水利工程变形监测技术探析
大坝变形监测技术研究及应用

大坝变形监测技术研究及应用大坝作为水利和能源工程的重要组成部分,其安全性和稳定性对于防洪、发电和供水具有重要意义。
然而,由于多种因素的影响,大坝可能存在变形和位移的问题,从而威胁到大坝的安全。
为了有效地监测和预测大坝的变形情况,大坝变形监测技术应运而生。
大坝变形监测技术是通过采集大坝表面或内部的变形数据,并进行分析和解读,以评估大坝的稳定性和安全性。
下面将介绍几种常见的大坝变形监测技术及其应用。
1. 高精度测量技术高精度测量技术主要包括全站仪、GNSS(全球导航卫星系统)测量等。
全站仪可以实现对大坝各个位置的坐标、高程和位移数据的实时测量,并能够监测到大坝的形变情况。
GNSS测量则通过接收卫星信号,并对其进行测量处理,可以提供大坝的绝对位置和位移信息。
2. 接触式和非接触式应变测量技术接触式应变测量技术一般使用应变计等传感器贴附在大坝结构上,通过测量传感器的应变变化来评估大坝的变形情况。
而非接触式应变测量技术则采用光纤传感器、激光散射测量等方式,可以在不接触大坝表面的情况下实时监测大坝的应变变化。
3. 遥感技术遥感技术主要利用卫星和航空遥感数据,通过对大坝周边地形、植被和土壤等进行监测和分析,得出大坝周围环境条件的变化情况,并通过数学模型进行预测和分析大坝的变形趋势。
4. 流体测量技术流体测量技术主要通过测量水流和水压力等参数来评估大坝的变形情况。
如针对水电站大坝,可以通过安装流速计和水位计等设备,实时监测水流的速度和水位的高度,从而预测大坝的水力压力和变形情况。
上述大坝变形监测技术在实际应用中有着广泛的需求和应用前景。
大坝变形监测技术可以有效地提高大坝的安全性和稳定性,为大坝工程的运行和维护提供科学依据和预警措施。
例如,在地震等自然灾害前,通过大坝变形监测技术可以实时获取大坝的变形数据,及时采取预警和安全措施,以最大程度地减少灾害的发生和损失。
此外,大坝变形监测技术还可以在大坝的建设和设计过程中发挥重要作用。
水利工程施工中的大坝变形监测测量技术与误差控制方法实例

水利工程施工中的大坝变形监测测量技术与误差控制方法实例近年来,水利工程的建设越来越受到人们的关注。
而大坝作为水利工程中重要的构筑物,其安全性与稳定性的问题备受关注。
在大坝施工过程中,变形监测测量技术的应用和误差控制成为关键,它们对保证大坝的安全运行起着重要的作用。
一、大坝变形监测测量技术1. 银河测距法银河测距法是一种传统的大坝变形监测测量技术,它基于恒星光的位置变化来测定大地表面的变形。
这种方法精度高,适用于长周期变形的监测,但需要在夜间进行,时间成本较高。
2. 全站仪测量法全站仪测量法是使用全站仪对大坝各个关键点进行测量,通过计算坐标的变化来判断变形情况。
该方法操作简单,准确度较高,但需要现场工作人员手动进行操作,对施工进程会有一定的影响。
3. GNSS测量法GNSS即全球导航卫星系统,它是一种通过卫星信号测量位置、速度和时间的方法。
GNSS测量法可以实时监测大坝的变形情况,精度较高,对施工过程影响较小,但需要基站和移动站之间有一定的距离。
二、误差控制方法1. 校正器的使用为了减小测量误差,可以在测量过程中使用校正器对设备进行校正。
校正器可以通过标定数据与实际观测数据之间的差异,来对仪器误差进行校正。
这样可以提高测量的准确性。
2. 数据处理与分析在大坝的变形监测中,数据处理与分析起着重要的作用。
通过对原始数据进行滤波、插值等操作,可以提高数据的可信度,在分析结果时能够更加准确地判断出变形情况。
3. 参考文献比对在误差控制的过程中,可以借助参考文献对测量结果进行比对。
通过与已有的研究成果对比,可以找出潜在的误差来源,并进行修正。
这有助于提高测量的精度。
三、实例:某水利工程大坝变形监测为了验证以上所述的变形监测测量技术与误差控制方法,我们在某水利工程的大坝上进行了实验。
我们选取了三个关键点进行测量,分别使用银河测距法、全站仪测量法和GNSS测量法进行监测。
同时,我们使用了校正器对设备进行了校正,对测量数据进行了滤波处理,并与参考文献进行了比对。
水利工程变形监测技术探析

水利工程变形监测技术探析不同用途的水利工程建(构)筑物,变形观测的要求有所不同。
对于大型水工建筑物,例如混凝土坝,由于水的侧压力、外界温度变化、坝体自重等因素的影响,坝体将会因此而产生沉降、水平位移、倾斜、挠曲等变化,因而需要进行相应内容的变形观测。
从测量实践表明,变形监测的测量点一般分为基准点、工作点和变形观测点三类。
1)基准点。
基准点为变形观测系统的基本控制点,其是测定工作点和变形点的依据。
基准点通常埋设在稳固的基岩上或变形区域以外,尽可能长期保存,稳定不动。
每个工程一般应建立3个基准点,当确认基准点稳定可靠时,也可少于3个。
沉降观测的基准点通常成组设置,用以检核工作基准点的稳定性,其检核方法一般采用精密水准测量的方法。
位移观测的工作基准点的稳定性检核,通常采用三角测量法进行。
变形观测中设置的基准点应进行定期观测,将观测结果进行统计分析,以判断基准点本身的稳定情况。
2)工作点。
工作点又称工作基点,它是基准点与变形观测点之间起联系作用的点。
工作点埋设在被监测对象附近,要求在观测期间保持点位稳定,其点位由基准点定期检测。
对通视条件较好或观测项目较少的工程,可不设立工作点,在基准点上直接测定变形观测点。
3)变形观测点。
变形观测点是直接埋设在变形体上的能反映建(构)筑物变形特征的测量点,又称观测点,一般埋设在建(构)筑物内部,通过测定它们的变化来判断建筑物的沉降与水平位移。
1 水利工程变形监测精度和周期1)变形监测精度。
在制定变形观测方案时,首先要确定精度要求。
对于重要的工程,如大坝等,则要求“以当时能达到的最高精度为标准进行变形观测”。
由于大坝安全监测的极其重要性和目前测量手段的进步,加上测量费用所占工程费用的比例较小。
所以,变形观测的精度要求一般较严。
2)变形监测周期。
变形观测的时间间隔称为观测周期,即在一定的时间内完成一个周期的测量工作。
观测周期与工程的大小、测点所在位置的重要性、观测目的以及观测一次所需时间的长短有关。
如何进行大坝变形监测与分析

如何进行大坝变形监测与分析大坝作为一项重要的水利工程,其安全性和稳定性一直受到广泛关注。
随着时间的推移以及地质地貌的变化,大坝的变形情况也在不断发生。
为了及时发现和解决潜在的安全隐患,大坝变形监测与分析变得至关重要。
本文将探讨如何进行大坝变形监测与分析的相关方法和技术。
首先,大坝变形监测的目的是及时发现大坝变形情况,以便采取相应的措施来防止灾害事件的发生。
常用的变形监测方法包括测量法、遥感法和数值模拟法。
测量法是最传统也是最直接的一种方法。
通过在大坝上布置一系列测量点,使用测量仪器进行定期测量,可以获得大坝的实时变形数据。
常用的测量仪器包括全站仪、水准仪和测斜仪等。
这些测量仪器具有高精度和高灵敏度,能够准确地检测到大坝的微小变形。
同时,通过将变形数据与历史数据进行对比分析,可以了解大坝的长期变形趋势,并预测未来的发展情况。
遥感法是利用卫星或飞行器上的遥感设备对大坝进行监测。
通过获取遥感图像,可以观察到大坝的表面特征,如开裂、滑坡等,从而判断大坝的变形情况。
遥感法具有覆盖范围广、观测周期短等优势,特别适用于大面积和山区环境的监测。
然而,由于遥感数据的分辨率有限,其对于大坝局部细微变形的观测能力相对较弱。
数值模拟法是一种基于力学原理的数学计算方法。
通过对大坝的结构和材料进行建模,采用计算机技术模拟大坝工作负荷作用下的变形和变应力情况。
数值模拟法具有高效、经济、可重复性好等优点,能够全面了解大坝的变形特性。
但是,数值模拟法对模型参数的选择和边界条件的设定要求相对较高,需要运用专业知识和经验。
基于上述变形监测方法,大坝变形分析是进一步研究大坝变形特性的关键一步。
大坝变形分析的目的是评估大坝的安全性和稳定性,并提出相应的改进措施。
常见的变形分析方法包括形变分析、应力分析和破坏机制分析。
形变分析是通过对测量数据的处理和分析,来研究大坝的变形特性。
形变分析主要包括位移分析、变形速率分析和变形模式分析等。
位移分析可以提供大坝特定点位的位移变化情况,从而判断大坝是否发生了异常变形。
水库大坝变形监测的测绘技术与数据处理方法解析

水库大坝变形监测的测绘技术与数据处理方法解析水库大坝是人类在水利工程中常见的建筑物,它的安全性对于人们的生命财产安全至关重要。
随着时间的推移,大坝可能会发生变形,因此对大坝的及时监测变得尤为重要。
本文将分析水库大坝变形监测的测绘技术与数据处理方法。
一、测绘技术的选择在测绘水库大坝变形时,我们可以采用多种技术,包括全站仪、GPS、激光雷达等。
全站仪是一种常用的测量工具,它可以测量水平角、垂直角和斜距,可以获得较为准确的坐标数据。
GPS则可以提供更精确的位置信息,能够实时监测大坝位置的变化。
激光雷达则可以扫描大坝的表面,获取其形状和尺寸的数据。
二、数据采集与处理在进行测量之前,我们需要进行数据采集的准备工作。
首先,我们需要选择测量的位置,考虑到大坝的结构和地理条件,选取合适的测量点非常重要。
其次,我们需要选择适当的时间进行测量,通常选择在早晨或晚上,避免阳光直射和大气折射等因素的干扰。
在数据采集过程中,要确保测量仪器的准确性和稳定性。
全站仪和GPS的测量结果需要进行校正,根据测量误差进行数据修正和过滤,以提高测量结果的精度。
在数据处理方面,我们可以利用测量得到的数据,绘制出大坝的示意图。
通过对比不同时间点的测量数据,我们可以分析大坝的变形情况。
同时,我们也可以利用数学建模的方法,对数据进行分析和预测,以便及时发现大坝变形的趋势和异常情况。
三、监测结果的分析与应用通过对大坝的变形监测,我们可以得到大坝结构的变形程度和变形趋势。
这些监测结果对于判断大坝是否存在安全隐患非常重要,并为及时采取相应的维修和加固措施提供了依据。
在监测结果的分析中,我们可以采用统计学的方法,对不同测点的数据进行分析,计算出均值、标准差等指标,以了解大坝变形的整体情况。
同时,我们也可以采用时序分析的方法,利用时间序列数据进行趋势预测和异常检测,提前发现潜在的安全问题。
监测结果的应用还可以辅助工程师制定大坝的日常维护计划。
通过长期的监测数据,我们可以在大坝变形逐渐加剧之前,提前预警,采取相应的预防措施,以延长大坝的寿命。
大坝变形监测技术与数据分析研究

大坝变形监测技术与数据分析研究一、引言大坝作为重要的水利工程,承担着调节水流、防洪、供水等重要功能。
为确保大坝的安全运行,变形监测技术与数据分析是至关重要的研究领域。
本文将讨论大坝变形监测技术的发展和数据分析方法,以提高大坝的监测水平和安全性。
二、大坝变形监测技术大坝变形监测技术旨在实时、准确地监测大坝的变形情况,以及预测和评估大坝的安全状况。
以下是几种常见的大坝变形监测技术:1. GNSS技术GNSS(全球导航卫星系统)技术可以实时获取大坝周围控制点的三维坐标信息。
通过对比基准点和监测点之间的变化,可以判断大坝是否发生了变形。
此外,GNSS技术还可用于测量大坝的沉降和隆起。
2. 高精度测距仪技术高精度测距仪技术利用红外光束或激光束进行测量,可以获取大坝结构的变形情况。
该技术具有高精度、快速、非接触等优点,适用于各种不同类型的大坝。
3. 卫星遥感技术卫星遥感技术可以通过遥感图像对大坝进行监测。
该技术可以提供大坝的表面形貌、变形区域和变形速率等信息。
此外,卫星遥感技术还可以用于监测大坝周围的地质活动,如滑坡和地震。
4. 声波监测技术声波监测技术通过监测大坝内部的声波传播情况来判断大坝的变形情况。
该技术可以实时监测大坝的应力和变形情况,并及时报警。
三、大坝变形数据分析大坝变形数据分析是对监测数据进行评估和预测的过程。
通过对变形监测数据的分析,可以了解大坝的安全状况,并采取相应的措施。
以下是常用的大坝变形数据分析方法:1. 基于统计学方法的分析统计学方法可以对监测数据进行统计分析,如均值、方差、回归分析等。
通过分析数据的变化趋势和异常值,可以判断大坝是否存在问题。
2. 基于机器学习的分析机器学习技术可以通过对监测数据的学习和模型构建,实现大坝变形的预测和判断。
常用的机器学习算法包括支持向量机、神经网络和随机森林等。
3. 基于时频分析的分析时频分析是一种对信号在时间和频率上进行分析的方法。
通过对监测信号进行时频变换,可以获取信号的频率特性和时域特性,进而判断大坝是否存在变形。
大坝变形监测技术研究及应用分析

大坝变形监测技术研究及应用分析摘要:随着大型水利工程的建设,大坝的安全性愈发引起人们的关注。
大坝的变形监测技术对于保证大坝的安全运行至关重要。
本文通过对目前大坝变形监测技术的研究与应用进行分析,旨在提供一些有益的见解,并为今后的研究和应用提供参考。
引言:大坝的变形监测是大坝工程运行中的重要环节。
大坝变形监测技术的研究和应用对于提高大坝的安全性、延长大坝使用寿命具有重要意义。
本文将对目前大坝变形监测技术进行探讨和分析,包括传统的监测方法以及近年来发展起来的新型监测技术。
一、传统的大坝变形监测方法1. 水准测量法:水准测量法是一种传统的监测方法,通过在大坝上设置水准点,利用水准仪测量大坝的变形和沉降情况。
该方法简单易行,但需要地面条件稳定,监测周期长,无法实时获取数据等局限性。
2. 控制网法:控制网法是利用位移检测仪和控制观测点组成的控制网,实时监测大坝的位移变化。
与水准测量法相比,控制网法可以实时获取大坝的位移数据,但需要设置大量的监测点,增加了监测的复杂性和成本。
二、新型大坝变形监测技术1. GNSS技术:全球导航卫星系统(GNSS)技术是一种新型的大坝变形监测技术,通过在大坝上设置GNSS接收器,实时获取大坝的三维位移信息。
相比于传统的监测方法,GNSS技术具有监测精度高、监测周期短、数据实时性强等优势,已经得到广泛应用。
2. 雷达干涉技术:雷达干涉技术是一种基于合成孔径雷达(SAR)的监测方法,可以获取大坝表面的微小变形情况。
雷达干涉技术具有高精度和大范围监测的优势,但存在对地形、气象等环境因素的依赖性。
3. 激光测距技术:激光测距技术是一种通过激光器对大坝进行扫描,实时测量大坝表面变形的方法。
该技术具有高精度、非接触式等优点,但对大坝表面光学特性和环境光的干扰比较敏感。
三、大坝变形监测技术的应用分析1. 安全性评估:通过对大坝变形监测数据的分析,可以评估大坝的安全性,及时发现大坝的不稳定和潜在风险,采取相应的措施进行修复和加固。
水利工程安全及其变形监测技术探讨

水利工程安全及其变形监测技术探讨摘要由于水压引起的水坝变形,对水库的安全构成了严重威胁。
因此必须对水坝变形进行连续而精密的观测。
本文作者结合自身多年的水利工作经验,探讨了水利工程安全措施,介绍了世界先进的监测技术,以供同行交流。
关键词水利工程;工程安全;变形监测中图分类号TP39 文献标识码 A 文章编号1673-9671-(2012)112-0112-02水利工程变形监测是水工建设中不可缺少的一个组成部分,无论是在水利枢纽工程的勘测设计阶段,还是在施工建造阶段,以及其后的运营管理阶段中,都要进行相应内容的测量工作。
在水利枢纽中,大坝是最重要的建筑物,因此要定期或不定期地对其进行变形观测,以监视安全并且为科研之需。
我们常把用工程测量的方法观测水工建筑物几何形状的空间变化称为外部变形观测。
包括水平位移观测、垂直位移观测、挠度观测和倾斜观测等。
其观测范围不仅包括建筑物的基础、建筑物本身,还包括建筑物附近受水压力影响的部分地区。
在这一时期,测量工作的特点是精度要求高、重复性大、仪器设备多。
1 水工建筑物的安全监测对水工建筑物而言,对其采取安全变形监测工作尤显重要,因为溃坝灾害一般在10 min~20 min内造成,洪水巨浪所到之处,摧毁力极强,国内外无数实例令人触目心惊。
另外,由于设置了监测系统,通过长期观测和资料分析,及时对工程进行加固,把事故消灭在萌芽之中,这种化险为夷的事例也很多。
安全监测不仅确保水工建筑物安全施工和正常运营,也是对施工质量的评定。
例如,葛洲坝电厂是建在产状平缓、多软弱夹层的地基上,因此担心开挖后会破坏基岩稳定,于是安装了大量基岩应变计。
在施工期间及1981年大江截流和百年一遇的洪水期间的观测表明,基岩处理后,变形量在允许范围内,大坝是安全稳定的。
此外,安全监测结果也是对设计数据的验证,为改进设计和科学研究提供资料。
1.1 水工建筑物安全监测的内容与精度要求不同结构的水工建筑物,其观测内容也不相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水利工程变形监测技术探析
发表时间:2018-11-16T19:19:20.090Z 来源:《基层建设》2018年第30期作者:张华伟
[导读] 摘要:水利工程监测与水利工程建设的质量等级、安全性能、使用功能以及工程整体构造有着直接的联系,其作为技术性和专业性较强的学科,对水利工程项目建设具有重要作用。
单县水务局山东单县 274300
摘要:水利工程监测与水利工程建设的质量等级、安全性能、使用功能以及工程整体构造有着直接的联系,其作为技术性和专业性较强的学科,对水利工程项目建设具有重要作用。
水利工程建设监测是水利工程建设的重要环节,而合理运用监测技术是保障水利工程监测质量的关键。
基于此,本文阐述了水利工程变形监测的精度及其周期以及水利工程变形监测中的监测点,对水利工程变形监测技术进行了探讨分析。
关键词:水利工程;变形监测;精度;周期;监测点;监测技术
一、水利工程变形监测的精度及其周期分析
水利工程变形监测的精度及其周期主要体现在:(1)水利工程变形监测精度分析。
在编制变形监测方案的同时,要对水利工程变形监测的精度作出明确的要求,特别是对于大规模水利工程,一般都要求其变形监测精度达到变形监测方案要求的最高上限。
现有的变形监测仪器技术先进,而且价格合理,在整个水利工程施工中,占有的费用比率不高,所以水利工程变形监测对精度要求也很高。
(2)水利工程变形监测的周期。
变形监测周期简单上理解就是两个监测时间的间隔。
这个间隔时间就是变形监测的周期。
要求水利工程变形监测在此周期中要进行一次变形监测。
变形监测周期与水利工程的大小及观测点的重要性有关。
现行的变形监测周期都是根据测算出来建筑变形的速度来设定,要求变形监测的过程要快,以免外界因素造成变形观测点的不稳定。
二、水利工程变形监测中的监测点分析
水利工程变形监测中的监测点主要表现为:(1)基准点变形监测分析。
水利工程中基本的控制点的监测就是基准点的变形监测,基准点的变形监测为工作点和变形处观测点的变形监测提供了基础数据支持。
变形监测的基准点的选取,一般是选择在其他两种变形监测点以外,且能长期保证测量数据的稳定性的岩石上。
为了变形监测数据的准确性和科学性,水利施工过程中,基准点的选取一般在三个或三个以上。
在沉降位移的变形监测中,技术人员一般会以几个变形监测基准点为一组的形式放置监测点,这样就可以保证监测数据的稳定性和科学性,监测方法会采用精密的水准测量方法进行基准点的变形监测;在水平位移的变形监测中,技术人员一般会采用几何图形中结构比较坚固的三角形监测法进行水平位移的变形监测。
(2)工作点变形监测分析。
水利工程中的工作点又会被叫做工作基点,它的作用是联系水利工程中的基准点和水利工程变形处观测点。
工作点的选择就会比较随意一些,它会被安放在需要被监测变形的地方,由基准点的变形监测数据来评估工作点变形监测的数据,然后对两组数据加以分析,确定此工作点是否为变形点。
对于监测项目较少且工程规模较小的水利工程,可以不设置工作点变形监测。
(3)变形处观测点的变形监测。
对于水利工程变形处观测点的设置则较为直接,直接设定在需要监测的水工建筑上,最好是设定在最能反映变形建筑的特性的位置,这样得到的变形监测数据,较为准确。
三、水利工程变形监测技术的分析
1、水平位移的变形监测技术分析。
水平位移的变形监测技术就是对建筑物进行水平方向上的变形监测。
其监测的主要数据支持是建筑物基础受到的水平方向的应力,这种水平方向上受到的应力,可能是建筑物主体就处在一个相对不稳定的地质构造上,或者受到了其他因素的影响而产生水平位移。
水平位移的变形监测有四种普遍方法,第一种方法为大地测量的方法;第二种是基准线测量的方法;第三种是专用测量的方法;最后一种为GPS自动化测量的方法。
这四种测量方法的原理也不相同。
第一种测量方法的测量原理为利用传统测量工具及方法进行建筑物的水平位移变形监测;第二种测量方法原理为利用水利工程施工中的各种不同的基准线,进行建筑物的水平位移变形监测;第三种测量方法的测量原理为利用传感设备进行建筑物的水平位移变形监测;第四种测量方法的测量原理为利用GPS设备,全天无间断的进行建筑物的水平位移变形监测。
2、垂直位移的变形监测技术分析。
垂直位移的变形监测技术就是对建筑物进行垂直方向上的变形监测。
一般由于不是很均匀的垂直方向上的位移,会让建筑物产生裂缝。
这种监测异常,很可能就是建筑物基础或局部破坏的前奏,因此,垂直位移的变形监测是非常必要的。
在进行垂直位移变形监测时,第一步要监测工作基点的稳定程度,在此基础上再进行垂直位移的变形监测。
现有的水利工程用的垂直位移变形监测方法有三种,第一种是几何水准测量的方法,第二种是三角高程测量的方法,最后一种为液体静力水准的测量方法。
这三种测量方法原理不一样,第一种测量方法的原理为水准仪器在水准基点处就开始进行变形监测,利用高程原理,通过测量到各个变形监测点的高程变化量,来确定建筑的垂直位移变形情况;第二种测量方法是利用三角高程的理论来进行变形监测点的测量,此方法,普遍用于有较大高度差异的建筑工程施工中;第三种测量方法是利用物理学中连通的原理来测量各个变形观察点在容器内的高度差异,这种测量方法普遍适用于混凝土结构的垂直位移的变量监测。
三种方法测量出来的数据可以进行相互比照。
3、挠度监测的变形监测技术分析。
挠度监测的变形监测技术是对建筑物受到外力后的物理挠度曲线进行变形监测。
挠度监测一般采用垂直放线的原理进行变形监测,还可使用先进的电子传感装置进行监测,这样的监测结果更为科学,准确。
4、转动角监测的变形监测技术分析。
转动角监测的变形观测技术是通过计算建筑物的倾斜角度的变化值,来确定其转动角,进而确定建筑物的水平位移变形监测。
如果建筑物存在转动角度的变化,说明此建筑物正在不同程度的进行不均匀的沉降运动。
这种转动角监测的变形监测技术,可通过高精设备进行监测。
5、裂缝监测的变形监测技术分析。
对建(构)筑物产生的裂缝进行位置、长度、宽度、深度和错距等的定期观测。
对于水利工程中的土工建筑物表面裂缝,可对全部裂缝或若干主要裂缝区的裂缝进行观测。
在观测范围内,以土石坝、土堤等建筑物的轴线为基准线,可按堤坝桩号和距轴线的距离,画出坐标方格,然后采取逐格量测缝的分布位置和沿走向的长度,裂缝宽度可在两侧设带钉头的小木桩作标点进行量测。
裂缝错距可作刻度尺直接量测。
裂缝深度可选定若干适当位置,进行坑探、槽探或井探,探测前,最好从缝口灌入石灰水,以便观察缝迹。
对于水利工程中的混凝土建筑物表面裂缝,裂缝分布位置和长度可仿照土工建筑物的量测办法进行量测。
裂缝深度除可用细铁丝等简易办法探测外,常采用超声波探伤仪进行探测,也可采取逐步钻孔进行压气或压水试验办法探测。
裂缝宽度除可用读数放大镜直接观测外,常在缝两侧设金属标点,用游标卡尺量测或将差动式电阻测缝计的两端分别固定在缝的两侧,用电阻比电桥或其他检测仪器观测或自动遥测。
贯穿性裂缝的错距可在缝的两侧设三向测缝标点进行三个方向的量测。
对于大体积混凝土内部或表面预计可能发生裂缝的
部位,可在施工时埋设裂缝计定期进行观测。
结束语
综上所述,水利工程变形监测工作是水利工程建设的重要内容,其几乎贯穿整个水利工程建设。
并且其监测结果直接影响到整个水利工程质量、成本与进度,因此必须加强对水利工程变形监测技术进行分析。
参考文献:
[1]彭金华.水利工程变形监测技术探析[J].科技与生活,2012
[2]刘耀泉.数字化测绘技术在水利工程测量中的应用分析[J].黑龙江水利科技,2015
[3]胡冲等.浅析水利工程变形监测技术[J].中国新技术新产品,2015。