数学建模一等奖-输油管布置的优化模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输油管布置的优化模型
摘要
本文建立了输油管线布置的优化问题.为了使两家炼油厂到铁路线上增建的车站的管线铺设费用最省,依据题目提供的有关数据及相关信息,设计出了总费用最少的输油管布置方案以及增建车站的具体位置,最终在讨论分析后,对模型做出了评价和推广.
模型Ⅰ:对问题1,根据两炼油厂到铁路线距离和两炼油厂间的不同距离以及共用管线与非共用管线的两种不同情况,给出了四种处理方案,并从图形上加以说明.
模型Ⅱ:对问题2,建立了最优模型.在单目标非线性规划模型中,将输油管道铺设分为两个过程.先将输油管道从城区铺设到城郊区域边界线上一点,再从该点铺设到铁路线上.这样,总的费用就化为这两个过程的管道费用之和.本模型兼顾到管线的铺设费用,在城区铺设管线需增加的拆迁和工程补偿等附加费用,运用Lingo9.0数学软件得到新增车站的建设位置、管线的具体布置方案及管线费用最小值281.6893万元.
模型Ⅲ:根据炼油厂的实际能力,借助题目提供的输送A、B两厂原油的管线铺设费用,在模型Ⅱ的基础上建立最优模型,给出管线最佳布置方案及相应的最省管线铺设费用为250.9581万元.
关键词:输油管共用管线非共用管线 Lingo9.0 非线性规划
一、问题重述
某油田计划在铁路线一侧建造两家炼油厂,同时在铁路线上增建一个车站,用来运送成品油。由于这种模式具有一定的普遍性,油田设计院希望建立管线建设费用最省的一般数学模型和方法。
现欲解决下列问题:
问题1:针对炼油厂到铁路线距离和两炼油厂间距离的各种不同情形,提出设计方案。在方案设计时,若有共用管线,考虑共用管线与非共用管线相同或不同的情形。
问题2:设计院目前需对一更为复杂的情形(两炼油厂的具体位置)进行具体的设计。两炼油厂的具体位置如下图:
若所有管线的费用均为7.2万元/千米。铺设在城区的管线还需增加迁拆和工程补偿等附加费用,为对此附加费用进行估计,聘请三家工程咨询公司(其中一具有甲级资质,公司二和公司三具有乙级资质)进行了估算。估算结果如下表所示:
工程咨询公司公司一公司二公司三附加费用(万元/千米)212420
要求我们为设计院给出管线布置方案及相应的费用。
问题3:在实际问题中,为进一步节省费用,可以根据炼油厂的生产能力,选用相应的油管。这时的管线铺设费用将分别降为输送A厂成品油为5.6万元/千米,输送B厂成品油为6.0万元/千米,共用管线费用为7.2万元/千米,拆迁等附加费用同上。请给出管线最佳布置方案及相应的费用。
二、模型的假设
(1)城区和郊区地形良好,管线在城区与郊区都能直线铺设;
(2)在炼油厂与车站之间铺设管线的过程中,不考虑由于河流、山坡、建筑物等阻碍而增加的费用;
(3)共用管线与非共用管线接口处的长度忽略不记;
(4)管道铺设在边界线上不算入拆迁和工程补偿等附加费用; (5)不考虑由于在铺设管道时造成的意外事故所赔偿的费用; (6)管道铺设后不会对周围的坏境造成污染; (7)不考虑支付给工程咨询公司的费用;
三、问题分析
对问题1的分析:由于两炼油厂到铁路线距离和两炼油厂间距离都不确定,所以炼油厂的位置可以是水平、竖直和一般的三种情况。而在这三种情况下,又要考虑管线共用与非共用的情形,共用管线费用与非共用管线费用相同或不同的情形,综合这些情形设计出不同的方案;
对问题2的分析:在所有管线的铺设费用都是7.2万元/千米,以及附图中已给两炼油厂的具体位置的情形下,对共用管线与非共用管线不同的优化布置方案,比较二者的费用来选择是否共用管线;最终得到最优管线布置方案及相应的最省的管线铺设总费用。
对问题3的分析:实际问题中,在满足输油量的情况下可以根据各个炼油厂的生产能力不同,选用不同的油管,从而进一步节省费用。
由于我国的油气资源大部分分布在东北和西北地区,而消费市场绝大部分在东南沿海和中南部的大中城市等人口密集地区,这种产销市场的严重分离使油气产品的输送成为油气资源开发和利用的最大障碍。管道运输是突破这一障碍的最佳手段,管道运输具有运量大、安全性更高、更经济等特点,而且我国政府已将“加强输油气管道建设,形成管道运输网”的发展战略列入了“十五”发展规划。所以寻求炼油厂与油田之间管道铺设的最优方案将是目前国家亟待解决的问题。
四、符号说明
M 共
:,A B 两炼油厂共用管道的费用 M 非共
:,A B 两炼油厂非共用管道的费用
1p :公司一(甲级资质)的可信度系数 2p :公司二(乙级资质)的可信度系数 3
p :公司三(乙级资质)的可信度系数
12(,)
m m :A 炼油厂的直角坐标位置
()12,n n :B 炼油厂的直角坐标位置
()1,0x :车站F 的直角坐标位置;
()23,x x :共用管线与非共用管线结汇处H 的坐标位置;
4(15,)
x :边界线上E 点的坐标;
五、模型的建立与求解
1.建立模型(Ⅰ)
(图中加粗线段为共用管线,虚线段为炼油厂到火车线的距离) (1) 假设B A F 、、在一条直线上如图-(1)
目标函数: (Ⅰ)若
M M =共非共
min f M =共(Ⅱ)若
M M ≠共非共
min f M M =(2)假设A 点在F 点正上方,如图-(2);
目标函数:
(Ⅰ) 若M M
=
共非共
(2
min f M m
=
共
(Ⅱ) 若M M
≠
共非共
2
min f M m M
=⨯+
共
(3) 假设H点与F点重合,即没有共用管线,如图-(3);
目标函数:
min f M
=
非共
(4) 假设H点与F点不重合,即有共用管线,如图-(4);
目标函数:
(Ⅰ) 若M M
=
共非共
min f M
=
共
(Ⅱ)若M M
≠
共非共