中学数学建模(实用课件)

合集下载

《数学建模》课件

《数学建模》课件

第一章课程概述§1.1 数学模型与数学建模一.基本概念数学是研究现实世界中数量关系和空间形式的科学。

其产生以及许多重大发展都是和现实世界的生产活动和其他相应学科的需要密切相关的;同时,作为认识和改造世界的强有力的工具,又促进了科学技术和生产建设的发展。

特别在当今时代,由于计算机软硬件的迅速发展和普及,数学方法被广泛应用于生产实践、社会管理的各个领域和层面。

对具体的应用问题或问题类进行合理的简化假设以及适当的抽象并最终表述为某种数学结构,即我们在这里讨论的数学模型,是现代生产实践与社会生活实现优化决策和科学管理的必要环节。

而数学建模则是指根据实际需要或最终管理目标,对现实问题构建数学模型,对模型进行分析求解,并最终将模型解翻译为决策方案应用于实际的一个由诸多环节组成的一个完整过程。

为理解现实对象与数学模型的关系,以下给出数学建模的一个流程图:二.(引例1)椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?三.(引例2)商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?椅子的平稳放置问题将(四脚)椅子置于不平的地面,通常只有三只脚着地,放不稳;然而只需稍挪动几次,就可以使四只脚同时着地,放稳了——这是我们在日常生活中遇到的一件很普通的事实。

这一现象是偶然的呢,还是有其必然性呢?以下的模型给出了肯定的回答。

一.模型假设:1.椅子四条腿一样长,椅脚与地面接触处可视为一点,四脚的连线呈正方形;2.地面高度是连续变化的,沿任何方向都不会出现间断(没台阶)。

即地面可视为数学上的连续曲面;3.对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置上至少有三只脚同时着地。

数学建模的简单实例ppt课件

数学建模的简单实例ppt课件
数学建模的简单实例
§1.1 方桌问题
问题:适当变换方桌的方位,能否将方桌放稳?
分析:问题的目标是“放
A
A
D
稳”。“放稳”可以用各
脚离地面的高度这一数量
B

指标来表达。于是,引入
各脚离地面的高度的数学
记号。
B
C
C
1
依次记 A、B、fc fD
A
D
fA( ) fB ( ) fC ( ) fD ( )
2
注意到,在任何情况下,总有三只脚能同时着地,且这三 只脚中总有两只脚处在对角位置上,于是我们记:
f ( ) fB( ) fD( ) g( ) fA( ) fC ( )
则 有 , f ( ) g( ) 0
仓库;可关闭2号或3号仓库。 公司不主张仓库的个数 超过4个。 由于向客户供货的运费和仓库改建的费用
均由公司负担, 故需建模为公司选择方案。
若有可能, 应将所建模型推广为适应于类似地更一般 情 形 下 的 方 案 选 择。
13
问题分析
公司的目标是费用尽可能小
费用是怎样构成的
工厂到仓库
运输费用
工厂到客户 问题分析

0
cij Ai到B j及Ck的单位运输费;
d jk B j到Ck的单位运输费;
e1 B1扩建的月增费; e5 B5的月增费; e2 , e3 B2 , B3变更时发生的费用;
保留B2 关闭B2
;
xij

Ai
到B
j
及C
的运
k
量;
新建B5 不建B5
;
y jk

B
j
到C
的运

第2讲 数学建模初等模型优秀课件

第2讲 数学建模初等模型优秀课件
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的

内 热传导系数 为k2,单位时间通过单

Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q =kΔT/d
dl d
Q
k1
T1
d
Ta
k2 Ta
x y 其分中 别为(x和ix,yi和i) yi
的平均值
x O
解相应方程组,求得:
a
b
y
n i 1
(xi
n
i1
x)( (xi
yi x)
2
ax
y)
例1(举重成绩的比较)
举重重量是级一(种上限一体般人都能看懂成的绩运动,它共分
九个重量重级),有两抓种举(主公要斤的) 比赛挺举方(法公:斤)抓举
Tb l
k1 Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1 2
T2 k1l k2d
f(h)
1室
室 外
0.9 0.8
内 T1
类似有
Q
Q'
k1
T1 T2 2d
2
T2 0.7 0.6
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5

1.4.1数学建模实例课件高二上学期数学北师大版选择性(1)

1.4.1数学建模实例课件高二上学期数学北师大版选择性(1)



6.用什么洗涤剂(忽略);


7.洗衣的程序(忽略);

8.水温(忽略);
影响衣服漂洗洁净度涉及哪些因素?这些因素中哪些是主要因素?哪些因素可 能会使建模的困难增大,从而可先暂时忽略?



假设







根据假设,建立漂洗后残留污物的数学模型.
漂洗拧干后与漂洗前比较,衣服上残留的污物有什么关系?
在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.能 根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.
1.数学建模步骤 (1)提出一个实际情境和一个实际问题; (2)把问题用自然语言陈述得更清楚、准确; (3)相关因素分析和假设,尽量将遇到的关键变量分析清楚,如果需要,可以做多次分 析和假设,做多个模型; (4)建立数学模型并求解; (5)对于数学模型得到的结果,用自然语言描述出来,并通过实际检验,如果不符合实 际,就需要修改假设,修改数学模型,重复第2,3,4,5步的过程.
在上面的数学建模活动中,做了模型的假设:每次漂洗所用的清水量相等.请思 考如果每次漂洗所用的清水量不相等,结果又怎样呢?
结论: 通过分析,说明只漂洗2次的情况下,所用的清水量相等的漂洗效果最佳. 一般地,在用水总量和漂洗次数都相同的情况下, 等量用水漂洗比不等量用水漂洗下的 最后残留污物量要少.
“漂洗次数越多,衣服越干净”的结论正确吗? 分析:为了简单起见,通过只比较平均用水共漂洗2次比漂洗1次要好进行分析.
2.数学建模活动后思考 (1)改进已有模型,从而建立新的模型,使新的模型更接近于实际; (2)讨论模型的特征,推广、扩大模型的适用范围,以解决更多的问题; (3)深入分析实际情境,提出新的问题,进行新的数学建模活动.

中学数学建模PPT课件

中学数学建模PPT课件
由图用户所得最大优惠差额为9716898500计划b计划a13包装不价栺某种冰淇淋是用球形塑料壳包装的假设冰淇淋售冰淇淋成本包装成本利润率包装成本不球形外壳表面积成正比已知装冰淇淋售价其中冰淇淋成本为每克分钱利润率为利润率丌变的情况下装冰淇淋应售价多少买哪种比较吅算可供参考装两种觃栺外壳表面积分别为15所以ksks06060065011052150125326故装冰淇淋售价为150001110521500025两种规格的单位重量价格分别为32600217元150故买大包装合算17二次凼数模型18渔场实际应养多少鱼问题某渔场中渔群的最大养殖量为一定值m吨
.
不等式模型 • 洗衣问题 • 挑选水果问题 • 足球射门问题
.
白努利不等式 设x 1,则
(1)当0<<1时,(1+x) 1 x (2)当<0或>1时,(1+x) 1+x
其中等号成立的充要条件为x=0
.
柯西不等式 (a1b1+a2b2+L +anbn )2 (a12+a22+L a2n )(b12+b22+L +b2n ) 当且仅当bi=cai(i=1,2,L ,n,c为常数) 时等号成立
.
幂函数、指数函数、对数函数模型
❖ 基本处理方法
(1)幂函数型y axb (a 0)处理方法:
两边取对数,有ln y ln(axb ) 即lny=lna+blnx

x'
y'
ln ln
x y
则原方程变为y'
ln
a
bx'
.
(2)指数函数型y aebx (a 0)处理方法 两边取对数得lny=ln(aebx ) 即lny=lna+bx

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

北师版高中数学必修第一册精品课件 第8章 数学建模活动(一) 2 数学建模的主要步骤

北师版高中数学必修第一册精品课件 第8章 数学建模活动(一) 2 数学建模的主要步骤
提示:具有实用性,具有数据采集可操作性,问题本身的需求性.
二、建立数学模型
【问题思考】
1.建立数学模型应注意哪些问题?
提示:首先为了排除众多的不同和不确定性干扰因素,建模有
一个重要环节——假设.其次,建模问题需要大量的数据,需要
收集问题涉及的数据.最后考虑数学建模所涉及的数量有哪
些.
2.为什么要检验结果?

-
,

即为不满钩组的概率;
-



满钩组的概率为 1- - − · · -
.
-






所以 D= = {m· · · -
+2m·[1- -
-


· · -
]}
-



-
= -
+ [1- - − · -
§
数学建模的主要步骤
自主预习·新知导学
合作探究·释疑解惑
一、数学建模问题
【问题思考】
1.如何提出数学建模问题?
提示:在实际生活中,我们会遇到各种问题,当我们对这些问题
进行思考时,我们可以提出数学建模所需要的问题.数学建模
问题的提出来源于生活中存在的实际问题.
2.数学建模中提出的问题的依据有哪些?

品的概率,即任一只钩子为空钩的概率是 - ;任一只钩子非


空的概率是 p=1- - ,传送系统的效率指标为 D= =


.①


为了得到比较简单的结果,在钩子数 m 相对于工人数 n 较大,


即较小的情况下,将多项式 - 展开后只取前 3 项,则有

高一上学期数学人教A版必修第一册数学建模活动(1)PPT全文课件(共31ppt)

高一上学期数学人教A版必修第一册数学建模活动(1)PPT全文课件(共31ppt)

求解模型
问题8:请同学们结合这五 个函数图象与实际数据的吻合情 况,思考应该如何选取a的值?
比值为0.9284
比值为0.9351
比值为0.9032
比值为0.9181
比值为0.9285
检验模型
求解模型
检验模型
求解模型
求解问题
解得 由信息技术得
解决问题
解决问题
问题10:你体会到研究这个问题具有哪些实际 价值?
求 解 函 数 模 型




验 符合 题 实际 的 解
作业布置
请同学们仿照上述过程开展一次建立模型解决 实际问题的活动,可以继续研究不同室温下泡制一 杯最佳口感茶水所需的时间,也可以从下列选题中 选择一个: 1. 应在炒菜之前多长时间将冰箱里的肉拿出来解冻? 2. 根据某一同学的身高和体重,判断该同学是否超 重. 3. 用微波炉或电磁炉烧一壶开水,找到最省电的功 率设定方法. 4. 估计阅读一本书所需要的时间.
情景分析
问题2:如何处理这些影响因素?
2020-2021学年高一上学期数学人教A 版必修 第一册 数学建 模活动( 1)PPT 全文课 件(共3 1ppt) 【完美 课件】
提出假设
突出主要因素,弱化次要因素的影响.
2020-2021学年高一上学期数学人教A 版必修 第一册 数学建 模活动( 1)PPT 全文课 件(共3 1ppt) 【完美 课件】
数据收集
活动1:请同学们小组合作,为获取数据设计实 验流程.
2020-2021学年高一上学期数学人教A 版必修 第一册 数学建 模活动( 1)PPT 全文课 件(共3 1ppt) 【完美 课件】
2020-2021学年高一上学期数学人教A 版必修 第一册 数学建 模活动( 1)PPT 全文课 件(共3 1ppt) 【完美 课件】

《中学数学建模》课件

《中学数学建模》课件

中学数学建模的教学案例
人口增长模型
通过研究人口增长规律,建立人 口增长模型,预测未来人口数量

投资收益模型
通过研究投资收益规律,建立投资 收益模型,预测未来的投资收益。
交通流量模型
通过研究交通流量规律,建立交通 流量模型,优化城市交通规划。
03
中学数学建模的常见问题与解决方法
建模过程中的常见问题
加强实践环节
中学数学建模教学应加强实践环节,组织学生进行实际问题的建模 和解决,提高学生的实践能力和创新性。
引入现代技术
中学数学建模教学应引入现代技术,如计算机编程、数学软件等, 以提高教学效率和学生的技术应用能力。
提高中学数学建模水平的建议
加强教师培训
中学应加强对数学建模教师的培训,提高教师的教学水平和指导 能力。
特点
数学建模具有抽象性、系统性、 创造性等特点,能够将实际问题 转化为数学问题,便于分析和解 决。
数学建模的重要性
01
02
03
解决实际问题
数学建模是解决实际问题 的有效手段,能够帮助我 们理解和解决生产、生活 中的各种问题。
培养数学应用能力
通过数学建模,学生能够 更好地应用数学知识解决 实际问题,提高数学应用 能力。
04
中学数学建模的实际应用
数学建模在生活中的应用
购物预算
通过建立数学模型,学生可以预测和 规划个人或家庭的购物预算,以便合 理分配资金。
时间管理
健康生活
学生可以使用数学模型来分析健康饮 食和运动习惯,以促进健康生活方式 。
通过数学模型,学生可以分析时间分 配的合理性,优化学习或工作计划。
数学建模在科学实验中的应用
01

第1讲 数学建模简介 PPT课件

第1讲 数学建模简介 PPT课件

什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。

高中数学人教B版必修第二册第四章4.7数学建模活动(3)课件(共44张PPT)

高中数学人教B版必修第二册第四章4.7数学建模活动(3)课件(共44张PPT)

能更好的描述玉米植株高度的变化规律.
经计算,在F(x)模型下,误差的平方和约为222.
我们现在可以利用这个模型,选择合适数据,确定其中的三个参数,并将函数值与真实值进行比较,验证模型.
也可以考虑更换函数模型.
数学建模活动(3)
高一年级 数学
同样的,我们也可以计算出植株高度在相应区间上的平均变化率,如下表:
事实上,对于玉米及自然界诸多种群来说, 在自然界有限资源的环境内种群的生长不可能无 限增长,应该会存在一个饱和水平. 当种群增长 到接近于饱和水平时,增长速度会逐渐减慢趋近 于0,所以玉米植株高度增长应类似于一个S型 曲线,而并非呈指数增长.
提出问题 建立模型 参数求解 模型检验
你能进一步改进 这个模型吗?
年龄/岁 身高/cm 年龄/岁 身高/cm
0 0.5 1 1.5 2 2.5 3 49.7 66.8 75 81.5 87.2 92.1 96.3 3.5 4 4.5 5 5.5 6 6.5 99.4 103.1 106.7 110.2 113.5 116.6 119.4
你能看出7岁以下女童身高的哪些生长规律?
为了更直观的观察女童的生长规律,我们可以在平面 直角坐标系中描出散点,并用线段连接.
身高随年龄的 增加而增加,增长 速度越来越慢.
生长阶段 植株高度/cm 生长阶段 植株高度/cm
1 0.67
7 53.38
2 1.75
8 97.46
3 3.69
9 153.6
4 7.73 10 174.9
5 16.55
来描述类似玉米植株高度的增长规律,这个模型的建立过程需要用到高等数学的知识,大家上大学以后可以对其进行推导. 我们现在可以利用这个模型,选择合适数据,确定其中的三个参数,并将函数值与真实值进行比较,验证模型.

数学建模实例ppt课件

数学建模实例ppt课件

B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰;
(2)何时污染程度可降至安全水平(<0.05%)
28
湖泊污染问题分析
设湖水在t时的污染程度为C(t), X
即每立方米受污染的水中含有Cm3 A
的化学物质和(1-C)m3的清洁水。用
23
几何关系
dy tg y at
dx
x
即 x dy y at dx
24
如何消去时间t?
1、求导:
2、速度与路程的关系: x 得:
(这里有负号是因为s随x的减小而增大) 4、将第2、3步代入第1步,可得模型
25
追线模型:
x
d2y dx2
k
1 dy 2 dx
由已知,T (0) 37 , T (t) 29 , T (t 1) 27 可得微分方程的特解:
T (t) 16 4 t 21 3
由T (t) 29,代入解得 t 2.4094
因此死者大约是在前一天的夜晚10:35被害的。
图1 尸体的温度
下降曲线
4
建立微分方程的常用方法
1、按变化规律直接列方程,如: 利用人们熟悉的力学、数学、物理、化学等学科中的规律,
19
(1)问题分析与模型的建立
1、放射性衰变的这种性质还可描述为“放射性物 质在任意时刻的衰变速度都与该物质现存的数量 成比例”。而C14的比例数为每年八千分之一。
2、碳14年代测定可计算出生物体的死亡时间;所
以,我们问题实际上就是:“这人死去多久了?”
若设t为死后年数,y(t)为比例数,则y(t)=C14/C12

初中数学建模(第一课) PPT课件 图文

初中数学建模(第一课) PPT课件 图文

二、解答数学模型问题的一般步骤
(1)明确实际问题,并熟悉问题的背景; (2)构建数学模型(例如:方程模型、不等式模型、函数模
型、几何模型、概率模型、统计模型等); (3)求解数学问题,获得数学模型的解答; (4)回到实际问题,检验模型,解释结果。
三、初中数学建模的几种题型
1、建立“方程(组)”模型 2、建立“不等式(组)”模型 3、建立“函数”模型 4、建立“几何”模型 5、建立“概率”与“统计”模型
数学建模(第一课)

一、数学模型思想在初中数学中的意义
所谓数学模型,是指通过抽象和模拟,利用数学语言和方 法对所要解决的实际问题进行的一种刻画 。一般地,通过建立 数学模型来解决实际问题的过程称为数学建模。
数学教学要让学生亲身经历将实际问题抽象成数学模型并 进行解释与应用的过程,进而使学生获得对数学理解的同时, 在思维能力、情感态度与价值观等多方面得到进步和发展。
现实生活中同样也广泛存在着数量之间的 不等关系。如市场营销、生产决策、统筹 安排、核定价格范围等问题,可以通过给出 的一些数据进行分析,将实际问题转化成 相应的不等式问题,利用不等式的有关性 质加以解决。
例9、小明准备用50元钱买甲、乙两种饮料 共10瓶。已知甲饮料每瓶7元,乙饮料每瓶 4元,则小明最多能买多少瓶甲饮料?
所以,放入一个小球水面升高2cm,放入一个大球水面升 高3cm;
(2)设应放入大球m个,小球n个.由题意,
得:
解得: m 4

n

6
答:如果要使水面上升到50cm,应放入大球4个,小球6
个.
方法归纳:本题考查了列一元一次方程和列二元 一次方程组解实际问题的运用,二元一次方程组

数学建模方法ppt课件

数学建模方法ppt课件


了很大作用。


应用实例:
程 模
单种群模型(Malthus Logistic )

两种群模型
传染病模型(SI SIS SIR)
作战模型
商品销售模型
回归分析是研究变量间统计规律的方法,属于”黑 箱“建模中常用的方法,根据自变量的数值和变化, 估计和预测因变量的相应数值和变化。有线性回归和 非线性回归。
点击添加文本
)点b2击添加文本
ax1m,1x点x21 ,击添a,m加x2nx文2本0 amnxn (, )bn
点击添加文本
建模步骤:
1.建立模型:找出目标函数及相应的限定条件
2.模型的求解:可利用Lin点go击软添件加进文行本求解模型。
3.结果分析
4.灵敏度分析:改变个别相关系数观察最优解是否会
min{D( p, k), D(q, k)}
点击添加文本
点击添加文本
步骤4:重复步骤2和步骤3,直至满足聚类为止。
对于不确定性问题,又可分为随机不确定性与模 糊不确定性两类。模糊数学就是研究属于不确定性, 而又具有模糊性量的变化规律的一种数学方法。

点击添加文本

数 学
原理关键词: 模糊集 隶属函数 模糊关系 模糊矩阵
yi 0 1xi1 2 xi2 p xip , i 1,2,, n
其中, i 是随机误差,相互独立且满足E(i ) 0, var(i ) 2
一般非线性模型的形式: 其中, f 是一般的非线性函数, 是 p维参数向量, 是一随机 误差变量,E( ) 0, var( ) 2
,把 Gp 和 Gq 合并
步骤3:计算新类与其他类的距离 点击添加文本
D(r, k) min{d (r, k) r Gr , k Gk , k r} min{d ( j, k) j Gp Gq , k Gk , k j}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长量最大,实际应养多少鱼?
中学数学建模
18
[建模分析]这一问题中涉及最大养 殖量、实际养殖量、空闲量、空闲 率、年增长量等多个量,其中最大 养殖量为定值m吨,空闲量、空闲 率、年增长量都随实际养殖量的变 化而变化。
中学数学建模
19
[建立模型]假设实际养殖量 为x吨,年增长量为y吨,则 空闲量为(m-x)吨,空闲率 为 m x ,由问题概述可建立 目标m函数为
2.抓住相关变量中的主要参变量关系展开分 析与讨论.
3.实际问题中的量具有特殊的含义,在建立函 数或不等式关系时需注意其有意义的变化 范围,不能只考虑纯数学关系.
4.问题所讨论的结果最好具有范式,具有可推 广性.
中学数学建模
4
一次函数模型
• 高跟鞋问题 • 如何选择广告上的优惠计划 • 包装与价格
中学数学建模
20
ykxmxkx2kx mm
k (xm)2km m2 4
由 y=- k (x- m )2 + km 知 : m2 4
当x=
m 2


y
max
km 4
中学数学建模
21
即实际养殖量为最大养殖量的一 半时,鱼群的年增长量最大,最
大增长量为 k m 吨。 4
再由0kmmm可得,比例系数 42
首60分钟
首500分钟
以后每分钟收费
﹩0.38
﹩0.38
留言信箱服务 (选择性项目)
﹩30
﹩30
中学数学建模
8
• [问题]在两个计划中选择,你选择哪一项? • [分析] (1)两项服务的不同点:计划A的每月基本服务
费比计划B少,而计划B比计划A给客户的首 段免费通话时间多. (2)模型假设与建立 设t(分钟)为通话时间,而C(﹩)是所需付出 的费用,则可列出计划A与计划B的付费函数 关系式为:
(4)问题推广 若客户真的选择了计划B,最多可以比选 择计划A省多少钱?
中学数学建模
11
• [解决]
由图可知,起初计划A比计划B便宜
﹩70 0t 60 ,当使用时间超过60分钟,
则两者差距缩小,直到Q点,两者已无差距,
即表示两个计划在此时的优惠相同.
由图,用户所得最大优惠差额为 yR yS ﹩97
k的取值范围是k(0,2)
中学数学建模
22
关于饮水机的思考
• 基本假设 (1)忽略饮水机启动时所需的
电能 (2)当人回来时,水的温度恰为
制热所能达到的最高温度.
中学数学建模
23
• 符号的约定
P 1 饮水机的制热功率 (单位:W) P 2 饮水机的保温功率 (单位:W) T 1 饮水机的制热最低温度(单位:o C ) T 2 饮水机的保温最低温度(单位:o C ) M 饮水机机内水的质量 (单位:kg)
利润率不变的情况下, 150g装冰淇淋应
售价多少?两种规格中,买哪种比较合算
( 3 5 0 ≈3.684可供参考)?
中学数学建模
13
• [分析]
设60g装冰淇淋的包装成本为x元,根 据题意,得
1 .5 0 ( 6 0 0 .0 1 x ) ( 1 2 5 % )
解得x=0.60(元)
又设60g装和150g装两种规格外壳表
2.5
0.6129
3.55
0.6151
4.5
0.6173
4.7748 0.618
中学数学建模
7
如何选择广告上的优惠计划
• [实际背景] 为配合不同客户的需要,广告商设有以
下优惠计划,以供客户选择.
计划A:即时直接
计划B:即时直接
对话+自动数字传呼 对话+自动数字传呼
每月基本服务费
﹩98
﹩168
免费通话时间
面积分别为s1、s2,容积为v1 、 v2 ,150g装冰淇淋包装成本为y元, 根据题意,得
中学数学建模
14
yks2,0.60ks1
所以
y s2 (v2)23 (150)23
0.60 s1 v1
60
从而
y0.63501.1052(元 ) 2
中学数学建模
15
故 150g装 冰 淇 淋 售 价 为
1500.01+1.1052125% 3.2( 6元 )
C
计划A
R
计划B
168
Q S
P 98
0
60
242
包装与价格
某种冰淇淋是用球形塑料壳包装的,有
60g装和150g装两种规格.假设,冰淇淋售
价=(冰淇淋成本+包装成本)(1+利润率),
并且,包装成本与球形外壳表面积成正比.
已知60g装冰淇淋售价1.50元,其中冰淇
淋成本为每克1分钱,利润率为25%,问在
中学数学建模
5
高跟鞋问题
设某人下肢躯干部分长为x厘米, 身高为l厘米,鞋跟高d厘米
x d 0.618 d 0.618l x
ld
0.382
中学数学建模
6
鞋跟高度与好看程度的关系
原比(x/l)
身高 (cm)
鞋跟高度 (cm)
新比值
0.6071 168 0.6071 168 0.6071 168 0.6071 168
两 种 规 格 的 单 位 重 量 价 格 分 别 为 16.5000.025(元 )和31.52060.0217( 元 )
故买大包装合算
中学数学建模
16
二次函数模型
o 渔场实际应养多少鱼 o 关于饮水机的思考 o 资金分配问题
中学数学建模
17
渔场实际应养 多少鱼
[问题]某渔场中渔群的最大养殖量为 一定值m吨.为保证渔群的生产空间, 实际养殖量不能达到最大养殖量,必须 留出适当的空闲量.由长期的统计数据 可知,鱼群的年增长量和实际养殖量与 空闲率的乘积成正比,要想鱼群的年增
中学数学建模
24
R 饮水机的电阻(单位: )
U 饮水机的工作电压(单位:V)
t 1 把水从室温加热到 T 1 的时间
中学数学建模
感谢您的阅览
中学数学建模
1
n函数与不等式 n数 列 n三 角 n几 何
中学数学建模
2
函数与不等式
l 一次函数模型 l 二次函数模型 l 幂函数、指数函数、对数函数模型 l 不等式模型
中学数学建模
3
l 建模(或知识应用)提示
1.实际问题中的数量关系模糊,数据孤立,要对 有关数据作适当处理后借助于其内在规律 或经验,将其理想化、函数模型化.
中学数学建模
9
计划A:
98
0t 60
C0.38(t60)98 (t>60)
计划B:
168
0t 500
C0.38(t500)168 (t>500)
中学数学建模
10
(3)究竟通话时间超过多少分钟,计划B会较 计划A为优? 0.38(t - 60)+98=168 得 t=244.21(分钟) 故当客户使用该服务的时间超过244分 钟(约4小时)时,计划B较优.
相关文档
最新文档