(整理)东南大学高等数学期中期末试卷.
东南大学高等数学(A)期末03-13试卷
f ( z) =
1 z ! 4z + 3
2
1< z < 3
Laurent
(cos x + 2 xy + 1)dx + ( x 2 ! y 2 + 3)dy
.
+! 0
"
1 dx 1 + x4
v( x, y, z) = { y3 ! z 3 , z 3 ! x3 , 2 z 3}
z = 1 + 1 ! x2 ! y 2
2
1< z ! 2 < 3
2 ydx + ( y 2 ! 6x)dy = 0
2 8 9
y!! + 4 y = 8 x " 4sin 2 x
y(0) = 0, y!(0) = 5
!
I = ## x2 dy " dz + y 2 dz " dx + ( z 3 + x)dx " dy
!
z = x2 + y 2 (0 ! z ! 1)
! n
!
"a x
k k =1
k +1
[0,1]
f ( x)
(f$ % &n'
n =1
!
"1#
2005
1+ 1! x2 x
A
"
1
0
dx "
f ( x, y)dy =
e z + z + xy = 3
M (2,1, 0) (2,1,1)
divA =
A = 3x 2 yz 2i + 4 xy 2 z 2 j + 2 xyz 3k
东南大学高等数学期中期末试卷15页
第 1 页东 南 大 学 考 试 卷( A 卷)课程名称 高等数学(非电) 考试学期 04-05-2得分适用专业非电类各专业考试形式 闭卷 考试时间长度 150分钟一. 填空题(每小题4分,共20分) 1.函数()⎥⎥⎦⎤⎢⎢⎣⎡+=x x f 11的间断点 是第 类间断点.2. 已知()x F 是()x f 的一个原函数,且()()21xx xF x f +=,则()=x f . 3.()()=-+⎰--x x x x xd e e1112005.4. 设()t u u x f xtd d 10sin 14⎰⎰⎪⎭⎫ ⎝⎛+=,则()=''0f . 5. 设函数()()01d 23>+=⎰x tt x f x x,则当=x 时,()x f 取得最大值.二. 单项选择题(每小题4分,共16分)1. 设当0x x →时,()()x x βα,都是无穷小()()0≠x β,则当0x x →时,下列表达式中不一定为无穷小的是[ ] (A)()()x x βα2 (B)()()xx x 1sin22βα+ (C)()()()x x βα⋅+1ln(D)()()x x βα+2. 曲线()()211arctane 212+-++=x x x x y x的渐近线共有[ ] (A) 1条 (B) 2条 (C) 3条 (D) 4条第 2 页3. 下列级数中收敛的级数是[ ] (A)∑∞=121n n(B) ∑∞=⎪⎭⎫⎝⎛+111ln n n (C) ()nn nn n ⎪⎭⎫⎝⎛+-∑∞=111(D)∑⎰∞=+1104d 1n n x xx4. 下列结论正确的是[ ](A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcx x f x x f d d .(B) 若()x f 在区间[]b a ,上可积,则()x f 在区间[]b a ,上可积. (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TTa ax x f x x f 0d d .(D) 若()x f 在区间[]b a ,上可积,则()x f 在[]b a ,内必有原函数. 三. (每小题7分,共35分)1. ()()3020d cos ln limx t t t xx ⎰+→. 2. 判断级数∑∞=-1354n n n n的敛散性. 3. x x x x d cos cos 042⎰-π. 4. ⎰∞+13d arctan x x x .5. 求初值问题 ()()⎪⎩⎪⎨⎧-='=+=+''210,10sin y y xx y y 的解.四.(8分) 在区间[]e ,1上求一点ξ,使得图中所示阴影部分绕x 轴旋转所得旋转体的体积最小五.(7分) 设b a <<0,求证()ba ab a b +->2ln. xln第 3 页六.(7分) 设当1->x 时,可微函数()x f 满足条件()()()0d 110=+-+'⎰xt t f x x f x f且()10=f ,试证:当0≥x 时,有 ()1e≤≤-x f x成立.七.(7分) 设()x f 在区间[]1,1-上连续,且()()0d tan d 1111==⎰⎰--x x x f x x f ,证明在区间()1,1-内至少存在互异的两点21,ξξ,使()()021==ξξf f .04-05-2高等数学(非电)期末试卷答案及评分标准 05.1.14一. 填空题(每小题4分,共20分) 1. 0,一; 2.21x Cx +; 3. 1e 4-; 4. 1; 5. 343. 二. 单项选择题(每小题4分,共16分) 1. A; 2.B; 3. D; 4.C. 三. (每小题7分,共35分) 1. 原式=()分分分261)2(1cos lim 3131)3(3cos ln lim 20220 =-+=+→→x x x x x x x2. 分515453153154lim 354354lim lim11111<=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅=--=+∞→+++∞→+∞→n nn n n n n n n n nn n a a由比值法知原级数收敛. 分2 3. 原式=()()分分分222d cos sin 3d cos sin 220πππππ==⎰⎰x x x x x x第 4 页4. 原式()分31d arctan 2112212⎥⎦⎤⎢⎣⎡+--=⎰∞+∞+x x x xx=()分分2212d 111218122 =⎪⎭⎫⎝⎛+-+⎰∞+x x x π5. 对应的齐次方程的通解为 分2sin cos 21 xC x C y +=非齐次方程x y y =+''的一个特解为()分11 x y =,非齐次方程x y y sin =+''的一个特解为()分1cos 22 x xy -=,原方程的通解为x xx x C x C y cos 2sin cos 21-++=)1(分 ,利用初值条件可求得 1,121-==C C , 原问题的解为分2cos 2sin cos xxx x x y -+-=四.(8分)()()()()()()()()()[]()()()()()0e ),1(e2,01ln 223ln 4ln 2e 2ln 2ln 2ln 2ln 2)d ln 1(2d ln 212122e212e212>⎪⎪⎭⎫ ⎝⎛''==-='-+-=-++--+-=-+=⎰⎰V t t t V t t t t t txx x x x x x x x x x x x x t V tttt 且分得分令分分 πππππ因此21e=t 是()t V 在[]e ,1上的唯一的极小值点,再由问题的实际意义知必存在最小体积,故21e =ξ是最小值点.分1五.(7分) 设t a b =,原不等式等价于()1,112ln >+->t t t t , 即等价于 ()()()分31,012ln 1 >>--+=t t t t t f()()()分101,11ln ,01 ='-+='=f tt t f f第 5 页()1,0112≥≥-=''t tt t f ,且等号当且仅当1=t 时成立 分1因此()t f '单增,()()1,01>='>'t f t f 从而()t f 单增,()()1,01>=>t f t f ,原不等式得证. 分2六.(7分)由题设知()10-='f , 分1 所给方程可变形()()()()()⎰=-++'+xt t f x f x x f x 00d 11两端对x 求导并整理得 ()()()()分1021 ='++''+x f x x f x这是一个可降阶的二阶微分方程,可用分离变量法求得()分21e xC x f x+='-由于()10-='f ,得()()x f xx f C x,01e ,1<+-='-=-单减,而(),10=f 所以当0≥x 时, ())1(1分 ≤x f ,对()01e <+-='-xx f x在[]x ,0上进行积分()()分2e d e 1d 1e 00-0 xx t xtt t t f x f --=-≥+-=⎰⎰七.(7分) 记()()⎰-=xtt f x F 1d ,则()x F 在[]1,1-上可导,且()()分2011 ==-F F若()x F 在()1,1-内无零点,不妨设()()1,1,0-∈>x x F()()()()0d sec d sec tan )(d tan d tan 0112112111111<-=-===⎰⎰⎰⎰-----x x x F x x x F x x F x F x x x x f 此矛盾说明()x F 在()1,1-内至少存在一个零点分2,0 x对()x F 在[][]1,,,100x x -上分别使用Rolle 定理知存在()()1,,,10201x x ∈-∈ξξ,使得()(),021='='ξξF F 即 ()()分3021 ==ξξf f第 6 页东 南 大 学 考 试 卷(A 卷)课程名称 工科数学分析 考试学期 04-05-2(期末) 得分适用专业 上课各专业 考试形式 闭考试时间长度 150分钟第 7 页4.下列结论正确的是 [ ]一.填空题(每小题4分,共20分) 1.设121-=x y ,则)10(y (1)= 。
东南大学高数A下学期末试卷及答案 03-09
[ (B)必要而非充分条件 (D)既非充分也非必要条件
]
f ( y 2 − 3 z ) 所确定的隐函数,其中 f 可微,求
2y
∂z ∂z + 3x . ∂x ∂y
2.确定 λ 的值,使曲线积分
C
∫(x
2
+ 4 xy λ ) dx + ( 6 x λ −1 y 2 − 2 y ) dy 在 XoY 平面上与路径
;
处的函数值 S (−1) = 8.设 C 为正向圆周: z = 1 ,则
学号
� ∫
C
sin z dz = z2
;
9.设 f ( z ) 在 z 平面上解析, f ( z ) =
∑a z
n =0 n
∞
n
,则对任一正整数 k ,函数
f ( z) 在点 z = 0 zk
的留数 Res
f ( z) ;0 = k z
n =1
∞
2n sin 2 n x 的敛散性;当级数收敛时,判别其是绝对收敛,还是条件收敛? n
四(15) . (本题满分 10 分)将函数 f ( z ) =
1 分别在圆环域(1)1 < z < +∞ ; (2) z (1 + z )
2
1 < z − 1 < 2 内展开成罗朗级数。
共 4 页
第 3 页
∫x
L
x 2 + y 2 dx + y x + x 2 + y 2 dy ,
(
)
其中 L 是从点 A(2,1) 沿曲线= y
x − 1 到点 B (1, 0) 的一段。
三(14) . (本题满分 9 分)试就 x 在区间
高等数学AB上册期中期末试卷完整版0309东南大学
03~09级高等数学(A )(上册)试卷东南大学2003级高等数学(A )(上)期中试卷一、单项选择题(每小题4分,共12分)1.2)( ,)( ='=οοx f x x f y 且处可导在点函数, 是时则当dy x ,0→∆() (A )等价的无穷小与x ∆;(B )同价但非等价的无穷小与x ∆; (C )低价的无穷小比x ∆;(D )高价的无穷小比x ∆。
2.方程内恰有在) ,(0125∞+-∞=-+x x ()(A ) 一个实根;(B )二个实根;(C )三个实根;(D )五个实根。
3.已知函数 ,0)0( , 0 ==f x f 的某个邻域内连续在 ,1cos 1)(lim 0=-→xx f x则处在 0 =x f ()(A ) 不可导;(B )可导且0)0(≠'f ;(C )取得极大值;(D )取得极小值。
二、填空题(每小题4分,共24分)1.=⎪⎩⎪⎨⎧=≠-=a x a x xxx x f 0.,,0,3cos 2cos )(2则当若 时,处连续在 0 )( =x x f . 2.设函数nxnx n ee x x xf +++=∞→11lim )( 2,则=x x f )( 在 0 处 ,其类型是 .3.函数Lagrange x xe x f x处的带在1)(==ο余项的三阶Taylor 公式为 4.设函数所确定由方程 1)sin()(=-=xye xy x y y ,则=dy . 5.已知)1ln()(x x f -=,则=)0()(n f.6.设22tan )(cos x x f y +=,其中可导 f ,=dxdy则 三、(每小题7分,共28分)1.求极限x x x 2cot 0)]4[tan(lim π+→. 2.求极限)sin 1(sin lim x x x -++∞→3.已知x x ey xsin 1ln --=,求)2(π'y . 4.设22 , , 2cos sin 2dx yd dx dy t y t x 求⎩⎨⎧==.四、(8分)求证时当 0 >x ,x x x sin 63<-. 五、(6分)落在平静水面上的石头产生同心圆形波纹。
东南大学考试卷(B)2006-2007学年高等数学期末试卷(后附答案)
东 南 大 学 考 试 卷(B 卷)课程名称 高等数学B 期末 考试学期06-07-3得分适用专业高数B考试形式闭卷 考试时间长度 150分钟一。
填空题(本题共10小题,每小题3分,满分30分)1.已知曲面z xy =上一点0000(,,)M x y z 处的法线垂直于平面390x y z +++=,则0x = ,0y = ,0z = ;2.已知三角形ABC ∆的顶点坐标为(0,1,2),(3,4,5),(6,7,8)A B C -,则ABC ∆的面积为 ;3. 曲线22221025x y y z ⎧+=⎪⎨+=⎪⎩在点(1,3,4)处的法平面为∏,则原点到∏的距离为 ;4.函数2u xyz =在点(1,1,1)处沿方向2=++e i j k 的方向导数等于 ;5.交换积分次序⎰⎰-221x -1-11- ),(dx x dy y x f = ;6.设222},,,{z y x r z y x r ++== ,则3rr div= ;7. 设正向闭曲线C :1x y +=,则曲线积分dy xy ydx x c 22+⎰= ;8.设2()e x f x =,则)0()2(n f= ;9.设0,0()1,0x f x x x ππ-<≤⎧=⎨+<≤⎩,其以2π为周期的Fourier 级数的和函数记为()S x ,则(3)S π= ;10.使二重积分()2244d Dxy σ--⎰⎰的值达到最大的平面闭区域D 为 。
14.求全微分方程22(cos 21)d (3)d 0x xy x x y y +++-+=的通解.二.(本题共2小题,每小题9分,满分18分) 11.计算二重积分()22d Dxy y σ+-⎰⎰,其中D 为由1,2y x y x ==及2y =围成的区域.12.计算三重积分zv Ω,其中Ω是yoz 平面上的直线121,3z y y =-=以及1z =围成的平面有界区域绕z 轴旋转一周得到的空间区域.三.(本题共2小题,每小题8分,满分16分) 13.计算曲线积分d Lz s ⎰,其中L 为圆锥螺线cos ,sin ,(02)x t t y t t z t t π===≤≤四.(15)(本题满分9分) 求函数(,)f x y xy =在圆周22(1)1x y -+=上的最大值和最小值.五.(16)(本题满分10分) 已知流体的流速函数 {}33333(,,),,2x y z y z z x z =--v ,求该流体流过由上半球面1z =+ z = 所围立体表面的外侧的流量.六.(17)(本题满分9分) 计算曲线积分(()ln d x y xy x y ++⎰,其中Γ是曲线1y =上从点(1,2)A 到点(0,1)C 的部分.七.(18)(本题满分8分) 设函数([0,1])f C ∈,且0()1f x ≤<,利用二重积分证明不等式:11100()d ()d 1()1()d f x x f x x f x f x x ≥--⎰⎰⎰06-07-3高数B 期末试卷参考答案及评分标准(A )一。
东南大学高数试卷及答案-09-10-2高数期末(有答)-1
共 4 页 第 1 页09-10-2高 数 试 卷一.填空题(本题共9小题,每小题4分,满分36分) 1.函数1()[]f x x x =-的定义域是 \R Z ,值域是 ()1,+∞ 。
2.设ln ,0,1(), 1, 11xx x f x a x a x ⎧>≠⎪==-⎩-⎨⎪=当时,()1f x x =在连续。
3.曲线22(1)x y x =+的斜渐近线的方程是 1122y x =- 。
4.(211d x x -=⎰2 ;5.函数22(1)x t y t e dt =-⎰的极大值点是 0 x =;6.a rcs n(21i )C x C +=-⎰或 ;7.设21()0x yt y y x x e dt +-=-=⎰是由所确定的函数,则1 x e dy dx=-=;8.曲线族1212(,)x xxy C e C e C C -=+是常数所确定的微分方程是 20xy y xy '''+-= ;9.11lim sin 2n n k k n n ππ→∞==∑。
二.按要求计算下列各题(本题共5小题,每小题6分,满分30分) 10.2ln sin sin xdx x ⎰ cot lnsin cot x x x x C =---+11.23π+∞=⎰12.20cossin cos lim(1cos )x x x x x →-- 13=共 4 页 第 2 页13.2cos 2dxx π+⎰=14。
设2()arcsin(1),(0)0f x x f '=-=,计算1()f x dx ⎰142π=- 三(15).(本题满分8分)求微分方程22xy y x e '''-=+满足初始条件01x y ==,54x y ='=的特解. 2221222211()421111()2242x xx xy C C e x x xe y e x x xe =+-++=+-++特解四(16).(本题满分7分)设函数()y f x =在区间[0,1]上可导,在(0,1)内恒取正值,且满足2()()3xf x f x x '=+,又由曲线()y f x =与直线1,0x y ==所围图形S 的面积为2,求()f x 的表达式,并计算图形S 绕y 轴旋转一周所得旋转体的体积。
07-08-3高等数学B期中试卷 东南大学高等数学试卷
e n1 x dx 的敛散性.
n
n1
六(16).(本题满分 10 分)将函数 f (x) 2x (0 x ) 展开成正弦级数,并求级 4
数 (1)n1 的和.
n1 2n 1
止 于 至 善
线方程.
12.将函数 f (x) ln 2x2 x 3 展开为 x 3 的幂级数,并求收敛域.
13. 求幂级数 (1)n1nx2n 的和函数,并指明收敛域 n1
四(14).(本题满分
9
分)求母线平行于向量
j
k
,准线为
4
x
2
y2
1 的柱面方程.
z 1
五(15)。(本题满分 9 分)判断级数
1
) ,则 S 3
(A) 1 2
(B) 1
(C) 0
二.填空题(本题共 5 小题,每小题 4 分,满分 20 分)
[]
(D) 2
5. 若 2a 3b 垂直于 a b ,且 a 2 b ,则 a 与 b 的夹角为
;
6.
曲线
2
x
2
3y2
4绕
y 轴旋转一周所成的曲面方程是
z 0
7.
曲线
2x2 3
东南大学学生会 Students' Union of Southeast University
止 于 至 善
07-08-3 高 数 B 期 中 试 卷
一.单项选择题(本题共 4 小题,每小题 4 分,满分 16 分)
1.
级数
(1)n
ln
1
a
(常数 a 0 )
n1
n3
(A) 绝对收敛 (B) 条件收敛 2. 下列反常积分发散的是
东南大学高数试卷及答案-06-07-3高数(B)期末考试
06-07-3高数B 期末试卷一。
填空题(本题共10小题,每小题3分,满分30分)1.已知曲面z xy =上一点0000(,,)M x y z 处的法线垂直于平面390x y z +++=,则0x = ,0y = ,0z = ;2.已知三角形ABC ∆的顶点坐标为(0,1,2),(3,4,5),(6,7,8)A B C -,则ABC ∆的面积为 ;3. 曲线22221025x y y z ⎧+=⎪⎨+=⎪⎩在点(1,3,4)处的法平面为∏,则原点到∏的距离为 ; 4.函数2u xyz =在点(1,1,1)处沿方向2=++e i j k 的方向导数等于 ;5.交换积分次序⎰⎰-221x -1-11- ),(dx x dy y x f = ;6.设222},,,{z y x r z y x r ++== ,则3rr div= ;7. 设正向闭曲线C :1x y +=,则曲线积分dy xy ydx x c 22+⎰= ;8.设2()e x f x =,则)0()2(n f= ;9.设0,0()1,0x f x x x ππ-<≤⎧=⎨+<≤⎩,其以2π为周期的Fourier 级数的和函数记为()S x ,则(3)S π= ;10.使二重积分()2244d Dxy σ--⎰⎰的值达到最大的平面闭区域D 为 。
二.(本题共2小题,每小题9分,满分18分) 11.计算二重积分()22d Dx y y σ+-⎰⎰,其中D 为由1,2y x y x ==及2y =围成的区域.12.计算三重积分zv Ω,其中Ω是yoz 平面上的直线121,3z y y =-=以及1z =围成的平面有界区域绕z 轴旋转一周得到的空间区域.三.(本题共2小题,每小题8分,满分16分) 13.计算曲线积分d Lz s ⎰,其中L 为圆锥螺线cos ,sin ,(02)x t t y t t z t t π===≤≤14.求全微分方程22(cos 21)d (3)d 0x xy x x y y +++-+=的通解.四.(15)(本题满分9分) 求函数(,)f x y xy =在圆周22(1)1x y -+=上的最大值和最小值.五.(16)(本题满分10分) 已知流体的流速函数 {}33333(,,),,2x y z y z z x z =--v ,求该流体流过由上半球面1z =z = 所围立体表面的外侧的流量.六.(17)(本题满分9分)计算曲线积分(()ln d x y xy x y ++⎰,其中Γ是曲线1y =上从点(1,2)A 到点(0,1)C 的部分.七.(18)(本题满分8分) 设函数([0,1])f C ∈,且0()1f x ≤<,利用二重积分证明不等式:11100()d ()d 1()1()d f x x f x x f x f x x ≥--⎰⎰⎰06-07-3高数B 期末试卷参考答案及评分标准(A )一。
06-07-3高等数学B期中试卷及答案 东南大学高等数学试卷
12.解
d dx
f1
f2
(g1 2xg2 ) (3
分)
d2 dx2
f11 2 f12 (g1 2xg2 )
f22 (g1 2xg2 )2
f2 (g11 4xg12
4x2g22
2g2 )(5 分)
13.解 f (x) 1 2
1
2
(3 分) (1)n 2 (x 1)n (4 分)
n1 n(2n 1)
n1
x2
n1
2 1 x2
,
x (1,1) ,(2 分)S(0) S(0) 0 ,S(x) 2arctan x ,S(x) 2x arctan x ln 1 x2
(3
分)
n1
(1)n1 n(2n 1)
1
n
3
S
1 3
3
). (本题满分 8 分)
.
二.单项选择题(本题共 4 小题,每小题 4 分,满分 16 分)
6. [ C ] 7. [ B ] 8. [ C ] 9. [ C ]
止 于 至 善
三.计算下列各题(本题共 5 小题,每小题 8 分,满分 40 分)
10. 解 L 的方向向量 a 2,5, 6 ,(2 分) 的法向量 n 7,8,9,所求直线的方向向
1 收敛. (4 分)收敛域为 (, 1) (1, ) (1 分)
n1 1 x2n
1
止 于 至 善
东南大学学生会 Students' Union of Southeast University
四(15).(本题满分 8 分)
解 首先对 f (x) 在 x 0 上作奇延拓,再以 2 为周期作周期延拓,得
n1
东南大学高数试卷及答案-07-08-3高等数学B期中考试试卷
共 5 页 第 1 页07-08-3高数B 期中试卷08.4.11一.单项选择题(本题共4小题,每小题4分,满分16分) 1.级数1(1)ln 1nn ∞=⎛⎫- ⎝∑ (常数0a >) [ ] (A ) 绝对收敛 (B ) 条件收敛 (C ) 发散 (D ) 敛散性与a 的取值有关2. 下列反常积分发散的是 [ ] (A)31d 1x x x +∞+⎰(B) 21x ⎰ (C )321d ln(1)x x -⎰ (D) 1x +∞⎰ 3. 已知直线1412:235x y z L -++==与2113:324x y z L ---==-,则1L 与2L [ ] (A )相交 (B ) 异面 (C ) 平行但不重合 (D ) 重合4. 设函数21,01()0,10x x f x x ⎧+≤<=⎨-≤<⎩,01()(cos sin )2n n n a S x a n x b n x ππ∞==++∑, x -∞<<+∞,其中11()cos d (0,1,2,)n a f x n x x n π-==⎰,11()sin d (1,2,)n b f x n x x n π-==⎰,则()3S = [ ](A )12(B ) 1 (C ) 0 (D ) 2 二.填空题(本题共5小题,每小题4分,满分20分)5. 若23-a b 垂直于+a b,且=a ,则a 与b 的夹角为 ;6. 曲线222340x y z ⎧+=⎨=⎩绕y 轴旋转一周所成的曲面方程是 ;7. 曲线22222223520x y z x y z ⎧++=⎪⎨--=⎪⎩在yOz 面上的投影曲线方程是 ; 8. 设幂级数1(1)nn n a x ∞=-∑在4x =处条件收敛, 则该幂级数的收敛半径为 ;9.幂级数210(1)(2)21nn n x n ∞+=--+∑的收敛域为 . 三. 计算下列各题(本题共4小题,每小题9分,满分36分)共 5 页 第 2 页10.求过点(1,2,1)且与直线21010x y z x y z +-+=⎧⎨-+-=⎩及直线201x y z +==--都平行的平面方程.11.求过点(4,6,2)--,与平面62310x y z --+=平行,且与直线113325x y z -+-==-相交的直线方程.12.将函数()2()ln 23f x x x =+-展开为3x -的幂级数,并求收敛域.13. 求幂级数121(1)n n n nx ∞-=-∑的和函数,并指明收敛域.四(14).(本题满分9分)求母线平行于向量+j k ,准线为22411x y z ⎧-=⎨=⎩的柱面方程.五(15)。
东南大学08-09-3高等数学A期末考试试卷(A)参考答案及评分标准
4. 设闭曲线 C : x y 1 ,取逆时针方向,则曲线积分 5. 设函数 F ( x, y ) 具有一阶连续偏导数, 则曲线积分
C
ydx x dy 的值是 2 ;
2
F ( x, y )( ydx xdy ) 与路径无关的
AB
充分必要条件是 xFx yFy ;
2 xz
x y 1 z 2; 2 2
2. 设 u
x 2 2 y 2 3z 2 ,则梯度 gradu
(1,2,0)
1 4 , , 0 ; 3 3
an ( x 1)n 的收敛区间是 (3,1) ; n 1 n 0
3. 设幂级数
an x n 的收敛半径是 2 ,则幂级数
bn an an 1 (n 1, 2, ) ,则 bn 收敛. bn 1 n 1
证
由于 bn an an 1bn 1 bn 1 0 ( n 1, 2, ) ,故正数列 anbn 单调递减且有下界,数
列 anbn 收敛, (3 分)从而得正项级数
n
四(15) 。 (本题满分 7 分)将函数 f ( z ) 级数. 解 f ( z)
1 在圆环域 1 z i 3 内展开为 Laurent z 4
2
i 1 1 i 1 1 1 (1+2 分) 4 z 2i z 2i 4( z i) 1 i 12 1 i( z i) zi 3
(1)
n 1
n
1 是否收敛,若收敛,判别是绝对收敛, n 2 ln n
1 2 0, 记 f ( x ) x 2 ln x , 令 f ( x ) 1 0 , 得x 2, 当n 3 n n 2 ln n x
05东南大学高等数学试卷 期中试卷
14. 计算 x2 d s ,其中 L 是曲面 x2 y2 z2 9 与平面 z 5 的交线。
L
四(15).(本题满分 7 分)求由曲面 z x2 y2 与 z 2 x2 y2 所围成的立体的表
面积。
五(16).(本题满分 9 分)在曲面 x2 y2 z2 1 (x 0, y 0, z 0) 上求一点 P ,
东南大学学生会 Students' Union of Southeast University
05高A期中试卷
一. 填空题(本题共 5 小题,每小题 4 分,满分 20 分)
1. 设 z z(x, y) 由方程 x cos y y cos z z cos x 2 所确定,则 dz
。
2. 设 z i1i ,则 Im z
6. 设 I1
1
dx
1
1 x2 0
xy 2
f
x2 y2 dy ,I2
2 d
0
1 f ( 2 ) d ,其中 f (t) 是连
0
续函数,则有
[]
(A) I1 I2
(B) I1 I2
(C) I1 2I2
(D) I1 I2
7.
曲线
x
2
y2
z2
6 在点 (1, 2,1) 处的切线必定平行于平面
东南大学学生会 Students' Union of Southeast University
止 于 至 善
三. 计算下列各题(本题共 5 小题,每小题 7 分,满分 35 分)
10.
设z
f
x
sin
y,
x y
,
其中
f
具有二阶连续偏导数,求 2 z xy
东南大学高等数学期末考试试卷(含答案)
东南大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.不定积分.
A、
B、
C、
D、
【答案】A
2.设函数,则.
A、正确
B、不正确
【答案】B
二、二选择题
3.设函数,则().
A、
B、
C、
D、
【答案】C
4.函数在点处连续.
A、正确
B、不正确
【答案】A
5.设函数,则().
A、
B、
C、
D、
【答案】A
6.函数的图形如图示,则是函数的
( ).
A、极小值点也是最小值点
B、极小值点但非最小值点
C、最大值点
D、极大值点
【答案】A
7.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
8.微分方程的通解是().A、
B、
C、
D、
【答案】A
一、一选择题
9.().
A、
B、
C、
D、
【答案】B
10.设函数,则().
A、
B、
C、
D、
【答案】D
11.曲线在点处切线的方程为().A、
B、
C、
D、
【答案】D
12.是偶函数.
A、正确
B、不正确
【答案】A
13.().
A、
B、
C、
D、
【答案】C
14.定积分.
A、正确
B、不正确
【答案】A
15..
A、正确
B、不正确
【答案】B。
东南大学大一公共课高等数学期末考试卷4套
姓名
课程名称 适用专业
东南大学考试卷
高等数学 A(期中) 考 试 学 期 0 9 - 1 0 - 3 得分 选学高数 A 的各专业 考试形式 闭卷 考试时间长度 120 分钟
题号
一
二
三
四
五
六
得分
一.填空题(本题共 5 小题,每小题 4 分,满分 20 分)
1.由方程 xyz + sin(π z) = 0 确定的隐函数 z = z(x, y) 在点 (1, 0,1) 处的全微分 dz = ;
共4页
第2页
∫∫∫ 13. 求极限 lim 1
sin(x2 + y2 →0+
5 x2 + y2 +z2 ≤t2
∫∫ 14.计算 xdy ∧ dz + z2dx ∧ dy ,其中 S 为 z = x2 + y2 与 z = 1所围成的立体的表面, S
取外侧.
四(15)(本题满分 8 分)求密度为1,半径为 R 的上半球面对球心处单位质量质点的
(1, 1, 1)
¨
4. I =
|y − x2| max{x, y}dxdy.
0≤x≤1 0≤y≤1
‹
5.
(x2 + y)dS,
S
x2 + y2 ≤ z ≤ 1
S
.
4
3
8
f (z) = u+iv
f (0) = −3i , f (z) . (
z)
,
u(x, y) = x2−y2+4x,
8
z = 2(x2 + y2) z = 3 − x2 − y2
z0
;
fx, fy, z = f (x, y)
10-11-3高等数学B期中试卷答案 东南大学高等数学试卷
上有
f
(x)
2 x,
0,
x 0 ,则 0 x
f (x) 的 Fourier 级数在 x 2 处收敛于 1 ;
5.级数
2n (x 1)n 的收敛域是[ 1 , 3 ) .
n1 n 1
22
二.单项选择题(本题共 4 小题,每小题 4 分,满分 16 分)
x 3t
6.设直线
L1
:
x z 1 0 x 2y 3 0
的单位向量为
1 (1,1,1) ; 3
2.点 (1,2,0) 在 x y z 0 上的投影点为 (0,1,1) ;
3.函数 u ln(x y2 z2 ) 在点 A(1,0,1) 处沿着点 A 指向点 B(3,2,2) 方向的方向导数为 1 ; 2
4.设
f
(x) 是以
2
为周期的周期函数,在区间[ , )
与
L2
:
y
7 z2
4t t
,则
(A)平行 (B)重合 (C)异面 7. 下列反常积分中收敛的是
(D)相交
(A) x arctan x dx 1 3 1 x4
(B) e x2 dx
0
(C)
4
1 x2
sin
1 x
dx
8. 下列命题正确的是
[C]
[B]
(D)
21 1 x(ln x)2
2
n(n 1)xn2 1 2
2
n(n 1)xn1
1 (n 2)(n 1)xn 1 (n 1)nxn (n 1)2xn f (n) (0)xn , x (1,1)
20
21
0
0 n!
(n 1)2 f (n) (0) , f (100) (0) (101)2100! n!
东南大学高等数学10-11-3(期中)试题和答案
y
O
x
= 2(2−√2).
cos22θ
ρ
2
+
ρ
′2
=
ρ
2
+
sin22θ ρ2
=
ρ 4 + sin22θ ρ2
=
1 ρ2
高等数学
10-11-3(期中)试题
四(15). (8’) 已知解析函数 f(z) = u + iv 的实部
u = −2xy − 2y, 求f(z)的表达式(用z表示) 及 f ′(i).
∂z ∂x
+
∂z ∂y
=−
Fx Fz
−
Fy Fz
= 1.
高等数学
10-11-3(期中)试题
2.
交换二次积分的顺序
∫ −26dx∫
2−x
1 4
x2−1
f(x,
y)dy
=
__.
解: D = {(x, y) | −6 ≤ x ≤ 2, −14x2−1 ≤ y ≤ 2−x}
= D1 ∪ D2,
y 8
D1:
−2√y+1 ≤ x ≤ 2√y+1 −1 ≤ y ≤ 0
u取到最小值.
272365083@
3
请双面打印/复印(节约纸张)
高等数学
10-11-3(期中)试题
六(17). (8’) 曲面 z = 13 − x2 − y2 将球面
x2 + y2 + z2 = 25 分成三部分, 求这三个
部分的面积之比.
z
解: 两曲面交于两个圆
13
C1:
x2 + y2 = 9 z= 4
二阶连续偏导数和导数,
东南大学08-09-3高等数学B期末考试试卷参考答案及评分标准
08-09-3高数B 期末试卷(A )参考答案及评分标准09.6.8一.填空题(本题共9小题,每小题4分,满分36分) 1.曲面2cos()e 4xz x x y yz π-++=在点(0,1,2)处的法线方程是1222x y z -==-; 2.设u =(1,2,0)14,,033u⎧⎫=⎨⎬⎩⎭grad ; 3.已知{}{}2,1,2,1,3,2=--=-A B ,则A 在B方向的投影()=B A4.设闭曲线:1C x y +=,取逆时针方向,则曲线积分2d d Cy x x y-⎰Ñ的值是2-;5.设函数(,)F x y 具有一阶连续偏导数,则曲线积分¼(,)(d d )ABF x y y x x y +⎰与路径无关的充分必要条件是xy xFyF =;6.二重积分()2221ecos d d xx y y xy x y +≤+⎰⎰的值是0;7.设S 为球面:2222x y z R ++=,则曲面积分()222d Sx y z S ++⎰⎰Ò的值8.设C 是折线11(02)y x x =--≤≤,则曲线积分d C y s ⎰;9.取21ln n a n n =(注:答案不唯一),可使得级数2n n a ∞=∑收敛,且级数2ln n n a n ∞=∑发散.二.计算下列各题(本题共4小题,满分30分) 10.(本小题满分7分)设((),)z f x y x y ϕ=-,其中f 具有连续的二阶偏导数,ϕ具有连续导数,计算2,z z x x y∂∂∂∂∂. 解12z f f xϕ∂=+∂,(3分)21111222()zf x f x f f x yϕϕϕϕϕ∂'''=++--∂∂(4分)11.(本小题满分7分)计算2(1)d d Dx xy x y ++⎰⎰,其中{}22(,)1,0D x y x y x =+≤≥.解21230013(1)d d 0d d 224Dx xy x y ππϕρρπ++=++=⎰⎰⎰⎰(1+1+3+2分)12.(本小题满分8分)计算二次积分11213021d e d xxyx y y-⎰⎰. 解,1111111211133200222111d e d d e d e 1d e 2x x xy y y yx y y x y y y y ---⎛⎫==-=- ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰(3+2+3分)13.(本小题满分8分)求密度均匀分布的立体的质心坐标.解0x y ==(1分))22cos 340122cos 240125d sin cos d d 2518d sin d d 3r rz r rππθππθπϕθθθϕθθ===⎰⎰⎰⎰⎰⎰1+1+2+2+1分)三(14).(本题满分7分)试求过点(3,1,2)A -且与z 轴相交,又与直线1:23L x y z ==垂直的直线方程.解设312x y z lmn-+-==为所求直线L 的方程,(1分)由于直线L与z 轴相交,所以三个向量{},,l m n =s ,OA 及k 共面,从而312001l m n-=,即30l m --=(1),(2分)又由于L 与1L 互相垂直,得11023l m n ++=,即6320l m n ++=(2)(2分)联立(1),(2)解得3l m =-,152n m =,所求直线L 的方程为3126215x y z -+-==--(2分)四(15)。
04-05-3非电类期中试卷 东南大学高等数学试卷
3、若函数 z
f
(
x,
y)
在点
P0
(
x0
,
y0
)
处的两个偏导数
z x
,
z y
都存在,则(
)
(A) f (x, y) 在 P0 点连续
(B) z f (x, y0 ) 在 x x0 点连续
(C) dz z dx z dy
x P0 P0
y P0
(D) A,B,C 都不对
4、若函数
f
(
x,
y)
在点
东南大学学生会 Students' Union of Southeast University
止 于 至 善
一、填空题
04-05-3 非 电 类 期 中 试 卷
1、幂级数 2n (x 1)n 收敛域为
。
n1 2n 1
2、幂级数 an xn 的收敛半径为 3,则 nan (x 1)n 的收敛区间为
P0
(0,
0)
的某个邻域内连续,且
lim
x0
f (x, y) xy (x2 y2)2
1,则(
)
y0
东南大学学生会 Students' Union of Southeast University
止 于 至 善
(A) 点 P0 不是 f (x, y) 的极值点 (B) 点 P0 是 f (x, y) 的极大值点
6
)
(C) 点 P0 是 f (x, y) 的极小值点 (D) 无法判定点 P0 是否为 f (x, y) 的极值点
三、计算题
1、求过直线
2x 3y 9z 5
x y z 1
0
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档精品文档 精品文档(A)∑∞=121n n(B) ∑∞=⎪⎭⎫ ⎝⎛+111ln n n (C) ()nn n n n ⎪⎭⎫⎝⎛+-∑∞=111 (D) ∑⎰∞=+1104d 1n n x x x 4. 下列结论正确的是 [ ] (A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤bad cx x f x x f d d .(B) 若()x f 在区间[]b a ,上可积,则()x f 在区间[]b a ,上可积. (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TTa ax x f x x f 0d d .(D) 若()x f 在区间[]b a ,上可积,则()x f 在[]b a ,内必有原函数. 三. (每小题7分,共35分)1. ()()3020d cos ln lim x tt t xx ⎰+→. 2. 判断级数∑∞=-1354n n n n的敛散性. 3. x x x x d cos cos 042⎰-π. 4. ⎰∞+13d arctan x xx . 5. 求初值问题 ()()⎪⎩⎪⎨⎧-='=+=+''210,10sin y y xx y y 的解.四.(8分) 在区间[]e ,1上求一点ξ,使得图中所示阴影部分绕x 轴旋转所得旋转体的体积最小五.(7分) 设 b a <<0,求证 ()ba ab a b +->2ln. 六.(7分) 设当1->x 时,可微函数()x f 满足条件()()()0d 110=+-+'⎰xt t f x x f x f且()10=f ,试证:当0≥x 时,有 ()1e≤≤-x f x成立.七.(7分) 设()x f 在区间[]1,1-上连续,且()()0d tan d 1111==⎰⎰--x x x f x x f ,xln精品文档精品文档证明在区间()1,1-内至少存在互异的两点21,ξξ,使()()021==ξξf f .04-05-2高等数学(非电)期末试卷答案及评分标准 05.1.14一. 填空题(每小题4分,共20分) 1. 0,一; 2.21x Cx +; 3. 1e 4-; 4. 1; 5. 343. 二. 单项选择题(每小题4分,共16分) 1. A; 2.B; 3. D; 4.C. 三. (每小题7分,共35分) 1. 原式=()分分分261)2(1cos lim 3131)3(3cos ln lim 20220 =-+=+→→x x x x x x x2. 分515453153154lim 354354lim lim11111<=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⋅=--=+∞→+++∞→+∞→n nn n n n n n n n nn n a a由比值法知原级数收敛. 分23. 原式 =()()分分分222d cos sin 3d cos sin 2200 πππππ==⎰⎰x x x x x x4. 原式()分31d arctan 2112212⎥⎦⎤⎢⎣⎡+--=⎰∞+∞+x x x xx=()分分2212d 111218122 =⎪⎭⎫ ⎝⎛+-+⎰∞+x x x π5. 对应的齐次方程的通解为 分2sin cos 21 xC x C y +=非齐次方程x y y =+''的一个特解为()分11 x y =,非齐次方程x y y sin =+''的一个特解为精品文档精品文档()分1cos 22 x x y -=,原方程的通解为 x xx x C x C y cos 2sin cos 21-++=)1(分 ,利用初值条件可求得 1,121-==C C , 原问题的解为分2cos 2sin cos xxx x x y -+-=四.(8分)()()()()()()()()()[]()()()()()0e),1(e2,01ln 223ln 4ln 2e 2ln 2ln 2ln 2ln 2)d ln 1(2d ln 212122e212e212>⎪⎪⎭⎫ ⎝⎛''==-='-+-=-++--+-=-+=⎰⎰V t t t V t t t t t txx x x x x x x x x x x x x t V tttt 且分得分令分分 πππππ因此21e=t 是()t V 在[]e ,1上的唯一的极小值点,再由问题的实际意义知必存在最小体积,故21e=ξ是最小值点.分1五.(7分) 设t a b =,原不等式等价于()1,112ln >+->t t t t , 即等价于 ()()()分31,012ln 1 >>--+=t t t t t f()()()分101,11ln ,01 ='-+='=f tt t f f()1,0112≥≥-=''t t t t f ,且等号当且仅当1=t 时成立 分1因此()t f '单增,()()1,01>='>'t f t f 从而()t f 单增,()()1,01>=>t f t f ,原不等式得证.分2六.(7分)由题设知()10-='f , 分1 所给方程可变形()()()()()⎰=-++'+xt t f x f x x f x 00d 11两端对x 求导并整理得 ()()()()分1021 ='++''+x f x x f x精品文档精品文档这是一个可降阶的二阶微分方程,可用分离变量法求得 ()分21e xC x f x+='-由于()10-='f ,得()()x f xx f C x,01e ,1<+-='-=-单减,而(),10=f 所以当0≥x 时,())1(1分 ≤x f ,对()01e <+-='-xx f x在[]x ,0上进行积分()()分2e d e 1d 1e 00-0 xx t xtt t t f x f --=-≥+-=⎰⎰七.(7分) 记()()⎰-=xt t f x F 1d ,则()x F 在[]1,1-上可导,且()()分2011 ==-F F若()x F 在()1,1-内无零点,不妨设()()1,1,0-∈>x x F()()()()0d sec d sec tan )(d tan d tan 0112112111111<-=-===⎰⎰⎰⎰-----x x x F x x x F x x F x F x x x x f 此矛盾说明()x F 在()1,1-内至少存在一个零点分2,0 x对()x F 在[][]1,,,100x x -上分别使用Rolle 定理知存在()()1,,,10201x x ∈-∈ξξ,使得()(),021='='ξξF F 即 ()()分3021 ==ξξf f精品文档东南大学考试卷(A卷)课程名称工科数学分析考试学期 04-05-2(期末)得分适用专业上课各专业考试形式闭考试时间长度150分钟精品文档精品文档4.下列结论正确的是 [ ](A) 若],[],[d c b a ⊇,则必有⎰⎰≥badcdx x f dx x f )()((B) 若|)(|x f 在区间],[b a 上可积,则)(x f 在区间],[b a 上可积 (C)若)(x f 是周期为T 的连续函数,则对任意常数a 都有⎰⎰+=TTa adx x f dx x f 0)()(一.填空题(每小题4分,共20分) 1.设121-=x y ,则)10(y (1)= 。
2.设⎰⎰⎥⎦⎤⎢⎣⎡+x t dt du u 0sin 141,则='')0(f 。
3.设⎰>+=x xx dt tx f 23)0(11)(,则当=x 时,)(x f 取得最大值。
4.设)(x f 满足1)(1)(-=+'x f xx f ,则)(x f = 。
5.已知)(x F 是)(x f 的一个原函数,且21)()(x x xF x f +=,则=)(x f 。
二.选择题(每小题4分,共16分)1.设,sin )(3xxx x f π-=则)(x f [ ] (A)有无穷多个第一类间断点 (B)只有一个可去间断点 (C )有两个跳跃间断点 ( D)有三个可去间断点2.设当0x x →时,)(),(x x βα都是无穷小量(0)(≠x β),则当0x x →时,下列 表达式不一定是无穷小量的是 [ ](A))()(2x x βα (B)xx x 1sin )()(22βα+ (C)))()(1ln(x x βα+ (D)|)(||)(|x x βα+3.下列反常积分发散的是 [ ] (A)⎰-11sin 1dx x (B)⎰--11211dx x (C)⎰∞+-02dx e x (D) ⎰∞+22ln 1dx x x精品文档精品文档(D)若)(x f 在区间],[b a 上可积,则)(x f 在),(b a 内必定有原函数. 三.(每小题7分,共35分) 1. 设)(x y y =满足222=-+xyye y x ,求曲线)(x y y =在点)2,0(处的切线方程.2. 计算积分⎰-⎥⎦⎤⎢⎣⎡-++116|)2ln(|1sin dx x x x 3.计算积分⎰-dx xx 222 4.计算反常积分⎰∞+13arctan dx x x5.设⎰-=221)(x t dt e x f ,求⎰10)(dx x xf .四.(7分) 求微分方程初值问题⎪⎩⎪⎨⎧-='=+=+''21)0(,1)0(sin y y x x y y 的解.五.(8分)在区间],1[e 上求一点ξ,使得图中所示阴影部分 绕x 轴旋转所得旋转体的体积最小。
六.(7分)设b a <<0,求证:ba ab a b +->)(2ln . 七.(7分)求极限)1sin 31sin 21sin 11(sinlim nn n n n n ++++++++∞→东 南 大 学 考 试 卷(A 卷)课程名称 工科数学分析考试学期 04-05-3(期末) 得分xln =精品文档精品文档适用专业 上课各专业 考试形式闭 考试时间长度 150分钟.空2.设∑为上半球面224y x z --=,则曲面积分⎰⎰∑+++1222z y x dS 值为[ ](A )π4 (B)π516 (C) π316 (D) π383.设力场j y x i y x F )24()43(++-=,将一质点在力场内沿xoy 平面内的椭圆191622=+y x 正向精品文档精品文档运动一周,场力所做的功W 为 [ ] (A) π96 (B) π48 (C) π24 (D) π124.二元函数),(y x f 在点),(00y x 处的两个偏导数),(),,(0000y x f y x f y x 存在是函数f 在该点可微的 [ ] (A )充分而非必要条件 (B )必要而非充分条件 (C )充分必要条件 (D )既非充分也非必要条件 三.计算下列各题(每小题7分,共35分) 1. 计算积分⎰=+-2||22)1()1(z dz z z z。