层次遍历二叉树

合集下载

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

二叉树的四种遍历方式

二叉树的四种遍历方式

二叉树的四种遍历方式
(实用版)
目录
1.前序遍历
2.中序遍历
3.后序遍历
4.层次遍历
正文
二叉树是一种非常重要的数据结构,它在计算机科学和信息处理领域有着广泛的应用。

在二叉树中,有四种常见的遍历方式,分别是前序遍历、中序遍历、后序遍历和层次遍历。

1.前序遍历:先访问根节点,然后遍历左子树,最后遍历右子树。

这种遍历方式的特点是先访问根节点,然后按照左子树、右子树的顺序进行遍历。

2.中序遍历:先遍历左子树,然后访问根节点,最后遍历右子树。

这种遍历方式的特点是先遍历左子树,然后访问根节点,最后遍历右子树。

3.后序遍历:先遍历左子树,然后遍历右子树,最后访问根节点。

这种遍历方式的特点是先遍历左子树,然后遍历右子树,最后访问根节点。

4.层次遍历:按照树的层次,从上到下,从左到右进行遍历。

这种遍历方式的特点是按照树的层次进行遍历,每一层的节点都会被依次访问。

第1页共1页。

数据结构-二叉树的存储结构和遍历

数据结构-二叉树的存储结构和遍历

return(p); }
建立二叉树
以字符串的形式“根左子树右子树”定义 一棵二叉树
1)空树 2)只含一个根 结点的二叉树 A 3)
B C
A
以空白字符“ ”表示
以字符串“A ”表示
D
以下列字符串表示 AB C D
建立二叉树 A B C C
T
A ^ B ^ C^ ^ D^
D
建立二叉树
Status CreateBiTree(BiTree &T) {
1 if (!T) return;
2 Inorder(T->lchild, visit); // 遍历左子树 3 visit(T->data); } // 访问结点 4 Inorder(T->rchild, visit); // 遍历右子树
后序(根)遍历
若二叉树为空树,则空操

左 子树
右 子树
作;否则, (1)后序遍历左子树; (2)后序遍历右子树; (3)访问根结点。
统计二叉树中结点的个数
遍历访问了每个结点一次且仅一次
设置一个全局变量count=0
将visit改为:count++
统计二叉树中结点的个数
void PreOrder (BiTree T){ if (! T ) return; count++; Preorder( T->lchild); Preorder( T->rchild); } void Preorder (BiTree T,void( *visit)(TElemType& e)) { // 先序遍历二叉树 1 if (!T) return; 2 visit(T->data); // 访问结点 3 Preorder(T->lchild, visit); // 遍历左子树 4 Preorder(T->rchild, visit);// 遍历右子树 }

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

《算法导论》读书笔记之第10章 基本数据结构之二叉树

《算法导论》读书笔记之第10章 基本数据结构之二叉树

《算法导论》读书笔记之第10章基本数据结构之二叉树摘要书中第10章10.4小节介绍了有根树,简单介绍了二叉树和分支数目无限制的有根树的存储结构,而没有关于二叉树的遍历过程。

为此对二叉树做个简单的总结,介绍一下二叉树基本概念、性质、二叉树的存储结构和遍历过程,主要包括先根遍历、中根遍历、后根遍历和层次遍历。

1、二叉树的定义二叉树(Binary Tree)是一种特殊的树型结构,每个节点至多有两棵子树,且二叉树的子树有左右之分,次序不能颠倒。

由定义可知,二叉树中不存在度(结点拥有的子树数目)大于2的节点。

二叉树形状如下下图所示:2、二叉树的性质(1)在二叉树中的第i层上至多有2^(i-1)个结点(i&gt;=1)。

备注:^表示此方(2)深度为k的二叉树至多有2^k-1个节点(k&gt;=1)。

(3)对任何一棵二叉树T,如果其终端结点数目为n0,度为2的节点数目为n2,则n0=n2+1。

满二叉树:深度为k且具有2^k-1个结点的二叉树。

即满二叉树中的每一层上的结点数都是最大的结点数。

完全二叉树:深度为k具有n个结点的二叉树,当且仅当每一个结点与深度为k的满二叉树中的编号从1至n的结点一一对应。

可以得到一般结论:满二叉树和完全二叉树是两种特殊形态的二叉树,满二叉树肯定是完全二叉树,但完全二叉树不不一定是满二叉树。

举例如下图是所示:(4)具有n个节点的完全二叉树的深度为log2n + 1。

3、二叉树的存储结构可以采用顺序存储数组和链式存储二叉链表两种方法来存储二叉树。

经常使用的二叉链表方法,因为其非常灵活,方便二叉树的操作。

二叉树的二叉链表存储结构如下所示:1 typedef struct binary_tree_node2 {3 int elem;4 struct binary_tree_node *left;5 struct binary_tree_node *right;6 }binary_tree_node,*binary_tree;举例说明二叉链表存储过程,如下图所示:从图中可以看出:在还有n个结点的二叉链表中有n+1个空链域。

计算机二级二叉树知识点

计算机二级二叉树知识点

计算机二级二叉树知识点1.二叉树的定义:二叉树是一种常见的树形结构,其中每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树的节点结构通常包括一个数据元素和指向左右子节点的指针。

2.二叉树的性质:(1)二叉树的第i层最多有2^(i-1)个节点。

(2)高度为h的二叉树最多有2^h-1个节点。

(3)对于任意一棵二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则n0=n2+1(4)一棵深度为k且节点总数为n的二叉树,当且仅当其满足2^(k-1)<=n<=2^k-1时,才称为完全二叉树。

3.二叉树的分类:(1)满二叉树:除了叶子节点之外,每个节点都有两个子节点,且所有叶子节点在同一层次上。

(2)完全二叉树:最后一层之前的层都是满的,并且最后一层的节点都靠左排列。

(3)平衡二叉树:左右子树的高度差不超过1的二叉树。

(4)线索二叉树:对于每个节点,除了指向其左右子节点的指针外,还包含指向其在其中一种序列下的前驱节点和后继节点的指针。

4.二叉树的遍历方法:(1)前序遍历:先访问根节点,然后递归地遍历左子树,最后递归地遍历右子树。

(2)中序遍历:先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。

(3)后序遍历:先递归地遍历左子树,然后递归地遍历右子树,最后访问根节点。

(4)层次遍历:按照从上到下、从左到右的顺序逐层访问每个节点。

5.二叉树:二叉树(Binary Search Tree,BST)是一种特殊的二叉树,它的每个节点的值都大于其左子树中的所有节点值,小于其右子树中的所有节点值。

因此,对于一个二叉树,可以采用中序遍历的方法得到一个有序序列。

二叉树的插入操作:按照二叉树的定义,从根节点开始,将要插入的值与当前节点的值比较,如果小于当前节点的值,则向左子树递归插入,如果大于当前节点的值,则向右子树递归插入,直至找到一个空节点,然后插入新节点。

二叉树的删除操作:删除一个节点需要考虑三种情况:删除节点没有子节点、只有一个子节点、有两个子节点。

二叉树的遍历及相关题目

二叉树的遍历及相关题目

⼆叉树的遍历及相关题⽬⼆叉树的遍历及相关题⽬1.1⼆叉树遍历的概念⼆叉树结构体的定义:typedef struct node{ ElemType data; struct node * lchild; struct node * rchild;}⼆叉树的遍历是指按照⼀定的次序访问⼆叉树中的所有的节点,并且每个节点仅访问⼀次的过程。

若规定先遍历左⼦树,后遍历右⼦树,则对于⾮空⼆叉树,可得到如下3种递归的遍历⽅法:(1)先序遍历访问根节点,先序遍历左⼦树,先序遍历右⼦树。

(根,左,右)(2)中序遍历中序遍历左⼦树,访问根节点,中序遍历右⼦树。

(左,根,右)(3)后序遍历后序遍历左⼦树,后序遍历右⼦树,访问根节点。

(左,右,根)除此之外也有层次遍历。

先访问根节点,在从左到右访问第⼆层的所有节点,从左到右访问第三层的所有节点......1.2⼆叉树遍历递归算法先序遍历递归算法:void PreOrder(BTNode * b){ if(n != NULL) { cout<<b->data; PreOrder(b->lchild); PreOrder(b->rchild); }}中序遍历递归算法void InOrder(BTNode * b){ if(n != NULL) { InOrder(b->lchild); cout<<b->data; InOrder(b->rchild); }}后序遍历递归算法:void PostOrder(BTNode * b){ if(b != NULL) { PostOrder(b->lchild); PostOrder(b->rchild); cout<<b->data; }}题⽬1:输出⼀个给定⼆叉树的所有的叶⼦节点:void DispLeaf(BTNode * b){ if(b != NULL) { if(b->lchild == NULL && b->rchild == NULL) cout<<b->data; DispLeaf(b->lchild); DispLeaf(b->rchild); }}以上算法采⽤先序遍历输出了所有的叶⼦节点,所以叶⼦节点是从左到右输出的。

二叉树的建立和遍历的实验报告

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告篇一:二叉树遍历实验报告数据结构实验报告报告题目:二叉树的基本操作学生班级:学生姓名:学号:一.实验目的1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。

2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。

二.实验学时:课内实验学时:3学时课外实验学时:6学时三.实验题目1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTreestructnode*lchild,*rchild;}binTnode;元素类型:intcreatebinTree(binTreevoidpreorder(binTreevoidInorder(binTreevoidpostorder(binTreevoidInordern(binTreeintleaf(bi nTreeintpostTreeDepth(binTree2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。

1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构3)实现过程:1、实现非递归中序遍历代码:voidcbiTree::Inordern(binTreeinttop=0;p=T;do{while(p!=nuLL){stack[top]=p;;top=top+1;p=p->lchild;};if(top>0){top=top-1;p=stack[top];printf("%3c",p->data);p=p->rchild;}}while(p!=nuLL||top!=0);}2、求二叉树高度:intcbiTree::postTreeDepth(binTreeif(T!=nuLL){l=postTreeDepth(T->lchild);r=postTreeDepth(T->rchil d);max=l>r?l:r;return(max+1);}elsereturn(0);}实验步骤:1)新建一个基于consoleApplication的工程,工程名称biTreeTest;2)新建一个类cbiTree二叉树类。

二叉树知识点总结

二叉树知识点总结

二叉树知识点总结二叉树是数据结构中常见且重要的一种形式,它可以用于解决许多实际问题,并在算法和编程中扮演着重要的角色。

本文将对二叉树的基本概念、性质以及常见的应用进行总结。

一、基本概念和性质1. 二叉树的定义:二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

左子节点小于等于父节点,右子节点大于等于父节点。

2. 二叉树的特点:二叉树具有递归性质,即每个子节点都可以视为一棵二叉树。

同时,二叉树的遍历方式有前序遍历、中序遍历、后序遍历和层次遍历等。

3. 二叉树的性质:a. 二叉树的第i层至多有2^(i-1)个节点;b. 深度为k的二叉树至多有2^k - 1个节点;c. 对于任意一棵二叉树,若其叶节点数为n0,度为2的节点数为n2,则n0 = n2 + 1;d. 具有n个节点的完全二叉树的深度为(log2 n) + 1。

二、二叉树的应用1. 二叉搜索树:二叉搜索树(BST)是一种特殊的二叉树,它满足左子节点小于父节点,右子节点大于父节点的条件。

BST的特性使得查找、插入和删除操作的时间复杂度为O(log n),因此在数据库、图形处理等领域经常被使用。

2. 平衡二叉树:由于BST的特性,如果数据插入的顺序不合理,可能导致树的高度过高,使得操作效率降低。

为了解决这个问题,人们提出了平衡二叉树(AVL)的概念。

AVL树通过旋转操作保持树的平衡,使得左右子树的高度差不超过1,从而保证了操作的效率。

3. 红黑树:红黑树是一种自平衡的二叉查找树,它在AVL树的基础上做了一些调整。

红黑树的特点是节点可以为红色或黑色,并且满足以下规则:根节点为黑色,叶节点为黑色且为空,红色节点的两个子节点都是黑色。

红黑树在C++标准库(STL)中的map和set等容器中得到了广泛应用。

4. 堆:堆是一种完全二叉树,它可以分为大顶堆和小顶堆。

大顶堆中,父节点的值大于或等于两个子节点的值,小顶堆则相反。

堆在排序算法中有广泛应用,如堆排序、优先队列等。

二叉树的各种遍历及直观打印

二叉树的各种遍历及直观打印

目录一.引言-----------------------------------------------------------------------21. 摘要---------------------------------------------------------------------------22. 关键字------------------------------------------------------------------------2 二.正文1. 需求分析-------------------------------------------------------------------------------------------22. 数据结构---------------------------------------------------------------------23. 算法设计---------------------------------------------------------------------3 3.1概要设计---------------------------------------------------------------------------------------------33.2详细设计--------------------------------------------------------------------------------------------44. 调试分析----------------------------------------------------------------------65. 测试结果----------------------------------------------------------------------66.源程序---------------------------------------------------------------------------97. 不足之处----------------------------------------------------------------------158.设计体会-----------------------------------------------------------------------16 四.参考文献-------------------------------------------------------------------16一. 引言二叉树是树形结构的一个重要类型,许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,因此,二叉树显得特别重要。

数据结构_二叉树的高度与层次遍历

数据结构_二叉树的高度与层次遍历
#include<stdio.h>
#include<stdlib.h>
typedef struct BTNode
{
char data;
struct BTNode * lchild;
struct BTNode * rchild;
}BTNode;
void CreateBTree(BTNode *&T)//二叉树的先序建立
{
char ch;
scanf("%c",&ch);
if(ch=='#')
{
T=NULL;
return;
}
else
{
Q[rear]=s->rchild;
rear=(rear+1)%MAXSIZE;
}
}
}
}
int main(void)
{
BTNode *T;
CreateBTree(T);
printf("线序遍历序列如下:");
PreOrder(T);

VisitByLayer(T);
{
s=Q[front];
front=(front+1)%MAXSIZE;
printf("%c\t",s->data);
if(NULL != s->lchild)
return L>R ? L+1 :R+1;
}
}
const int MAXSIZE=100;
BTNode * Q[MAXSIZE];

层次遍历算法

层次遍历算法

层次遍历算法简介是一种二叉树遍历方式,又称为广度优先算法,它是一种从上至下、从左至右的遍历方式,最常用于树形结构进行搜索或者遍历。

可以解决一些问题,例如求二叉树的最小深度、最大深度、它的节点数、它的叶子节点数、它的某个路径等问题。

实现的方法1.使用队列实现使用队列实现是一种常用的方法。

具体步骤如下:(1)将树的根节点入队,初始化队列。

(2)当队列非空时,进行下列操作:①取出队列中的一个节点,访问该节点。

②如果该节点的左子节点不为空,则将左子节点入队。

③如果该节点的右子节点不为空,则将右子节点入队。

实现代码如下:```pythondef level_order_traversal(root):queue = []result = []if root is None:return resultqueue.append(root)while queue:node = queue.pop(0)result.append(node.val)if node.left:queue.append(node.left)if node.right:queue.append(node.right)return result```2.使用递归实现使用递归实现一般需要借助队列,并且需要知道每个节点所在的层数。

具体步骤如下:- (1)使用递归遍历左子树,直到最底层。

在遍历左子树时,需要记录当前所在的层数。

- (2)使用递归遍历右子树,直到最底层。

在遍历右子树时,需要记录当前所在的层数。

- (3)将左子树和右子树的结果合并,即可得到二叉树的层次遍历结果。

实现代码如下:```pythondef level_order_traversal(root):queue = []result = []def dfs(node, level):if not node:returnif level == len(result):result.append([])result[level].append(node.val)dfs(node.left, level+1)dfs(node.right, level+1)dfs(root, 0)return result```的应用在二叉树中的应用是十分广泛的,可以用于如下几个问题的解决:1.求最小深度二叉树的最小深度是从根节点到最近的叶子节点的距离。

第7章树和二叉树(4)-数据结构教程(Java语言描述)-李春葆-清华大学出版社

第7章树和二叉树(4)-数据结构教程(Java语言描述)-李春葆-清华大学出版社

if (p.node.rchild!=null)
//有右孩子时将其进队
qu.offer(new QNode(p.lno+1,p.node.rchild));
}
}
return cnt;
}
7/31
解法2
层次遍历中某层的最右结点last
last
A
B
C
D
EF
G
last的作用确定一层是否遍历完成!
8/31
用cnt变量计第k层结点个数(初始为0)。设计队列仅保存结点引用, 置当前层次curl=1,用last变量指示当前层次的最右结点(根结点)进队。 将根结点进队,队不空循环:
int curl=1;
//当前层次,从1开始
BTNode<Character> last;
//当前层中最右结点
last=bt.b;
//第1层最右结点
qu.offer(bt.b);
//根结点进队
while (!qu.isEmpty())
{ if (curl>k) return cnt; p=qu.poll(); if (curl==k) cnt++; if (p.lchild!=null) { q=p.lchild; qu.offer(q); } if (p.rchild!=null) { q=p.rchild; qu.offer(q); } if (p==last) { last=q; curl++; }
}
Queue<QNode> qu=new LinkedList<QNode>(); //定义一个队列qu
QNode p;
qu.offer(new QNode(1,bt.b)); //根结点(层次为1)进队

二叉树的遍历

二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计题目按层次遍历二叉树学院计算机科学与技术专业计算机科学与技术班级0801姓名陈新指导教师孙玉芬2012 年 6 月20 日课程设计任务书学生姓名:专业班级:指导教师:孙玉芬工作单位:计算机科学系题目: 按层次遍历二叉树初始条件:编写按层次顺序(同一层自左至右)遍历二叉树的算法。

(1)二叉树采用二叉链表作为存储结构。

(2)按题集p44面题6.69所指定的格式输出建立的二叉树。

(3)输出层次遍历结果。

(4)测试用例自己设计。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)课程设计报告按学校规定格式用A4纸打印(书写),并应包含如下内容:1、问题描述简述题目要解决的问题是什么。

2、设计存储结构设计、主要算法设计(用类C语言或用框图描述)、测试用例设计;3、调试报告调试过程中遇到的问题是如何解决的;对设计和编码的讨论和分析。

4、经验和体会(包括对算法改进的设想)5、附源程序清单和运行结果。

源程序要加注释。

如果题目规定了测试数据,则运行结果要包含这些测试数据和运行输出,6、设计报告、程序不得相互抄袭和拷贝;若有雷同,则所有雷同者成绩均为0分。

时间安排:1、第19周完成。

2、6月21日8:00到计算中心检查程序、交课程设计报告、源程序。

指导教师签名:系主任(或责任教师)签名:年月日数据结构课程设计——按层次遍历二叉树1问题描述及要求1.1问题描述编写按层次顺序(同一层自左至右)遍历二叉树的算法。

1.2任务要求编写按层次顺序(同一层自左至右)遍历二叉树的算法。

(1)二叉树采用二叉链表作为存储结构。

(2)按题集p44面题6.69所指定的格式输出建立的二叉树。

(3)输出层次遍历结果。

(4)测试用例自己设计。

2开发平台及所使用软件Windows 7.0 , Visual C++6.03程序设计思路3.1二叉树存储结构设计typedef char ElemType; //二叉树结点值的类型为字符型typedef struct BiTNode{ //二叉树的二叉链表存储表示ElemType date;struct BiTNode *lchild,*rchild; //左右孩子指针} BiTNode,*BiTree;3.2题目算法设计3.2.1建立二叉树void CreateBinTree(BinTree &T){ //按先序次序输入,构造二叉链表表示的二叉树T char ch;ch=getchar(); //输入函数。

if(ch==’’) T=NULL; //输入空格时为空else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("%c" "结点建立失败!") ;T->data=ch;CreateBinTree(T->lchild);CreateBinTree(T->rchild);}}3.2.2遍历二叉树void LevleOrder(BinTree T){ //从第一层开始,从左到右BinTree Queue[max],p; //用一维数组表示队列,front和rear分别表示队首和队尾指针int front,rear;front=rear=0;if (T) //若树非空{Queue[rear++]=T; //根结点入队列while (front!=rear){ // 队列非空p=Queue[front++]; // 队首元素出队列,并访问这个结点printf("%c",p->data);if (p->lchild!=NULL) Queue[rear++]=p->lchild; //左子树非空,入队列if (p->rchild!=NULL) Queue[rear++]=p->rchild; }}}3.2.3按要求格式输出已建立的二叉树void Print_BinTree(BinTree T,int i ) // i表示结点所在层次,初次调用时i=0{if(T->rchild) Print_BinTree(T->rchild,i+1); //函数递归for(j=1;j<=i;j++) printf(" "); //打印i个空格以表示出层次printf("%c\n",T->data); //打印T元素,换行if(T->lchild) Print_BiTree(T->lchild,i+1);}3.3测试程序图1:测试二叉树如图所示二叉树,按先序遍历顺序输入,AB#D##CE#F###。

其中”#”代表空格,理论上按层次遍历的结果应该是”CFEADB”,二叉树是:A为根节点,A左孩子是B,右孩子是C,B的左孩子为空,右孩子为D,C的左孩子为E,右孩子为空,E的左孩子为空,右孩子为F。

根据以下程序运行结果(见图2)可知,程序正确运行4调试报告在建立二叉树时,输入的格式一定要正确,没有孩子的要用空格表示,在测试用例中,F没有孩子,要用两个空格表示,如果输入“AB#D##CE#F”则没有输出结果。

5经验和体会本程序的建立和遍历二叉树的程序都比较简单,关键在于按要求打印二叉树。

起初一直找不到合适的方法按题目要求打印二叉树,在和同学讨论了很久之后终于有了思路。

打印的格式中,最上层的节点是右子树层次最高的,于是就可以用递归调用的方式实现。

递归次数最高的就是输出最顶置的节点。

在调试程序的时候也出现了问题,起初没有在意输入方式对程序运行结果的影响,导致程序无法运行,在检查了很久之后终于找到了问题的所在,对输入进行了改正,得到了正确的结果6源程序清单及运行结果6.1源程序清单#include <stdio.h>#include <stdlib.h>#define max 100typedef char ElemType;typedef struct BiTNode{ElemType data;struct BiTNode *lchild,*rchild;} BiTNode,*BinTree;//建立二叉树void CreateBinTree(BinTree &T){char ch;ch=getchar();if(ch==' ') T=NULL;else{if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("%c" "结点建立失败!") ;T->data=ch;CreateBinTree(T->lchild);CreateBinTree(T->rchild);}}//遍历二叉树void LevleOrder(BinTree T){BinTree Queue[max],p;int front,rear;front=rear=0;if (T){Queue[rear++]=T;while (front!=rear){p=Queue[front++];printf("%c",p->data);if (p->lchild!=NULL) Queue[rear++]=p->lchild;if (p->rchild!=NULL) Queue[rear++]=p->rchild; }}}//按要求输出二叉树void Print_BinTree(BinTree T,int i ) //本题的关键所在,i表示结点所在层次,初次调用时i=0 {if(T->rchild) Print_BinTree(T->rchild,i+1); //函数递归来建立层次。

for(int j=1;j<=i;j++) printf(" "); //打印i个空格以表示出层次printf("%c\n",T->data); //打印T元素,换行if(T->lchild) Print_BinTree(T->lchild,i+1);}int main(){BinTree T;int i=0;printf("\n创建二叉树\n");CreateBinTree (T);printf("\n层次遍历二叉树并输出遍历结果\n");LevleOrder(T);printf("\n按树形打印输出二叉树\n");Print_BinTree(T, i);return 0;}6.2 运行结果图2:运行结果7 参考文献[1]《数据结构(C语言版)》,严蔚敏,吴伟民编著,出版社:清华大学出版社,出版或修订时间:1997年4月[2]《数据结构习题集(C语言版)》,严蔚敏,吴伟民,米宁编著,清华大学出版社,出版或修订时间:1999年2月本科生课程设计成绩评定表及格(60-69分)、60分以下为不及格指导教师签名:2012年月日。

相关文档
最新文档