八年级数学导学案:学案(一)反比例函数的意义(第1课时)
反比例函数全章导学案
![反比例函数全章导学案](https://img.taocdn.com/s3/m/e87dd49fdaef5ef7ba0d3c9f.png)
鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案(2)、猜想:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为__________(3)、将反比例函数的图象绕原点旋转垂直 A y《反比例函数与一次函数图象》专题班级 姓名智慧、勤劳和天才,高于显贵和富有。
——贝多芬1、若矩形的面积为12cm 2,则它的长y cm 与宽x cm 的函数关系用图象表示大致( )2、函数y=-x 与y=1x在同一直角坐标系中的图象是( )3、若0<ab ,则函数ax y =与xby =在同一平面直角坐标系的图象大致是( )。
4、若0<ab ,则函数ax y =与xby -=在同一平面直角坐标系的图象大致是( )。
5、函数y kx k =-与(0)ky k x=≠在同一坐标系中的大致图象是( )6、如图,关于x 的函数y=k(x-1)和y=-kx(k ≠0), 它们在同一坐标系内的图象大致是( )7、请在下边的坐标系中同时画出21y x =-+与y x=-的大致图象。
8、如右图所示是,一次函数函数11y x =-和反比例函数26y x=的图象, (1)求方程组16y x y x =-⎧⎪⎨=⎪⎩的解; (2)观察图象,当x 在什么范围时,1y <2y ?9、如图所示,一次函数1y kx b =+的图象与反比例函数2my x=的图象相交于A 、B 两点,(1)利用图中条件,求该反比例函数和一次函数的解析式; (2)(观察图象,当x 在什么范围时,1y <2y ?A B C D《反比例函数k 的几何意义》专题班级 姓名想不付出任何代价而得到幸福,那是神话。
—— 徐特立1.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >2.如图,直线y=mx 与双曲线y =xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、43.如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。
271导学案.第1辑.八年级数学.下.配R版
![271导学案.第1辑.八年级数学.下.配R版](https://img.taocdn.com/s3/m/10489b3c3968011ca300918d.png)
第 1 课时 第 2 课时
勾股定理的逆定理 ………… 0 3 9 勾股定理的逆定理的应用 … 0 4 1
第 1 课时
反比例函数的意义 ………… 0 2 3
第十八章复习学案 ……………………………… 0 4 3
第十九章 四边形
1 9. 1 平行四边形
第二十章 数据的分析
2 0. 1 数据的代表
第 1 课时 第 2 课时 第 3 课时 第 4 课时
1 9. 4 课题学习
第十九章复习学案 ……………………………… 0 6 7
0 0 1
分
1 6 . 1
1
式
式
分
x+1 ( 易 错 题) 如果分式 有 意 义, 那么x 的取 2. ( ) ( ) x+2 x-1
A. x≠-2 或 x≠1 C. x=2 或 x=-1 值范围是 ( ) B. x≠-2 且 x≠1 D. x=-2 或 x=1
分式方程 ……………………… 0 1 7 列分式方程解应用题 ……… 0 1 9
第 1 课时 第 2 课时
勾股定理 ……………………… 0 3 5 勾股定理的应用 …………… 0 3 7
第十六章复习学案 ……………………………… 0 2 1
1 8. 2 勾股定理的逆定理
第十七章 反比例函数
1 7. 1 反比例函数
第 2 课时
反比例函数在物理 、 化学中的 应用 …………………………… 0 3 1
第十七章复习学案 ……………………………… 0 3 3
第十八章 勾股定理
1 8. 1 勾股定理
) ……………… 0 小结与复习 ( 1 6 . 1~1 6 . 2 1 5
1 6. 3 分式方程
反比例函数的应用(一)导学案,习题
![反比例函数的应用(一)导学案,习题](https://img.taocdn.com/s3/m/affcd10be87101f69e3195c0.png)
2
鸡西市第十九中学初三数学组
例 1、市煤气公司要在地下修建一个容积为 104 m3 的圆柱形煤气储存室。
(1) 储存室的底面积 S (单位 m2 ) 与其深度 d (单位: m) 有怎样的函数关系? (2)公司决定把储存室的底面积 S 定为 500 m2 ,施工队施工时应该向下掘 进多深? (3)当施工队按(2)中的计划掘进到地下 10m 时,碰上了坚硬的岩石。为了 节约建设资金, 公司临时改变计划, 把储存室的深度改为 10m, 相应地, 2 储存室的底面积应改为多少 m 才满足需要? 分析:圆柱体的体积=底面积×高 解: (1)根据圆柱体的体积公式,我们有 变形得 S= ∴储存室的底面积 S 是其深度 d 的反比例函数。 (2)把 S=500 代入上式:得 (3)把 d=10 代入上式:得 解之得: 解之得:
(2)若到达目的地后,按原路匀速返回,并要求在 3 小时内回到 A 城,则返 回的速度不能低于 .
4.码头工人以每天 30 吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好 用了 8 天时间,请问: (1) 、轮船到达目的地后开始卸货,卸货速度 V(吨/天)与卸货时间 t(天) 之间有怎么样的函数关系?
y x O A A. B. B C. y O x y x C y O x D D.
O
2.完成某项任务可获得 500 元报酬, 考虑由 x 人完成这项任务, 试写出人均报 酬 y(元)与人数 x(人)之间的函数关系式
1
鸡西市第十九中学初三数学组
3.A、B 两城市相距 720 千米,一列火车从 A 城去 B 城. ( 1 )火车的速度 v (千米 / 时)和行驶的时间 t (时)之间的函数关系 是 .
鸡西市第十九中学初三数学组
鸡西市第十九中学学案
八年级下数学导学案(全学期5章)
![八年级下数学导学案(全学期5章)](https://img.taocdn.com/s3/m/2a16acfa770bf78a65295431.png)
y
探索活动 1:画出反比例函数
6 6 y x 的图象. x与
讨论、观察画出的图象,思考以下问题: (1)列表取值时,自变量 x 不能取什么值?在取自变量 x 的值时还应注意什么? (2)为使画出的图象更精确,自变量 x 取值的个数应该注意什么? (3)连线时应该按怎样的顺序连接?是否可以画成折线? (4)反比例函数的图象会不会与 x 轴或者 y 轴相交?
y
(3)函数
k x 的图像在哪些象限由什么因素决定?
(4)在每一个象限内,y 随 x 的变化如何变化? 归纳:
二、知识链接:比较正比例函数和反比例函数的性质 正比例函数 解析式 图像(形状) 位置(经过象限) k>0,______象限; k<0,_______象限 k>0,_______象限 k<0,_______象限 k>0,在每个象限内 y 随 x 的增大而______ k<0,在每个象限内 y 随 x 的增大而______ 反比例函数
x>-2 时;y 的取值范围是____. 四、拓展提高 例:已知反比例函数 y (m 1) x 限内 y 随 x 的变化情况?
m2 3
D
的图象在第二、四象限,求 m 值,并指出在每个象
6
23.1.2
反比例函数的图象和性质(第 2 课时)
主备人: 刘秀平 刘杰 备课组长:刘秀平 教学主任: 张凯 【学习目标】1.进一步理解和掌握反比例函数的图象与性质; 2.能灵活运用函数图象和性质解决一些较综合的问题; 3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法 【学法指导】1、体会函数三种表示方法的相互转换,对函数进行认识上的整合; 2、运用分类讨论思想、数形结合思想. 【重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题 【难点】学会从图象上分析、解决问题,理解反比例函数的性质。 【温故知新】1.作反比例函数图象的基本步骤是⑪ ;⑫ ;⑬
第一节反比例函数导学案
![第一节反比例函数导学案](https://img.taocdn.com/s3/m/349bcfcfee06eff9aff80750.png)
第一节反比例函数导学案第一节反比例函数导学案学习目标:1.经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2.能正确区分两变量是否为反比例函数关系。
学习重点:反比例函数的概念及应用。
学习难点:正确理解反比例函数的含义。
学习过程:预习1.如果两个变量x 、y之间的关系可以表示成y是x的,反比例函数的自变量x 。
2. 复习1.什么叫做函数?2.什么叫做一次函数?它的一般形式是3. 什么叫做正比例函数?它的一般形式是。
新课一.情境引入今年暑假小明背了很重的背包和同学们去野营,其中有几位同学因为约好要进行滑板车比赛,所以每人均带了一辆滑板车。
在途中他们遇到了一段泥泞路段,如果绕道,需要花很长时间,怎么办?小华说:“我们把滑板车铺在路上就可以通过。
”亲爱的同学们你知道他这样做的道理吗?二.探究新知探究一反比例函数的概念1. 阅读课本143页的内容并解决问题2. 总结反比例函数的定义3. 反比例函数的解析式⑴ ⑵ ⑶ 三.自主学习,巩固新知课本144页做一做四.范例学习例1若函数y= (m2-1)x 3m2+m-5 为反比例函数,求m 的值。
解析反比例函数y=k(k≠0) 的另一个形式是y=kx x探究二用待定系数法求反比例函数的解析式例2已知y= y1+y2 ,y1与x成正比例,y2与x成反比例,当x=1时,y=4;当x=3时,y=5;求x=-1时y的值。
课堂练习1.下列函数解析式中y是x的反比例函数的是()A.y=1311 B.y=- C.y= D.y=x2xx 1x2.当时,函数y=(+2)x是反比例函数。
3.在下列表达式中x均表示自变量,那么那些是反比例函数?每一个反比例函数相应的k值是多少?⑴y=14x;⑵y= -1 ;⑶y= ; ⑷xy=2. 2xx2六.课堂小结-我们本节课学习了⑴⑵ ⑶ 七.课堂作业1.下列哪些式子表示y是x的反比例函数?为什么?⑴xy=11⑷y= ;⑵y= 5-x ;⑶y=x2x 12.计划建设铁路1200km,那么铺轨天数y(d)是每日铺轨量x(km/d)的反比例函数吗?写出y与x的关系式。
人教版初二数学八年级下册教案导学案
![人教版初二数学八年级下册教案导学案](https://img.taocdn.com/s3/m/0de9584abe1e650e52ea99f0.png)
第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。
2.会判断一个给定函数是否为反比例函数。
3.会根据已知条件用待定系数法求反比例函数的解析式。
【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。
难点:反比例函数的意义。
【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。
(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。
学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。
1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。
【课堂练习】1.下列等式中y是x的反比例函数的是()①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。
【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。
课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。
2.能用描点的方法画出反比例函数的图象。
3.通过对反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
17.1.2 反比例函数的图象和性质(1)
![17.1.2 反比例函数的图象和性质(1)](https://img.taocdn.com/s3/m/4b616864a98271fe910ef97d.png)
八年级数学导学案学习课题:17.1.2 反比例函数的图象和性质(1)【学习目标】1、会用描点法画反比例函数的图象2.结合图象记住反比例函数的性质,并会简单应用。
【导学过程】一、复习旧知,探究新知1、用描点法画图象的步骤是__________、__________、__________2.问题:我们已知道,一次函数y=kx+b (k ≠0)的图象是一条直线,•那么反比例函数y=kx(k 为常数且k ≠0)的图象是什么样呢?3.尝试用描点法来画出反比例函数的图象.(独立完成小组互查,10分钟) 例: 画出反比例函数y=6x 和y=-6x的图象. 分析:x 可以取哪些值?____________________x 可以怎样取值?以“0”为中心,向两边对称式取值 由于反比例函数图象什么样还不知道,所以要多取值,多描点,图像会更______ 解:列表(请把表中空白处填好)描点,以表中各对应值为坐标,在直角坐标系中描出各点.连线,用平滑的曲线把所描的点,按自变量________________ 连接起来.归纳:反比例函数y=6x 和y=-6x的图象的共同特征: (1)图像是________________(2)对称性①自身两分支___________ ②两图像___________ 4.练习:42页练习 5. 42页思考6.猜想:反比例函数y=kx(k ≠0)的图象在哪些象限由什么因素决定?•它可能与坐标轴相交吗?归纳:(1)反比例函数y=kx(k 为常数,k ≠0)的图象是双曲线. (2)当k>0时,双曲线的两支分别位于第__________象限,在每个象限内,y •值随x值的增大而.____________(3)当k<0时,双曲线的两支分别位于第__________四象限,在每个象限内,y •值随x 值的增大而____________.(4)图象与坐标轴______________________ 课堂检测 1、P43-1、22、请你写出一个反比例函数的解析式,使它的图象在第一、三象限__________.3、在反比例函数y=kx(k<0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1>x 2>0, 则y 1-y 2的值为 数 4. 如图,反比例函数ky x=的图象经过点A ,则k 的值是 5.反比例函数xm y 5-=的图象的两个分支分别在二、四象限内, 那么m 的取值范围是 6.函数y =mx82-m 的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是课后作业。
17[1].1.2反比例函数的图象和性质第一课时教学设计
![17[1].1.2反比例函数的图象和性质第一课时教学设计](https://img.taocdn.com/s3/m/0cad67e7f8c75fbfc77db2bf.png)
17.1.2反比例函数的图象和性质第一课时教学设计南孙庄乡中学一、教材分析:主要从地位与作用、教学目标、重点难点三方面进行阐述。
(一)地位与作用:本节教材是在学生理解反比例函数的意义和掌握了用描点法画函数图象的基础上进行教学的,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃。
图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不反映出对函数概念本质属性认识的进一步深化。
反比例函数是最基本的初等函数之一,是后续学习各类函数的基础。
反比例函数的核心内容是反比例函数的概念、图象和性质。
反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在。
反比例函数的图象和性质,蕴含着丰富的数学思想。
首先,反比例函数图象和性质,本身就是“数”与“形”的统一体。
通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法。
这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势。
其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用。
再次,将函数中变量x、y之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想。
因此,学好本节课内容,将为今后的函数学习奠定坚实的基础。
(二)教学目标:根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。
反比例函数的图像和性质全章学案
![反比例函数的图像和性质全章学案](https://img.taocdn.com/s3/m/4f1f370d6bd97f192279e928.png)
17.1.2 反比例函数的图象与性质(第1课时)【学习目标】1.了解反比例函数图象的意义 2.能用描点的方法画出反比例函数的图象 【教学过程】(一)自主学习,完成练习1.复习:画函数图象的一般步骤有哪些?应注意什么? 、 、2.反比例函数图象是 例2 画出反比例函数xy 6=和x y 6-=的图象.解:列表表示几组x 与y 的对应值(填表)注意:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴。
(四)巩固练习 1、画出反比例函数4y x =和4y x=-的图象总结反比例函数的图像与性质: 的取值范围的增大而增大 5.已知y 与x+2成反比例函数,当x=4时,y=1.(1)求这个函数的解析式;(2)当x=0时,求y 的值。
(五)课堂小结描点连线:17.1.2 反比例函数的图象与性质(第2课时)【学习目标】通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 【教学过程】(一)自主学习,完成练习1、复习:正比例函数y =kx (k ≠0)的图象是什么?其性质有哪些?一次函数呢?2、归纳(1)反比例函数xky =(k 为常数,0≠k )的图像是 ; (2)当0>k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 ; (3)当0<k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 。
x3、函数30y x =-的图象在第________象限,在每一象限内,y 随x 的增大而_________.4、函数y xπ=,当x>0时,图象在第________象限,y 随x 的增大而_________.5、已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限。
反比例函数学案1
![反比例函数学案1](https://img.taocdn.com/s3/m/6880aad776a20029bd642d03.png)
课题名称:17·1·1反比例函数的意义课前自主学习复习正比例函数1、下列函数中,是正比例函数的有______________(1)xy 4= (2)13+=x y (3)1=y (4)x y 8= (5)t v 5-= (6)013=+x (7)x y 2+ (8))81(82x x x y -+=2、关于x 的函数x m y )1(-=是正比例函数,则m__________3、关于x 的函数32)2(--=m x m y 是正比例函数,则m __________4、已知y 与x -1成正比例,x=8时,y=6,写出y 与x 之间函数关系式。
※ 学习探究【知识点1】反比例函数的定义1、 反比例函数的表达式还可以表示为: ..2、 一个矩形的面积为20cm 2, 相邻的两条边长为x cm 和y cm 。
那么变量y 与x 的关系式为是反比例函数吗?3、下列哪个等式中的y 是x 的反比例函数?x y 4=, 3=xy ,16+=x y ,123=xy ,y=-x,x y 3=,x y x y x y 21,12,2-=+=-=,19,,--===x y xa y x y π4、 当k 时,函数52)2(-+=k xk y 是反比例函数? 5、下列函数关系中是反比例函数的是( )A.等边三角形面积S 与边长a 的关系B.直角三角形两锐角A 与B 的关系C.长方形面积一定时,长y 与宽x 的关系D.等腰三角形顶角A 与底角B 的关系【知识点2】求反比例函数的解析式例题 反比例函数xk y =的图象经过点(2,3),则这个反比例函数的解析式为 1、已知y 是x 的反比例函数,并且当x=3时,y=-8。
(1)写出y 与x 之间的函数关系式。
(2)求y=2时x 的值。
2、y 是x 的反比例函数,下表给出了x 与y 的一些值:x-2 -1 21- 21 1 3 y32 2 -1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
八年级数学下册 17.1.1 反比例函数的意义教案 新人教版
![八年级数学下册 17.1.1 反比例函数的意义教案 新人教版](https://img.taocdn.com/s3/m/7a5fb8f876a20029bc642d0d.png)
17.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念三、例题的意图分析教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。
教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。
补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。
补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。
四、课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?五、例习题分析例1.见教材P47分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)(2)(3)xy=21 (4)(5)(6)(7)y=x-4分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m取什么值时,函数是反比例函数?分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。
人教版-数学-八年级下册- 实际问题与反比例函数 导学案(含答案)
![人教版-数学-八年级下册- 实际问题与反比例函数 导学案(含答案)](https://img.taocdn.com/s3/m/e24410decf84b9d528ea7af4.png)
17.2 实际问题与反比例函数(一)【学习目标】掌握从实际问题中建构反比例函数模型(学科内应用).(重点、难点)【自主预习】某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.(1)请你解释他们这样做的道理.m)的变化,人和木板对地(2)当人和木板对湿地的压力一定时,随着木板面积S(2面的压强p(Pa)将如何变化?(3)如果人和木板对湿地的压力合计600N,那么①用含S的代数式表示p,p是S的反比例函数吗?为什么?m时,压强是多少?②当木板面积为0.22③如果要求压强不超过6 000Pa,木板面积至少要多大?④在直角坐标系中,作出相应的函数图象.⑤请利用图像对(2)和(3)作出直观解释.【自主探究】如右图,某玻璃器皿制造公司要制造一种容积为1升(1升=1•立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?【自主检测】1.已知甲、乙两地相距skm,汽车从甲地匀速行驶到乙地,•如果汽车每小时耗油量为aL,那么从甲地到乙地汽车的总耗油量y(L)与汽车的行驶速度v(km/h)的函数图象大致是()2.面积为2的△ABC,一边长为x,这边上的高为y,则y与x•的变化规律用图象表示大致是()cm,写出其长y与宽x之间的函数表达式;3.(1)已知某矩形的面积为202(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,求其长为多少?(3)如果要求矩形的长不小于8cm,其宽至多要多少?4.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m2.(1)所需的瓷砖块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,•则需要三种瓷砖各多少块?【自主小结】参考答案【学习目标】掌握从实际问题中建构反比例函数模型(学科内应用).(重点、难点) 【自主预习】某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全,迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.(1)请你解释他们这样做的道理.(2)当人和木板对湿地的压力一定时,随着木板面积S (2m )的变化,人和木板对地面的压强p (Pa )将如何变化?(3)如果人和木板对湿地的压力合计600N ,那么①用含S 的代数式表示p ,p 是S 的反比例函数吗?为什么? ②当木板面积为0.22m 时,压强是多少?③如果要求压强不超过6 000Pa ,木板面积至少要多大? ④在直角坐标系中,作出相应的函数图象. ⑤请利用图像对(2)和(3)作出直观解释.解:(1)他们这样做主要是为了减少人和木板对地面压强,避免人陷入烂泥湿地; (2)当人和木板对湿地的压力一定时,随着木板面积S (2m )的增大,人和木板对地面的压强p (Pa )将减小;当木板面积S (2m )减小,人和木板对地面的压强p (Pa )将增大;(3)①SP 600=,P 是S 的反比例函数.因为函数SP 600=符合反比例函数的基本形式,满足反比例函数的概念;②当木板面积为0.22m 时,压强是3000 Pa ;③如果要求压强不超过6 000Pa ,木板面积至少要0.12m ④图略⑤根据图形可知,木板面积越小,人和木板对地面的压强就越大;木板面积越大,人和木板对地面的压强就越小;无论木板面积多大,人和木板对地面的压强始终存在. 【自主探究】如右图,某玻璃器皿制造公司要制造一种容积为1升(1升=1•立方分米)的圆锥形漏斗.(1)漏斗口的面积S 与漏斗的深d 有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?解:(1)根据圆锥的体积公式有:131=Sd∴漏斗口的面积S 与漏斗的深d 的函数关系为dS 3=(2)如果漏斗口的面积为100厘米2,即1=S 平方分米 ∴漏斗的深3=d 分米30=厘米.【自主检测】1.已知甲、乙两地相距skm ,汽车从甲地匀速行驶到乙地,•如果汽车每小时耗油量为aL ,那么从甲地到乙地汽车的总耗油量y (L )与汽车的行驶速度v (km /h )的函数图象大致是( C )2.面积为2的△ABC ,一边长为x ,这边上的高为y ,则y 与x •的变化规律用图象表示大致是( C )3.(1)已知某矩形的面积为202cm ,写出其长y 与宽x 之间的函数表达式; (2)当矩形的长为12cm 时,求宽为多少?当矩形的宽为4cm ,求其长为多少? (3)如果要求矩形的长不小于8cm ,其宽至多要多少?解:(1)当某矩形的面积为202cm 时,其长y 与宽x 之间的函数表达式为xy 20=; (2)当矩形的长为12cm 时,宽为cm cm 351220= 当矩形的宽为4cm 时,长为cm cm 5420=(3)如果要求矩形的长不小于8cm ,其宽至多cm 5.24.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103m 2.(1)所需的瓷砖块数n 与每块瓷砖的面积S 有怎样的函数关系? (2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80cm 2,灰、白、蓝瓷砖使用比例为2:2:1,•则需要三种瓷砖各多少块?解:(1)所需的瓷砖块数n 与每块瓷砖的面积S 的函数关系为Sn 5000=(2)∵每块瓷砖的面积都是80cm 2=0.008m 2,∴625000008.05000==n (块)∴需要灰瓷砖25000052625000=⨯(块),白瓷砖250000块,蓝瓷砖125000块.【自主小结】反比例函数学科内应用面积问题 体积问题图象均在一项限 变量取值大于0。
《反比例函数的图象和性质》(第1课时)说课稿
![《反比例函数的图象和性质》(第1课时)说课稿](https://img.taocdn.com/s3/m/abed0c9df18583d048645962.png)
§17.1.2《反比例函数的图象和性质》(第1课时)说课稿一、教材分析教材的地位和作用:本节课的内容是新人教版八年级下册第十七章第一节第二课时的反比例函数的图象和性质。
它是学生在已经初步掌握研究一次函数的基本方法和反比例函数的意义的基础上,并在掌握了用描点法画函数图象的一般方法后,学会画反比例函数的图象,并通过对图象的研究和分析来确定其性质,是本章学习的重点,为后面学习实际问题与反比例函数及二次函数打下坚实基础。
教学时关键在于注意引导学生通过自主探究:观察、类比、联想以及数形结合等数学思想方法,抓住反比例函数图象的特征,概括归纳出反比例函数的性质。
课堂上注重从操作、观察、概括和交流这些数学活动中得到性质结论,本节课将进一步深刻领会函数内涵。
二、学情教学法我校推行“六环节”课堂模式,施行老师自编导学案为辅导的教学模式,倡导学生自主探究学习,小组合作的学习方式。
八年级学生性格较七年级学生成熟,已具备了一定的学习能力,但对新鲜事物仍较为好奇,且较易接受,因此,教学过程中创设的问题应直观形象、浅显易懂,从而引起学生的兴趣,多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究。
根据课程标准的要求、学生学情、现实教学设施教法、学法方面有如下思考:1、教法:(1)导学案作为本节课师生学习活动的路线图、方向盘、指南针,教师起好引导、点拨、评价、拓展、欣赏的作用;(2)启发性教学: 启发性原则是永恒的。
在教师的启发下,让学生成为课堂上行为主体;(3)用多媒体平台展示图象,让学生在工具辅助中激发学习热情,加深体验;(4)分层训练:针对不同层次学生,提高课堂效率;2、学法:本节课我采用“六环节”课堂模式,由“课前小测、目标展示、自主探究、小组讨论展示,当堂检测,反馈总结”六个环节组成,学生在课前预习书本内容,完成导学案,课堂倡导学生主动参与,提出问题,小组讨论交流,展示成果,变先教后学为先学后教,学习方式呈现为自主、探究、合作学习。
17.1.1反比例函数的意义导学案
![17.1.1反比例函数的意义导学案](https://img.taocdn.com/s3/m/7510b21b55270722192ef727.png)
反比例函数的意义学案班级 姓名 小组 自我评价一、课前准备:1.写出我们所学过的存在正比例关系的实例2.车以每分钟60米的速度匀速运行,它所走过的路程s 与时间t 之间的函数关系为 你认为这里应该注意什么呢?3. 一般地,形如 (k 是常数,且k ≠0)的函数,称为正比例函数.4.已知正比例函数经过点(2,3),求该函数的解析式. 当x=4时,y 是多少?以上这种求函数解析式的方法叫: 它的步骤是二、预习新知1.写出你所搜集的反比例关系2.(1).京沪线铁路全长1 463km ,某次列车的平均速度vkm/h•随此次列车的全程运行问题th 的变化而变化,其关系可用函数式表示为:(2).某住宅小区要种植一个面积为1 000m 2矩形草坪,草坪的长ym 随宽xm•的变化而变化,可用函数式表示为(3).已知北京市的总面积为1.68×104km 2,人均占有的土地面积Skm 2/人,随全市总人口n 人的变化而变化,其关系可用函数式表示为 .共同点:3.一般地,形如 的函数称为反比例函数。
4.已知反比例函数经过点(2,3),求该函数的解析式。
当x=4时,y 是多少?三、小组合作1. 将)0(≠=k k xk y 为常数,变形:2. m= 时,关于x 的函数22)1(-+=m x m y 是反比例函数?预习评价:通过我的预习我学会了,我觉得我自己这次预习表现最棒的是而我还需要再进步的地方是 ,我觉得薛老师这次学案的编写四、预习检测1.千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为2.21+-=x y 中自变量x 的取值范围是 3.数中,y 是x 的反比例函数的是( )A 、15-=x yB 、73+=x y C 、5=xy D 、22xy = E, x k y 3= 4.知y 是x 的反比例函数,当x=2时,y=6. (1)写出y 与x 的函数关系式;(2)求当x=4时y 的值五、展示提升 1.y=11n x -是y 关于x 的反比例函数关系式,则n 是2已知3)2(-+=m x m y 是反比例函数,则m 是什么?六;作业;教材40页2题 选作题3题七、课后反思这节课,我回答问题 ,对于其他同学的观点阐述以及老师的讲解,我倾听的 ,我在问题思考方面表现,我在小组讨论的时候表现的 ,我觉得我们小组这节课表现的 。
新人教版数学八下《反比例函数(第一课时)》课堂实录教案练习反思建议(吕老师)
![新人教版数学八下《反比例函数(第一课时)》课堂实录教案练习反思建议(吕老师)](https://img.taocdn.com/s3/m/bcff28ebc9d376eeaeaad1f34693daef5ef713b0.png)
第一课时反比例函数的意义教学任务分析教学目标知识与技能1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想过程与方法经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。
情感态度与价值观培养观察、推理、分析能力,体会由实际问题转化为数学模型,认识反比例函数的应用价值。
重点理解反比例函数的概念,能根据已知条件写出函数解析式难点理解反比例函数的概念教学流程安排活动流程图活动内容和目的活动1 观察分析引入新知活动2 归纳概括掌握新知活动3 分组讨论体会运用活动4 分析例题形成能力活动5 归纳小结布置作业1、创设问题情境,感受数学源于生活。
2、分析问题,概括出反比例函数的概念。
3、列举生活中具有反比关系的素材,加深对反比例函数概念的理解。
4、根据已知条件求出反比例函数解析式。
5、回顾本节内容,增强学生学习数学的热情。
教学过程设计问题与情境师生行为设计意图【活动1】学生观看章前图片,教创设问题情境,让学问题:思考:下列问题中,变量间的对应关系可以用怎样的函数关系表示?这些函数有什么共同特点?1、要画一个面积是12cm2的长方形,它的宽y(单位:cm)随长x(单位:cm)的变化而变化;2、从中山到广州80km,选择不同的交通工具,所用时间t(单位:h)随速度v(单位:km/h)的变化而变化3、小明带了10元钱去商店买作业本,可买作业本的本数y(单位:本)随不同作业本的单价x(单位:元)的变化而变化.师提出问题:学生思考、交流,回答问题。
xyvtxy108012===在活动中教师应重点关注:1、学生能否正确理解路程一定时,运行时间与运行速度两个变量间的对应关系。
2、学生能否从函数是解决变量间存在单值对应关系思想出发,准确写出函数解析式。
3、对解答问题有困难的学生,如何适当加以个别引导。
第十七章反比例函数全章导学案
![第十七章反比例函数全章导学案](https://img.taocdn.com/s3/m/4fb3d614c281e53a5802ffe9.png)
第十七章 反比例函数反比例函数的意义主备人: 初审人: 终审人:【导学目标】1.使学生理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 【导学重点】理解反比例函数的概念,能根据已知条件写出函数解析式. 【导学难点】理解反比例函数的概念. 【学法指导】比归纳法,合作探究法. 【课前准备】类比一次函数的相关知识即能完成反比例函数的学习,所以我要求学生课前认真复习和回顾一次函数的相关知识,同时做好新课预习. 【导学流程】一、呈现目标、明确任务1.使学生理解并掌握反比例函数的概念.2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式. 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想. 二、检查预习、自主学习1.我们学过哪几种函数?每一种函数形式怎样?2.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y 与另一腰长x 之间的函数关系式.(2)某种文具单价为3元,当购买m 个这种文具时,共花了y 元,则y 与m 的关系式.(3)说说“思考”中的问题的函数关系式. (4)怎样的函数是反比例函数? 三、教师引导1.反比例函数的概念:一般的,形如()0ky k k x=≠为常数,的函数叫做 ,例如10y x=.可变形为:()y kx =(0k ≠),其中:自变量是 ,自变量的次数是 .例1:已知函数73-=m x y 是反比例函数,求m 的取值. 例2:已知y 是x 的反比例函数,当2=x 时,6=y.(1)求出该反比例函数的表达式; (2)求当4=x 时y 的值;(3)当k 取何值时,y 的值为-3. 四、问题导学、展示交流1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式ky x=,我们还可以把它写成什么形式? 3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式.五、点拨升华、当堂达标1.已知变量y 是x 的反比例函数,且当2x =-时3y =. (1)求出该反比例函数的表达式; (2)求当1x =时y 的值;(3)当x 取何值时,y 的值为3-.2.已知y 与1x -成反比例,且当2x =时,2y =.求y 与x 的函数关系式,并判断y 是否为x 的反比例函数.3.函数()34m y m x -=-是反比例函数,则m 的值是多少?六、布置预习1.预习《配套练习》P15页选择填空题.2.完成练习题. 【教后反思】练习课主备人: 初审人: 终审人:【导学目标】1.复习反比例函数的意义.2.列反比例函数的关系式.3.会进行反比例函数的相关计算. 【导学重点】理解反比例函数的概念,能根据已知条件写出函数解析式. 【导学难点】根据已知条件写出函数解析式. 【学法指导】类比、推理. 【课前准备】反比例函数的意义.一、呈现目标、明确任务 1.复习反比例函数的意义. 2.列反比例函数的关系式.3.会进行反比例函数的相关计算. 二、检查预习、自主学习 展示预习效果. 三、教师引导若反比例函数()2103k y k x-=+是反比例函数,求k 的值.()2103ky k x -=+是反比例函数,必然满足2101k-=-,且30.k +≠解:()2103k y k x -=+是反比例函数,∴2101k-=-,且,∴k =3.四、问题导学、展示交流讨论完成《配套练习》P15页7,8题. 五、点拨升华、当堂达标 讨论9题.这道题,先表示1y 与x 关系和2y 与2x 的关系,再表示y 和x 的直接关系. 六、布置预习预习下一节,完成例题和练习. 【教后反思】反比例函数的图象和性质(1)主备人: 初审人: 终审人:【导学目标】1.会用描点法画反比例函数的图象.2.结合图象分析并掌握反比例函数的性质.3.体会函数的三种表示方法,领会数形结合的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质. 【导学难点】正确画出图象,通过观察、分析,归纳出反比例函数的性质.类比、讨论. 【课前准备】根据新课标要求“培养可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生,并参与到学习活动中,鼓励学生采用自主探索、合作交流的研讨学习方式.让学生准备坐标纸. 【导学流程】一、呈现目标、明确任务1.会用描点法画反比例函数的图象.2.结合图象分析并掌握反比例函数的性质.3.体会函数的三种表示方法,领会数形结合的思想方法. 二、检查预习、自主学习 1.根据上节课的学习,说说反比例函数的意义和如何用待定系数法求反比例函数的解析式.2.我们研究一次函数y kx b =+(k ,b 为常数,0k ≠)的图象是什么?性质有哪些?正比例函数呢?3.用描点法画函数图象的步骤是什么?4.交流预习成果. 三、教师引导用描点法画图,要注意:(1)列表取值时,0x ≠,因为0x =函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值. (2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于0x ≠,0k ≠,所以0y ≠,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴.四、问题导学、展示交流1.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象是什么?其性质有哪些?正比例函数y kx =(0k ≠)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么? 3.反比例函数的图象是什么样呢?4.在同一个平面直角坐标系中用不同颜色的笔画出反比例函数6y x =和6y x=-的图象.并思考:(1)从以上作图中,发现6y x =和6y x=-的图象是什么? (2)6y x =和6y x=-的图象分别在第几象限? (3)在每一个象限y 随x 是如何变化的?(4)6y x =和6y x=-的图象之间的关系? 五、点拨升华、当堂达标1.已知反比例函数x k y -=3,分别根据下列条件求出字母k 的取值范围:(1)函数图象位于第一、三象限;(2)在第二象限内,y 随x 的增大而增大. 2.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 .3.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是.4.反比例函数xy 2-=,当2x =-时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是 .5.已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式.六、布置预习阅读P43页“归纳”,完成练习题. 【教后反思】反比例函数的图象和性质(2)主备人: 初审人: 终审人:【导学目标】1.使学生进一步理解和掌握反比例函数及其图象与性质.2.能熟练运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题. 【导学难点】学会从图象上分析、解决问题. 【学法指导】探讨、研究、发现. 【课前准备】1.画平面直角坐标系(网格).2.复习一次函数(正比例函数)的相关知识. 【导学流程】一、呈现目标、明确任务1.使学生进一步理解和掌握反比例函数及其图象与性质. 2.能灵活运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 二、检查预习、自主学习1.反比例函数2y x =-的图象在第 象限,在每个象限中y 随x 的增大而 . 2.已知反比例函数my x=的图象位于一、三象限,则m 的取值范围是 .3.已知点(-3,1)在双曲线ky x=上,则k = .4.已知y 是x 的反比例函数,当3x =时,2y =-:(1)写出y 与x 的函数关系式;(2)求当2x =-时y 的值;(3)求当4y =时x 的值. 三、教师引导1.已知反比例函数的图象经过点A (2,6),(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化?(2)点B (3,4)、点C (122-,445-)、点D (2,5)是否在函数图象上? 2.下图是反比例函数5m y x-=的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)在这个函数图象的某一支上任取点A (a ,b )和B (1a ,1b ).如果a >1a ,那么b 和1b 有怎样的大小关系?四、问题导学、展示交流 1.若反比例函数xk y 1-=图像的一支在第三象限,则k . 2.对于函数x y 3=,当x >0时y 0,这部分图像在第 象限. 3.对于函数xy 3-=,x <0时y 0,这部分图像在第 象限.五、点拨升华、当堂达标 1.完成练习题.2.已知点(-1,1y )、(2,2y )、(π,3y )在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )1y >2y >3y (B )1y >3y >2y (C )2y >1y >3y (D )y 3>y 1>y 2. 3.已知反比例函数xk y 12+=的图象在每个象限内函数值y 随自变量x 的增大而减小,且k 的值还满足)12(29--k ≥2k -1,若k 为整数,求反比例函数的解析式. 六、布置预习预习习题17.1,完成1,2题. 【教后反思】练习课主备人: 初审人: 终审人:【导学目标】1.使学生熟练掌握反比例函数及其图象与性质.2.能灵活运用函数图象和性质解决一些较综合的问题.3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法. 【导学重点】理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题. 【导学难点】学会从图象上分析、解决问题. 【学法指导】探讨、研究、发现. 【课前准备】复习一次函数(正比例函数)的相关知识. 【导学流程】一、呈现目标、明确任务1.熟练掌握反比例函数及其图象与性质.2.灵活运用函数图象和性质解决一些较综合的问题. 二、检查预习、自主学习展示17.1中1,2题的预习成果. 三、问题导学、展示交流 独立完成3,4题.四、点拨升华、当堂达标1.小组讨论5—7题.5,6题,要先考虑y 与z 和z 与x 的直接关系,再考虑y 与x 的间接关系. 7题要回忆上学期的有关知识. 2.讨论8,9题.3.如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于B 点,3AOB S ∆=,则k 的值( )A .6B .3C .23D .不能确定 五、布置预习预习下一节例1,2,整理不懂的问题,出示在黑板上. 【教后反思】实际问题与反比例函数(1)主备人: 初审人: 终审人:【导学目标】1.运用反比例函数的概念和性质解决实际问题.2.利用反比例函数求出问题中的值. 【导学重点】运用反比例函数的意义和性质解决实际问题. 【导学难点】把实际问题转化为反比例函数这一数学模型. 【学法指导】自主探究与合作交流,导学自主. 【课前准备】1.解析式的一般形式.2.反比例函数的图象和性质 【导学流程】一、呈现目标、明确任务1.运用反比例函数的概念和性质解决实际问题.2.利用反比例函数求出问题中的值. 二、检查预习、自主学习1、若点(1,2)在函数ky x=上,则k = ,则这个函数表达式是 . 2、3y x=-的图象位于 象限,在每个象限内,当x 增大时,则y ;3、已知反比例函数1kyx-=的图象在其每个象限内y随x的增大而减小,则k的值可以是()A、1- B、3 C、0 D、3-4.出示不懂的问题.三、教师引导例1、市煤气公司要在地下修建一个容积为4310m的圆柱形煤气储存室.(1)储存室的底面积S(单位2m)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下10m时,碰上了坚硬的岩石.为了节约建设资金,公司临时改变计划,把储存室的深度改为10m,相应地,储存室的底面积应改为多少m才满足需要?例2.码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始缺货,缺货速度v(单位:吨/ 天)与缺货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天的时间内卸载完毕,那么平均每天至少要卸载多少吨货物?四、问题导学、展示交流讨论例题.五、点拨升华、当堂达标1.完成练习1,2题.2.完成习题17.2中2—4题.六、布置预习预习例3,4,整理不懂的问题.【教后反思】实际问题与反比例函数(2)主备人:初审人:终审人:【导学目标】1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.进一步运用反比例函数的概念和性质解决实际问题.【导学重点】运用反比例函数的知识解决实际问题.【导学难点】如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题.【学法指导】数形结合思想 【课前准备】一次函数与正比例函数的表示形式及有关应用. 【导学流程】一、呈现目标、明确任务1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k 值的实际问题.3.进一步运用反比例函数的概念和性质解决实际问题. 二、检查预习、自主学习 出示不懂的问题. 三、教师引导例3.小伟欲用撬棍撬起一块大石头,已知阻力和阻力臂不变,分别为1200牛和0.5米. (1)动力F 和动力臂l 有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)若想使动力F 不超过(1)中所用力的一半,则动力臂至少要加长多少?例4.一个用电器的电阻R 是可调节的,其范围为110-220欧姆.已知电压U 为220伏,这个用电器的电路(1)输出功率P 与电阻R 有怎样的函数关系?(2)这个用电器输出功率的范围多大?四、问题导学、展示交流 讨论例题.例3,根据“杠杆定律”,若两物体与支点的距离与其重量成反比,则杠杆平衡.通俗一点可以叙述为:阻力×阻力臂=动力×动力臂.题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力臂成反比关系,写出函数关系式,得到函数动力F 是自变量动力臂l 的反比例函数,当l =1.5时,代入解析式中求F 的值;(2)问要利用反比例函数的性质,l 越大F 越小,先求出当F =200时,其相应的l 值的大小,从而得出结果.例4,电学知识告诉我们,用电器的输出功率P (瓦)、两端的电压U (伏)和用电器的电阻R (欧)有如下关系:2PR U ,这个关系可以写为P = ,或R = . 五、点拨升华、当堂达标 1.完成练习3题.2.完成习题17.2中5,6题. 六、布置预习预习《配套练习》P18页1—3题. 【教后反思】练习课主备人:初审人:终审人:【导学目标】1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.尝试运用反比例函数解决实际问题.【导学重点】运用反比例函数的知识解决实际问题.【导学难点】如何把实际问题转化我数学问题,利用反比例函数的知识解决实际问题.【学法指导】归纳、类比.【课前准备】反比例函数的意义.【导学流程】一、呈现目标、明确任务1.进一步体验现实生活与反比例函数的关系.2.能解决确定反比例函数中常数k值的实际问题.3.尝试运用反比例函数解决实际问题.二、检查预习、自主学习小组预习成果.三、教师引导某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t完成.(1)写出每天生产夏凉小衫Y件与生产时间T天(T大于4)之间的函数关系式;(2)由于气温提前升高,服装厂决定提前4天完成任务.那么每天要多做多少件才能完成任务?本题函数关系确定的关键是:生产总量=每天生产的数量×生产时间.提前4天交货,则生产时间变为T-4.四、问题导学、展示交流同桌合作完成《配套练习》P18页4,5题.五、点拨升华、当堂达标小组讨论6,7题.6题的(2),主要是考查函数的增减性.这两道题实际上都考查了三个问题:一是列函数解析式,二是由自变量的值求函数值,三是由函数值求自变量的值.六、布置预习预习复习题17,完成1—4题.【教后反思】小结(1)主备人: 初审人:终审人:【导学目标】1.复习反比例函数的概念和性质.2.三反比例函数解决实际问题.3.体会函数模型的应用.【导学重点】做练习.【导学难点】用反比例函数解决实际问题.【学法指导】复习,总结.【课前准备】反比例函数的应用.【导学流程】一、呈现目标、明确任务1.复习反比例函数的概念和性质.2.三反比例函数解决实际问题.二、检查预习、自主学习小组展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.例函数()0k y k k x=≠为常数,的图象是什么样的?反比例函数有什么性质? 2.同桌合作完成复习题17中5,7题.五、点拨升华、当堂达标讨论9—11题.9题,考虑图象的两种可能情况,然后由图象考虑k 的正负.10(2)(4)两题,,由自变量的值考虑函数值的正负,然后考虑图象所在的象限.11(3)题,要先考虑40天已经运了多少,还剩多少,每天还需运多少,再与原计划每天运送量比较.六、布置预习预习下一章.。
反比例函数导学案
![反比例函数导学案](https://img.taocdn.com/s3/m/ec67b22e4028915f814dc24c.png)
反比例函数导学案第一课时反比例函数(一)------反比例函数的意义1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想4.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念以及意义。
5.培养观察、推理、分析能力,体验数形结合的数学思想,认识反比例函数的应用价值。
学习重点:理解反比例函数的概念,能根据已知条件写出函数解析式学习难点:理解反比例函数的概念学习过程:一、忆一忆回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?二、议一议1.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?2.矩形面积为6,设长为x,宽为y,那么x与y的关系式是怎样的?3.电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:(3)变量I是R的函数吗?为什么?归纳:反比例函数:如果两个变量x,y之间的关系可以表示成的形式,那么y 是x的反比例函数,其中x是自变量,反比例函数的自变量x的取值范围是.三、练一练1.一个矩形的面积为202cm,相邻的两条边长分别为x cm和y cm。
那么变量y是变量x的函数吗?为什么?2.某村有耕地346公顷,人数数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:(2)根据函数表达式完成上表。
四、测一测1.下列等式中,哪些是反比例函数(1)3xy=(2)xy2-=(3)xy=21 (4)25+=xy(5)xy23-=(6)31+=xy(7)4-=xy2.当m取什么值时,函数23)2(mxmy--=是反比例函数?3.已知y是x的反比例函数,当1=x时,4=y.(1)求y与x的函数关系式(2)当x=-2时,求函数y的值4.苹果每千克x元,花10元钱可买y千克的苹果,求出y与x之间的函数关系式.五、小结与反思:第二课时反比例函数(二)------反比例函数的图像和性质1目标导学:1.体会并了解反比例函数的图象的意义2.能描点画出反比例函数的图象3.通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质。
反比例函数的图象与性质(1)导学案及教学评价和反思
![反比例函数的图象与性质(1)导学案及教学评价和反思](https://img.taocdn.com/s3/m/aedb6c13fc4ffe473368abb8.png)
k x
教学流程图
开始 计算机 复习提问
画反比例函数的图象
引导学生归纳该反比例函数了图角象的特征
再画另一组反比例函 数的图象图象总结结性质
否 完成
是 堂清练习 计 算 机 机 PPT 出示练习题
课堂小结
课外探究、 作 业布置
结束
5
六、教学评价
新课程改革提出的要求是:让学生通过交流、合作、讨论的方式,积极探索,改进学习 方法,提高学习质量,逐步形成正确地数学价值观。本着这一基本理念,在本课的教学中, 我严格遵循由感性到理性,由抽象到具体的认识过程,启发学生,不断提高他们运用数学方 法分析、解决实际问题的能力。在重视课本例题的基础上,适当对题目进行延伸,使例题的 作用更加突出。同时根据新课程标准的评价理念,在整个教学过程中,始终注重的是学生的 参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。同 时利用尝试教学,让学生主动暴露思维过程,及时得到信息的反馈。在课堂上,尽量留给学 生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师 和同学的鼓励与欣赏中认识自我, 找到自信, 体验成功的乐趣, 从而树立了学好数学的信心。
k 来说,当 k>0 时,图象在一、三象限,当 k<0 时,图象在二、四象限,所 x
【答案】 B
(五)总结反思,拓展升华 1.画反比例函数的图象的方法. 2.反比例函数的性质. 3.反比例函数的图象在哪个象限由 k 决定,且 y 值随 x 值变化只能在“每一个象限内” 研究. 4.在 y= (k≠0)中,由于 x≠0,同时 y≠0,因此双曲线两个分支不可能到达坐标轴. (六)课外思考探究 两个不同的反比例函数的图象是否会相交?为什么? (七)作业设置、 1.归纳比较反比例函与正比例函数图旬的性质。 2.做习题 17.1 的 3、4 题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1.1 反比例函数的意义(第1课时)【学习目标】1.理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数 【教学过程】(一)自主学习,完成练习 1.复习:(1)一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
(2)一般地,形如y=kx+b(k 、b 是常数, k ≠0)的函数,叫做 。
(3)一般地,形如y=kx(k 是常数,k ≠0)的函数,叫做 ,其中k 叫做比例系数。
2.完成P39页思考题,写出三个问题的函数解析式:(1) ;(2) ;(3) 。
3.概念:上述函数都具有 的形式,其中 是常数。
一般地,形如 ( )的函数称为 ,其中 是自变量, 是函数。
自变量的取值范围是 。
4. 反比例函数xk y =(k ≠0)的另两种表达式是1-=kx y 和xy=k (k ≠0)(二)小组交流答案 (三)教师点拨例:下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-=(6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成xky =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是xx y 31+=,分子不是常数 (四)巩固练习1、下列关系式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?2411111221x y y y x xy y y y xx x x==-=-====-(1)(2)(3)(4)(5) (6)(7)2、课本P40页第1题和第2题。
(五)能力提升 1、若函数28m (3)y m x -=+是反比例函数,则m 的取值是 2、已知函数4(3)a ya x-=+是反比例函数,则a =(六)课堂小结17.1.1 反比例函数的意义(第2课时)【学习目标】会根据已知条件用待定系数法求反比例函数解析式 【教学过程】(一)自主学习:用待定系数法求反比例函数解析式 例1:已知y 是x 的反比例函数,当x=2时,y=6.(1)写出y 与x 之间的函数解析式;(2)求当x=4时y 的值。
解:(1)设xky =,当x=2时,y=6,则有 (2)把x=4代入12y x =,得62k=解得:k= y= = ∴y 与x 之间的函数解析式为:y=(二)小组交流答案 (三)教师点拨1.反比例函数的比例系数k 等于两个变量的一对对应值的乘积(k=xy )2.待定系数法求反比例函数的步骤 (四)巩固练习1、y 是x 的反比例函数,当x=3时,y=-6. (1)写出y 与x 的函数关系式. (2)求当y=4时x 的值.3、课本P40页第3题4、已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 ,当x =-3时,y = (五)能力提升1.已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5。
(1)求y 与x 的函数关系式;(2)当x =-2时,求函数y 的值分析:此题函数y 是由y 1和y 2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y 1、 y 2与x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。
这里要注意y 1与x 和y 2与x 的函数关系中的比例系数不一定相同,故不能都设为k ,要用不同的字母表示。
2、y 是x-2 的反比例函数,当x=3时,y=4. (1)求y 与x 的函数关系式. (2)当x=-2时,求y 的值.(六)课堂小结17.1.2 反比例函数的图象与性质(第1课时)【学习目标】1.了解反比例函数图象的意义 2.能用描点的方法画出反比例函数的图象 【教学过程】(一)自主学习,完成练习1.复习:画函数图象的一般步骤有哪些?应注意什么? 、 、2.反比例函数图象是 例2 画出反比例函数xy 6=和x y 6-=的图象.解:列表表示几组x 与y 的对应值(填表) x -6 -5 -4 -3 -2 -1 1 2 3 45 6xy 6= -1 -1.5 -2 6 21.2 xy 6-=1 1.23 -1.5-13.归纳:反比例函数的图象都由 组成,并且随着 的不断增大(或减小), 越来越接近 (或 )。
反比例函数属于 。
※ 反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x 和 y=-x 。
对称中心是:原点(二)小组交流答案 (三)教师点拨 注意:(1)列表取值时,x ≠0,因为x =0中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴。
(四)巩固练习 画出反比例函数4y x =和4y x=-的图象(五)课堂小结17.1.2 反比例函数的图象与性质(第2课时)【学习目标】通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质 【教学过程】(一)自主学习,完成练习1、复习:正比例函数y =kx (k ≠0)的图象是什么?其性质有哪些?一次函数呢?2、归纳(1)反比例函数xky =(k 为常数,0≠k )的图像是 ; (2)当0>k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 ; (3)当0<k 时,双曲线的两支分别位于第 象限,在每个象限内y 值随x 的增大而 。
正比例函数反比例函数解析式 图像直线描点连线:x y 0 1 2 y = — kx y=x y=-x位置k >0, 象限 k <0, 象限k >0, 象限 k <0, 象限增减性k >0,y 随x 的增大而 k <0,y 随x 的增大而k >0,在每个象限y 随x 的增大而 k <0,在每个象限y 随x 的增大而(三)教师点拨1.反比例函数的图象的性质;2.反比例函数与正比例函数的比较。
(四)巩固练习1、完成课本43----44页练习题2、函数20y x =的图象在第________象限,在每一象限内,y 随x 的增大而_________.3、函数30y x=-的图象在第________象限,在每一象限内,y 随x 的增大而_________.4、函数y xπ=,当x>0时,图象在第________象限,y 随x 的增大而_________.5、已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限。
________(2)在第二象限内,y 随x 的增大而增大。
________ 6、反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是 .7、若点(-2,y 1)、(-1,y 2)、(2,y 3)在反比例函数100y x=-的图象上,则( ) A 、y 1>y 2>y 3 B 、y 2>y 1>y 3 C 、y 3>y 1>y 2 D 、y 3>y 2>y 1 (五)能力提升1、 若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 。
2、在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为 .(从反比例函数xky =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==。
)(六)课堂小结17.1.2 反比例函数的图象与性质(第3课时)【学习目标】进一步理解和掌握反比例函数的图象及其性质,能利用待定系数法求函数关系式,并能比较大小 【教学过程】 (一)自主学习:1、例3 已知反比例函数的图象经过点A (2,6)。
(1)这个函数的图象位于哪些象限?y 随x 的增大如何变化? (2)点B (3,4),C (142,425--),D (2,5)是否在这个函数的图像上?解:(1)设这个反比例函数为xky =, ∵ 此反比例函数经过点A (2,6) 则 62k=解得:k= ∴ 这个反比例函数解析式为 ∵ k>0∴ 这个函数的图象位于 象限y 随x 的增大而2、自学课本P44页例4 (二)小组交流 (三)教师点拨1、判断点是否在图像上,只要将点代入解析式验证即可2、系数k 对图象的影响:k >0,一、三象限;k <0,二、四象限3、比较自变量或函数的大小(k >0,在每个象限y 随x 的增大而减小;k <0,在每个象限y 随x 的增大而增大) (四)巩固练习1、完成课本P45页练习第1题和第2题2、点(1,3)在反比例函数y=kx的图象上,则k= ,在图象的每一支上,y 随x•的增大而 . 3、反比例函数xy 1=的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( ) A. 21y y < B. 21y y > C. 21y y = D 1y 与2y 之间的大小关系不能确定 4、在反比例函数xy 1-=的图像上有三点(1x ,)1y ,(2x ,)2y ,(3x ,)3y 。
若3210x x x >>>则下列各式正确的是( )(2)分别把点B 、C 、D 的坐标代入12y x=,可知点B 、C 的坐标满足此函数解析式,点D 的坐标不满足此函数解析式,所以点B 、C 在函数12y x =的图象上,点D 不在这个函数的图像上A .213y y y >>B .123y y y >>C .321y y y >>D .231y y y >> (五)能力提升1、正比例函数y=x 的图象与反比例函数y=kx的图象有一个交点的纵坐标是2,求(1)x=-3时反比例函数y 的值;(2)当-3<x<-1时,反比例函数y 的取值范围.(六)课堂小结17.1 反比例函数练习题1.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第 象限. 2.若反比例函数xky =与一次函数y =3x +b 的一个交点为(1,4),则kb =______. 3. 在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xk y 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”) 4. 当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A) (B)(C) (D)5.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).(A) (B)(C)(D)6. 反比例函数x k y =的图像经过点(-23,5)、点(a ,-3)及(10,b ),则a = ,b = .7.若函数()252m y m x -=-是反比例函数,那么m= ,图象位于 象限.8.如果反比例函数y=xk的图象经过点(-2,-3),图象应该位于 象限 9.若函数y=xk的图象经过(3,-4),则k = ,此图象位于 象限,在每一个象限内y 随x 的减小而 .10.若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值为11.已知正比例函数y=kx 与反比例函数y=x3的图象都过A (m ,1), 则m = ,正比例函数的解析式是 . 12.反比例函数y=x2-,当x =-2时,y = ;当x <-2时;y 的取值范围是 ;当x >-2时;y 的取值范围是 .17.2 实际问题与反比例函数(第1课时)【学习目标】能灵活运用反比例函数知识解决几何问题 【教学过程】几何中的反比例函数关系 (一)预习探索1、三角形中,当面积S 一定时,高h 与相应的底边长a 关系 。