树的存储结构、遍历;二叉树的定义、性质、存储结构、遍历以及树、森林、二叉树的转换
二叉树的性质及其遍历
12.3.1 顺序存储结构 12.3.2 链式存储
•二叉树的性质及其遍历
12.1 二叉树的基本性质
定理 1:满二叉树第i层上恰好有2i-1个结点 (i≥1).
证:使用归纳法。i=1时,结论显然成立。设i=k时结 论成立,则考虑i=k+1的情形。由于(k+1)层上结点 是k层上结点的儿子,而且满二叉树每个非叶子结 点恰好有两个儿子,故(k+1)层上结点个数为k层上 结点个数的2倍,即2·2k-1 = 2k = 2(k+1)-1. 这表明, i=k+1时结论也成立。由归纳法原理,结论对任意 的k都成立,证毕。
x的相对地址x的编号x的父亲/儿子的编 号(性质7) x的父亲/儿子的相对地址。
•二叉树的性质及其遍历
至于结点的相对地址与编号之间的换算,有下列关系: 结点相对地址 = (结点编号 – 1)×每个结点所
占单元数目
a
b
f
cegh d
1 2 34 56 7 8 a b f ce g h d …
图 12-2 顺序二叉树的顺序存储
•二叉树的性质及其遍历
12.1.7 定理7 若对一棵有n个结点的顺序二叉树的结点按层序 编号,则对任一结点i(1≤i≤n),有(1)若i=1, 则结点i是根, 无父亲;若i〉1,则其父亲是结点i/2。(2)若2i>n,则结点i 无左儿子(从而也无右儿子,为叶子);否则i的左儿子是结 点2i。(3)若2i+1>n,则结点i无右儿子;否则右儿子是结点 2i+1。
12.3.1顺序存储结构
(一) 顺序二叉树的顺序存储结构
这种存储结构是按结点的层序编号的次序,将 结点存储在一片连续存储区域内。由定理 7知, 对顺序二叉树,若已知结点的层序编号,则可推 算出它的父亲和儿子的编号,所以,在这种存储 结构中,很容易根据结点的相对地址计算出它的 父亲和儿子的相对地址,方法是:
二叉树,树,森林遍历之间的对应关系
二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
树与二叉树h
SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:
根
A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:
根
A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。
二叉树概念
点为结点i (1 i n)。则有以下关系:
若i = 1, 则 i 无双亲 若i > 1, 则 i 的双亲为i /2 若2*i <= n, 则 i 的左子女为2*i;否则,i无左子女,必定是 页结点,二叉树中i> n/2 的结点必定是页结点 若2*i+1 <= n, 则 i 的右子女为2*i+1,否则,i无右子女
层序遍历二叉树算法的框架是 • 若二叉树为空,则空操作; • 否则,根结点入队,并作为当 前结点。如队列不空,循环: 将当前结点的左右孩子入队; 做出队操作,队首元素作为当 前结点; • 最后,出队序列就是层序遍历 序列 遍历结果
表达式语法树
-+/a*efb- cd
例5-1:在二叉树中查找具有给定值的结点
}
//中序遍历*t的右子树
}
前序遍历算法
PREORDER(bitree *t) { if (t) { printf(“\t%c\n”,t->data); //访问结点*t PREORDER(t->lchild); //前序遍历*t的左子树
PREORDER(t->rchild• • • • • 结点(node) 结点的度(degree) 分支(branch)结点 叶(leaf)结点 子女(child)结点 双亲(parent)结点
结点的子树个数 度不为0的结点 度为0的结点 某结点子树的根结点 某个结点是其子树之根的 双亲
• 兄弟(sibling)结点 • 祖先(ancestor)结点
证明: 1、结点总数为度为0的结点加上度为1的结点再加上度 为2的结点: n = n0 + n1 + n2 2、另一方面,二叉树中一度结点有一个孩子,二 度结 点有二个孩子,根结点不是任何结点的孩子,因此, 结点总数为: n = n1 + 2n2 + 1 3、两式相减,得到: n0 = n2 + 1
数据结构之二叉树(BinaryTree)
数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。
⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。
定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。
(这⾥的左⼦树和右⼦树也是⼆叉树)。
值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。
具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。
⽆序树的⼦树⽆左右之分。
2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。
这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。
完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。
如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。
性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。
证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。
第6章树和二叉树
9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1
树和二叉树——精选推荐
第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。
教学目标1.理解各种树和森林与二叉树的相应操作。
2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。
3.熟练掌握二叉树和树的各种存储结构及其建立的算法。
4.掌握哈夫曼编码的方法。
5.通过综合应用设计,掌握各种算法的C 语言实现过程。
基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。
难点:编写实现二叉树和树的各种操作的递归算法。
本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。
《数据结构与算法设计》第5章 树
5.2.2 二叉树的性质
➢ 满二叉树和完全二叉树
满二叉树是指深度为h且节点数取得最大值2h-1的二叉树。 如果一棵深度为h的二叉树,除第h层外,其他每层的节点数 都达到最大,且最后一层的节点自左而右连续分布,这样的二 叉树称为完全二叉树。
5.2.2 二叉树的性质
5.2.2 二叉树的性质
性质6 对含有n个节点的完全二叉树自上而下、同一层从左往右 对节点编号0,1,2,…,n-1,则节点之间存在以下关系: (1)若i=0,则节点i是根节点,无双亲;若i>0,则其双亲节 点的编号为i/2-1; (2)若2×i +1≤n,则i的左孩子编号为2×i+1; (3)若2×i+2≤n,则i的右孩子编号为2×i+2; (4)若i>1且为偶数,则节点i是其双亲的右孩子,且有编号为 i-1的左兄弟; (5)若i<n-1且为奇数,则节点i是其双亲的左孩子,且有编号 为i+1的右兄弟。
5.3.3 二叉树的二叉链表类模板定义
//根据二叉树的先序遍历序列和中序遍历序列创建以r为根的二叉树
void CreateBinaryTree(BTNode<DataType> * &r, DataType pre[], DataType
in[], int preStart, int preEnd, int inStart, int inEnd); int Height(BTNode<DataType> *r); //求以r为根的二叉树高度 //求以r为根的二叉树中叶子节点数目
5.1.2 树的术语
(9)节点的层次:从根节点开始,根为第一层,根的孩子为 第二层,根的孩子的孩子为第三层,依次类推,树中任一节 点所在的层次是其双亲节点所在的层次数加1。 (10)堂兄弟:双亲在同一层的节点互为堂兄弟。
大连理工大学2024年硕士招生考试自命题科目考试大纲 810 数据结构
大连理工大学2024年硕士研究生入学考试大纲科目代码:810 科目名称:数据结构Ⅰ.考查目标计算机学科专业基础综合考试是为大连理工大学招收计算机科学与技术学科的硕士研究生而设置的具有选拔性质的联考科目,其目的是科学、公平、有效地测试考生掌握计算机科学与技术学科大学本科阶段专业基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,评价的标准是高等学校计算机科学与技术学科优秀本科生所能达到的及格或及格以上水平,以利于大连理工大学择优选拔,确保硕士研究生的入学质量。
Ⅱ.考查范围计算机学科专业基础综合考试以数据结构专业基础课程。
要求考生系统地掌握数据结构课程的概念、基本原理和基本方法,能够运用所学的基本原理和基本方法分析、判断和解决有关理论问题和实际问题。
Ⅲ.考查内容数据结构[考查目标]1.掌握数据结构的基本概念、基本原理和基本方法。
2.掌握数据的逻辑结构、存储结构及基本操作的实现,能够对算法进行基本的时间复杂度与空间复杂度的分析。
3.能够运用数据结构的基本原理和方法进行问题的分析与求解,具备采用C或C++语言设计与实现算法的能力。
一、线性表1.线性表的定义2.线性表的顺序表示和实现3.线性表的链式表示和实现4.线性表的应用二、栈、队列和数组1.栈和队列的基本概念2.栈的顺序表示和实现3.栈的链式表示和实现4.队列的顺序表示和实现5.队列的链式表示和实现6.栈和队列的应用7.数组的定义,数组的顺序表示和实现8.矩阵的压缩存储三、树与二叉树1.树的定义和基本概念2.二叉树(1) 二叉树的定义及性质(2) 二叉树的存储结构(3) 二叉树的遍历(4) 线索二叉树3.树、森林(1) 树的存储结构(2) 树和二叉树的转换,森林与二叉树的转换(3) 树和森林的遍历4.哈夫曼(Huffman)树和哈夫曼编码四、图1.图的定义和基本概念2.图的存储方式(1) 数组(邻接矩阵)表示法(2) 邻接表3.图的遍历及其应用(1) 深度优先搜索(2) 广度优先搜索4.图的基本应用(1) 最小生成树(2) 最短路径(3) 拓扑排序(4) 关键路径五、查找1.查找的基本概念2.静态查找表(1) 顺序查找法(2) 折半查找法3.动态查找表(1) 二叉排序树和平衡二叉树(2) B-树4.哈希(Hash)表5.查找算法的分析及应用六、排序1.排序的基本概念2.插入排序(1) 直接插入排序(2) 折半插入排序3.起泡排序(bubble sort)4.简单选择排序5.希尔排序(shell sort)6.快速排序7.堆排序8.二路归并排序(merge sort)9.基数排序10.外部排序11.各种排序算法的比较12.排序算法的应用复习参考资料:《数据结构(c语言版)》,严蔚敏,吴伟民编著,清华大学出版社.。
数据结构第6章树和二叉树3树和森林ppt课件
§6.4 树和森林 ❖树的存储结构——孩子兄弟表示法
这种存储结构便于实现各种树的操作。首先易于 实现找结点孩子等的操作。如果为每个结点增设一个 (parent)域,则同样能方便地实现Parent(T, x)操作。
§6.4 树和森林
❖森林和二叉树的转换
1. 树和二叉树的对应关系 由于二叉树和树都可用二叉链表作为存储结构,
R AB C
DE
F
GHK
R^
A
^D
^B
^E ^
C^
F^
^G
^H
^K ^
§6.4 树和森林
❖树的二叉链表(孩子 - 兄弟)存储表示
typedef struct CSNode { Elem data; struct CSNode *firstchild , *nextsibling;
} CSNode, *CSTree;
A BC D E F GH
A BC D
E F GH A
BC D
1)在兄弟之间加一条连线; 2)对每个结点,除了左孩子外,去除其与其余孩子之间的联系; 3)以根结点为轴心,将整个树顺时针转45°。
Ia
A B
Ib
E F
d
C D
G H I
c E F G H I
§6.4 树和森林
❖森林和二叉树的转换
2. 森林和二叉树的对应关系 从树的二叉链表表示的定义可知,任何一棵
§6.4 树和森林
3
6^
5^
0
1
7
8
2^ 9^
R AB C
DE
F
GHK
§6.4 树和森林 ❖树的存储结构——孩子兄弟表示法
或称二叉树表示法,或称二叉链表表示法。即以 二叉链表作树的存储结构。链表中结点的两个链域分 别指向该结点的第一个孩子结点和下一个兄弟结点。
《数据结构——C语言描述》第6章:树
先根遍历: -+a*b–cd/ef 中根遍历: a+b*c–d–e/f 后根遍历: abcd-*+ef/-
typedef struct Node { datatype data; struct Node *Lchild; struct Node *Rchild; } BTnode,*Btree;
满二叉树:一棵深度为k且有2k-1个结 点的二叉树称为满二叉树。 完全二叉树:深度为k,有n个结点的 二叉树当且仅当其每一个结点都与深度 为k的满二叉树中编号从1至n的结点一一 对应时,称为完全二叉树。
1 2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1 3 5 7
树的度:树中最大的结点的度数即为 树的度。图6.1中的树的度为3。 结点的层次(level):从根结点算起, 根为第一层,它的孩子为第二层……。 若某结点在第l层,则其孩子结点就在 第l+1层。图6.1中,结点A的层次为1, 结点M的层次为4。 树的高度(depth):树中结点的最大层 次数。图6.1中的树的高度为4。 森林(forest):m(m≥0)棵互不相交的 树的集合。
森林、树、二叉树的性质与关系
森林、树、⼆叉树的性质与关系森林、树、⼆叉树的性质与关系这篇博客写的太累了。
本⽂中对于这部分的讲解没有提到的部分:对于⼆叉树的遍历:重点讲了⾮递归遍历的实现⽅式和代码(递归⽅法使⽤的相对较多,请直接参考博客代码)对于哈夫曼编码和线索⼆叉树的代码实现没有列出。
树我们对于树和⼆叉树这⼀部分的内容主要研究树的逻辑结构和存储结构,由于计算机的特殊性存储结构及⼆叉树的简单性,我们更主要讨论⼆叉树的逻辑结构和存储结构并对其进⾏实现(其中包含⼆叉树的⼀些重要性质),另外我们在研究这⼀类问题时,⾸先要考虑到树与森林之间的转换,以及树与⼆叉树之间的转换。
从⽽简化为最简单的⼆叉树问题。
知识体系结构图:树的定义:(采⽤递归⽅法去定义树)树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;任意⼀棵⾮空树满⾜以下条件:(1)有且仅有⼀个特定的称为根的结点;(2)当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合⼜是⼀棵树,并称为这个根结点的⼦树。
(⽤图的定义法去描述树:连通⽽不含回路的⽆向图称为⽆向树,简称树,常⽤T表⽰树)树的基本术语:结点的度:结点所拥有的⼦树的个数。
树的度:树中各结点度的最⼤值。
叶⼦结点:度为0的结点,也称为终端结点。
分⽀结点:度不为0的结点,也称为⾮终端结点。
孩⼦、双亲:树中某结点⼦树的根结点称为这个结点的孩⼦结点,这个结点称为它孩⼦结点的双亲结点;兄弟:具有同⼀个双亲的孩⼦结点互称为兄弟。
祖先、⼦孙:在树中,如果有⼀条路径从结点x到结点y,那么x就称为y的祖先,⽽y称为x的⼦孙。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为⼀条由n1⾄nk的路径;路径上经过的边的个数称为路径长度。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩⼦结点在第k+1层。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
数据结构5树资料
3.树的术语:
结点(node)
数据元素。
结点的度(degree)
结点的子树个数。
树中所有结点度的最大值。 度不为0的结点。 度为0的结点。 某结点子树的根结点。
树的度(degree) 分支(branch)结点
叶(leaf)结点 孩子(child)结点
2018/10/13 第5章 树和二叉树
同构型
19/112
A
异构型
B
C
D
E
F
G
H
I
J
孩子表示法-- c语言描述 (同构型)
typedef struct TreeNode
{ DataType data;
struct TreeNdoe *Son[MAXSON];
} nodetype;
2018/10/13 第5章 树和二叉树 20/112
a b d i e j f c g h
2018/10/13
第5章 树和二叉树
2/112
除根以外的其它结点划分为m (m 0)个互不相交 的有限集合T0, T1, …, Tm-1,每个集合又是一棵树, 并且称之为根的子树(SubTree)。
每棵子树的根结点有且仅有一个直接前驱,但可 以有0个或多个直接后继。
B E F C G H D I J
E,F,B,G,C,H,I,J, D,A
第5章 树和二叉树 26/112
2018/10/13
3.层序遍历
按层次顺序(1,2,…)遍历,同一层按从左 到右的顺序。
A B E F C G H D I J
遍历序列: A,B,C,D,E,F,G,H,I,J
数据结构课后练习 - 第6章
A 3. 根据树的定义,具有3个结点的树有_______种树形。
二、单项选择题
C 4. 节点前序为ABC的不同二叉树________形态。 A. 3 A. 5 B. 4 B. 6 C. 5 C. 7 D. 6 D. 8 B 5. 具有35个结点的完全二叉树的深度为_________。
三、填空题
结点拥有子树个数 1. 在树的定义中,结点的度是____________________ ; 度为0的结点 叶子结点是____________________ ;树的度是 树中所有结点的最大值 ____________________;树中结点的最大层次称为树 深度/高度 的____________________。 最短 2. 哈夫曼树的带权路径长度_____________的二叉树。 3. 某二叉树的前序遍历序列为DABEC,中序遍历序列为 EBCAD DEBAC,则后序遍历序列为____________________。
① 画出这棵树的形态。
② 写出该树后序遍历的结点访问顺序。
a
b c
后序遍历:
gdbehfca
d
g
e
h
f
5. 设树T的度为4,其中度为1,2,3,4的结点个数分别为4, 2,1,1。问T中有多少个叶子结点? 利用树的性质:各结点射出的分支总数+1=总结点数
① 树T中,各个结点射出的分支总数: 4×1 + 2×2 + 1×3 + 1×4 = 15
2. 给定一个权集W={4,5,7,8,6,12,18},请画出相应的哈夫曼 树,并计算其带权路径长度WPL。 60 35 17 8 4 9 5 18 12 6 25 13 7 WPL = 8×3 + (4 + 5)×4 + 18×2 + 12×2 + (6+7)×3 = 159 树型不唯一,但最小WPL值是唯 一的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树和二叉树树与二叉树是本书的重点内容之一,知识点多且比较零碎。
其中二叉树又是本章的重点。
在本章中我们要了解树的定义、熟悉树的存储结构、遍历;二叉树的定义、性质、存储结构、遍历以及树、森林、二叉树的转换。
哈夫曼树及哈夫曼编码等内容。
算法的重点是二叉树的遍历及其应用。
6.1 树的定义一、树的定义树:树是n(n>0)个结点的有限集合T。
一棵树满足下列条件:(1)有且仅有一个称为根的结点;(2)其余结点可分为m(m>=0)棵互不相交的有限集合T1,T2,T3,…Tm,其中每个集合又是一棵树,并称之为根的子树。
有关树的一些基本概念:1)结点的度:树中每个结点具有的子树数目或后继结点数。
如图中结点A的度为2,B的度为32) 树的度:所有结点的度的最大值为树的度。
(图中树的度为3)3) 分支结点:即:树中所有度大于0的结点。
4) 叶子结点:即:树中度为零的结点,也称为终端结点。
5) 孩子结点:一个结点的后续结点称为该结点的孩子结点。
6) 双亲结点:一个结点为其后继结点的双亲结点。
7) 子孙结点:一个结点的所有子树中的结点为该结点的子孙结点。
8) 祖先结点:从根结点到一个结点的路径上所有结点(除自己外)称为该结点的祖先结点。
(如A和B为D结点的祖先结点)9) 兄弟结点:具有同一父亲的结点互相为兄弟结点。
(如B和C为兄弟结点)10) 结点的层数:从根结点到该结点的路径上的结点总数称为该结点的层数(包括该结点)。
11) 树的深度(高度):树中结点的最大层数为树的深度。
(图中树的深度为4)12) 森林:0个或多个互不相交的树的集合。
上图中:树的度为3,树的深度为4。
结点A,B,C,D,E,F,G,H,I,J的度分别为:2, 3, 2, 0 ,2 , 0, 0, 0, 0, 0叶结点有:D, F, G, H, I, JB,C为兄弟,D, E, F为兄弟,F, G为兄弟。
I,J为兄弟。
二、树的表示1. 树的逻辑结构描述Tree=(D,R)其中:D为具有相同性质的数据元素的集合。
R为D上元素之间的关系集合。
如上图中的树:D=(A,B,C,D,E,F,G,H,I,J)R={<A,B>,<A,C>,<B,D>,<B,E>,<B,F>,<C,G>,<C,H>,<E,I>,<E,J>}2. 树的逻辑表示方法:(1)树形表示法:如一棵倒立的树,从根结点开始一层层向下扩展,根结点在上,叶结点在下。
如上图。
(2)文氏图(嵌套表示法):(3)凹入表示法(4)广义表示法根结点在前面,用一对圆括号把它的子结点括起来,子树结点之间用逗号隔开。
如:(A(B(D,E(I,J ),F ),C(G,H)))三、树的基本性质性质1:树中的结点总数(N)等于所有结点的度数之和(B)加1。
即:N=B+1证明:在树的定义中,除了根结点外,每个结点都有且仅有一个前驱结点,也就是说,每个结点与指向它的一个分支一一对应,所以除了树根外的结点数等于所有结点的分支数(度数之和),即B=N-1,从而可得一棵树的结点数等于结点的度数和加1。
上述例中:10=(2+3+2+2)+1例如:已知一棵树中的度数为1,2,3,4的结点个数分别为6,5,4,3,求树中叶子结点的个数。
解:树中所有结点的度数之和为1*6+2*5+3*4+4*3=40则树的总结点数为40+1=41树中度数非零的结点数为:6+5+4+3=18因此零结点(叶子结点)的个数为:41-18=23个6.2 树的存储结构及基本操作一、树的存储结构常用树的存储结构有四种:双亲表示法、孩子表示法、带双亲的孩子链表、孩子兄弟表示法。
1.双亲表示法利用每个结点的双亲唯一性,存储结点信息的同时,附设一个指向双亲的指针parent。
根结点的parent为NULL.双亲表示法的存储结构为:Typedef struct node{char data;int parent;}PNODE;PNODE t[M]; /*用结点数组表示树*/这种表示法的优点是很容易找到每个结点的双亲。
缺点是很难找到每个结点的孩子。
2. 孩子表示法又分两种方法:1)多重链表每个结点中有一个数据域和多个指针域,指针域指向该结点的孩子。
由于每个结点的孩子数并不一定相同,因此结点指针域的个数怎么设计呢?通常有两种方案:一种是:结点同构,即所有结点指针域个数相同,等于树的度。
这种方法的缺点是浪费空间,优点是处理起来简单。
另一种是:结点异构即指针个数不等按各自的子树数设置。
应该在每个结点的信息中包含该结点子树的个数信息。
这种方法的优点是空间不浪费,缺点是处理麻烦。
如:结点同构:2)孩子链表每个结点的孩子用一个单链表存储,再用一个n 个元素的结构体数组(表头数组)指向每个孩子链表。
如下所示:孩子链表的存储结构如下:孩子结点的存储结构:typedef struct tnode{int child;struct tnode *next;}TNODE;表头结点的存储结构:#define M 100Typedef struct tablenode{char dada; //结点数据域TNODE *fchild; //指向该结点的第一个孩子结点。
}TD;TD t[M+1]; // t[0]不用这种孩子链表,优点是找孩子方便,缺点是找双亲难。
即在孩子链表的表头数组中加了一列来记录该结点的双亲结点在该数组中的位置值。
其存储结构为:typedef struct tnode{int child;struct tnode *next;}TNODE; //孩子链的结点结构表头结点的存储结构:#define M 100Typedef struct tablenode{Char dada; //结点数据域int parent;TNODE *fchild; //指向该结点的第一个孩子结点。
}TD;TD t[M+1]; //t[0]不用4)孩子兄弟表示法又称为二叉树表示法。
这种存储结构的每个结点有一个数据域,两个指针域。
其中:数据域:存放结点数据。
左指针域:指向该结点的第一个孩子结点。
右指针域:指向该结点的下一个兄弟结点。
用C语言描述的存储结构如:Typedef struct tnode{char data;struct toned *lchild;struct tnode *rsibling;}TNODE;用这种结构表示结点之间关系,容易实现树的各种操作,但明显破坏了树的层次。
如想通过结点B访问F结点:则可以:假如有一个指针变量p指向B,则p=(((p->lchild)->rsibling)->rsibling)从而使 p指向了F6.3 二叉树的定义和基本性质一、二叉树的定义1. 定义二叉树是n ( n>=0 )个结点的有限集,它或为空树(n=0)或由一个根结点或者一个根结点及两棵分别称为左子树和右子树的互不相交的二叉树构成。
2. 二叉树的特点1)每个结点至多有两个子树。
(即不存在度数大于2的结点)2)二叉树的子树有左右之分,其次序不能颠倒。
3)二叉树可以为空。
3.二叉树的基本形态以上分别为空、 只有根结点、 右子树为空、 左右子树均非空的二叉树。
4. 几种特殊形式的二叉树(1)满二叉树一棵深度为k 且有2k -1即满二叉树除叶结点外,其余结点均有二个子树。
如:第1层:20个结点第2层:21个结点 第3层:22个结点第i 层:2i-1个结点若二叉树有k 层,则二叉树结点总数为: 20+21+22+23+2i +…+2k-1=212211-⋅--k = 2k -1(利用等比数列求和公式:q.q a a n --11) 满二叉树的顺序表示,是按自上则下,从左到右列出结点。
如(A ,B ,C ,D ,E ,F ,G )为上述满二叉树。
(2)完全二叉树深度为k 有n 个节点的二叉树当且仅当其每一个结点都与深度为 k 的满二叉树中编号1到n 的结点一一对应,则称其为完全二叉树。
如下图中右图就是完全二叉树:①叶子结点只可能出现在层次最大的两层上。
如:②对于任意一个结点,其右分支子孙的最大层为L,则左分支子孙最大层为L或L+1.(因为每个结点都是先有左子树,才可能有右子树)完全二叉树不一定是满二叉树,但满二叉树一定是完全二叉树。
二、二叉树的性质性质1:在二叉树的第i层上至多有2i-1个结点。
(i>=1)证明:用数学归纳法:当i=1时: 只有根结点,此时第i层的结点数为:2(1-1)=20=1假设当i=k: 即第k层有结点2k-1个结点则当i=k+1时,由于每个结点的最大度数为2,故第k+1层的结点总数最大为第k层结点数的2倍,即最大结点数为:2*2k-1=2k故对于任意第i层,在二叉树中该层的最大结点数为2i-1个。
性质2:深度为k的二叉树至多有2k-1个结点。
(k>=1)证明:根据定义及性质1可知,深度为k二叉树的结点最多有(每一层最大结点数之和):20+21+23+…+2k-1=2k-1(据等比数列前k项和公式)性质3:对任意一棵二叉树BT中,如果其终端结点数为n0,则度为2的结点数为n2,则n0=n2+1 证明:设度数为1 的结点数为n1n为二叉树中总结点数,则n=n0+n1+n2设二叉树的边的总数为B,根据定理树的性质1知:n=B+1而分支都是由度为1和度为2的结点分出的,故: B=n1+2*n2 (度为1的结点分出一个分支,度为2的分出2个分支)所以:n1+2*n2= n0+n1+n2-1 = n-1=B两边消元后得:n2=n0-1即:n0 = n2+1得证满二叉树(1,2,3,4,5,6,7))完全二叉树(1,2,3,4,5,6))性质4:具有n个结点的完全二叉树的深度为|log 2n|+1其中:|log 2n| 表示取对数的整数部分值。
证明:设有n个结点的完全二叉树的深度为k深度为k-1层的满二树的结点总数为n1=2k-1-1深度为k的满二叉树的结点总数为n2=2k-1则有如下关系:n1<n≤n2由于完全二叉树比满二叉树至少少1个或0个结点,而k 层的完全二叉树比k-1层的满二叉树至少多一个结点故有:n1+1≤n<n2+12k-1-1+1≤n<2k-1+1 即:2k-1≤n<2kk-1≤log2n<kk为整数,log2n介于k和k-1两个相邻整数之间,故有k-1=| log2n |k=| log2n |+1得证。
性质5:一棵有n个结点的完全二叉树的结点按层序编号,则任一结点i(1<=i<=n)有:1)如果i=1,则结点i为根结点,无双亲;若i>1,则其双亲为|i/2|2)如果2i>n,则结点i无左孩子;若2i<=n,则结点i左孩子为2i3)如果2i+1>n,则结点i无右孩子;若2i+1<=n,则右孩子为2i+1用图来说明。