高中数学人教A版选修《空间向量及其运算》word导学案
高中数学 3.1.2空间向量的数乘运算(1)导学案 人教A版选修2-1
3.1.2 空间向量的数乘运算(一)【学习目标】1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【重点难点】向量的数乘运算律,能进行简单的代数式化简;用空间向量的运算意义及运算律解决简单的立体几何中的问题【学习过程】一、 自主预习(预习教材P 86~ P 87,找出疑惑之处)复习1:化简:⑴ 5()+4();⑵ .复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量, 若是非零向量,则与平行的充要条件是二、合作探究 归纳展示探究任务一:空间向量的共线问题:空间任意两个向量有几种位置关系?如何判定它们的位置关系?三、讨论交流 点拨提升新知:空间向量的共线:32a b -23b a -()()63a b c a b c -+--+-,a b b a b1. 如果表示空间向量的 所在的直线互相 或,则这些向量叫共线向量,也叫平行向量.2. 空间向量共线:定理:对空间任意两个向量(), 的充要条件是存在唯一实数,使得推论:如图,l 为经过已知点A 且平行于已知非零向量的直线,对空间的任意一点O ,点P在直线l 上的充要条件是试试:已知 ,求证: A,B,C 三点共线.反思:充分理解两个向量共线向量的充要条件中的,注意零向量与任何向量共线.四、学能展示 课堂闯关例1 已知直线AB ,点O 是直线AB 外一点,若,且x +y =1,试判断A,B,P三点是否共线?变式:已知A,B,P 三点共线,点O 是直线AB 外一点,若,那么t =例2 已知平行六面体,点M 是棱AA 的中点,点G 在对角线A C 上,且CG:GA =2:1,设=,,试用向量表示向量.,a b 0b ≠//a b λ5,28,AB a b BC a b =+=-+()3CD a b =-,a b 0b ≠OP xOA yOB =+12OP OA tOB =+''''ABCD A B C D -'''CD a ',CB b CC c ==,,a b c ',,,CA CA CM CG变式1:已知长方体,M 是对角线AC 中点,化简下列表达式:⑴ ;⑵⑶变式2:如图,已知不共线,从平面外任一点,作出点,使得: ⑴⑵⑶⑷.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向.※ 动手试试练1. 下列说法正确的是( )A. 向量与非零向量共线,与共线,则与 共线;B. 任意两个共线向量不一定是共线向量;C. 任意两个共线向量相等;D.若向量与共线,则.2. 已知,,若,求实数''''ABCD A B C D -''AA CB -'''''AB B C C D ++'111222AD AB A A +-,,A B C ABC O ,,,P Q R S 22OP OA AB AC =++32OQ OA AB AC =--32OR OA AB AC =+-23OS OA AB AC =+-a b b c a c a b a b λ=32,(1)8a m n b x m n =-=++0a ≠//a b .x五、学后反思※学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论.※知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.课后作业:。
人教版高中数学选修2-1空间向量的数乘运算导学案
3.1.2 空间向量的数乘运算【使用说明及学法指导】1.先自学课本,理解观点,达成导学纲要;2.小组合作,着手实践。
【学习目标】1.掌握空间向量的数乘运算律,能进行简单的代数式化简;2.理解共线向量定理和共面向量定理及它们的推论;3.能用空间向量的运算意义及运算律解决简单的立体几何中的问题.【要点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题【难点】理解共线向量定理和共面向量定理及它们的推论;一、自主学习1.预习教材P86~ P87, 解决以下问题复习 1:化简:⑴ 5( 3a2b ) +4( 2b3a );⑵ 6 a3b c a b c .复习 2:在平面上有两个向量a, b ,若 b 是非零向量,则 a 与 b 平行的充要条件是2.导学纲要1.空间随意两个向量有____种地点关系?怎样判断它们的地点关系?随意两个向量的夹角的范围是 ______________?2. 假如表示空间向量的_____________所在的直线相互或,则这些向量叫共线向量,也叫3.对空间随意两个向量a, b ( b0 ), a // b 的充要条件是存在独一实数,使得______, 为什么要求b0 ?4.如图, l 为经过已知点 A 且平行于已知非零向量的直线,对空间的随意一点 O,点 P 在直线 l 上的充要条件是5.对空间两个不共线向量a, b ,向量 p 与向量 a, b 共面的充要条件是存在,使得.6.空间一点 P 与不在同向来线上的三点A,B,C 共面的充要条件是:⑴ 存在,使⑵对空间随意一点O,有7.向量共面的充要条件的理解→→P 都在平面 MAB 内;反 ( 1) MP = xMA +yMB .知足这个关系式的点之,平面 MAB 内的任一点 P 都知足这个关系式.这个充要条件常用以证 明四点共面.(2)共面向量的充要条件给出了空间平面的向量表示式, 即随意一个空间平面能够由空间一点及两个不共线的向量表示出来,它既是判断三个向量能否共面的依照,又能够把已知共面条件转变为向量式,以便于应用向 量这一工具.此外,在很多状况下,能够用 “若存在有序实数组 (x , y , z)使得关于空间随意一点 →→→→O ,有 OB = (1- t)OA = xOA + yOB + zOC ,且 x + y + z = 1 建立,则 P 、 A 、 B 、 C 四点共面 ”作为判断空间中四个点共面的依 据. 二、典型例题例 1.1. 以下说法正确的选项是()A. a 与非零向量 b 共线 , b 与 c 共线,则 a 与 c 共线B. 随意两个相等向量不必定共线C. 随意两个共线向量相等D. 若向量 a 与 b 共线,则 a b2. 正方体 ABCDA' B' C' D'中,点 E 是上底面 A'B'C 'D ' 的中心,若 BB ' xAD yAB zAA ' ,则 x = , = , =y z.3. 若点 P 是线段 AB 的中点,点 O 在直线 AB 外,则 OP OA +OB.4. 平行六面体 ABCD A'B'C'D ' , O为 A 1 C 与 B 1D 的交点,则1 ( AB AD AA ') AO3已知平行六面体 ABCD A'B'C'D' ,M 是 AC 与 BD5.交点,若AB a, ADb, AA 'c ,则与 B 'M 相等的向量是()A.1 a 1b c ;B.1 a 1b c ;222 2C. 1a 1b c ; D. 1 a 1b c .2 2 2 26. 在以下命题中:①若 a 、b 共线,则 a 、 b 所在的直线平行;②若 a 、b 所 在的直线是异面直线,则 a 、 b 必定不共面;③若 a 、 b 、 c 三向量两两共面,则 a 、b 、 c 三向量必定也共面;④已知三向量 a 、 b 、c ,则空间随意一个向量 p 总能够独一表示为p = x a + y b + z c .此中正确命题的个数为 ( ) .A . 0 B.1 C. 2D.37.以下等式中,使 M,A,B,C 四点共面的个数是()① OM OA OB OC;② OM11 1 OC ;OA OB5 3 2③MA MB MC 0;④OM OA OB OC0 .A. 1B. 2C. 3D. 4例 2. 已知平行六面体ABCD A'B'C'D ',点M是棱AA'的中点,点G在对角线 A'C 上,且 CG:GA'=2:1,设CD=a CB b,CC'c,试用向量a,b,c ,表示向量 CA, CA' ,CM ,CG.变式:已知长方体 ABCD A'B 'C 'D ' ,M是对角线AC'中点,化简以下表达式:⑴AA'CB;⑵''''' AB B C C D⑶1AD1AB1A' A222例 3如图,已知平行四边形ABCD, 过平面 AC 外一点O 作射线OA,OB,OC,OD,在四条射线上分别取点 E,,F,G,H,并且使OE OF OG OHk,OA OB OC OD求证: E,F,G,H 四点共面 .变式:已知空间四边形ABCD 的四个极点A,B,C,D 不共面, E,F,G,H 分别是AB,BC,CD,AD 的中点,求证:E,F,G,H 四点共面 .AE HB DGFC三、变式训练:课本第89页练习1-3四、讲堂小结1.知识:2.数学思想、方法:3.能力:五、课后稳固1.课本第 97页 A 组 2 题2. 若 a 3m 2n 4 p,b ( x 1)m 8n 2 yp ,a 0 ,若 a //b ,务实数x, y .3.已知两个非零向量e1 , e2不共线 , AB e1 e2 , AC 2e1 8e2 , AD 3e1 3e2 . 求证:A, B, C,D 共面.。
新教材高中数学第1章空间向量及其线性运算学案含解析新人教A版选择性必修第一册
新教材高中数学:1.1 空间向量及其运算1.1.1 空间向量及其线性运算学 习 目 标核 心 素 养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O )游览结束后乘车到外滩(A )观赏黄浦江,然后抵达东方明珠(B )游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1 图2如果游客还要登上东方明珠顶端(D )俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称 方向 模 记法 零向量 任意 0 0 单位向量任意1相反向量 相反 相等 a 的相反向量:-aAB →的相反向量:BA →相等向量相同相等a =b3.空间向量的线性运算 (1)向量的加法、减法 空间向量的运算加法 OB →=OA →+OC →=a +b减法CA →=OA →-OC →=a -b加法运算律①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )(2)空间向量的数乘运算①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算. 当λ>0时,λa 与向量a 方向相同; 当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍. ②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb . 思考:向量运算的结果与向量起点的选择有关系吗? [提示] 没有关系. 4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.(2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量.(2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”) (1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c . ( ) (2)相等向量一定是共线向量. ( ) (3)三个空间向量一定是共面向量. ( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行. (2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个 D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________.-53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.] 4.在三棱锥A BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD →+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念【例1】 (1)给出下列命题: ①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |; ③在正方体ABCD A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p . 其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→[(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确; 对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.[跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( ) ①长度相等、方向相同的两个向量是相等向量; ②平行且模相等的两个向量是相等向量; ③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同. A .0 B .1 C .2 D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算【例2】 (1)如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1的有( )①(AB →+BC →)+CC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zPA →; ②PA →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解. (1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; 对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; 对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; 对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.] (2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PC →-12PA →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点, ∴PA →+PC →=2PO →,PC →+PD →=2PQ →, ∴PA →=2PO →-PC →,PC →=2PQ →-PD →, ∴PA →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质.[跟进训练]2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB →B .3MG →C .3GM →D .2MG → B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB → =MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC =-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧λ=7λk =k +6,解得k =1.](2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM → =2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线. (1)存在实数λ,使PA →=λPB →成立. (2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ). (3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F→=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →,所以A 1E →=23A 1D 1→,A 1F →=25A 1C →,所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c . 又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如PA →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c . 因为a ,b ,c 不共面,所以⎩⎪⎨⎪⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示, 即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →. (1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →), ∴3CP →=PA →+2PB →,即PA →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面. [解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →,∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎪⎨⎪⎧ 1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断?[解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1.∴点P 与点A 、B 、C 不共面.解决向量共面的策略1若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →x +y +z =1,然后利用指定向量表示出已知向量,用待定系数法求出参数.2证明三个向量共面或四点共面,需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的.(2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( )A .OM →=2OA →-OB →-OC →B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.]2.已知正方体ABCD A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB →-nAA 1→,则m ,n的值分别为( )A .12,-12B .-12,-12C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .]4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a,b满足|a|>|b|且a,b同向,则a>b;③不相等的两个空间向量的模必不相等;④对于任何向量a,b,必有|a+b|≤|a|+|b|.其中正确命题的序号为________.④[对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,求k的值.[解]∵两非零向量e1,e2不共线,且k e1+e2与e1+k e2共线,∴k e1+e2=t(e1+k e2),则(k-t)e1+(1-tk)e2=0.∵非零向量e1,e2不共线,∴k-t=0,1-kt=0,解得k=±1.。
(新课程)高中数学《3.1.1空间向量及其运算》导学案 新人教a版选修2-1
§3.1.1空间向量及其运算1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.8486复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法.复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则.2. 实数与向量的积:实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:(1)|λa |= .(2)当λ>0时,λa 与A. ;当λ<0时,λa 与A. ;当λ=0时,λa = .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:a +b =b +a加法结合律:(a +b )+c =a +(b +c )数乘分配律:λ(a +b )=λa +λb二、新课导学※ 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, OB = , AB = ,试试:1. 分别用平行四边形法则和三角形法则求,.a b a b +- a .2. 点C 在线段AB 上,且52AC CB =,则 AC = AB , BC = AB .反思:空间向量加法与数乘向量有如下运算律吗?⑴加法交换律:A. + B. = B. + a ;⑵加法结合律:(A. + b ) + C. =A. + (B. + c );⑶数乘分配律:λ(A. + b ) =λA. +λb .※ 典型例题例1 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC + ⑴;'AB AD AA ++ ⑵;1'2AB AD CC ++ ⑶ 1(')2AB AD AA ++ ⑷.变式:在上图中,用',,AB AD AA 表示'',AC BD 和'DB .小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量.例2 化简下列各式: ⑴ AB BC CA ++ ; ⑵;AB MB BO OM +++ ⑶;AB AC BD CD -+- ⑷ OA OD DC -- .变式:化简下列各式: ⑸ OA OC BO CO +++ ; ⑹ AB AD DC -- ; ⑺ NQ QP MN MP ++- .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法,也可按减法法则进行运算,加法和减法可以转化.※ 动手试试练1. 已知平行六面体''''ABCD A B C D -, M 为A 1C 1与B 1D 1的交点,化简下列表达式: ⑴ 111AA A B + ; ⑵ 11111122A B A D + ; ⑶ 111111122AA A B A D ++ ⑷ 1111AB BC CC C A A A ++++ .三、总结提升※ 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律※ 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( ) A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同; B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC += . 2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++ =3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( ) A. 00a b = B. 00a b = 或00a b =- C. 01a = D. ∣0a ∣=∣0b ∣ 4. 在四边形ABCD 中,若AC AB AD =+ ,则四边形是( )A. 矩形B. 菱形C. 正方形D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量1. 在三棱柱中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB2. 如图,平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a = ,AD b = ,1A A c = , 则下列向量中与1B M 相等的是( )A. 1122a b c -++ B. 1122a b c ++ C. 1122a b c -+ D. 1122a b c --+。
高中数学人教A版选修(2-1)3.1.1《空间向量及其加减数乘运算》word导学案
3.1.1 空间向量及其加减数乘运算【学习目标】1.了解空间向量的概念,掌握空间向量的线性运算及其性质;2.空间向量加法、减法、数乘及它们的运算律;【自主学习】1.类比平面向量认识空间向量,谈谈空间向量的概念、表示方法。
思考:空间的任意两个向量可用同一平面内的两条有向线段来表示吗?2.空间向量的线性运算与平面向量运算类似,空间向量的加法、减法与数乘向量运算定义如下b a+=+=b a OB OA BA-=-=)(R a ∈=λλ运算律:⑴加法交换律:____________________ ⑵加法结合律:______________________-⑶数乘分配律:b a b aλλλ+=+)(, ()a a a λμλμ+=+⑷数乘结合律:()()a a λμλμ=探究:在平行六面体''''D C B A ABCD -中,分别标出AA AA ++++'',表示的向量,从中你能体会向量加法运算的交换律及结合律么?【典例分析】例1.已知平行六面体ABCD -D C B A '''',化简下列表达式,并标出化简结果的向量. ⑴AB BC +⑵AB AD AA '++ ⑶12AB AD CC '++⑷1(3AB AD AA '++【目标检测】空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD的中点,化简下列各表BDA达式,并标出化简结果向量:(1)AB BC CD++(2)1()2AB BD BC ++三、1()2AG AB AC-+【总结提升】类似平面向量运算,掌握空间向量的加法、减法与数乘向量运算.。
[精品]新人教A版选修2-1高中数学3.1.2空间向量及其运算导学案
3. 1.2空间向量及其运算(2)教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.教学重、难点:共线、共面定理及其应用. 教学过程:(一)复习:空间向量的概念及表示; (二)新课讲解: 1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
读作:a 平行于b ,记作://a b . 2.共线向量定理:对空间任意两个向量,(0),//a b b a b ≠的充要条件是存在实数λ,使a b λ=(λ唯一).推论:如果l 为经过已知点A ,且平行于已知向量a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP OA t AB =+①,其中向量a 叫做直线l 的方向向量。
在l 上取ABa =,则①式可化为OP OA t AB =+或(1)OP t OA tOB =-+②当12t =时,点P 是线段AB 的中点,此时1()2OP OA OB =+③①和②都叫空间直线的向量参数方程,③是线段AB 的中点公式. 3.向量与平面平行:a l PBAO已知平面α和向量a ,作O A a =,如果直线OA 平行于α或在α内,那么我们说向量a 平行于平面α,记作://a α.通常我们把平行于同一平面的向量,叫做共面向量. 说明:空间任意的两向量都是共面的. 4.共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的充要条件是存在实数,x y 使p xa yb =+.推论:空间一点P 位于平面MAB 内的充分必要条件是存在有序实数对,x y ,使M P x M Ay =+或对空间任一点O ,有O P O M x M A =++①上面①式叫做平面MAB 的向量表达式. (三)例题分析:例1.已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否一定共面? 解:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+-, ∴22AP PB PC =+,即22PA PB PC =--, 所以,点P 与,,A B C 共面.说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.aaα【练习】:对空间任一点O 和不共线的三点,,A B C ,问满足向量式OP xOA yOB zOC =++ (其中1x y z ++=)的四点,,,P A B C 是否共面?解:∵(1)OP z y OA yOB zOC =--++,∴()()OP OA y OB OA z OC OA -=-+-, ∴AP yAB zAC =+,∴点P 与点,,A B C 共面.例2.已知ABCD ,从平面AC 外一点O 引向量,,,OE kOA OF KOB OG kOC OH kOD ====,(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG .解:(1)∵四边形ABCD 是平行四边形,∴AC AB AD =+,∵EG OG OE =-,()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OE EF EH=⋅-⋅=-==+=-+-=-+-=+∴,,,E F G H 共面;(2)∵()EF OF OE k OB OA k AB =-=-=⋅,又∵EG k AC =⋅,∴//,//EF AB EG AC 所以,平面//AC 平面EG .课堂练习:课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.作业:1.已知两个非零向量21,e e 不共线,如果21AB e e =+,2128AC e e =+,2133AD e e =-,求证:,,,A B C D 共面.2.已知324,(1)82a m n p b x m n yp =--=+++,0a ≠,若//a b ,求实数,x y的值。
《空间向量及其运算》教案新人教A版选修
《空间向量及其运算》教案9(新人教A版选修2-1)第三课时3.1.2空间向量的数乘运算(二)教学要求:了解向量与平面平行、共面向量的意义,掌握向量与平面平行的表示方法;理解共面向量定理及其推论;掌握点在已知平面内的充要条件;会用上述知识解决立几中有关的简单问题.教学重点:点在已知平面内的充要条件.教学难点:对点在已知平面内的充要条件的理解与运用.教学过程:一、复习引入1. 空间向量的有关知识--共线或平行向量的概念、共线向量定理及其推论以及空间直线的向量表示式、中点公式.2. 必修④《平面向量》,平面向量的一个重要定理--平面向量基本定理:如果e1、e2是同一平面内两个不共线的向量,那么对这一平面内的任意一个向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中不共线向量e1、e2叫做表示这一平面内所有向量的一组基底.二、新课讲授1. 定义:如果表示空间向量a的有向线段所在直线与已知平面α平行或在平面α内,则称向量a平行于平面α,记作a//α.向量与平面平行,向量所在的直线可以在平面内,而直线与平面平行时两者是没有公共点的.2. 定义:平行于同一平面的向量叫做共面向量.共面向量不一定是在同一平面内的,但可以平移到同一平面内.3. 讨论:空间中任意三个向量一定是共面向量吗?请举例说明.结论:空间中的任意三个向量不一定是共面向量.例如:对于空间四边形ABCD,、、这三个向量就不是共面向量.4. 讨论:空间三个向量具备怎样的条件时才是共面向量呢?5. 得出共面向量定理:如果两个向量a、b不共线,则向量p与向量a、b共面的充要条件是存在实数对x,y,使得p= xa+yb .证明:必要性:由已知,两个向量a、b不共线.∵ 向量p与向量a、b共面∴ 由平面向量基本定理得:存在一对有序实数对x,y,使得 p= xa+yb.充分性:如图,∵xa,yb分别与a、b共线,∴xa,yb都在a、b确定的平面内.又∵xa+yb是以|xa|、|yb|为邻边的平行四边形的一条对角线所表示的向量,并且此平行四边形在a、b确定的平面内,∴ p= xa+yb在a、b确定的平面内,即向量p与向量a、b共面.说明:当p、a、b都是非零向量时,共面向量定理实际上也是p、a、b所在的三条直线共面的充要条件,但用于判定时,还需要证明其中一条直线上有一点在另两条直线所确定的平面内.6. 共面向量定理的推论是:空间一点P在平面MAB内的充要条件是存在有序实数对x,y,使得,① 或对于空间任意一定点O,有.②分析:⑴推论中的x、y是唯一的一对有序实数;⑵由得:,∴ ③公式①②③都是P、M、A、B四点共面的充要条件.7. 例题:课本P95例1 ,解略.→ 小结:向量方法证明四点共面三、巩固练习1. 练习:课本P96 练习3题.2. 作业:课本P96 练习2题.。
1.1.1空间向量及其运算导学案高二上学期数学人教A版选择性(1)
1.1.1空间向量及其线性运算导学案姓名: 班级:日期:月日一:学习目标1.理解空间向量的概念2.掌握空间向量的线性运算3.掌握共线向量定理,共面定理及其推论的应用二:思维框架三:自学预习(一):空间向量的有关概念1.空间向量的概念及表示(二):空间向量的线性运算=(1)交换律:a+b=b+a(2)结合律:a+(b+c)=(a+b)+c ,λ(µa)=(λµ)a (3)分配律:(λ+µ)a=λa+µa λ(a+b )=λa+λb(三):共线向量与共面向量1. 空间两个向量共线的充要条件对于任意两个空间向量a ,b (b ≠0),a//b 的充要条件是存在实数λ,使得a=λb2. 直线的方向向量在直线l 上取非零向量a ,我们把与a 平行的非零向量称为直线L 的方向向量。
3. 共面向量如图,如果表示向量a 的有向线段OA ⃗⃗⃗⃗⃗⃗ 所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l,如果直线OA 平行于平面ɑ或在平面ɑ内,那么称向量a 平行于平面ɑ,平行于同一平面的向量,叫做共面向量。
▲任意两个空间向量总是共面4. 向量共面的充要条件如果两个向量a,b 不共线,那么向量p 与向量a,b 共面的充要条件是存在唯一的有序实数对(x,y ),使p=xa+yb 。
若空间中P ,A,B,C 四点共面⟺ Op ⃗⃗⃗⃗⃗⃗ = x OA ⃗⃗⃗⃗⃗⃗ + y OA ⃗⃗⃗⃗⃗⃗ +z OC⃗⃗⃗⃗⃗⃗ 点拨:用于快速解决四点共面的求参问题,注意O 不在平面ABC 内。
四:课堂探究探究一:空间向量的线性运算例1 如图,E,F 分别是长方体ABCD —A'B'C'D'的棱AB,CD 的中点,化简下列表达式,并在图中标出化简结果(1)AA ′⃗⃗⃗⃗⃗⃗⃗ —CB ⃗⃗⃗⃗⃗ (2)AA ′⃗⃗⃗⃗⃗⃗⃗ + AB ⃗⃗⃗⃗⃗ +B ′C ′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗( 3 )AB ′⃗⃗⃗⃗⃗⃗⃗ — AD ⃗⃗⃗⃗⃗ +B ′D′ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ( 4 ) AB ⃗⃗⃗⃗⃗⃗ + CF⃗⃗⃗⃗⃗ ACA′ ′ E探究二:向量共线问题例2:在正方体ABCD—A'B'C'D'中,E在A'D'上,使得A'E=2ED',F在对角线A'C 上,且A'F=FC 求证:E, F,B三点共线探究三:向量共面问题课本p5 例3:如图,已知平行四边形ABCD,过平面AC外一点О作射线OA,OB,OC,OD,在四条射线上分别取点E,F,G,H,使.求证:E,F,G,H四点共面.五:课堂归纳六:课程收获你收获了什么!。
2021年高中数学3.1.1空间向量及其加减运算学案含解析人教A版选修2_1
3.1.1 空间向量及其加减运算[目标] 1.了解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,理解向量减法的几何意义.[重点] 空间向量加减运算及其几何意义.[难点] 向量加减运算由平面向空间的推广.知识点一空间向量的有关概念[填一填]1.定义:在空间,把具有大小和方向的量叫做空间向量.2.长度:向量的大小叫做向量的长度或模.4.几类特殊向量[答一答]1.向量可以用有向线段表示,那么有向线段是向量吗?提示:不是.虽然有向线段既有大小又有方向,但它不是一个量.2.如何理解零向量的方向?提示:由于零向量的长度为零,可以理解为表示零向量的有向线段长度为零,因此可以理解为零向量不是没有方向,而是方向是任意的.3.你能说出平面向量与空间向量的区别与联系吗?提示:(1)区别:平面向量研究的是二维平面的向量,空间向量研究的是三维空间的向量.(2)联系:空间向量的定义、表示方法及零向量、单位向量、相反向量和相等向量的概念都与平面向量相同.知识点二空间向量的加减运算[填一填][答一答]4.空间两向量的加减法与平面内两向量的加减法完全一样吗?提示:因为空间中任意两个向量均可平移到同一个平面内,所以空间向量与平面向量加减法均可以用三角形或平行四边形法则,是一样的.5.共起点的两个不共线向量的和向量所对应的线段是平行四边形的对角线,那么三个不共面的向量的和向量与这三个向量有什么关系?提示:如图,将三个不共面的向量平移至同一起点,以这三个向量所对应的线段为棱作平行六面体,则这三个向量的和向量所对应的线段即为从该起点出发的平行六面体的体对角线.1.零向量的方向是任意的,同平面向量中的规定一样,0与任何空间向量平行.2.单位向量的模都相等且为1,而模相等的向量未必是相等向量.3.空间任意两个向量都可以平移到同一个平面内,成为同一个平面内的两个向量,因而空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加、减法运算.类型一 空间向量的有关概念 【例1】 给出以下命题:①若a ,b 是空间向量,则|a |=|b |是a =b 的必要不充分条件; ②若向量a 是向量b 的相反向量,则|a |=|b |; ③两个空间向量相等,则它们的起点相同,终点也相同; ④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p ;⑤在正方体ABCD A 1B 1C 1D 1中,必有AC →=A 1C 1→;⑥空间中任意两个单位向量必相等. 其中,正确的命题序号是________. 【分析】 用空间向量的有关概念进行判断.【解析】 以上命题①②④⑤正确.两向量若相等,必须方向相同且模相等.但相等的向量起点不一定相同,故③错;两个单位向量虽模相等,但方向不一定相同,故⑥错.【答案】 ①②④⑤与平面向量一样,空间向量也有向量的模、向量的夹角、单位向量、零向量、相等向量、相反向量、平行向量的概念.两个向量是否相等,要看方向是否相同,模是否相等,与起点和终点位置无关.(1)把空间所有单位向量归结到一个共同的始点,那么这些向量的终点所构成的图形是( C )A .一个圆B .两个孤立的点C .一个球面D .以上均不正确(2)下列命题中正确的个数是( C ) ①如果a ,b 是两个单位向量,则|a |=|b |; ②两个空间向量共线,则这两个向量方向相同; ③若a ,b ,c 为非零向量,且a ∥b ,b ∥c ,则a ∥c ; ④空间任意两个非零向量都可以平移到同一平面内. A .1个 B .2个 C .3个 D .4个解析:(1)单位向量的模为1,把所有空间单位向量移到共同起点后,向量的终点到起点的距离均为1,构成了一个球面.(2)对于①:由单位向量的定义即得|a |=|b |=1,故①正确;对于②:共线不一定同向,故②错;对于③:正确;对于④:正确,在空间任取一点,过此点引两个与已知非零向量相等的向量,而这两个向量所在的直线相交于此点,两条相交直线确定一个平面,所以两个非零向量可以平移到同一平面内.类型二 空间向量的加减运算【例2】 如图,已知正方体ABCD A ′B ′C ′D ′,点E 是上底面A ′B ′C ′D ′的中心,求下列各式中x 、y 、z 的值.(1)BD ′→=xAD →+yAB →+zAA ′→; (2)AE →=xAD →+yAB →+zAA ′→.【解】 (1)∵BD ′→=BD →+DD ′→=BA →+BC →+DD ′→=-AB →+AD →+AA ′→, 又BD ′→=xAD →+yAB →+zAA ′→,∴x =1,y =-1,z =1.(2)∵AE →=AA ′→+A ′E →=AA ′→+12A ′C ′→=AA ′→+12(A′B ′→+A ′D ′→)=AA ′→+12A ′B ′→+12A ′D ′→=12AD →+12AB →+AA ′→, 又AE →=xAD →+yAB →+zAA ′→, ∴x =12,y =12,z =1.灵活运用空间向量的加法与减法法则,尽量走边路即沿几何体的边选择途径,多个向量运算时,先观察分析“首尾相接”的向量,使之结合,使用减法时,把握“共起点,方向指向被减向量”.如图所示,在正方体ABCD A 1B 1C 1D 1中,下列各式中运算的结果为向量AC 1→的共有( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→; ④(AA 1→+A 1B 1→)+B 1C 1→. A .1个 B .2个 C .3个 D .4个解析:①(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→; ②(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→; ③(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→; ④(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.所以,所给4个式子的运算结果都是AC 1→.故选D. 类型三 有关向量的证明问题【例3】 求证:平行六面体的体对角线交于一点,并且在交点处互相平分. 【分析】 解决这个问题要充分利用课本上的一个结论,即平行六面体体对角线向量AC ′→=AB →+AD →+AA ′→.【证明】 如下图,平行六面体ABCD A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC ′→=12(AB →+AD →+AA ′→).设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP →=AB →+BP →=AB →+12BD ′→=AB →+12(BA →+BC →+BB ′→)=AB →+12(-AB →+AD →+AA ′→)=12(AB →+AD →+AA ′→).同理可证:AM →=12(AB →+AD →+AA ′→),AN →=12(AB →+AD →+AA ′→).由此可知O 、P 、M 、N 四点重合.故平行六面体的体对角线相交于一点,且在交点处互相平分.利用向量解决立体几何问题的一般思路是:将要解决的问题用向量表示,用已知向量表示所需向量,对表示出的所需向量进行目标运算,再将运算结果转化为要解决的问题.如图,设A 是△BCD 所在平面外的一点,G 是△BCD 的重心.求证:AG →=13(AB →+AC →+AD →).解:如图,连结BG ,延长后交CD 于E ,由G 为△BCD 的重心,知BG →=23BE →.∵E 为CD 的中点, ∴BE →=12BC →+12BD →.∴AG →=AB →+BG →=AB →+23BE →=AB →+13(BC →+BD →)=AB →+13[(AC →-AB →)+(AD →-AB →)]=13(AB →+AC →+AD →).1.判断下列命题中为真命题的是( A )A .向量AB →与BA →的长度相等B .将空间中所有的单位向量移到同一个起点,则它们的终点构成一个圆C .空间向量就是空间中的一条有向线段D .不相等的两个空间向量的模必不相等解析:|AB →|=|BA →|,故选项A 对;选项B 应为球面;选项C ,空间向量可以用有向线段来表示,但不等同于有向线段;选项D ,向量不相等有可能模相等.2.设A 、B 、C 为空间任意三点,则下列命题为假命题的是( C ) A.AB →+BC →=AC → B.AB →+BC →+CA →=0 C.AB →-AC →=BC →D.AB →=-BA →3.如右图,在平行六面体ABCD A ′B ′C ′D ′中,AB →=a ,AD →=b ,AA ′→=c ,则BD ′→=b-a +c ,A ′C →=a +b -c .解析:BD ′→=BD →+DD ′→=AD →-AB →+AA ′→=b -a +c ,A ′C →=A ′A →+AC →=AB →+AD →+A ′A →=a +b -c .4.在正方体ABCD A 1B 1C 1D 1中,化简AB →-CD →+BC →-DA →的结果是2AC →.5.如图所示,已知空间四边形ABCD ,连接AC 、BD ,E 、F 、G 分别是BC 、CD 、DB 的中点,请化简(1)AB →+BC →+CD →;(2)AB →+GD →+EC →,并标出化简结果的向量.解:(1)AB →+BC →+CD →=AC →+CD →=AD →,如图中向量AD →;(2)∵E 、F 、G 分别为BC 、CD 、DB 的中点,∴GD →=BG →,GF →=12BC →=EC →,∴AB →+GD →+EC →=AB→+BG →+EC →=AG →+GF →=AF →,如图中向量AF →.。
2020年数学选修2-1人教A全册教案导学案--3.1.2空间向量及其运算
3. 1.2空间向量及其运算(2)教学目标:1.理解共线向量定理和共面向量定理及它们的推论;2.掌握空间直线、空间平面的向量参数方程和线段中点的向量公式.教学重、难点:共线、共面定理及其应用. 教学过程:(一)复习:空间向量的概念及表示; (二)新课讲解:1.共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
读作:平行于,记作:.2.共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一).推论:如果为经过已知点,且平行于已知向量的直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式①,其中向量叫做直线的方向向量。
在上取,则①式可化为或①当时,点是线段的中点,此时①①和①都叫空间直线的向量参数方程,①是线段的中点公式. 3.向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:.通常我们把平行于同一平面的向量,叫做共面向量.说明:空间任意的两向量都是共面的. 4.共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使.推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有①上面①式叫做平面的向量表达式. (三)例题分析:例1.已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?a rb r //a b r r ,(0),//a b b a b ≠r r r r r r λa b λ=r rλl A a rO P l t OP OA t AB =+u u u r u u u r u u u r a rl l AB a =u u u r r OP OA t AB =+u u u r u u u r u u u r (1)OP t OA tOB =-+u u ur u u u r u u u r 12t =P AB 1()2OP OA OB =+u u u r u u u r u u u r AB αa r OA a =u u u r r OA ααa r α//a αr,a b r r p r ,a b r r ,x y p xa yb =+r r rP MAB ,x y MP xMA yMB =+u u u r u u u r u u u r O OP OM xMA yMB =++u u u r u u u u r u u u r u u u r MAB ,,A B C 122555OP OA OB OC =++u u u r u u u r u u u r u u u rP ,,A B C alPBAO解:由题意:,∴, ∴,即,所以,点与共面.说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算. 【练习】:对空间任一点和不共线的三点,问满足向量式(其中)的四点是否共面? 解:∵,∴, ∴,∴点与点共面.例2.已知,从平面外一点引向量,(1)求证:四点共面; (2)平面平面.解:(1)∵四边形是平行四边形,∴,∵,∴共面;(2)∵,又∵,∴所以,平面平面.课堂练习:课堂小结:1.共线向量定理和共面向量定理及其推论;2.空间直线、平面的向量参数方程和线段中点向量公式.522OP OA OB OC =++u u u r u u u r u u u r u u u r()2()2()OP OA OB OP OC OP -=-+-u u u r u u u r u u u r u u u r u u u r u u u r 22AP PB PC =+u u u r u u u r u u u r 22PA PB PC =--u u u r u u u r u u u r P ,,A B C O ,,A B C OP xOA yOB zOC =++u u u r u u u r u u u r u u u r1x y z ++=,,,P A B C (1)OP z y OA yOB zOC =--++u u u r u u u r u u u r u u u r ()()OP OA y OB OA z OC OA -=-+-u u u r u u u r u u u r u u u r u u u r u u u r AP y AB z AC =+u u u r u u u r u u u rP ,,A B C ABCD Y AC O ,,,OE kOA OF KOB OG kOC OH kOD ====u u u r u u u r u u u r u u u r u u u r u u u r u u u u r u u u r ,,,E F G H AC //EG ABCD AC AB AD =+u u u r u u u r u u u rEG OG OE =-u u u r u u u r u u u r()()()k OC k OA k OC OA k AC k AB AD k OB OA OD OA OF OE OH OE EF EH=⋅-⋅=-==+=-+-=-+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r ,,,E F G H ()EF OF OE k OB OA k AB =-=-=⋅u u u r u u u r u u u r u u u r u u u r u u u r EG k AC =⋅u u u r u u u r//,//EF AB EG AC //AC EG作业:1.已知两个非零向量不共线,如果,,,求证:共面.2.已知,,若,求实数的值。
人教版高中数学选修2-1导学案:第三章第一节空间向量的数乘运算第一课时
第三章第一节空间向量的数乘运算第一课时设计者:曾刚 审核者: 执教: 使用时间:学习目标1.掌握解空间向量的数乘运算律,能进行简单的代数式化简;2. 了解共线向量定理及它们的推论;3. 能用两个空间向量共线的充要条件判断两个空间向量共线;4. 能用共线向量定理解决简单的立体几何中的问题.________________________________________________________________________________ 自学探究问题1. 请你试试化简以下式子: (1) 5(32a b -r r )+4(23b a -r r );⑵ ()()63a b c a b c -+--+-r r r r r r .问题2. 在平面上有两个向量,a b r r , 若b r 是非零向量,则a r 与b r 平行的充要条件是什么?问题3. 空间任意两个向量有几种位置关系?如何判定它们的位置关系? 【思维导航】(1)类比共线的两个平面向量对空间任意两个向量,a b r r (0b ≠r r ), //a b r r 的充要条件是什么? (2)两个向量,a b r r 共线向量的充要条件中需要注意些什么?【技能提炼】 1. 已知直线AB ,点O 是直线AB 外一点,若OP xOA yOB =+u u u r u u u r u u u r ,且x +y =1,试判断A,B,P 三点是否共线?【变式】1.已知A,B,P 三点共线,点O 是直线AB 外一点,若12OP OA tOB =+u u u r u u u r u u u r ,那么t =*2.如图,已知平行六面体ABCD -A ′B ′C ′D ′,点E 在AC ′上,且AE ∶EC ′=1∶2,点F ,G 分别是B ′D ′和BD ′的中点,求下列各式中的x ,y ,z 的值.(1)AE →=xAA ′→+yAB →+zAD →;(2)BF →=xBB ′→+yBA →+zBC →;(3)GF →=xBB ′→+yBA →+zBC →.【变式1】已知长方体''''ABCD A B C D -,M 是对角线AC '中点,化简下列表达式: ⑴ 'AA CB -u u u r u u u r ; ⑵ '''''AB B C C D ++u u u u r u u u u r u u u u r ;⑶ '111222AD AB A A +-u u u r u u u r u u u r【变式2】如图,已知,,A B C 不共线,从平面ABC 外任一点O ,作出点,,,P Q R S ,使得: ⑴22OP OA AB AC =++u u u r u u u r u u u r u u u r ⑵32OQ OA AB AC =--u u u r u u u r u u u r u u u r ⑶32OR OA AB AC =+-u u u r u u u r u u u r u u u r ⑷23OS OA AB AC =+-u u u r u u u r u u u r u u u r .【思考】类比空间向量与平面向量,你能得到在空间向量的化简运算中的异同点吗?在空间向量中的化简运算中要注意些什么?教师问题创生学生问题发现变式反馈1.下列说法正确的是( ) A. 向量a r 与非零向量b r 共线,b r 与c r 共线,则a r 与c r 共线;B. 任意两个相等向量不一定是共线向量;C. 任意两个共线向量相等;D. 若向量a r 与b r 共线,则a b λ=r r .*2.设M 是△ABC 的重心,记a =BC →,b =CA →,c =AB →,a +b +c =0,则AM →为( )A.b -c 2B.c -b 2C.b -c 3D.c -b 3*3. 已知32,(1)8a m n b x m n =-=++r r r r r r ,0a ≠r r ,若//a b r r ,求实数.x4. 已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===u u u r u u u r r u u u r r r ,则与'B M u u u u r 相等的向量是( )A. 1122a b c -++r r r ;B. 1122a b c ++r r r ;C. 1122a b c -+r r r ;D. 1122a b c --+r r r。
人教A版高中同步学案数学选择性必修第一册精品习题课件 第一章 空间向量及其运算 空间向量及其线性运算
+
−
+
=
−
=
−
+
+ ( −
) =
− ,故选D.
−
+
(
+
5.设1 ,2 是空间两个不共线的向量,已知 = 1 + 2 , = 51 + 42 ,
1
= −1 − 22 ,且,,三点共线,则实数的值是___.
1
4
3
8
1
4
3
4
1
4
3
4
C. − − D. + −
[解析]因为在平行六面体 − 中, = , = , = ,是
的中点,是 上的点,且: = : ,所以
= + =
− ) =
= 1 + 7 + 61 − 41 1 ,那么点必() C
A.在平面1 内B.在平面1 内C.在平面1 1 内D.在平面1 1 内
[解析]由于
= + + − = + + − = + +
故选.
14.已知正方体 − 1 1 1 1 ,1 =
1
=__.
4
[解析] = + = +
1
,若
4 1 1
高中数学人教A版选修1-1第3章3-1空间向量及其运算教案
【教学难点】:
空间向量的应用
【教学过程设计】:
教学环节
教学活动
设计意图
(1) 一块均匀的正三角形的钢板所受重力为 500N,在它的
一.情景引 入
二.新旧知 识比较
顶点处分别受力 F 1 ,F 2 ,F 3 ,每个力与同它相邻的三
角形的两边之间的夹角都是 60 o ,且|
F 1 |=|F 2 |=|F 3 |=200N,这块钢板在这些力的作用下将
【教学目标】:
(1)知识与技能:理解和掌握空间向量的基本概念,向量的加减法
(2)过程与方法:通过高一学习的平面向量的知识,引申推广,理解和掌握向量的加减法
(3)情感态度与价值观:类比学习,注重类比、推广等思想方法的学习,运用向量的概念和运算解
决问题,培养学生的开拓创新能力。
【教学重点】:
空间向量的概念和加减运算
人教 A 版选修 1-1 教案
3.1 空间向量及其运算
§3.1.1 空间向量及加减其运算
【学情分析】:
向量是一种重要的数学工具,它不仅在解决几何问题中有着广泛的应用,而且在物理学、工程科学等
方面也有着广泛的应用。在人教 A 版必修四中,读者已经认知了平面向量,现在,学习空间向量时要注意
与平面向量的类比,体会空间向量在解决立体几何问题中的作用。
求证:E,F,G,H 四点共面
本探究可以在老师的启发下,给学生 自己证明,不同层次可以酌情考虑是 否证明。
分析:欲证 E,F,G,H 四点共面,只需证明 EH ,EF ,
EG 共面。下面我们利用 AD , AB , AC 共面来证
三.典 例讲练
明。
证明:因为 OE = OF = OG = OH = k ,所以 OA OB OC OD
【新教材精创】1.3 空间向量及其运算的坐标表示(导学案)-人教A版高中数学选择性必修第一册
1.3 空间向量及其运算的坐标表示1.了解空间直角坐标系理解空间向量的坐标表示2.掌握空间向量运算的坐标表示3.掌握空间向量垂直与平行的条件及其应用4.掌握空间向量的模夹角以及两点间距离公式,能运用公式解决问题重点:理解空间向量的坐标表示及其运算难点:运用空间向量的坐标运算解决简单的立体几何问题一、平面向量坐标表示及其运算已知a =(1x ,1y ),b =(2x ,2y ),写出下列向量的坐标表示a +b =(1x +2x ,1y +2y ) ;a -b =(1x -2x ,1y -2y );λa =(1x λ,1y λ);a •b =1212x x y y + a //b ⇔1221x y x y -=0;a ⊥b ⇔1212x x y y +=0设(,)x y =a ,则222||a x y =+或22||a x y =+如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x , 那么221212||()()a x x y y =-+-; co s θ =||||a b a b ⋅⋅( πθ≤≤0)一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐222221212121y x y x y y x x +++=标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算. 二、探究新知一、空间直角坐标系与坐标表示 1.空间直角坐标系在空间选定一点O 和一个单位正交基底{i,j,k },以点O 为原点,分别以i ,j ,k 的方向为正方向、以它们的长为单位长度建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz ,O 叫做原点,i ,j ,k 都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy 平面,Oyz 平面,Ozx 平面.1.画空间直角坐标系Oxyz 时,一般使∠xOy=135°(或45°),∠yOz=90°.三个坐标平面把空间分成八个部分.2.在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.本书建立的都是右手直角坐标系. 2.点的坐标在空间直角坐标系Oxyz 中,i ,j ,k 为坐标向量,对空间任意一点A ,对应一个向量OA⃗⃗⃗⃗⃗ ,且点A 的位置由向量OA ⃗⃗⃗⃗⃗ 唯一确定,由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使OA⃗⃗⃗⃗⃗ =x i +y j +z k .在单位正交基底{i ,j ,k }下与向量OA⃗⃗⃗⃗⃗ 对应的有序实数组(x ,y ,z ),叫做点A 在空间直角坐标系中的坐标,记作A (x ,y ,z ),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标.3.向量的坐标在空间直角坐标系Oxyz 中,给定向量a ,作OA⃗⃗⃗⃗⃗ =a 由空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k .有序实数组(x ,y ,z )叫做a 在空间直角坐标系Oxyz 中的坐标,可简记作a =(x ,y ,z ).小试牛刀1.若a=3i+2j-k,且{i,j,k}为空间的一个单位正交基底,则a的坐标为.(3,2,-1)答案:向量OP⃗⃗⃗⃗⃗ 的坐标恰好是终点P的坐标,这就实现了空间基底到空间坐标系的转换.思考:在空间直角坐标系中,向量OP⃗⃗⃗⃗⃗ 的坐标与终点P的坐标有何关系?二、空间向量运算的坐标表示1.空间向量的坐标运算法则设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么(a1+b1,a2+b2,a3+b3) ;(a1-b1,a2-b2,a3-b3);(λa1,λa2,λa3);a1b1+a2b2+a3b32.空间向量的坐标与其端点坐标的关系:设A(x1,y1,z1),B(x2,y2,z2),则AB⃗⃗⃗⃗⃗ =(x2-x1,y2-y1,z2-z1).即一个空间向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标.3.空间向量平行与垂直条件的坐标表示若向量a=(a1,a2,a3),b=(b1,b2,b3),则(1)当b≠0时,a∥b⇔a=λb⇔(λ∈R);(2)a⊥b⇔⇔.a 1=λb1,a2=λb2,a3=λb3;a·b=0 ;a1b1+a2b2+a3b3=0点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表示为a∥b⇔a1b1=a2b2=a3b34.空间向量的模、夹角、距离公式的坐标表示若向量a=(a1,a2,a3),b=(b1,b2,b3),则(1)|a|=√a·a=;(2)cos <a ,b >=a ·b|a ||b |= ;(3)若P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则P 1,P 2两点间的距离为|P 1P 2⃗⃗⃗⃗⃗⃗⃗⃗ |= .√a 12+a 22+a 32;112233√a 1+a 2+a 3√b 1+b 2+b 3;√(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2.在此处键入公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 空间向量及其运算
【使用说明及学法指导】
1.先自学课本,理解概念,完成导学提纲;
2.小组合作,动手实践。
【学习目标】
1. 理解空间向量的概念,掌握其表示方法;
2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题.
【重点】能用空间向量的运算意义及运算律解决简单的立体几何中的问题
【难点】会用图形说明空间向量加法、减法、数乘向量及它们的运算律;
一、自主学习
1.预习教材P 84~ P 86, 解决下列问题
复习1:平面向量基本概念:
具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, a 的相反向量记着 . 叫相等向量. 向量的表示方法
有 , ,和 共三种方法. 复习2:平面向量有加减以及数乘向量运算:
1. 向量的加法和减法的运算法则有 法则 和 法则.
2. 实数与向量的积:
实数λ与向量a 的积是一个 量,记作 ,其长度和方向规定如下:
(1)|λa |= .
(2)当λ>0时,λa 与b ;
当λ<0时,λa 与b ;
当λ=0时,λa = .
3. 向量加法和数乘向量,以下运算律成立吗?
加法交换律:a +b =b +a
加法结合律:(a +b )+c =a +(b +c )
数乘分配律:λ(a +b )=λa +λb
2.导学提纲
1.空间向量中的零向量,单位向量,相等向量分别如何表示:__________、_________、_____________.
2.分别用平行四边形法则和三角形法则求,.a b a b +-.
b
3.点C 在线段AB 上,且
52
AC CB =,则AC = AB , BC = AB . 4.知识反思:可以发现平面向量和空间向量存在怎样的位置关系?
5.知识拓展
平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移.
二、典型例题
例1、(1)给出下列命题:
①将空间中所有的单位向量移到同一个点为起点,则它们的终点构成一个圆;
②若空间向量a 、b 满足|a |=|b |,则a =b ; ③在正方体ABCD-A 1B 1C 1D 1中,必有AC=11C A ;
④若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;
⑤空间中任意两个单位向量必相等.
其中假命题的个数是( )
A .1
B .2
C .3
D .4
(2) 化简下列各式:
⑴ AB BC CA ++; ⑵;AB MB BO OM +++
⑶;AB AC BD CD -+- ⑷ OA OD DC --.
⑸ OA OC BO CO +++; ⑹ AB AD DC --;
⑺ NQ QP MN MP ++-.
例2. 已知平行六面体''''ABCD A B C D -(如图),化简下列向量表达式,并标出化简结果的向量: AB BC +⑴;
'AB AD AA ++⑵; 1'2AB AD CC ++⑶ 1(')2
AB AD AA ++⑷.
变式:在上图中,用',,AB AD AA 表示'',AC
BD 和'DB .
例3.在四面体ABCD 中,M 为BC 的中点,Q 为△BCD 的重心,设AB=b AC=c AD=d ,试用b ,c ,d 表示向量BD ,BC 、CD ,BM ,DM 和AQ 。
三、当堂练习
1. 下列说法中正确的是( )
A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;
B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;
C. 空间向量的减法满足结合律;
D. 在四边形ABCD 中,一定有AB AD AC +=.
2. 长方体''''ABCD A B C D -中,化简'''''AA A B A D ++=
3. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( )
A. 00a b =
B. 00a b =或00a b =-
C. 01a =
D. ∣0a ∣=∣0b ∣
4. 在四边形ABCD 中,若AC AB AD =+,则四边形是( )
A. 矩形
B. 菱形
C. 正方形
D. 平行四边形
5. 下列说法正确的是( )
A. 零向量没有方向
B. 空间向量不可以平行移动
C. 如果两个向量不相同,那么它们的长度不相等
D. 同向且等长的有向线段表示同一向量
6.在三棱柱ABC-A'B'C'中,M,N 分别为BC ,B'C'的中点,化简下列式子: ⑴ AM + BN ⑵'A N -'MC + 'BB
四、课堂小结
1.知识:
2.数学思想、方法:
3.能力:
五、课后巩固
1.完成书86页练习
2.课本第97页A 组1题。