抽样与抽样分布.
抽样与抽样分布
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
概率与统计中的随机抽样与抽样分布
概率与统计中的随机抽样与抽样分布概率与统计学是一门研究数据收集、分析和解释的学科,而随机抽样与抽样分布是其中关键的概念。
本文旨在探讨随机抽样和抽样分布在概率与统计中的作用和应用。
1. 随机抽样在概率与统计学中,随机抽样是一种方法,通过从总体中随机选择样本来推断总体的特征。
随机抽样的目的是保证样本具有代表性,从而使得样本能够准确地反映总体的特征。
在实践中,随机抽样通常通过随机数生成器来实现,确保每个个体都有相同的机会被选入样本。
2. 简单随机抽样简单随机抽样是随机抽样的一种基本方法。
在简单随机抽样中,每个个体被选入样本的概率是相等的,且个体的选择是相互独立的。
简单随机抽样可以有效减少个体的偏倚,使样本更具代表性。
3. 抽样分布抽样分布是指在随机抽样过程中,某一统计量的分布情况。
在概率与统计中,我们常常关注样本均值、样本方差等统计量的分布情况,从而推断总体的特征。
根据中心极限定理,当样本容量足够大时,抽样分布可以近似服从正态分布。
这一性质使得我们能够应用正态分布的性质进行统计推断。
4. 抽样分布的应用抽样分布在概率与统计中有广泛的应用。
通过对随机抽样得到的样本统计量进行分析,我们可以进行总体均值的估计、比较不同样本的差异、构建置信区间、进行假设检验等。
这些应用使得我们能够通过分析样本数据,推断总体的特征,做出科学决策。
总结:概率与统计中的随机抽样与抽样分布是统计学中的重要概念。
随机抽样保证样本具有代表性,而抽样分布则帮助我们推断总体的特征。
掌握随机抽样与抽样分布的原理和应用,对于数据分析和统计推断具有重要意义。
在实践中,我们需要注意样本的随机性和样本容量的大小,以保证抽样的准确性和结果的可靠性。
通过深入研究和应用随机抽样和抽样分布的理论,我们能够更好地理解和分析数据,为决策提供科学的依据。
统计学中抽样和抽样分布基础知识
样本均值的抽样分布
定义:样本均值的所有可能值的概率分布 样本均值的数学期望:对于简单随机样本时,样本均值的数学期望与总体均值相等 样本均值样本中具有感兴趣特征的个体个数/样本容量 样本比率的抽样分布:是样本比率的所有可能值的概率分布
样本比率的数学期望:样本比率的数学期望与总体比率相等 样本比率的标准差
有限总体:有限总体修正系数*无限总体样本比率的标准差 无限总体:根号下p(1-p)/n 样本比率的抽样分布的形态 当样本容量足够大,同时np≥5和n(1-p)大于等于5时,样本比率的抽样分布可以 用正态分布近似
统计学中抽样和抽样分布基础知识
抽样基本属于
抽样总体:抽取样本的总体 抽样框:用于抽选样本的个体清单 参数:总体的数字特征
抽样
从有限总体的抽样 建议采用概率抽样 简单随机样本:从容量为N的有限总体中抽取一个容量为n的样本,如果容量为n 的每一个可能的样本都以相等的概率被抽出,则称该样本为简单随机样本 无放回抽样和有放回抽样 无放回抽样:被抽取对象已经选入样本,不希望该对象被多次选入 有放回抽样:对已经出现过的随机数仍选入样本
点估计
样本统计量:为了估计总体参数,计算样本的特征 抽样总体和目标总体
目标总体是我们想要推断的总体 抽样总体是指实际抽取样本的总体 点估计的性质 无偏性:样本统计量是相应总体参数的无偏估计量 有效性:采用标准误差较小的点估计量,给出的估计值与总体参数更接近 一致性:大样本容量给出的点估计与总体均值更接近
其他抽样方法
分层随机抽样:总体中的个体首先被分成层,总体中的每一个体属于且仅属于某一 层,从每一层抽一个简单随机样本 整群抽样:总体中的个体首先被分成单个组,总体中的每一个个体属于且仅属于某 一群,有群为单位抽取一个简单随机样本 系统抽样:对容量很大的总体,第一个个体为随机抽样,总体个体排列时个体的随 机顺序 方便抽样:非概率抽样 判断抽样:对总体非常了解主观确定总体中认为最具代表性的个体组成样本
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
《统计学》第9章 抽样与抽样分布
二、抽样中的基本概念
⚫ 样本比例(成数)
p = n1 ,q = n0 = 1− p
n
n
⚫ 样本是非标志的标准差
(n = n0 + n1)
sp =
n p (1− p) =
n −1
n pq n −1
⚫ 样本是非标志的方差
s
2 p
=
n n −1
p(1 −
p)
=
n n −1
pq
第一节 抽样和抽样方法
三、抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 在实践中总体所包括的单位数很多,分布很广,通过一次 抽样就选出有代表性的样本是很困难的。此时可将整个抽 样过程分为几个阶段,然后逐阶段进行抽样,最终得到所 需要的有代表性的样本。
第一节 抽样和抽样方法
三、抽样方法
⚫ 多阶段抽样
⚫ 阶段数不宜过多,一般采用两个、三个阶段,至多四个阶 段为宜,否则,手续繁琐,效果也不一定好。
第一节 抽样和抽样方法
二、抽样中的基本概念
⚫ 总体参数
⚫ 总体参数是根据总体各单位的标志值或特征计算的、反 映总体某一属性的综合指标。
⚫ 总体参数是唯一的、确定的常数,但一般情况下又是未 知的。
⚫ 常用的总体参数有 ⚫ 总体均值 ⚫ 总体标准差、总体方差 ⚫ 总体比例(成数)
第一节 抽样和抽样方法
⚫ 样本标准差
s =
1 n −1
n i =1
(xi
−
x )2,或s
=
1
m
m
(xi − x )2 fi
fi −1 i=1
i =1
⚫ 样本方差
( ) ( ) s2 = 1 n n −1 i=1
抽样及抽样分布
分层抽样 概念:分层抽样又称类型抽样。首先将总体单
位按某一个标志分层;然后在各层按随机抽样的方 法分别抽出各层的样本。
特点:分层抽样在层内是抽样调查,层间是全面调
查,所以分层时应该尽量让每层内的变异程度小,
而层间的变异程度大。分层抽样的抽样误差较简单 随机抽样小,样本具有很好的代表性。
抽样平均误差的计算公式:
z
(
X 1
X
)
2
( 1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
如果: X1 和 X2 是两个非正态总体,当和样本容
量足够大,
z
(
X1
X
2
)
(1
2
)
s2 1
s2 2
n1 n2
渐近服从标准正态分布。
NEXT
二、样本成数及成数差的抽样 分布
成数的概念 样本成数的分布 两个总体样本成数差的分布
,则样本的成数为p n1
n
。
例如,某工厂生产某种电子元件,某批产品
共10000件,其中不合格品100件原则抽100件,其中
有3件不合格品,则样本的成数为p 3% 。
NEXT
样本成数的分布
用途:推断或估计总体的成数。例如某项改革 方案工人的支持率,产品的正品率等。
假设A、B、C、D、E5位同学的统计学成绩分别为: 80、 86、90、92、96。可计算得总体均值为88.8,总体方 差为29.76。现在随机从中抽容量为2的样本。
重复抽样的所有可能的样本:
样本(AA)(AB)(AC)(AD)(AE)
均值 80 83 85
86 88
样本 (BA)(BB) (BC) (BD)(BE)
抽样与抽样分布
什么是抽样分布?
如果要估计总体的均值 ;是用样本平均值 还是用中位数m?
x,
3.5 第一次,2,2,6,m=2 x 3.33 第二次,3,4,6,m=4, x 4.33
还是掷骰子,总体均值 可见,不能仅仅根据一个样本去比较是 本n个观察值计算的统计量的概率分布。
x 和m
平均身高=169.8CM
总平均身高=168.6CM 平均身高=174.6CM
抽样的三个特点
遵守随机原则; 以样本的数量特征推断总体的数量特征 抽样推断产生抽样误差,但抽样误差可以 事先计算并控制。
抽样推断的应用
不可能进行全面调查时; 不必要进行全面调查时; 来不及进行全面调查时; 对全面调查资料进行补充修正时。
随机原则的实现
抽签法,是将总体中每个单位的编号写在外形 完全一致的签上,将其搅拌均匀,从中任意抽 选,签上的号码所对应的单位就是样本单位。
随机数表法:将总体中每个单位编上号码,然
后使用随机数表,查出所要抽取的调查单位。 计算机模拟法:是将随机数字编制为程序存储 在计算机中,需要时将总体中各单位编上号码, 启用随机数字发生器输出随机数字。
4 统计抽样与抽样分布
抽样的基本概念
抽样方法
抽样分布的概念
样本均值的抽样分布
本章的学习目的
本章的学习目的是为了认识到通过样本推 断总体的科学性。 当总体元素非常多,或者检查具有破坏性 时,需要进行抽样。抽样的目的是为了推 断总体的数量特征,但这种推断必定伴有
某种程度的不确定性,需要用概率来表示
正态分布的计算 - 例题
概率与统计中的随机抽样与抽样分布知识点
概率与统计中的随机抽样与抽样分布知识点概率与统计是数学中重要的分支之一,它研究了随机事件和随机现象的规律。
在概率与统计的领域中,随机抽样与抽样分布是基础而重要的概念。
在本文中,我们将深入探讨随机抽样与抽样分布的相关知识点,包括其定义、性质以及在实际应用中的重要性。
1. 随机抽样的定义与性质随机抽样是指从整体中以一定的概率选择出一部分样本的过程,以便对整体的某些特征进行推断。
随机抽样应具备以下几个基本性质:a. 独立性:每个样本在抽取过程中的选中与否应该是彼此独立的,不受前一个样本的影响。
b. 随机性:每个样本在被选中的概率应该是相等且随机的,确保对整体进行推断时具有普遍性。
c. 大样本量:所抽取的样本数量足够大,可以保证对整体的推断具有较高的精确度。
2. 抽样分布的定义与性质抽样分布是指针对不同样本规模的抽样所得到的某个统计量的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
a. 正态分布:当样本量趋于无穷大时,根据中心极限定理,样本均值的分布逼近于正态分布。
正态分布在统计分析中经常应用,具备对称性和稳定性等特点,受到广泛的关注和应用。
b. t分布:在样本量较小的情况下,当总体近似于正态分布时,使用t分布来进行推断更加准确。
t分布相较于正态分布而言,具有更宽的尾部,样本量较小时可提供更精确的结果。
c. F分布:F分布是一种比值分布,常用于方差分析以及回归分析等。
它是基于正态分布的样本方差比值构成的。
3. 随机抽样与抽样分布在实际应用中的重要性随机抽样与抽样分布在各个领域的实际应用中具有重要意义,例如:a. 市场调研:通过随机抽样方式,可以从总体中选取一部分样本进行调查和数据收集。
然后通过对样本数据的分析,可以推断总体市场的特征、趋势以及用户行为等。
b. 医学研究:在进行药物疗效试验时,需要通过随机抽样的方式从患者中选取一部分进行试验。
通过对试验结果的分析,可以推断药物的疗效以及副作用等情况。
第7章抽样与抽样分布
· · ·
· · ·
统计学
STATISTICS
3· 等距抽样(机械抽样或系统抽样)
将总体单位按某一标志排序,然后按相等间隔 抽取样本单位构成样本的抽样形式 随机起点 · · · · · · (总体单位按某一标志排序) 按无关标志排队,其抽样效果相当于简单随机抽样; 半距起点 对称起点
按有关标志排队,其抽样效果相当于类型抽样。
明确 总体及 抽样单位
统计学
STATISTICS
明确 调查目 的
确定或构 建抽样框
提出指标 精度要求
选择抽样 组织形式
2019/1/31
确定 样本容量
制定 具体办法 步骤
23
统计学
STATISTICS
2.抽样方案设计的基本原则
(1)保证实现抽样随机性的原则 (2)保证实现最大的抽样效果原则
3.抽样方案设计中的重要问题
不重复抽样
每次从总体中抽选一个单位后就不 再将其放回参加下一次的抽选。又 称不放回抽样. 总体单位数减少n,同一单位只可 7 能被抽中一次。
2019/1/31
可能的样本数目考虑各单Biblioteka 的中选顺序 AB≠BA统计学
STATISTICS
考虑顺序的重复抽样 不考虑顺序的重复抽样 考虑顺序的不重复抽样
N
n
Nn N 2
15
(二)随机抽样的组织方式 STATISTICS
1· 简单随机抽样(纯随机抽样)
根据随机原则直接从总体中抽取单位构成样 本的一种抽样方式。
•每个容量为n的样本都有同等机会(概率)被抽中 •简单、直观,是最简单、最基本、最符合随机原 则,但同时也是抽样误差最大的抽样组织形式 •仅适用于规模不大、分布比较均匀的总体 •一般有抽签、抓阄、随机数码表、抽样函数等
抽样与抽样分布
抽样与抽样分布抽样是统计学中一种重要的数据收集方法,通过从总体中选择一部分样本来代表整体,可以更方便、更经济地进行数据分析和推断。
而抽样分布则是与抽样密切相关的概念,指的是样本统计量的概率分布。
本文将从抽样的定义和目的、抽样方法和抽样分布的性质等方面进行探讨。
一、抽样的定义和目的抽样是统计学中利用一定的方法和技术从总体中选取一部分个体作为样本,以了解总体特征或者对总体进行推断的过程。
抽样的目的在于通过对样本的观测和研究来推断总体的特征,而无需对整个总体进行调查。
抽样可以减少调查或实验的成本、节约时间,并且在一定程度上能够保证结果的可靠性和精确度。
二、抽样方法1. 简单随机抽样:简单随机抽样是指从总体中随机选择样本,使每一个样本都有相同的概率被选中。
简单随机抽样通常需要使用随机数表、随机数发生器或者抽签等方法来实现。
2. 系统抽样:系统抽样是按照一定的规则和系统性地从总体中选择样本,例如每隔一个固定的间隔选取一个样本。
系统抽样的优点在于操作简单,但是如果总体中存在某种周期性或者规律性的分布,可能会导致抽样结果的偏差。
3. 整群抽样:整群抽样是将总体根据某些特征进行分类,然后从每个分类中随机选择一定数量的群体作为样本。
整群抽样适用于总体中存在明显的群体结构的情况,可以提高样本的代表性。
4. 分层抽样:分层抽样是按照某种特征将总体分为若干层,然后从每一层中随机选择一定数量的样本。
分层抽样可以更好地体现总体的结构和差异,提高样本的代表性和准确性。
三、抽样分布的性质抽样分布是样本统计量的概率分布,其具有以下几个重要性质:1. 无偏性:如果样本统计量的期望值等于总体参数的真值,那么称该统计量是无偏的。
即样本统计量是对总体参数的无偏估计。
无偏性是抽样分布的重要性质,保证了样本统计量的可靠性和准确性。
2. 一致性:当样本数量趋向无穷大时,样本统计量的值趋向于总体参数的真值。
即样本统计量在大样本情况下能够接近总体参数,具有一致性。
统计学之抽样与抽样分布
正确答案: d. n/N > 0.05
8. 从一个均匀分布的总体中抽取一个样本容量为45的样本, 从什么分布?
a. 指数分布 b. 正态分布 c. 均匀分布 d. 无法判断
正确答案: b. 正态分布
考察所有900个申请者
• 考试成绩
• 总体平均成绩
xi 990
900
• 总体标准差
(xi )2 80 900
考察所有900个申请者
• 无相同工作经验的申请者比例
• 总体比例
p 648 .72 900
使用随机数表随机选择30个申请者作为样本进行研 究,从书上随机数表第三列开始
统计学之抽样与抽样分 布
2021年7月19日星期一
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布
样本平均值x 的抽样分布 样本比例 p 的抽样分布
抽样方法
n = 100
n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参 数进行很好的估计
点估计
• x 作为 的点估计值 x xi 29,910 997
30 30
• s 作为 的点估计值
s
(xi x )2 163,996 75.2
29
29
• p 作为p 的点估计值
p 20 30 .68
值得注意的是,不同的随机数会导致不同的抽样,也就会 数的不同的点估计值
抽样与抽样分布
N (1.0 2.5) 2 (4.0 2.5) 2 2 0.625 16 n
比较及结论:1. 样本均值的均值(数学期望) 等于总体均值 2. 样本均值的方差等于总体方差的1/n
样本均值的分布与总体分布的比较 (例题分析)
总体分布
.3 P(X)
抽样分布
.3 .2 .1 0
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。总 体的均值、方差及分布如下 总体分布
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
N
N i 1
2.5
2
2 ( x ) i
抽样中的泰坦尼克事件
在1936年美国总统选举前一份颇有名气的 杂志的工作人员做了一次民意调查, 调查兰 顿(当时任堪萨斯州州长)和罗斯福(当时总 统)中谁将担任下一界总统, 为了了解公众意 向, 调查者通过电话簿和车辆登记簿上的名 单给一大批人发了调查表, 通过分析回收的 调查表, 发现兰顿非常受欢迎,于是此杂志预 测兰顿将在选举中获胜.
系统抽样(systematic sampling)
将总体各单位按某种顺序排列,并按某种规则确 定一个随机起点,然后,每隔一定的间隔抽取一 个单位,直至抽取n个单位形成一个样本。
整群抽样(cluster sampling)
在总体中以群(或组)为单位,将简单或系统抽 样方式,抽取若干群(或)组,然后对所有抽中 的各群(或各组)中的全部单位一一进行调查。
1. t 分布是对称分布,均值为0。 2. 样本容量大于或等于30时, t 分布接近于标准正态分布,这时可 用标准正态分布来代替t 分布。 3. t 分布是一个分布族,不同自由度对应不同的 t 分布。 4. 与标准正态分布相比,t 分布的中心部分较低,两个尾部较高。 5. 变量t 的取值范围在 与 之间。
抽样和抽样分布培训课件(PPT 49张)
0.07 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.9756 0.9808 0.9850 0.9884 0.9911 0.9932 0.9949 0.9962 0.9972 0.9979 0.9985 0.9989
7
自有限总体的抽样
• 无放回抽样:一个元素一旦选入样本,就从总体中剔除, 不能再次被选入。 • 放回抽样:一个元素一旦选入样本,仍被放回总体中。
先前被选入的元素可能再次被选,并且在样本中可出现
多次(多于一次)。
8
自无限总体的抽样
• 无限总体经常被定义为一个持续进行的过程,总体的元 素由在相同条件下过程无限运行下去产生的每一项构成。 在这种情况下,对总体内所有项排列是不可能的。
14
点估计
样本均值 51814.00美元 样本标准差
3347.72美元
样本比率 0.63
点估计的 统计过程
15
由30名管理人员组成的简单随机样本的点估计值
16
由30名管理人员组成的500个简单随机样本的点估计值
17
由30名管理人员组成的500个简单随机样本的抽样分布
• 抽样分布:样本统计量所有可能值构成的概率分布。
0.04 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7704 0.7995 0.8264 0.8508 0.8729 0.8925 0.9099 0.9251 0.9382 0.9495 0.9591 0.9671 0.9738 0.9793 0.9838 0.9875 0.9904 0.9927 0.9945 0.9959 0.9969 0.9977 0.9984 0.9988
抽样和抽样分布
离散型随机变量的方差(实例)
【例】投掷一枚骰子,出现的点数是个离散型随 机变量,其概率分布为如下。计算数学期望和方 差 X = xi 1 2 3 4 5 6 P(X =xi)=pi 1/6 1/6 1/6 1/6 1/6 1/6
1 1 解:数学期望为: E ( X ) xi pi 1 6 3.5 6 6 i 1 6 方差为: D( X ) xi E ( X )2 pi
n N
二、试验
1.概念: 在相同条件下,对事物或现象所进行的观察。
例如:掷一枚骰子,观察其出现的点数;产品质 量检验,考察其是否是合格品等。
2.试验具有以下特点:
可以在相同的条件下重复进行; 每次试验的可能结果不止一个,但试验的所
有可能结果在试验之前是确切知道的;
在试验结束之前,不能确定该次试验的确切
i 1 n
( X取有限个值) ( X取无穷个值)
E ( X ) xi p i
i 1
(3)性质
第三章所讲的平均数的性质也完全适合于数学 期望。对于抽样分布通常要考虑多个变量的情 况,所以还要补充两条性质。 ①n个随机变量代数和的数学期望等于它们的 数学期望之和。 ②n个独立随机变量连乘积的数学期望等于它 们数学期望的乘积
两种抽样方法
重置抽样
1.概念: 也称有放回的抽样,从总体中抽取一个单位,登记 后再放回总体参加下一次的抽取,连续试验n次。 2.重置抽样排列数: 从总体N个单位,抽取样本容量为n个单位的重置 试验,可能抽取的样本点个数: n n
AN = N
不重置抽样
1.概念: 也称无放回的抽样,每次总体中抽取一个单 位,登记后不再放回原总体,不参加下一次抽 选,下一次继续从总体余下的单位抽取样本单 位,这样继续进行n次试验。 有n个单位的样本是由n次连续试验构成的,但 因每次抽出不重置,所以实质上等同于同时从 总体中抽取n个样本单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总体分布
(population distribution)
1. 总体中各元素的观察值所形成的分布
2. 分布通常是未知的
3. 可以假定它服从某种分布
总体
样本分布
(sample distribution)
1. 一个样本中各观察值的分布 2. 也称经验分布 3. 当样本容量n逐渐增大时,样本分布逐渐 接近总体的分布
方便抽样
1. 调查过程中由调查员依据方便的原则,自行 确定入抽样本的单位
调查员在街头、公园、商店等公共场所进行拦 截调查 厂家在出售产品柜台前对路过顾客进行的调查
2. 优点:容易实施,调查的成本低 3. 缺点:样本单位的确定带有随意性,样本无 法代表有明确定义的总体,调查结果不宜推 断总体
自愿样本
4.
局限性
分层抽样
(stratified sampling) 1. 将总体单位按某种特征或某种规则划分为 不同的层,然后从不同的层中独立、随机 地抽取样本 2. 优点
保证样本的结构与总体的结构比较相近,从 而提高估计的精度 组织实施调查方便 既可以对总体参数进行估计,也可以对各层 的目标量进行估计
抽样分布的形成过程
(sampling distribution)
总体
样 本
计算样本统计 量 如:样本均值 、比例、方差
抽样分布
(sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有 可能取值形成的相对频数分布
样本均值, 样本比例,样本方差等
2. 3. 4.
具有整群抽样的优点,保证样本相对集中,节约调 查费用 需要包含所有低阶段抽样单位的抽样框;同时由于 实行了再抽样,使调查单位在更广泛的范围内展开 在大规模的抽样调查中,经常被采用的方法
非概率抽样
(non-probability sampling)
1. 相对于概率抽样而言 2. 抽取样本时不是依据随机原则,而是根据研 究目的对数据的要求,采用某种方式从总体 中抽出部分单位对其实施调查 3. 有方便抽样、自愿样本、滚雪球抽样等方式
样 本
抽样分布的概念
1、举个例子:丢骰子 2、结论:样本均值并不总是落在总体均值很近的 位置。因此,我们不能仅仅根据一个样本得 出总体的情况,需认识到样本统计量本身就 是个随机变量,不同的样本会导致样本统计 量取不同的值。 3、解决方法:在大量重复抽样试验的基础上,得 出统计量取值的集合及相应的概率,进而作 出判断和比较
系统抽样
(systematic sampling) 1. 将总体中的所有单位 ( 抽样单位 ) 按一定顺 序排列,在规定的范围内随机地抽取一个 单位作为初始单位,然后按事先规定好的 规则确定其他样本单位
先从数字 1 到 k 之间随机抽取一个数字 r 作为 初始单位,以后依次取r+k,r+2k…等单位
2. 优点:操作简便,可提高估计的精度 3. 缺点:对估计量方差的估计比较困难
多阶段抽样
(multi-stage sampling)
1. 先抽取群,但并不是调查群内的所有单位,而是再 进行一步抽样,从选中的群中抽取出若干个单位进 行调查
群是初级抽样单位,第二阶段抽取的是最终抽样单位。 将该方法推广,使抽样的段数增多,就称为多阶段抽样
第 四章 抽样与抽样分布
4.1 概率抽样方法 4.2 抽样分布
4.1 概率抽样方法
4.1.1 4.1.2 4.1.3 4.1.4 简单随机抽样 分层抽样 系统抽样 多阶段抽样
抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 系统抽样
分层抽样 多阶段抽样
方便抽样 滚雪球抽样
自愿样本
概率抽样
(probability sampling)
2. 随机变量是 样本统计量
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4 。总 体的均值、方差及分布如下 总体分布
概率抽样与非概率抽样的比较
1. 概率抽样
依据随机原则抽选样本 样本统计量的理论分布存在 可根据调查的结果推断总体 不是依据随机原则抽选样本 样本统计量的分布是不确定的 无法使用样本的结果推断总体
2. 非概率抽样
4.2 抽样分布
4.2.1 抽样分布的概念 4.2.2 抽样分布的形式 4.2.3 中心极限定理
.3
均值和方差
x
i 1
N
i
.2 .1 0
1 2 3 4
N
N
2.5
2
2 ( x ) i i 1
1. 2. 3. 从总体N个单位中随机地抽取n个单位作为样本,使 得每一个容量为样本都有相同的机会(概率)被抽中 抽取元素的具体方法有重复抽样和不重复抽样 特点
简单、直观,在抽样框完整时,可直接从中抽取样本 用样本统计量对目标量进行估计比较方便 当N很大时,不易构造抽样框 抽出的单位很分散,给实施调查增加了困难 没有利用其他辅助信息以提高估计的效率
1. 被调查者自愿参加,成为样Βιβλιοθήκη 中的一分 子,向调查人员提供有关信息
例如,参与报刊上和互联网上刊登的调查 问卷活动,向某类节目拨打热线电话等, 都属于自愿样本
2. 自愿样本与抽样的随机性无关
样本是有偏的 不能依据样本的信息推断总体
滚雪球抽样
1. 先选择一组调查单位,对其实施调查之后, 再请他们提供另外一些属于研究总体的调查 对象,调查人员根据所提供的线索,进行此 后的调查。这个过程持续下去,就会形成滚 雪球效应 2. 适合于对稀少群体和特定群体研究 3. 优点:容易找到那些属于特定群体的被调查 者,调查的成本也比较低
1. 根据一个已知的概率来抽取样本 单位,也称随机抽样 2. 特点
按一定的概率以随机原则抽取样 本
抽取样本时使每个单位都有一定的机 会被抽中
每个单位被抽中的概率是已知的 ,或是可以计算出来的 当用样本对总体目标量进行估计 时,要考虑到每个样本单位被抽 中的概率
简单随机抽样
(simple random sampling)