高等土力学考试总结

合集下载

土力学复习资料总结

土力学复习资料总结

第一章土的组成1、土力学:是以力学和工程地质为基础研究与土木工程有关的土的应力、应变、强度稳定性等的应用力学的分支。

2、地基:承受建筑物、构筑物全部荷载的那一部分天然的或部分人工改造的地层。

3、地基设计时应满足的基本条件:①强度,②稳定性,③安全度,④变形。

4、土的定义:①岩石在风化作用下形成的大小悬殊颗粒,通过不同的搬运方式,在各种自然环境中形成的沉积物。

②由土粒(固相)、土中水(液相)和土中气(气相)所组成的三相物质。

5、土的工程特性:①压缩性大,②强度低,③透水性大。

6、土的形成过程:地壳表层的岩石在阳光、大气、水和生物等因素影响下,发生风化作用,使岩石崩解、破碎,经流水、风、冰川等动力搬运作用,在各种自然环境下沉积。

7、风化作用:外力对原岩发生的机械破碎和化学风化作用。

风化作用有两种:物理风化、化学风化。

物理风化:用于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解,碎裂的过程。

化学风化:岩体与空气,水和各种水溶液相互作用的过程。

化学风化的类型有三种:水解作用、水化作用、氧化作用。

水解作用:指原生矿物成分被分解,并与水进行化学成分的交换。

水化作用:批量水和某种矿物发生化学反映,形成新的矿物。

氧化作用:指某种矿物与氧气结合形成新的矿物。

8、土的特点:①散体性:颗粒之间无黏结或一定的黏结,存在大量孔隙,可以透水透气。

②多相性:土是由固体颗粒、水和气体组成的三相体系。

③自然变异性:土是在自然界漫长的地质历史时期深化形成的多矿物组合体,性质复杂,不均匀,且随时间还在不断变化的材料。

9、决定土的物理学性质的重要因素:①土粒的大小和形状,②矿物组成,③组成。

10、土粒的个体特征:土粒的大小、土粒的形状。

11、粒度:土粒的大小。

12、粒组:介于一定粒度范围内的土粒。

13、界限粒经:划分粒组的分界尺寸。

14、土的粒度成分(颗粒级配):土粒的大小及其组成情况,通常以土中各个粒组的相对含量来表示。

土力学复习题及答案总结

土力学复习题及答案总结

⼟⼒学复习题及答案总结第⼀章1.风化作⽤对⼟颗粒形成有何影响影响⼟颗粒的粒径⼤⼩,矿物成分1>物理风化(量变)——原⽣矿物——⽆粘性⼟2>化学变化(质变)——次⽣矿物——粘性⼟3>⽣物风化(动植物的活动)——有机质2.搬运、沉积对⼟有何影响影响⼟的结构和构造。

残积⼟(⽆搬运),颗粒表⾯粗糙多棱⾓粗细不均⽆层理,⼟质较好;运积⼟(有搬运)3.粘⼟矿物对⼟体⼯程性质有何影响粘⼟矿物的结晶结构对⼟体性质的影响很⼤,根据结晶结构可分为⾼岭⽯、伊利⽯、蒙脱⽯,其粒径依次降低,⽐表⾯积依次增⼤,渗透性下降,强度下降,压缩性增加4.⾃由⽔对⼟体变形和强度有何影响重⼒⽔:⼯程中主要关注对象,如渗流、孔隙⽔压⼒问题。

重⼒⽔对⼟的强度、变形等均具有重要的影响。

⽑细⽔的上升,降低了⼟的强度,沉降增加,加剧冻胀第⼆章1.影响⼟体⼒学性质的主要物理状态粗颗粒的松密程度,细颗粒的软硬程度影响⼟的强度,压缩性,地基承载⼒2.为何要研究图的⽔理性质⼟的⽔理特性:极限含⽔量,塑性指数,液性指数反映了⼟的稠度状态和强度特性3.液限能反映⼟体何种⼒学特性地基承载⼒4.塑限能反映⼟体何种⼒学特性强度5.塑性指数有何意义液性指数有何意义塑性指数:表征粘性⼟处于塑性状态时含⽔量的变化范围,反映了矿物成分的亲⽔能⼒。

液性指数:反映了⼟的软硬状态6.⼟体分类有哪些原则饱和与否、有机质的含量、⼟颗粒的⼤⼩、⼟的地质原因、⼟的形成年代、⼟的⼯程性质7.粘性⼟(细粒⼟)如何分类塑性指数是细颗粒⼟分类的主要依据。

分为亚沙⼟,亚粘⼟,粘⼟(56页)8.砂⼟如何分类按粒组,级配分类:砾沙,粗砂,中砂,细砂,粉砂9.分类意义⼟的分类体系是根据⼟的⼯程性质差异将⼟划分成⼀定类别的,⽬的在于通过⼀种通⽤的鉴别标准,以便在不同图雷剑做出有价值的⽐较、评价、积累和学术经验的交流第三章1.影响⼟体渗透性的因素:渗透流体的重度,粘滞度;颗粒粒径与级配;⼟的组构;⼟的密度;封闭⽓泡和细颗粒运动。

高等土力学总结

高等土力学总结

高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。

二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。

在力学中,本构关系泛指普遍的应力—应变关系。

因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。

因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。

例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。

因此应力和应变之间存在着唯一对应的关系。

当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。

塑性本构关系要比弹性本构关系复杂得多。

如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。

本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。

各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。

非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。

弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。

即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。

土力学期末知识点总结材料

土力学期末知识点总结材料

第一章土的物理性质和工程分类经风化、剥蚀、搬运、沉积而形成的;第四纪沉积物有:残积物;坡积物;洪积物;冲积物;海相沉积物;湖沼沉积物;冰川沉积物;风积物。

答:强度低;压缩性大;透水性大。

1)散体性2)多相性3)成层性4)变异性【其自身特性是:强度低,压缩性大,透水性大】土的三相组成:固体,液体,气体。

有关系。

当含水量增加时,其抗剪强度降低。

工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称为粒度成分。

和弱结合水);自由水(包括重力水和毛细水)y与土粒粒径x的关系为y=0.5x,则该土的曲率系数为1.5,不均匀系数为6,土体级配不好(填好、不好、一般)。

是指土在表面力作用下,沿着细小孔隙向上或其它方向移动的现象;对工程危害主要有:路基冻害;地下室潮湿;土地的沼泽化而引起地基承载力下降。

)土的密度测定方法:环刀法;2)土的含水量测定方法:烘干法;3)土的相对密度测定方法:比重瓶法=m/v;土粒密度ρ=ms/vs;含水量;ω=mω/ms;干密度ρd=ms/v;饱和密度ρsat=(mw+ms)/v;浮重度γ’=γsat-γw;孔隙比e=vv/vs;孔隙率n=vv/v;饱和度Sr=vw/vv;60cm3,质量300g,烘干后质量为260g,则该土样的干密度为4.35g/ cm3。

粘性土可塑性大小可用塑性指数来衡量。

用液性指数来描述土体的状态。

1.塑限:粘性土由半固态变到可塑状态的分界含水量,称为塑限。

用“搓条法”测定;2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。

用“锥式液限仪”测定;3.塑性指数:液限与塑性之差。

(1)粘性土受扰动后强度降低,而静止后强度又重新增长的性质,称为粘性土的触变性;粘性土的触变性有利于预制桩的打入;而静止时又有利于其承载力的恢复。

殊性土第二章地下水在土体中的运动规律1.基坑开挖采用表面直接排水可能发生流沙现象;原因是动水力方向与土体重力方向相反,当土颗粒间的压力等于0时,处于悬浮状态而失稳,则产生流沙现象;处理方法为采用人工降低地下水位的方法进行施工。

207高等土力学题目汇总情况

207高等土力学题目汇总情况

一、填空题1.饱和土体上的总应力由土骨架承担的有效应力和由孔隙承担的孔隙水压力组成,土的强度及变形都是由土的有效应力决定的。

2.莱特邓肯屈服准则在常规三轴压缩实验中,当φ=0°时它在π平面上的屈服与破坏轨迹趋近于一个圆;当φ=90°时,它退化为一个正三角形。

由于在各向等压σ1=σ2=σ3时I13I3=27,所以K f>27是必要条件,因为静水压力下不会引起材料破坏。

3. 东海风力发电桩基础有8根。

4.通过现场观测与试验研究,目前认为波浪引起的自由场海床土体响应的机制主要取决于海床中孔隙水压力的产生方式。

孔隙水压力产生方式有两种:超孔隙水压力的累积(残余孔隙水压力)、循环变化的振荡孔隙水压力5.目前计算固结沉降的方法有()、()、()及()。

答案:弹性理论法、工程实用法、经验法、数值计算法。

6.根据莫尔—库伦破坏准则,理想状态下剪破面与大主应力面的夹角为()。

答案:45°+φ/27.土的三种固结状态:欠固结、超固结、正常固结。

8.硬化材料持续受力达到屈服状态后的变化过程:屈服硬化破坏9.相对密实度计算公式ID = e max−ee max−e min。

10.静力贯入试验的贯入速率一般为 2 cm/s。

11用一种非常密实的砂土试样进行常规三轴排水压缩试验,围压为100kPa 和3900kPa,用这两个试验的莫尔圆的包线确定强度参数有什么不同?答:当围压由100kPa 增加到3900kPa 时,内摩擦角会大幅度降低。

12.塑性应力应变关系分为_____理论和_____________理论两种增量(流动)、全量(形变)13.三轴剪切试验依据排水情况不同可分为()、()、()答案:不固结不排水剪、固结不排水剪、固结排水剪。

14.一种土的含水量越大,其内摩擦角越(小)。

15.剑桥模型(MCC)中的5个参数一次是 M VCL中的гλ,以及弹性部分的 K υ。

16.剑桥模型的试验基础是正常固结土和超固结土试样的排水和不排水三轴试验。

高等土力学考试整理

高等土力学考试整理

一、 名词解释1、 固结:根据有效应力原理,在外荷载不变的条件下,随着土中超静孔隙水压力的消散,有效应力将增加,土体将被不断压缩,直至达到稳定,这一过程称为~。

单向固结:土体单向受压,孔隙水单向渗流的条件下发生的固结。

2、 固结度:在某一荷载作用下,经过时间t 后土体固结过程完成的程度。

3、 平均固结度:在某一荷载作用下,经过时间t 后所产生的固结变形量与该土层固结完成时最终固结变形量之比称为~。

4、 固结系数:反映土的固结特性,孔压消散的快慢,与渗透系数k 成正比,与压缩系数a 成反比,(1)v v wk e C a γ+=⋅5、 加工硬化(应变硬化):正常固结粘土和松砂的应力随应变增加而增加,但增加速率越来越慢,最后趋于稳定。

6、 加工硬化定律(理论):计算一个给定的应力增量引起的塑性应变大小的准则。

7、 加工软化(应变软化):在密砂和超固结土的试验曲线中,应力一般是开始时随应变增加而增加,达到一个峰值后,应力随应变增大而减小,最后趋于稳定。

8、 压硬性:土的变形模量随围压增加而提高的现象。

9、 剪胀性:由剪应力引起的体积变化,实质上是由于剪应力引起的土颗粒间相互位置的变化,使其排列发生变化,加大颗粒间的孔隙,从而体积发生了变化。

10、 屈服准则:可以用来弹塑性材料被施加应力增量后是加载还是卸载或是中性变载,即是否发生变形的准则。

屈服准则用几何方法来表示即为屈服面(轨迹)。

11、 流动准则:在塑性理论中,用于确定塑性应变增量的方向或塑性应变增量张量的各个分量间的比例关系的准则,也叫做正交定律。

塑性势面g 与屈服面f 重合(g=f ),称为相适应的~;如果g f ≠,即为不相适应流动规则。

12、 物态边界面:正常固结粘土'p ,'q 和v 三个变量间存在着唯一性关系,所以在''p q v --三维空间上形成一个曲面称为~,它是以等压固结线NCL 和临界状态线CSL 为边界的。

高等土力学期末考试试题汇总.总结

高等土力学期末考试试题汇总.总结

高等土力学期末考试试题汇总.总结高等土力学期末考试试题汇总.总结1、填空:主要影响土的因素应力水平,应力路径,应力历史2、填空:土的主要应力应变特性非线性,弹塑性,剪胀性3、概念:应力历史:包括自然土在过去地质年月中受到固结和地壳运动作用刘翰青一、论述题邓肯-张模型中参数a,b,B各代表什么含义?他们是怎样确定的?答:在邓肯-张模型中,a,b为试验常数。

在常规三轴压缩试验中,式子可写为由于δ2=δ3=0,所以有 =在起始点,有ε1=0, Et=Ei, 则Ei=1/a, 即a代表试验起始变形模量Ei的倒数。

当ε1趋向于﹢∞时,有s1-s3=(s1-s3)ult=1/b则b为极限应力偏差的倒数B为体变应量,在E-B模型中提出,用来代替切线泊松比γt。

其中,B与δ3有关。

a,b,B通常用阅历公式计算确定:二、名词解释次弹性模型:是一种在增量意义上的弹性模型,亦即只有应力增量张量和应变增量张量间存在一一对应的弹性关系,因此,也被称为最小弹性模型。

一般函数关系为dσij = Fij (σmn , dεkl),或dεij= Qij (εmn, dσkl)韩凯1:什么是加工硬化?什么是加工软化?答:加工硬化也称应变硬化,是指材料的应力随应变增加而增加,弹增加速率越来越慢,最终趋于稳定。

加工软化也称应变软化,指材料的应力在开头时随着应变增加而增加,达到一个峰值后,应力随应变增加而下降,最终也趋于稳定。

2说明塑性理论中的屈服准则、流淌规章、加工硬化理论、相适应和不相适应的流淌准则。

答:在多向应力作用下,变形体进入塑性状态并使塑性变形连续进行,各应力重量与材料性能之间必需符合肯定关系时,这种关系称为屈服准则。

屈服准则可以用来推断弹塑性材料被施加一应力增量后是加载还是卸载,或是中性变载,亦即是推断是否发生塑性变形的准则。

流淌规章指塑性应变增量的方向是由应力空间的塑性势面g打算,即在应力空间中,各应力状态点的塑性应变增量方向必需与通过改点的塑性势能面相垂直,亦即=(1)流淌规章用以确定塑性应变增量的方向或塑性应变增量张量的各个重量间的比例关系。

高等土力学学习总结

高等土力学学习总结

高等土力学学习总结姓名学号在*老师悉心教导下,通过一个学期对高等土力学的学习,我们对高等土力学有了初步的了解。

在这个学期的十一次课中,我们主要学习了第一、二、三章的内容。

在第一章中,我们学习了土的有效应力原理和应力路径,土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因;应力路径是指土体在外荷载作用下,各点应力在应力坐标图中的移动轨迹,应力路径可以分为总应力路径和有效应力路径两种。

第二章中,我们学习了土的压缩固结理论,在这一章中,我们研究了影响压缩实验成果的因素,并讨论了地基沉降计算、单向渗透固结理论中的一些问题及二向三向固结课题、次固结问题等。

第三章中,我们学习了土的抗剪强度问题,分别分析了砂土和粘性土的抗剪强度的组成和影响因素。

下面就各章所学知识点做一个简单的总结:1 有效应力原理及应力路径在第一章有效应力原理及应力路径中,我们学习了有效应力原理的概念,有关面积系数的问题,水下土体和毛细升高带土体中有效应力问题、渗流引起的有效应力问题、外荷载引起的土中超静水压力及其向有效应力的转化,有关术语的概念区别,孔隙压力系数,三相土的空隙气压力和空隙水压力,应力路径及应力路径对土应力—应变关系的影响等问题。

1.1 有效应力土是一种分散颗粒的集合体,一般由固、液、气三相物质组成,我们把土颗粒(固相)间直接接触产生的应力叫做土的有效应力,它是土体产生形状和体积变化的根本原因。

1.2 面积系数问题面积系数主要包括有效应力传递面积系数a和孔隙水面积系数X两种,其中有效应力传递面积系数a也就是土颗粒接触面的面积系数,一般没有可靠的试验手段来测定它,而且它的绝对值对土性无多大意义,所以我们只需着重研究孔隙水面积系数X,并用X反推土断面上的有效应力。

通过饱和水状态下对孔隙水面积系数X的测定,普遍得出X接近并略小于1的结论,这说明土颗粒接触面积相比孔隙水面积非常小,但由于土颗粒的刚度比孔隙水大得多,所以土颗粒接触点上的有效应力也是非常大的。

高等土力学期末考试汇总(汇编)

高等土力学期末考试汇总(汇编)

05年一、一粘土试样在三轴仪中,施加有效应力300kPa 下等向固结,固结完成后等向卸载至有效应力50kPa (状态B )。

在此基础上进行常规排水压缩试验(侧向应力保持不变),使q ′=100kPa (状态C )。

然后试样在不排水条件下 加载至破坏(状态D )。

利用修正剑桥模型分析上述试验。

土的材料参数为:λ=0.16,κ=0.04,Γ=3.0 和M =1.0。

求 (1) 在e~lnp 坐标下绘出正常固结和临界状态线和A →B →C →D 路径; (2) 估计在A →B →C →D 试验过程中q 的峰值; (3) 估计土样破坏时q 的极限值和孔隙比e (状态D )。

(1) 已知:λ=0.16,κ=0.04,Γ=3.0 和M =1.0。

N 与Γ之间的关系为:08.3ln2)04.016.0(0.32ln )(=-+=-+Γ=k N λ 正常固结线(NCL )为: p p N e '-='--=ln 16.008.2ln )1(λ; 临界状态线(CSL )为: p p e '-='--Γ=ln 16.00.2ln )1(λ ; 卸载回弹线(κ线)为:p p p k p N e '-='--='-'---=ln 04.040.1ln 04.068.008.2 ln ln )()1(0κλ修正剑桥模型为:0/222='+''-'M q p p p c,则 030022='+'-'q p p据此可以绘出试样的应力路径(见图1)。

(2)B 点,650/300/=='cc p p 为重超固结土; BC 线的斜率为3.0, 方程为q=3.0(p-50) 所以C 点的3.83='cp kPa ; 代入030022='+'-'q p p ,可解得A →B →C →D 试验过程中q 的峰值为4.134'='cq kPa(3)土体破坏时,见图1中D 点D 点的e 值与C 点的相同,C 点的P=83.3kPa ,代入p e ln 04.040.1-= 求得e=1.22,同理,将e=1.22代入p e ln 16.0000.2-= 求得q=130.3 kPa解法2解:(1)已知:λ=0.16,κ=0.04,Γ=3.0和M=1.0,p’0=300kPa由N=Γ+(λ-κ) ln2得N=Γ+(λ-κ) ln2=3.0+(0.16-0.04)ln2≈3.083∴正常固结线(NCL)方程:v=1+e=N-λln p’,即e= N-1-λln p’= 3.083-1-0.16ln p’ =2.083-0.16 ln p’;临界状态线(CSL)方程:v=1+e=Γ-λln p’,即e=Γ-1-λln p’=3.0-1-0.16ln p’=2.0-0.16ln p’;卸载回弹线(SL )方程:v =1+e = v κ-κln p’= N -(λ-κ)ln p’0-κln p’,即e = N -1-(λ-κ)ln p’0-κln p’=3.083-1-(0.16-0.04)ln300-0.04ln p’ =1.399-0.04ln p’;修正剑桥模型屈服函数为:2222f=M 0p M p p q ''''-+=,代入已知参数得屈服面方程为:223000p p q '''-+=状态A :在有效应力300kPa 下等向固结,所以300A p kPa '=,0A q '=,根据正常固结线(NCL)方程可得:e =2.083-0.16 ln p A ’=1.17。

土力学试题经典总结

土力学试题经典总结

土力学试题经典总结1.土的三相组成概念2.土按颗粒级配分类:工程上将土中粒径>0.075……3.粒组概念4.颗粒级配概念5.双电层概念6.粒组划分原则是什么?7.常见的粘土矿物有哪些?它们的性质如何?8.土中结合水可分哪两种?各有什么特点?9.粒组与矿物成分之间的关系?10.土粒比表面积概念11.影响狂散层厚度的因素:12.土中矿物类型及土空隙中水的类型13.粘性土的压缩性与稠度状态之间的关系?14.土的结构概念15.土的结构类型概念16.稠度概念17.稠度状态概念18.渗透系数概念19.达西定律概念20.我国主要的土质分类简介21.土中的水对粘性土的状态有什么影响?22.什么是塑性指数,其工程用途是什么?23.土的三相实测指标是什么?其余指标的导出思路主要是什么?24.土的工程分类一般原则和分类25.角点法概念26.有效应力概念27.附加应力概念28.基底压力概念29.基底附加压力概念30.集中荷载作用下地基中附加应力的分布规律?31.简述饱和土的有效应力原理的要点32.解释抽吸地下水引起地面沉降的原因?33.自重应力与附加应力各自在地基中的分布特点? 34.应力路径概念35.几种典型的加载应力路径36.超静孔隙水压力概念37.孔压系数概念38.压缩系数概念39.压缩模量概念40.压缩定律概念41.平均固结度概念42.变形模量概念43.前期固结压力概念44.超固结比概念45.一维渗透固结理论的基本假设?47.“C”法的作图步骤48.分层总和法的计算地基最终沉降量的基本原理?计算步骤?49.侧限渗压模型有效应力与孔隙水压力随时间转换的过程?50.地基容许沉降量概念51.土的抗压强度概念52.土的极限平衡条件概念53.莫尔包线概念54.库伦定律概念55.莫尔—库伦抗剪强度理论的要点?56.按排水条件,三轴试验可分哪三种类型?它们有何差别?57.土的抗剪强度的机理是什么?影响土的抗剪强度的因素有哪些?58.挡土墙概念59.土压力概念60.被动土压力概念61.主动土压力概念62.静止土压力概念63.简述挡土墙位移对土压力的影响64郎肯土压力理论和库伦土压力理论的异同点是什么?65.三轴剪切试验与直接剪切试验各自的优缺点66.土体中地下水向上或者向下渗透时,相对于静止水位而言,孔隙水压力与有效应力是如何变话?67.何谓土体的滑动?产生土体滑动的原因是什么?68.滑坡概念69.粘性土坡稳定性分析中条分法的基本原理70瑞典条分法,简化毕肖普条分法和普遍条分法的求解前提是什么?71.粘性土坡稳定性分析中整体圆弧法和条分法的主要区别72.瑞典条分法确定粘性土坡稳定性系数的基本原理73.瑞典条分法的特点74.毕肖普法德特点75.简布法的特点76地基承载力概念77.地基承载力受那些因素制约78.塑性变性区概念79.临塑荷载概念80.临界荷载概念81.极限承载力概念82.容许承载力概念83.地基破坏形式有哪几种?各有何特点?84.地基土的破坏模式为整体剪切破坏时,地基变形的三个阶段各阶段的特点?85.承载力基本值概念86.承载力标准值概念87.承载力设计值概念88.确定地基容许承载力的方法有哪些?89.粘性土坡稳定性分析中的三种条分法的主要区别90.砂土液化概念91管涌概念92.粘土的残余强度93.土中水的状态有哪几种?简述土中不同状态的水对相应土的力学性质的影响94.土粒密度概念95.天然密度概念96.干密度概念97.饱和密度概念98.含水量概念99.饱和度概念100.孔隙度概念101.孔隙比概念102.非饱和土的有效应力原理。

高等土力学(李广信)-期末总结

高等土力学(李广信)-期末总结

一般弹塑性模型
屈服与屈服准则 硬化规律 正交性(流动法则:相适应与不相适应) 刚塑性、弹性-理想(完全)塑性 (perfectly plastic)和增量弹塑性模型。

剑桥模型



物态边界面概念:正 常固结线、临界状态 f p 线、固结不排水试验 d ij d 有效应力路径。 ij q 剑桥模型与修正剑桥 M 模型的屈服面:物理 意义、公式推导、曲 线形式。 剑桥模型的硬化参数、 流动规则、增量应力 p0 应变关系式。 p0 /2 图1 剑桥模型的屈服面
土的强度理论
各强度理论的特点 参数 计算 优缺点 适用情况

第四章 土中水与土的 渗透及其计算
1. 渗透规律-达西定律 2. 有关渗流的工程问题 3. 渗透计算

渗透及达西定律
几种渗流势:重力、压力、基质势 渗透系数及其影响因素 渗流的基本方程,流网及其应用Leabharlann 有关渗流的工程问题p
第三章 土的强度
土的强度机理与影响因素 排水与不排水、饱和与不饱和土强度 土的强度理论

土的强度机理
土的强度-抗剪强度: 粘聚强度与摩擦强度: 粘聚力:机理,粘性土的微观结构; 假粘聚力:吸力、冰冻、机械咬和; 内摩擦角:表面摩擦与咬和-剪胀、破 碎与颗粒的重排列。

强度的影响因素
固结


(1)单向固结的普遍方程及一般条件下的单向 固结问题: 加载时间 分层土 厚度随时间变化 (2)砂井固结问题:井阻、涂抹、加载时间 (3)比奥固结理论与太沙基(Terzaghi)—伦杜 立克(Rendulic)准三维固结理论(扩散方程)
固结问题的简化计算
均匀加载、分期加载 不均匀土层与分层土 砂井:井阻与涂抹影响

土力学期末知识点总结2024

土力学期末知识点总结2024

引言概述:土力学是土壤力学的研究,主要研究土壤的力学性质及其在工程中的应用。

土力学是土木工程中重要的一门基础学科,对于工程建设具有重要的指导意义。

本文将综合总结土力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。

正文内容:一、土壤力学基本概念1.土壤力学的定义及研究对象2.土壤颗粒特性和颗粒间的力学相互作用3.土壤的固结与压缩行为4.土壤中的孔隙与孔隙水5.土壤的液态和塑性行为二、土壤力学性质及其测试方法1.重度、容重和饱和度的概念及计算方法2.孔隙比、孔隙度和孔隙率的定义与计算3.土壤的渗透性和渗透系数的测定方法4.土壤的抗剪强度及剪切参数的测定方法5.土壤的压缩性与压缩参数的测定方法三、土壤固结与压缩性1.土壤的固结现象及固结指标的使用2.增加土壤支持力的方法和施工控制3.土壤的固结后稳定性分析4.应力路径对土壤固结和压缩行为的影响5.土壤对附加应力作用的响应四、土壤自重与有效应力1.土壤的自重力和土体重度的概念及计算方法2.土壤的有效应力和有效应力比的定义与计算3.土壤的有效承载力和有效压缩模量的计算4.孔隙水的压力与有效应力的关系5.应力路径对土壤自重和有效应力的影响五、土壤侧压力及土体的强度性质1.土壤侧压力的产生机制和计算公式2.土体的摩擦角与内聚力的确定方法3.土体的弯曲和剪切破坏研究4.土壤的固结和压缩对强度性质的影响5.土壤强度参数的利用和工程应用其他相关的工程应用1.地基的设计和加固2.地下工程的开挖与支护3.填土与挖土工程4.地基沉降的控制与补偿5.施工过程中的土壤力学问题分析结论:土力学作为土木工程中的重要学科,研究土壤的力学性质及其在工程中的应用。

本文综合总结了土壤力学的期末考试知识点,包括土壤力学基本概念、土壤力学性质及其测试方法、土壤固结与压缩性、土壤自重与有效应力、土壤侧压力及土体的强度性质以及其他相关的工程应用等内容。

土力学复习提纲总结N

土力学复习提纲总结N

土力学总复习资料: 第一部分:(按提纲部分整理)第一、二章:1. 地基(持力层和下卧层)与基础(浅基础和深基础)的概念受建筑物荷载影响的那一部分地层称为地基;向地基传递建筑物荷载的下部结构称为基础。

2. 高岭石、伊利石和蒙脱石三种粘土矿物及其性质;蒙脱石:亲水性强(吸水膨胀、脱水收缩),表面积最大,最不稳定。

伊利石:亲水性中等,介于蒙脱石和高岭石之间。

高岭石:亲水性差,表面积最小,最稳定。

3. 土的砂粒、粉粒和粘粒界限范围和不均匀系数的概念及其用途;砂粒:0.075~2mm 粉粒:0.005 ~ 0.075 mm 粘粒:≤0.005mm不均匀系数:Cu = 1060d d ,评价砂性土级配的好坏。

d10、d60小于某粒径的土粒含量为10%和60%时所对应的粒径4. 土的九个三相比例指标及其换算(哪三个是试验指标?四个重度指标的大小关系); a. 实验指标:土的密度ρ、土粒比重Gs 、含水率ωb. 孔隙比e 和孔隙率n 、土的饱和度Sr 、饱和密度ρsat 、干密度ρd 、有效重度γ '重度γ 、干重度γd 、饱和重度γsat 和有效重度(浮重度)γ ' 大小关系:饱和重度γsat > 重度γ > 干重度γd > 有效重度γ ' 可以记为饱水的 > 平常的 > 干的 > 减水的5. 液限、塑限、液性指数、塑性指数的概念、计算及其用途:液限:土体在流动状态与可塑状态间的分界含水量ωL塑限:土体从可塑状态转入到半固体状态的分界含水量ωP塑性指数:I P = ωL -ωP ,液限和塑限的差值,去除百分数。

用途:对粘性土进行分类和评价。

液性指数:L I = pL p w w w w --,L I 越大则越软。

用途:评价粘性土软硬和干湿状态。

I L >1.0时为流塑状态;<0.0时为半固体状态;0~1之间时为可塑状态。

6. 粉土和粘性土的分类标准a. 都是粒径大于0.075mm 的颗粒含量不超过全重的50%b. 塑性指数I P ≤10的为粉土,I P > 10的为粘性土。

高等土力学一二三章整理总结

高等土力学一二三章整理总结

高等土力学高等土力学是在本科土力学教材的基础上的进一步延伸,共分七章,包括:土工试验与测试,土的本构关系,土的强度,土中水与土中渗流及其计算,土的压缩与固结,土工数值计算(包括土体稳定的极限平衡计算,土的渗流与固结的有限元计算)。

二、本 构 关 系“本构关系”是英文Constitutive Relation 的意译。

在力学中,本构关系泛指普遍的应力—应变关系。

因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。

因此材科的本构关系或普遍的应力—应变关系可以表示为; 应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。

例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。

因此应力和应变之间存在着唯一对应的关系。

当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。

塑性本构关系要比弹性本构关系复杂得多。

如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。

本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。

各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。

非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。

弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。

即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。

高等土力学试题汇总

高等土力学试题汇总

高等土力学试题汇总2.7 (1)修正后的莱特-邓肯模型比原模型有何优点?莱特-邓肯模型的屈服面和塑性势面是开口的锥形,只会产生塑性剪胀;各向等压应力下不会发生屈服;破坏面、屈服面和塑性势面的子午线都是直线不能反映围压对破坏面和屈服面的影响。

为此,对原有模型进行修正,增加一套帽子屈服面,将破坏面、屈服面、塑性势面的子午线改进为微弯形式,可以反映土的应变软化。

(2)清华弹塑性模型的特点是什么?不首先假设屈服面函数和塑性势函数,而是依据试验确定塑性应变增量的方向,然后依据关联流淌法则确定其屈服面;再从试验结果确定其硬化参数。

因而这是一个假设最少的弹塑性模型2.8 如何解释粘土矿物颗粒表面带负电荷?答:(1)由于结构连续性受到破坏,使粘土表面带净负电荷,(边角带正电荷)。

(2)四周体中的硅、八面体中的铝被低价离子置换。

(3)当粘土存在于碱性溶液中,土表面的氢氧基产生氢的解离,从而带负电。

2.9 土的弹性模型分类及应用:线弹性:广义胡克定律非线弹性:增量胡克定律高阶弹性模型:柯西弹性模型、格林弹性模型、次弹性模型①弹性模型:一般不适用于土,有时可近似使用:地基应力计算;分层总和法②非线弹性模型:使用最多,有用性强:一般参数不多;物理意义明确;确定参数的试验比较简洁③高阶的弹性模型:理论基础比较完整严格;不易建立有用的形式:参数多;意义不明确;不易用简洁的试验确定3.1- 3.2 正常固结粘土的排水试验和固结不排水试验的强度包线总是过坐标原点的,即只有摩擦力;粘土试样的不排水试验的包线是水平的,亦即只有粘聚力。

它们是否就是土的真正意义上的摩擦强度和粘聚强度?答:都不是。

正常固结粘土的强度包线总是过坐标原点,好像不存在粘聚力,但是实际上在肯定条件下固结的粘土必定具有粘聚力,只不过这部分粘聚力是固结应力的函数,宏观上被归于摩擦强度部分。

粘土的不排水试验虽然测得的摩擦角为0,但是实际上粘土颗粒之间必定存在摩擦强度,只是由于存在的超静空隙水压使得全部破坏时的有效应力莫尔圆是唯一的,无法单独反映摩擦强度。

(完整版)高等土力学部分知识总结,推荐文档

(完整版)高等土力学部分知识总结,推荐文档
程/几何方程/,结合有效应力原理/土体孔隙变化体积等于孔隙水变化的体积的连续性条件,
将位移和孔隙压力联系起来,可以反应固结过程中孔隙压力和位移的相互影响,或者说反
映了两者的耦合。
实际问题当中,孔隙压力和位移的变化是相互影响,不可分割的。有时仅仅考虑孔隙
压力的变化而不考虑位移的影响,结果并不会有太大的影响,此时就更加适合使用太沙基
举例:饱和式样,施加垂直压力 P 后应力的变化为:t=0 时,有效应力为 0,孔压为 P,三
向的总应力之和为 3P;在固结完成之后,竖向有效应力为 P,孔压为 0,而侧向有效应力
为0P,则三向的总应力之和为(1+20)P。可以看出三向的总应力之和是随时间变化的。
孔压与位移的联系:由于假定的不同,太沙基的方程中只有孔隙压力这一个未知量,
∂v
∂t
∂u

= ‒
3(1 ‒ 2)∂u




= ‒ ∇ 2


= 3(1 ‒ 2) ∇2 = 3∇2


3(1 ‒ 2)∂u



= ∇ 2

3 =


3(1 ‒ 2)
6.轴对称问题固结方程
砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和
和应变联系起来 4.几何方程,将应变和位移联系起来,最后代入得到位移和孔压表示的平
衡微分方程(有效应力和孔压表示的拉梅方程) 5.连续性方程,土的体积变化=土体孔隙
的体积变化=流入流出水量差。
Biot 固结方程包含四个未知变量:孔压,三个方向的位移。反映了变形和渗流的耦合。
8.Biot 固结理论和太沙基理论的比较
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-7加工硬化也称应变硬化,是指材料的应力随应变增
加而增加,弹增加速率越来越慢,最后趋于稳定。

加工软化也称应变软化,指材料的应力在开始时随着应
变增加而增加,达到一个峰值后,应力随应变增加而下
降,最后也趋于稳定。

加工硬化与加工软化的应力应变关系曲线如图。

2-8土的变形模量随着围压提高而提高的现象,称为土
的压硬性。

土的剪胀性指土体在剪切时产生体积膨胀或
收缩的特性。

土的压硬性,表现在微观领域,是土颗粒与颗粒间的间距更近,土颗粒与土颗粒的粘结更加有效。

而土的剪胀性表现在微观领域,为土颗粒之间位置产生了变化。

2-9土是岩石风化形成的碎散矿物颗粒的集合体,通常是固、液、气三相体。

其应力应变关系十分复杂,主要特性有非线性,弹塑性,剪胀性及各向异性。

主要的影响因素是应力水平,应力路径和应力历史。

2-10如右图。

横坐标为1ε,竖坐标正半轴为)(31σσ-,竖坐标负半轴为v ε。

2-13粘土和砂土的各向异性是由于其在沉积过程中,长宽比大于1的针、片、棒状颗粒在重力作用下倾向于长边沿水平方向排列而处于稳定的状态。

同时在随后的固结过程中,上覆土体重力产生的竖向应力与水平土压力大小不等,这种不等向固结也造成了土的各向异性。

诱发各向异性是指土颗粒受到一定的应力发生应变后,其空间位置将发生变化,从而造成土的空间结构的改变,这种结构的改变将影响土进一步加载的应力应变关系,并且使之不同于初始加载时的应力应变关系。

2-17参数i E 代表三轴试验中的起始变形模量,a 代表i E 的倒数;ult )(31σσ-代表双曲线的渐近线对应的极限偏差应力,b 代表ult )(31σσ-的倒数;t E 为切线变形模量;f R 为破坏比。

2-18可以,这时ν=0.49,,用以确定总应力分析时候的邓肯-张模型的参数。

2-25在多向应力作用下,变形体进入塑性状态并使塑性变形继续进行,各应力分量与材料性能之间必须符合一定关系时,这种关系称为屈服准则。

屈服准则可以用来判断弹塑性材料被施加一应力增量后是加载还是卸载,或是中性变载,亦即是判断是否发生塑性变形的准则。

流动规则指塑性应变增量的方向是由应力空间的塑性势面g 决定,即在应力空间中,各应力状态点的塑性应变增量方向必须与通过改点的塑性势能面相垂直,亦即ij p ij g d d σλε∂∂=(1)流动规则用以确定塑性应变增量的方向或塑性应变增量张量的各个分量间的比例关系。

同时对于稳定材料0≥p ij ij d d εσ,
这就是说塑性势能面g 与屈服面f 必须是重合的,亦即f=g 这被称为相适应的流动规则。

如果令f ≠g ,即为不相适应的流动规则。

加工硬化定律是计算一个给定的应力增量硬气的塑性应变大小的准则,亦即式(1)中的λd 可以通过硬化定律确定。

2-31剑桥模型的试验基础是正常固结粘土和弱超固结粘土的排水和不排水三轴试验。

基本假设:土体是加工硬化材料,服从相适应流动规则。

M 是破坏常数;λ是各向等压固结参数,为NCL 或CSL 线在'
ln p -ν平面中的斜率;κ是回弹参数,为卸载曲线在'ln p -ν平面上的斜率。

4-5土颗粒的组成,土的状态,土的结构,粘滞系数n 和液体水容重r w 。

5-1(1)按产生时间的先后顺序有瞬时沉降,主固结沉降和次固结沉降。

按变形方式有单向的变形沉降和二向以及三向的变形。

(2)瞬时沉降是加载瞬间产生的沉降;主固结沉降是荷载作用下土体中水及空隙减少所产生的沉降;次固结沉降是土体骨架蠕变产生的沉降。

(3)计算原理:一般情况如不计算次压缩沉降S=S i +S c ,当地基为单向压缩S t =S i +U t*S c 5-13(1)基本假设:太沙基假定z y x e σσσ++=,固结过程不随时间变化;比奥没有这个假定
(2)空隙压力和位移的关系:太沙基是须依次求出孔隙水压u ——固结度U ——沉降量S 比奥理论:可同时求出固结度U 、空隙水压u 以及沉降量S
(3)U 随着时间t 的变化;太沙基与泊松比u 无关;比奥中泊松比对固结影响大,具曼德尔效应。

相关文档
最新文档