-可分以下3种情况:①当1x <-时,原式(1)(2)21x x x =-+--=-+;②当12x -£<时,原式1(2)3x x =+--=;③当2x ³时,原式1221x x x =++-=-.综上,原式=21(1)3(12)21(2)x x x x x -+<-ìï-£<íï-³î结合以上材料,回答以下问题:(1)化简代数式|1||2|x x ++-;(2)化简代数式|1|2|1|x x +--.1.A【分析】本题考查相反数.根据只有符号不同的两个数互为相反数,结合绝对值的意义逐项判断即可.【详解】解:A 、20242024-=和2024-互为相反数,故A 选项符合题意;B 、2024和12024互为倒数,故B 选项不符合题意;C 、20242024-=和2024不互为相反数,故C 选项不符合题意;D 、2024-和12024不互为相反数,故D 选项不符合题意;故选:A .2.A【分析】此题主要考查了负数的大小比较,掌握负数比较大小,绝对值大的反而小是解题关键.比较各负数的绝对值,绝对值最大的,海拔就最低,故可得出答案.【详解】415415-=,2828-=,156156-=,4040-=∵4151564028>>>,∴8415156024-<-<-<-,∴海拔最低的是亚洲.故选:A .3.C【分析】本题考查了绝对值的意义,正负数的意义,直接利用正负数的意义以及绝对值的意义可得最接近标准是哪一袋.【详解】解:∵超过标准质量的克数用正数表示,不足的克数用负数表示.∴35710-<-<+<∴最接近标准质量的是3-故选:C .4.B 【分析】由2|30|m n -++= 可得30m=﹣且20n +=,解得3m =,2n =-,再将其代入式子即可求解.【详解】解:由题意得:30m -=且20n +=,解得:3m =,2n =-,将3m =,2n =-代入232(2)1m n +=+´-=-,故选:B .【点睛】本题考查了绝对值的意义,熟练掌握绝对值的非负性是解题的关键.5.D【分析】根据数轴上的点的特征即可判断.【详解】解:点a 在-2的右边,故a >-2,故A 选项错误;点b 在1的右边,故b >1,故B 选项错误;b 在a 的右边,故b >a ,故C 选项错误;由数轴得:-2<a <-1.5,则1.5<-a <2,1<b <1.5,则a b ->,故D 选项正确,故选:D .【点睛】本题考查了数轴上的点,熟练掌握数轴上点的特征是解题的关键.6.7628【分析】本题考查了算筹计数法,根据题意用算筹计数法计数即可.【详解】解:千位上“”对应横式中的7,百位上“”对应纵式中的6,十位上“”对应横式中的2,个位上“”对应纵式中的8,\“”表示的数是7628.故答案为:76287.10【分析】本题考查了相反数、倒数的定义,绝对值的性质,代数式求值,利用相反数、倒数的定义和绝对值的性质可求得0a b +=,1cd =,29m =,再代入算式计算即可求解,掌握相反数、倒数的定义和绝对值的性质是解题的关键.【详解】解:∵a b 、互为相反数,、c d 为倒数,∴0a b +=,1cd =,∵3m =,∴29m =,∴原式()202401910=+-+=,故答案为:10.8.4或2-【分析】本题考查了绝对值的定义,a 是指一个数a 到0的距离,根据函数1y x x a =-+-的最小值为3,得出x 在1和a 的之间,且y 是1和a 的之间的距离为3,列式13y a =-=,进行计算,即可作答.【详解】解:∵1y x x a=-+-∴根据绝对值的意义,y 是指x 到1和x 到a 的距离之和∵函数1y x x a =-+-的最小值为3,∴此时x 在1和a 的之间,且y 是1和a 的之间的距离为3即13y a =-=∴13a -=±∴4或2-故答案为:4或2-.9. 0.6##35 3-【分析】本题主要考查了实数与数轴:(1)先求出在数轴上点A 和点C 的距离为9,再由刻度尺上点A 与点C 的距离除以数轴上点A 和点C 的距离即可得到答案;(2)用刻度尺上点A 与点B 的距离除以0.6得到数轴上点A 和点B 的距离即可得到答案.【详解】解:(1)∵数轴上点A 和点C 表示的数分别为6-,3,∴在数轴上点A 和点C 的距离为()369--=,∵在刻度尺上数字0对齐数轴上的点A ,点C 对应刻度5.4cm ,∴该数轴上的一个单位长度对应刻度尺上的5.40.6cm 9=,故答案为:0.6;(2)∵在刻度尺上点B 对应刻度1.8cm ,∴在数轴上点A 和点B 的距离为1.830.6=,∴数轴上点B 所对应的数b 为633-+=-,故答案为:3-.10.0【分析】本题考查了数轴,解题的关键是找到数轴上的数与圆周上数字之间的对应关系.根据周长为4个单位长度,利用2023-除以4,进而可得答案.【详解】解:根据题意得:202345053-¸=-L ,Q 圆周上数字0所对应的点与数轴上的数1所对应的点重合,\数轴上的0对应圆周上的1,\数轴上的数2023-将与圆周上的数字0重合,故答案为:0.11.见解析【分析】本题考查了有理数的分类,首先对数字进行化简整理,再根据有理数的分类,逐一判断即可得到结果.关键在于对每个数进行正确的判断,不能遗漏.【详解】解:()0.750.75-+=-,1144æö--=ç÷èø,29%0.29-=-,4455-=,200200-=,2793æö-+=-ç÷èø,()55-+=-,整数集合{0,200-,273æö-+ç÷èø,()5-+…},负有理数集合{()0.75-+,29%-,0.332-,273æö-+ç÷èø,()5-+…},非正分数集合{()0.75-+,29%-,0.332-…}.12.各数表示见解析,11(3)02|3|23-+<-<<<-【分析】本题考查了数轴,有理数的大小比较的应用,能根据数轴上数的位置比较两个数的大小是解此题的关键.先在数轴上表示各个数,再根据数轴上右边的数总比左边的数大比较即可.【详解】解:()33-+=-,|3|3-=,把123,12-,(3)-+,|3|-,0表示在数轴上如图所示∶∴11(3)02|3|23-+<-<<<-.13.(1)>,=,=;(2)a b a b +³+;(3)0x £【分析】主要考查了绝对值的性质以及从特殊归纳一般方法的能力.要熟悉绝对值的性质和有理数的加减运算法则.(1)通过计算可比较大小;(2)从特殊归纳出一般规律,a b a b +³+;(3)当x 和5-的符号相同时,55x x +=-,所以0x £.【详解】解:(1)①左边5=,右边1=,所以左边>右边;②左边1123=+,右边1123=+,所以左边=右边;③左边5=,右边5=,左边=右边.(2)两数的绝对值的和大于或等于两数和的绝对值.即当a ,b 为有理数时,a b a b +³+.(3)当x 和5-的符号相同时,55x x +=-,所以0x £.14.(1)G ;4-或16-(2)1.5,2.25,3,6.75,9,13.5【分析】本题考查数轴上的动点问题、数轴上两点之间的距离、点是【M ,N 】的美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,须区分各种情况分别确定P 点的位置,进而可确定t 的值.【详解】(1)解:根据美好点的定义,18GM =,9GN =,2GM GN =,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定4-符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是16-.故答案为:4-或16-;(2)解:根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分8种情况,第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当2MP PN =时,3PN =,点P 对应的数为231-=-,因此 1.5t =秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM PN =时,6NP =,点P 对应的数为264-=-,因此3t =秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当2PN MN =时,18NP =,点P 对应的数为21816-=-,因此9t =秒;第四种情况,M 为【P ,N 】的美好点,点P 在M 左侧,如图4,当2MP MN =时,27NP =,点P 对应的数为22725-=-,因此13.5t =秒;第五种情况,M 为【N ,P 】的美好点,点P 在M 左侧,如图5,当2MN MP =时,13.5NP =,点P 对应的数为213.511.5-=-,因此 6.75t =秒;第六种情况,M 为【N ,P 】的美好点,点P 在M ,N 左侧,如图6,当2MN MP =时, 4.5NP =,因此 2.25t =秒;第七种情况,N 为【P ,M 】的美好点,点P 在M 左侧,当2PN MN =时,18NP =,因此9t =秒,第八种情况,N 为【M ,P 】的美好点,点P 在M 右侧,当2MN PN =时, 4.5NP =,因此 2.25t =秒,综上所述,t 的值为:1.5,2.25,3,6.75,9,13.5.15.(1)()21(1)123(12)212x x x x x x x ì-+<-ï++-=-£<íï-³î;(2)()3(1)12131(11)31x x x x x x x x ì-<-ï+--=--£<íï-+³î.【分析】(1)根据题目中的范例解得即可求解;(2)根据题目中的范例解得即可求解;本题考查了化简绝对值,运用分类讨论思想解答是解题的关键.【详解】(1)解:当1x <-时,原式1(2)21x x x =----=-+;当12x -£<时,原式1(2)3x x =+--=;当2x ³时,原式1(2)21x x x =++-=-;∴()21(1)123(12)212x x x x x x x ì-+<-ï++-=-£<íï-³î;(2)解:当1x <-时,原式12(1)3x x x =--+-=-;当1<1x £-时,原式()12131x x x =++-=-;当1x ³时,原式12(1)3x x x =+--=-+,∴()3(1)12131(11)31x x x x x x x x ì-<-ï+--=--£<íï-+³î.。

(完整版)七年级找规律经典题汇总带答案

(完整版)七年级找规律经典题汇总带答案

一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n—1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;……由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若 (21010)规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

七年级数学上册《第一章-有理数》有理数找规律专题练习题-(新版)新人教版(含知识点)

七年级数学上册《第一章-有理数》有理数找规律专题练习题-(新版)新人教版(含知识点)

2021-2022学年度 秋季 七年级上学期 人教版数学有理数找规律专题1.观察下面的每列数,按某种规律在横线上适当的数。

(1)-23,-18,-13,______,________; ; (2)2345,,,8163264--,_______,_________; 2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.3.观察下列算式:21=2,22 =4,23 =8,24=16,25 =32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是( )A. 2B. 4C. 6D. 84.一根lm 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为( )A.31()2m B. 51()2m C. 61()2m D. 121()2m5.下面一组按规律排列的数:1,2,4,8,16.......,第2011个数应是( )A. 22011B. 22011-1C.22010D .以上答案不对 6.观察,寻找规律(1) 0.12=________,12=_________,102=__________,1002=___________;(2)0.13=_________,13=_________,103=__________,1003=___________; 观察结果,你发现什么了?7.观察下列三行数:第一行:-1,2,-3,4,-5…… 第二行:1,4,9,16,25,…… 第三行:0,3,8,15,24,…… (1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系? (3)取每行的第10个数,计算这三个数的和. 变式:8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示. 有规律排列的一列数:1,-2,3,-4,5,-6,7,-8...... (1)它的每一项你认为可用怎样的式子来表示? (2)它的第100个数是多少?(3)2012是不是这列数中的数?如果是,是第几个数?9.如果对于任意非零有理数a,b 定义运算如下:a △b=ab +1,那么(-5)△(+4)△(-3)的值是多少?11.先完成下列计算:1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.12.如果1+2-3-4+5+6-7-8 +9+……,是从1开始的连续整数中依次两个取正, 两个取负写下去的一串数,则前2012个数的和是多少?依照以上各式成立的规律,使44a b a b +--=2成立,则a+b 的值为____________ 14.观察下列各式:12+1=1×2 22+2=2×3 32+3=3×4请把你猜想到的规律用自然数n 表示出来___________________ 15.老师在黑板上写出三个等式:52-32=8×2,92-72=8×4,152-32=8×27王华接着又写了两个具有同样规律的算式:112-52 =8×12,152-72=8×22(1)请你写出两个(不同于上面算式)具有上述规律的算式; (2)用文字写出反映上述算式的规律.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2 22+(2×3)2+32 =(2×3+1)232+(3×4)2 +42=(3×4+1)2(1)写出第6个式子的值; (2)写出第n个式子.18.研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1 =9=323×5+1=16=42 4×6+1 =25=52请你找出规律用公式表示出来:___________________1. (2011浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”()A.28B.56C.60D. 1242. (2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.3. (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆. (用含 n 的代数式表示)2020-2021七年级上册4. (2011湖南常德)先找规律,再填数:1111111111111111,,,,122342125633078456 (111)+_______.2011201220112012+-=+-=+-=+-=-=⨯则5.(2011湖南益阳)观察下列算式:① 1 × 3 - 22= 3 - 4 = -1② 2 × 4 - 32= 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1 ④ ……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.6.研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52…………, (1) 请用含n 的式子表示你发现的规律:___________________. (2) 请你用发现的规律解决下面问题 计算11111(1)(1)(1)(1)(1)13243546911+++++⨯⨯⨯⨯⨯的值第1个图形第 2 个图形第3个图形第 4 个图形人教版七年级数学上册必须要记、背的知识点1.有理数:(1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等 4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小; (4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

初一数学上册找规律题型11种常考类型+真题演练

初一数学上册找规律题型11种常考类型+真题演练

初一数学上册找规律题型11种常考类型+真题演练初一数学上册:找规律题型11种常考类型+真题演练(含答案)_个数_数列_数字【找规律题目的类型】★设计类(1)用图形反映规律★数字类(1)与数阵有关的问题(2)等差型数列规律(3)等比型数列规律(4)含平方型数列规律(5)其它数列规律列举(6)循环型数列★计算类(1)根据已知等式探究规律(2)探究算式的计算规律★图形类(1)与视图、展开图有关的问题(2)几何图形变化规律题真题演练一、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?答案:(1)1004的平方(2)n+1的平方2.下列数列的后两位数字应该填什么数字?2 3 5 8 12 17 __ __答案:23 30。

数列中每两个相邻数字之差分别为1,2,3,4,5,6和7。

三、请填出下面横线上的数字。

1 123 5 8 ____ 21答案:13。

序列后面的数字是前面两个相邻数字的和。

四、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?答案:34 。

考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。

每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。

五、有一串数字 3 6 10 15 21___ 第6个是什么数?答案:28。

3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。

其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。

六、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( A )A.1 B.2 C.3 D.4七、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为___个.答案:33八、观察排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个答案:602、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称)答案:圆九、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.答案:10000end。

七年级(上)数学【找规律】经典题汇总带答案

七年级(上)数学【找规律】经典题汇总带答案

……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。

1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。

整理七年级数学上册《第一章有理数》有理数找规律专题练习题(新版)新人教版

整理七年级数学上册《第一章有理数》有理数找规律专题练习题(新版)新人教版

11.简案1课时师:谁来说说你们的发现?(动画效果,单击)2.口算比赛(1)6×2 =(1) 20×4=(2)6×20 =(2) 10×4=(3)6×200=(3) 5×4=师:两组算式的积分别得多少?(动画效果,单击)你们怎么算得这么快呀?今天我们就来学习找规律——积的变化规律。

新授1.观察发现师:看来,这两组算式中可能隐藏着某些联系、某些规律,为了便于发现,我们就一起按一定的顺序来观察。

(1)6×2 =(1) 20×4=(2)6×20 =(2) 10×4=(3)6×200=(3) 5×4=学生观察,师生交流:(1)三个都是什么算式?乘号两边的两个数叫什么?乘得的结果叫什么?(2)整体看这三个乘法算式,什么变了?什么没变?下面我们就具体研究一下因数怎么变的,积怎么变的?积的变化有没有规律,有什么规律?积的变化规律。

(板书课题:积的变化规律)(3)从上向下观察这三个乘法算式:(动画效果,单击)第一组:从(1)式到(2)式,一个因数怎样?另一个因数怎样?积呢?看来(1)式和(2)式间有这种关系,还有哪两个算式之间存在这种关系?从(1)式到(3)式,因数和积发生了怎样的变化?从(2)式到(3)式呢?两人互相说一说。

(学生观察算式。

学生将发现的规律说给自己的同伴听。

全班汇报交流发现的规律,并说说自己是怎么想的。

)同理第二组。

(动画效果,单击)2.大胆猜想刚才我们观察了(1)式和(2)式、(1)式和(3)式、(2)式和(3)式,你们发现什么共同的规律了吗?(学生讨论因数变化的规律,汇报交流规律。

)(乘法算式中,一个因数不变,另一个因数乘几,积也乘几) 同理第二组:(在乘法算式中,一个因数不变,另一个因数除以几,积也除以几。

)3.举例验证要想知道这2个猜想是不是在任何情况下都成立,是否正确?我们可以怎么办?(板书:举例验证)两人一组举例验证,我们刚才的猜想是否成立。

小学七年级数学上册难点探究专题:有理数中的规律探究(含答案)

小学七年级数学上册难点探究专题:有理数中的规律探究(含答案)

小学七年级数学上册难点探究专题:有理数中的规律探究(选做)——从特殊到一般,探寻多方规律◆类型一 一列数中的规律1.找规律,并按规律填上第5个数:-32,54,-78,916, . 2.(济宁中考)按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为 W.3.(随州月考)给定一列按规律排列的数:12,25,310,417,…,则这列数的第6个数是( )A.637B.635C.531D.739◆类型二 计算中的规律一、四则运算中的规律4.(河北模拟)某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依自己顺序数的倒数加1,第1位同学报⎝⎛⎭⎫11+1,第2位同学报⎝⎛⎭⎫12+1,第3位同学报⎝⎛⎭⎫13+1,这样得到的前20个数的积为 . 5.(无锡校级月考)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,则5!= = ,100!98!= .6.(咸阳校级月考)计算:1-3+5-7+9-11+…+97-99.二、乘方运算中的规律7.(深圳模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22016的末位数字是 .8.(孝感中考)观察下列等式:1=12,1+3=22,1+3+5=32,1+3+5+7=42,…,则1+3+5+7+…+2015= .三、图形中与数的计算的有关规律9.(泉州中考)找出下列各图形中数的规律,依此,a 的值为 .10.(北京中考)百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”表示澳门回归日期,最后一行中间两位“23 50”表示澳门面积,…,同时它也是十阶幻方,即其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.◆类型三 数轴中的规律11.(石家庄模拟)如图,在数轴上点A 表示1,现将点A 沿数轴做如下移动:第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律,则点A 13,A 14之间的距离是.参考答案与解析1.-1132 2.293.A 4.21 解析:⎝⎛⎭⎫11+1⎝⎛⎭⎫12+1⎝⎛⎭⎫13+1…⎝⎛⎭⎫120+1=2×32×43×…×2120=21. 5.5×4×3×2×1 120 99006.解:1-3+5-7+9-11+…+97-99=(1-3)+(5-7)+(9-11)+…+(97-99)=-2×502=-50. 7.6 8.100829.226 解析:根据题意得出规律a =15×16-14=226.10.505 解析:1~100的总和为(1+100)×1002=5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为5050÷10=505.11.42 解析:因为第一次点A 向左移动3个单位长度至点A 1,则A 1表示的数为1-3=-2,第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为-2+6=4,所以A1A2=4-(-2)=6=2×3.因为第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4-9=-5,所以A2A3=4-(-5)=9=3×3.因为第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为-5+12=7,所以A3A4=7-(-5)=12=4×3,…,所以A13A14=(13+1)×3=42.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选七年级数学上册有理数找规律解答题难题专题训练一、解答题1.我们知道13=1=14×12×22,13+23=9=14×22×32,13+23+33=36=14×32×42,13+23+33+43=100=14×42×52…… (1)猜想:13+23+33+…+(n -1) 3+n 3=14×( ) 2×( ) 2.(2)计算:①13+23+33+…+993+1003;②23+43+63+…+983+1003.2.有规律排列的一列数:2,4,6,8,10,12,…,它的每一项可用式子2n(n 是正整数)来表示;则有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2 017是不是这列数中的数?如果是,是第几个数?3.已知x 1,x 2,x 3,…x 2016都是不等于0的有理数,若y 1=11x x ,求y 1的值.当x 1>0时,y 1=11x x =11x x =1;当x 1<0时,y 1=11x x =11x x =﹣1,所以y 1=±1 (1)若y 2=11x x +22x x ,求y 2的值 (2)若y 3=11x x +22x x +33x x ,则y 3的值为 ;(3)由以上探究猜想,y 2016=11x x +22x x +33x x +…+20162016x x 共有 个不同的值,在y 2016这些不同的值中,最大的值和最小的值的差等于 .4.(1)填空:(a −b)(a +b )=______ ;(a −b)(a 2+ab +b 2)= ______ ;(a −b)(a 3+a 2b +ab 2+b 3)= ______ ;(2)猜想:(a -b )(a n -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)= ______ (其中n 为正整数,且n≥2);(3)利用(2)猜想的结论计算:①29+28+27+…+22+2+1②210-29+28-…-23+22-2.5.仔细阅读下面的例题,找出其中规律,并解决问题:例:求2342017122222++++++的值.解:令S =2342017122222++++++ ,则2S =23452018222222++++++ , 所以2S ﹣S =201821- ,即S=201821-,所以2342017122222++++++=201821-仿照以上推理过程,计算下列式子的值:① 234100155555++++++ ② 234520161333333-+-+-++6.你会求(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:(a −1)(a +1)=a 2−1(a −1)(a 2+a +1)=a 3−1(a −1)(a 3+a 2+a +1)=a 4−1(1)由上面的规律我们可以大胆猜想,得到(a −1)(a 2018+a 2017+a 2016+⋅⋅⋅+a 2+a +1)=________利用上面的结论,求(2)22018+22017+22016+⋅⋅⋅+22+2+1的值;(3)求52018+52017+52016+⋅⋅⋅+52+4的值.7.下列是用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:⑴第4个图中共有_________根火柴,第6个图中共有_________根火柴;⑵第n 个图形中共有_________根火柴(用含n 的式子表示)⑶若f(n)=2n−1(如f(−2)=2×(−2)−1,f(3)=2×3−1),求f(1)+f(2)++f(2017)2017的值. ⑷请判断上组图形中前2017个图形火柴总数是2017的倍数吗,并说明理由? 8.观察下列算式:111111111111;;;2121262323123434==-==-==-⨯⨯⨯…… (1)通过观察,你得到什么结论?用含n (n 为正整数)的等式表示:________.(2)利用你得出的结论,计算:1111(1)(2)(2)(3)(3)(4)(4)(5)a a a a a a a a +++-------- 9.观察以下等式: 第1个等式:101011212++⨯=, 第2个等式:111112323++⨯=, 第3个等式:121213434++⨯=, 第4个等式:131314545++⨯=,第5个等式:14141 5656++⨯=,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.10.先观察:1﹣122=12×32,1﹣132=23×43,1﹣142=34×54,…(1)探究规律填空:1﹣1n2=×;(2)计算:(1﹣122)•(1﹣132)•(1﹣142)…(1﹣120152)11.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?12.观察下列三行数:0,3,8,15,24,…①2,5,10,17,26,…②0,6,16,30,48,…③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和13.观察下列各式:(x−1)(x+1)=x2−1(x−1)(x2+x+1)=x3−1(x−1)(x3+x2+x+1)=x4−1……由上面的规律:(1)求25+24+23+22+2+1的值;(2)求22011+22010+22009+22008+…+2+1的个位数字.(3)你能用其它方法求出12+122+123+⋯+122010+122011的值吗?14.有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这2016个数的和,即,求证:.15.观察下列等式:第1个等式:1111(1) 1323a==-⨯第2个等式:21111() 35235a==-⨯第3等式:31111() 57257a==-⨯第4个等式:41111() 79279a==-⨯请解答下列问题:(1)按以上规律写出第5个等式:a5==.(2)用含n的式子表示第n个等式:a n==(n为正整数).(3)求a1+a2+a3+a4+…+a2018的值.16.这是一个很著名的故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏?阿基米德对国王说:“我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按这个方法放满整个棋盘就行。

”国王以为要不了多少粮食,就随口答应了,结果国王输了.(1)我们知道,国际象棋共有64个格子,则在第64格中应放多少米?(用幂表示)(2)请探究第(1)中的数的末位数字是多少?(简要写出探究过程.)(3)你知道国王输给了阿基米德多少粒米吗?为解决这个问题,我们先来看下面的解题过程:用分数表示无限循环小数:.解:设①.等式两边同时乘以10,得②.将②-①得:92x=,则29x=,∴.请参照以上解法求出国王输给阿基米德的米粒数(用幂的形式表示).17.观察下列等式:第一个等式:a1=21+3×2+2×22=12+1−122+1第二个等式:a2=221+3×22+2×(22)2=122+1−123+1第三个等式:a3=231+3×23+2×(23)2=123+1−124+1第四个等式:a4=241+3×24+2×(24)2=124+1−125+1按上述规律,回答下列问题:(1)请写出第六个等式:a6=______=______;(2)用含n的代数式表示第n个等式:a n=______=______;(3)a1+a2+a3+a4+a5+a6=______(得出最简结果);(4)计算:a1+a2+⋯+a n.18.我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):表一表二(1)仔细观察,表一中a为大于1的奇数,此时b、c的数量关系是_____________,a、b、c之间的数量关系是_________________________;(2)仔细观察,表二中a 为大于4的偶数,此时b 、c 的数量关系是_____________,a 、b 、c 之间的数量关系是_________________________;(3)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,12,13”与表二中的“10,24,26”恰好也成倍数关系……请直接利用这一规律计算:在Rt △ABC 中,当3a 5=,4b 5=时,斜边c 的值.19.观察以下一系列等式:①21﹣20=2﹣1=20;②22﹣21=4﹣2=21;③23﹣22=8﹣4=22;④_____:…(1)请按这个顺序仿照前面的等式写出第④个等式:_____;(2)根据你上面所发现的规律,用含字母n 的式子表示第n 个等式:_____;(3)请利用上述规律计算:20+21+22+23+ (2100)20.观察下列有规律的数:12,16,112,120,130,142…根据规律可知()1第7个数是________,第n 个数是________(n 为正整数);()12132是第________个数;()3计算1111111...261220304220162017+++++++⨯.21.观察下列算式,你发现了什么规律?12=1236⨯⨯;12+22=2356⨯⨯;12+22+32 =3476⨯⨯;12+22 +32 + 42 =4596⨯⨯;…(1)根据你发现的规律,计算下面算式的值;22221238+++=________;(2)请用一个含n 的算式表示这个规律:2222123n +++=_________22.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.23.把2100个连续的正整数1、2、3、……、2100,按如图方式排列成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是___________(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值;若不能,说明理由(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,请直接写出7个数中最大的数与最小的数之差.24.观察下面的一组分式:2ba,52ba-,83ba,114ba-,145ba…(1)求第10个分式是多少?(2)列出第n个分式.25.一张长方形的桌子有6个座位,小刚和小丽分别用长方形桌子设计了一种摆放方式:(1)小刚按方式一将桌子拼在一起如左图.3张桌子在一起共有______个座位,n张桌子拼在一起共有______个座位。

相关文档
最新文档