三角函数对照表
三角函数表
三角函数表你没有看错,这是一个关于紧固件的企业网站,却在讲述三角函数这风牛马不相及的故事.因为......三角函数表用于计算角度和边长的关系,在产品零件的绘图和设计中经常用到,所以我们整理了下表。
此表不仅可供我们机械工人参考,也可供其他工人或学生参考。
先来个定义正弦函数 sin(A)=a/h余弦函数 cos(A)=b/h正切函数 tan(A)=a/b余切函数 cot(A)=b/a正割函数 sec (A) =h/b余割函数 csc (A) =h/a注:a—所研究角的对边b—所研究的邻边h—所研究角的斜边以下是具体的对应参数表:1,正弦函数表 sinsin1=0. sin2=0. sin3=0.sin4=0. sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0. sin12=0. sin13=0. sin14=0. sin15=0. sin16=0. sin17=0. sin18=0. sin19=0. sin20=0. sin21=0. sin22=0. sin23=0. sin24=0. sin25=0. sin26=0. sin27=0. sin28=0. sin29=0. sin30=0. sin31=0. sin32=0. sin33=0. sin34=0. sin35=0. sin36=0. sin37=0. sin38=0. sin39=0. sin40=0. sin41=0. sin42=0. sin43=0. sin44=0. sin45=0. sin46=0. sin47=0. sin48=0. sin49=0. sin50=0. sin51=0. sin52=0. sin53=0. sin54=0. sin55=0. sin56=0. sin57=0. sin58=0. sin59=0. sin60=0. sin61=0. sin62=0. sin63=0. sin64=0. sin65=0. sin66=0. sin67=0. sin68=0. sin69=0. sin70=0. sin71=0. sin72=0. sin73=0. sin74=0. sin75=0. sin76=0. sin77=0. sin78=0. sin79=0. sin80=0. sin81=0. sin82=0. sin83=0. sin84=0. sin85=0. sin86=0. sin87=0. sin88=0. sin89=0.sin90=12,余弦函数表 coscos1=0. cos2=0. cos3=0.cos4=0. cos5=0. cos6=0.cos7=0. cos8=0. cos9=0.cos10=0. cos11=0. cos12=0. cos13=0. cos14=0. cos15=0. cos16=0. cos17=0. cos18=0. cos19=0. cos20=0. cos21=0. cos22=0. cos23=0. cos24=0. cos25=0. cos26=0. cos27=0. cos28=0. cos29=0. cos30=0. cos31=0. cos32=0. cos33=0. cos34=0. cos35=0. cos36=0. cos37=0. cos38=0. cos39=0. cos40=0. cos41=0. cos42=0. cos43=0. cos44=0. cos45=0. cos46=0. cos47=0. cos48=0. cos49=0. cos50=0. cos51=0. cos52=0. cos53=0. cos54=0. cos55=0.2 cos56=0. cos57=0.2 cos58=0. cos59=0. cos60=0. cos61=0. cos62=0.6 cos63=0. cos64=0.6 cos65=0. cos66=0. cos67=0. cos68=0.2 cos69=0. cos70=0. cos71=0.5 cos72=0.5cos73=0.7 cos74=0. cos75=0. cos76=0. cos77=0. cos78=0. cos79=0. cos80=0. cos81=0. cos82=0. cos83=0. cos84=0. cos85=0. cos86=0. cos87=0. cos88=0. cos89=0.cos90=03,正切函数表 tantan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0. tan8=0. tan9=0.tan10=0. tan11=0. tan12=0. tan13=0. tan14=0. tan15=0. tan16=0. tan17=0. tan18=0. tan19=0. tan20=0. tan21=0. tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28=0. tan29=0. tan30=0. tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37=0. tan38=0. tan39=0. tan40=0. tan41=0. tan42=0. tan43=0. tan44=0. tan45=0. tan46=1. tan47=1. tan48=1. tan49=1. tan50=1. tan51=1. tan52=1. tan53=1. tan54=1.tan58=1. tan59=1. tan60=1. tan61=1. tan62=1. tan63=1. tan64=2. tan65=2. tan66=2. tan67=2. tan68=2. tan69=2. tan70=2. tan71=2. tan72=3. tan73=3. tan74=3. tan75=3. tan76=4. tan77=4. tan78=4. tan79=5. tan80=5. tan81=6. tan82=7. tan83=8. tan84=9. tan85=11. tan86=14. tan87=19. tan88=28. tan89=57.tan90=(无限)4,余切函数 cotcot89=0. cot88=0. cot87=0. cot86=0. cot85=0. cot84=0. cot83=0. cot83=0. cot81=0. cot80=0. cot79=0. cot78=0. cot77=0. cot76=0. cot75=0. cot74=0. cot73=0. cot72=0. cot71=0. cot70=0. cot69=0. cot68=0. cot67=0. cot66=0. cot65=0. cot64=0. cot63=0. cot62=0. cot61=0. cot60=0. cot59=0. cot58=0. cot57=0. cot56=0. cot55=0. cot54=0.cot50=0. cot49=0. cot48=0. cot47=0. cot46=0. cot45=0. cot44=1. cot43=1. cot42=1. cot41=1. cot40=1. cot39=1. cot38=1. cot37=1. cot36=1. cot35=1. cot34=1. cot33=1. cot32=1. cot31=1. cot30=1. cot29=1. cot28=1. cot27=1. cot26=2. cot25=2. cot24=2. cot23=2. cot22=2. cot21=2. cot20=2. cot19=2. cot18=3. cot17=3. cot16=3. cot15=3. cot14=4. cot13=4. cot12=4. cot11=5. cot10=5. cot9=6. cot8=7. cot7=8. cot6=9. cot5=11. cot4=14. cot3=19. cot228. cot1=57.cot0=(无限)咨询与留言。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数常用公式表格
三角函数常用公式表格三角函数是数学中一个重要的分支,在几何、物理、工程等众多领域都有着广泛的应用。
为了方便学习和使用,我们将常见的三角函数公式整理成一个表格,并对每个公式进行详细的解释。
一、基本三角函数定义1、正弦函数(Sine Function):sin(θ) =对边/斜边2、余弦函数(Cosine Function):cos(θ) =邻边/斜边3、正切函数(Tangent Function):tan(θ) =对边/邻边二、同角三角函数基本关系1、平方关系:sin²(θ) +cos²(θ) = 1这意味着对于任何角度θ,正弦的平方加上余弦的平方总是等于1。
2、商数关系:tan(θ) =sin(θ) /cos(θ)只要余弦不为零,正切就等于正弦除以余弦。
三、诱导公式1、sin(θ) =sin(θ)2、cos(θ) =cos(θ)3、sin(π θ) =sin(θ)4、cos(π θ) =cos(θ)5、sin(π +θ) =sin(θ)6、cos(π +θ) =cos(θ)诱导公式可以帮助我们将不同象限的角度的三角函数值进行转化。
四、和差角公式1、sin(α +β) =sin(α)cos(β) +cos(α)sin(β)2、sin(α β) =sin(α)cos(β) cos(α)sin(β)3、cos(α +β) =cos(α)cos(β) sin(α)sin(β)4、cos(α β) =cos(α)cos(β) +sin(α)sin(β)这些公式在求解三角函数的和差运算时非常有用。
五、二倍角公式1、sin(2θ) =2sin(θ)cos(θ)2、cos(2θ) =cos²(θ) sin²(θ) =2cos²(θ) 1 =1 2sin²(θ)3、tan(2θ) =2tan(θ) /(1 tan²(θ))二倍角公式常用于将角度加倍时的三角函数计算。
三角函数对照表
三角函数对照表三角函数SIN COS TAN三角函数SIN COS TAN 0°01090°10无1°89°2°88°3°87°4°86°5°85°6°84°7°83°8°82°9°81°10°80°11°79°12°78°13°77°14°76°15°75°16°74°17°73°18°72°19°71°20°70°21°69°22°68°23°67°24°66°25°65°26°64°27°63°28°62°29°61°30°60°31°59°32°58°33°57°34°56°35°55°36°54°37°53°38°52°39°51°40°50°41°49°42°48°43°47°44°46°45°145°1同角基本关系式倒数关系商的关系平方关系tan cot1 sin csc1 cos sec1sin sectancos csccos csccotsin sec222222sin cos11tan sec1cot csc诱导公式sin()sin cos()cos tan()tan cot()cotsin()cos2cos()sin2tan()cot2cot()tan2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot(其中k∈Z)sin()cos2cos()sin2tan()cot2cot()tan 2sin()sincos()costan()tancot()cot3sin()cos23cos()sin23tan()cot23cot()tan2sin(2)sincos(2)costan(2)tancot(2)cot两角和与差的三角函数公式万能公式sin()sin cos cos sin sin()sin cos cos sin cos()cos cos sin sin cos()cos cos sin sintan tantan()1tan tantan tantan()1tan tan2tan(/2) sin1tan2(/2)1tan2(/2) cos1tan2(/2)2tan(/2) tan1tan2(/2)半角的正弦、余弦和正切公式三角函数的降幂公式1cossin()221coscos()221cos1cos sin tan()21cos sin1cos221cos2 sin21cos2 cos2二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin22sin coscos2cos2sin22cos2112sin2 2tantan21tan2sin33sin4sin3 cos34cos33cos.3tan tan3 tan313tan2三角函数的和差化积公式三角函数的积化和差公式sin sin2sin cos22sin sin2cos sin22cos cos2cos cos22cos cos2sin sin221sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a xb x a b x其中角所在的象限由a、b的符号确定,角的值由tan ba确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
三角函数对照表
三角函数对照表
三角函数的和差化积公式 三角函数的积化和差公式
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ=确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”。
三角函数表
DOCS SMART CREATE
三角函数表:概念与应用
DOCS
01
三角函数的基本概念
直角三角形与三角函数的定义
01
直角三角形的概念
• 两条直角边的边长互为邻边
• 两条直角边之间的夹角为直角
02
三角函数的定义
• 正弦函数:sinθ = 对边/斜边
• 余弦函数:cosθ = 邻边/斜边
三角函数的关系
• 和差角公式:sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
• 积商角公式:cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
• 倍角公式:sin(2a) = 2sin(a)cos(a),cos(2a) = cos^2(a) - sin^2(a)
三角函数的乘法公式与除法公式
三角函数的乘法公式
三角函数的除法公式
• sin(a)sin(b) = 1/2[cos(a - b) - cos(a + b)]
• sin(a)/cos(a) = tan(a)
• cos(a)cos(b) = 1/2[cos(a + b) + cos(a - b)]
• cos(a)/sin(a) = cot(a)
DOCS
• sin(90°) = 1
• cos(90°) = 0
• tan(90°) = 无定义
任意角度三角函数表
• 任意角度三角函数值
• 利用计算器或软件计算
• 使用反正弦、反余弦、反正切函数转换
• 利用三角函数性质和关系计算
03
三角函数的转换与应用
三角函数正弦余弦表
三角函数正弦余弦表
正弦和余弦是三角函数中最基本的两个函数,它们在数学、物理、工程等领域都有广泛的应用。
下面是正弦和余弦表:一、正弦表角度0°30°45°60°90°
sinθ0 1/2 √2/2√3/2 1二、余弦表角度 0° 30°45° 60° 90°
cosθ 1 √3/2 √2/2 1/2 0
从上述表格可以看出,当角度为0时,正弦值为0,余弦值为1;当角度为30时,正弦值为1/2,余弦值为√3/2;当角度为45时,正弦值和余弦值均为√( ) / ( ) ,即根号二分之一;当角度为60时,正弦值和余弧值分别是√( ) / ( ) 和半径的一半;而当角底等于90时,则正弧值等于半径长(即单位圆的直径),而其餘则无定义。
需要注意的是,在三维空间中存在着双曲线函数tanh(x)与双曲线反函数arctanh(x),这些也被称作“超越函数”,但它们并不属于三角函数的范畴。
常见三角函数值对照表
常见三角函数值对照表
三角函数的本质是任意角的集合与一组比值的变量之间的映射。
接下来分享常见的三角函数值对照表。
三角函数值对照表
三角函数值口诀
30°,45°,60°这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3.正切的特点是将分子全部都带上根号,令分母值为3,则相应的被开方数就是3,9,27。
记忆口诀一
三十,四五,六十度,三角函数记牢固;
分母弦二切是三,分子要把根号添;
一二三来三二一,切值三九二十七;
递增正切和正弦,余弦函数要递减.
记忆口诀二
一二三三二一,戴上根号对半劈。
两边根号三,中间竖旗杆。
分清是增减,试把分母安。
正首余末三,好记又简单。
零度九十度,斜线z形连。
端点均为零,余下竖横填。
判断三角函数值的符号
记忆公式是:奇变偶变,符号看象限。
对于π/2*k±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即
sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变),然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
示例:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα。
三角函数表
三角函数表
在数学领域中,三角函数是一类描述角和三角形边之间关系的函数。
主要有正
弦函数、余弦函数和正切函数等。
这些函数在数学和物理学中扮演着重要的角色,广泛应用于各种领域中。
下面是三角函数表,列出了各角度下正弦、余弦和正切的数值:
角度(°)正弦值余弦值正切值
0 0 1 0
30 0.5 0.866 0.577
45 0.707 0.707 1
60 0.866 0.5 1.732
90 1 0 无穷大
除了上表中列举的角度外,三角函数在整个数轴上都有定义。
在单位圆中,三
角函数的定义与三角形的三个边的比例有关。
正弦函数代表了对边与斜边的比值,余弦函数代表了邻边与斜边的比值,而正切函数代表了对边与邻边的比值。
三角函数在解决三角形相关问题、波动问题等方面有着广泛应用。
在物理学中,三角函数也经常出现,比如在描述波动、振动等现象时,三角函数是不可或缺的工具。
总的来说,三角函数是数学中的一大重要概念,深入理解三角函数将有助于我
们更好地理解和应用数学知识,进而解决实际问题。
希望通过这份三角函数表,读者能对三角函数有更清晰的认识。
三角函数对照表(转)
sin90=1
cos1=0.9998476951563913 cos2=0.9993908270190958 cos3=0.9986295347545738
cos4=0.9975640502598242 cos5=0.9961946980917455 cos6=0.9945218953682733
sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
(1)特殊角三角函数值
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos30=0.866025404 二分之根号3
cos45=0.707106781 二分之根号2
cos58=0.5299192642332049 cos59=0.5150380749100544 cos60=0.5000000000000001
cos61=0.4848096202463371 cos62=0.46947156278589086 cos63=0.4539904997395468
cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017
高中三角函数tan对照表
高中三角函数tan对照表sin(0°)=0.000000,cos(0°)=1.000000,tan(0°)=0.000000 sin(1°)=0.017452,cos(1°)=0.999848,tan(1°)=0.017455 sin(2°)=0.034899,cos(2°)=0.999391,tan(2°)=0.034921 sin(3°)=0.052336,cos(3°)=0.998630,tan(3°)=0.052408 sin(4°)=0.069756,cos(4°)=0.997564,tan(4°)=0.069927 sin(5°)=0.087156,cos(5°)=0.996195,tan(5°)=0.087489 sin(6°)=0.104528,cos(6°)=0.994522,tan(6°)=0.105104 sin(7°)=0.121869,cos(7°)=0.992546,tan(7°)=0.122785 sin(8°)=0.139173,cos(8°)=0.990268,tan(8°)=0.140541 sin(9°)=0.156434,cos(9°)=0.987688,tan(9°)=0.158384sin(1 0°)=0.173648,cos(10°)=0.984808,tan(10°)=0.176327sin(11°)=0.190809,cos(11°)=0.981627,tan(11°)=0.194380sin(12°)=0.207912,cos(12°)=0.978148,tan(12°)=0.212557sin(13°)=0.224951,cos(13°)=0.974370,tan(13°)=0.230868sin(14°)=0.241922,cos(14°)=0.970296,tan(14°)=0.249328sin(15°)=0.258819,cos(15°)=0.965926,tan(15°)=0.267949sin(16°)=0.275637,cos(16°)=0.961262,tan(16°)=0.286745sin(17°)=0.292372,cos(17°)=0.956305,tan(17°)=0.305731sin(18°)=0.309017,cos(18°)=0.951057,tan(18°)=0.324920sin(19°)=0.325568,cos(19°)=0.945519,tan(19°)=0.344328sin(20°)=0.342020,cos(20°)=0.939693,tan(20°)=0.363970sin(21°)=0.358368,cos(21°)=0.933580,tan(21°)=0.383864 sin(22°)=0.374607,cos(22°)=0.927184,tan(22°)=0.404026 sin(23°)=0.390731,cos(23°)=0.920505,tan(23°)=0.424475 sin(24°)=0.406737,cos(24°)=0.913545,tan(24°)=0.445229 sin(25°)=0.422618,cos(25°)=0.906308,tan(25°)=0.466308 sin(26°)=0.438371,cos(26°)=0.898794,tan(26°)=0.487733 sin(27°)=0.453990,cos(27°)=0.891007,tan(27°)=0.509525 sin(28°)=0.469472,cos(28°)=0.882948,tan(28°)=0.531709 sin(29°)=0.484810,cos(29°)=0.874620,tan(29°)=0.554309 sin(30°)=0.500000,cos(30°)=0.866025,tan(30°)=0.577350 sin(31°)=0.515038,cos(31°)=0.857167,tan(31°)=0.600861 sin(32°)=0.529919,cos(32°)=0.848048,tan(32°)=0.624869 sin(33°)=0.544639,cos(33°)=0.838671,tan(33°)=0.649408 sin(34°)=0.559193,cos(34°)=0.829038,tan(34°)=0.674509 sin(35°)=0.573576,cos(35°)=0.819152,tan(35°)=0.700208 sin(36°)=0.587785,cos(36°)=0.809017,tan(36°)=0.726543 sin(37°)=0.601815,cos(37°)=0.798636,tan(37°)=0.753554 sin(38°)=0.615661,cos(38°)=0.788011,tan(38°)=0.781286 sin(39°)=0.629320,cos(39°)=0.777146,tan(39°)=0.809784 sin(40°)=0.642788,cos(40°)=0.766044,tan(40°)=0.839100 sin(41°)=0.656059,cos(41°)=0.754710,tan(41°)=0.869287 sin(42°)=0.669131,cos(42°)=0.743145,tan(42°)=0.900404sin(43°)=0.681998,cos(43°)=0.731354,tan(43°)=0.932515 sin(44°)=0.694658,cos(44°)=0.719340,tan(44°)=0.965689 sin(45°)=0.707107,cos(45°)=0.707107,tan(45°)=1.000000 sin(46°)=0.719340,cos(46°)=0.694658,tan(46°)=1.035530 sin(47°)=0.731354,cos(47°)=0.681998,tan(47°)=1.072369 sin(48°)=0.743145,cos(48°)=0.669131,tan(48°)=1.110613 sin(49°)=0.754710,cos(49°)=0.656059,tan(49°)=1.150368 sin(50°)=0.766044,cos(50°)=0.642788,tan(50°)=1.191754 sin(51°)=0.777146,cos(51°)=0.629320,tan(51°)=1.234897 sin(52°)=0.788011,cos(52°)=0.615661,tan(52°)=1.279942 sin(53°)=0.798636,cos(53°)=0.601815,tan(53°)=1.327045 sin(54°)=0.809017,cos(54°)=0.587785,tan(54°)=1.376382 sin(55°)=0.819152,cos(55°)=0.573576,tan(55°)=1.428148 sin(56°)=0.829038,cos(56°)=0.559193,tan(56°)=1.482561 sin(57°)=0.838671,cos(57°)=0.544639,tan(57°)=1.539865 sin(58°)=0.848048,cos(58°)=0.529919,tan(58°)=1.600335 sin(59°)=0.857167,cos(59°)=0.515038,tan(59°)=1.664279 sin(60°)=0.866025,cos(60°)=0.500000,tan(60°)=1.732051 sin(61°)=0.874620,cos(61°)=0.484810,tan(61°)=1.804048 sin(62°)=0.882948,cos(62°)=0.469472,tan(62°)=1.880726 sin(63°)=0.891007,cos(63°)=0.453990,tan(63°)=1.962611 sin(64°)=0.898794,cos(64°)=0.438371,tan(64°)=2.050304sin(65°)=0.906308,cos(65°)=0.422618,tan(65°)=2.144507 sin(66°)=0.913545,cos(66°)=0.406737,tan(66°)=2.246037 sin(67°)=0.920505,cos(67°)=0.390731,tan(67°)=2.355852 sin(68°)=0.927184,cos(68°)=0.374607,tan(68°)=2.475087 sin(69°)=0.933580,cos(69°)=0.358368,tan(69°)=2.605089 sin(70°)=0.939693,cos(70°)=0.342020,tan(70°)=2.747477 sin(71°)=0.945519,cos(71°)=0.325568,tan(71°)=2.904211 sin(72°)=0.951057,cos(72°)=0.309017,tan(72°)=3.077684 sin(73°)=0.956305,cos(73°)=0.292372,tan(73°)=3.270853 sin(74°)=0.961262,cos(74°)=0.275637,tan(74°)=3.487414 sin(75°)=0.965926,cos(75°)=0.258819,tan(75°)=3.732051 sin(76°)=0.970296,cos(76°)=0.241922,tan(76°)=4.010781 sin(77°)=0.974370,cos(77°)=0.224951,tan(77°)=4.331476 sin(78°)=0.978148,cos(78°)=0.207912,tan(78°)=4.704630 sin(79°)=0.981627,cos(79°)=0.190809,tan(79°)=5.144554 sin(80°)=0.984808,cos(80°)=0.173648,tan(80°)=5.671282 sin(81°)=0.987688,cos(81°)=0.156434,tan(81°)=6.313752 sin(82°)=0.990268,cos(82°)=0.139173,tan(82°)=7.115370 sin(83°)=0.992546,cos(83°)=0.121869,tan(83°)=8.144346 sin(84°)=0.994522,cos(84°)=0.104528,tan(84°)=9.514364 sin(85°)=0.996195,cos(85°)=0.087156,tan(85°)=11.430052 sin(86°)=0.997564,cos(86°)=0.069756,tan(86°)=14.300666sin(87°)=0.998630,cos(87°)=0.052336,tan(87°)=19.081137 sin(88°)=0.999391,cos(88°)=0.034899,tan(88°)=28.636253 sin(89°)=0.999848,cos(89°)=0.017452,tan(89°)=57.289962 sin(90°)=1.000000,cos(90°)=0.000000,tan(90°)=无意义sin(91°)=0.999848,cos(91°)=-0.017452,tan(91°)=-57.28996 2sin(92°)=0.999391,cos(92°)=-0.034899,tan(92°)=-28.6362 53sin(93°)=0.998630,cos(93°)=-0.052336,tan(93°)=-19.081 137sin(94°)=0.997564,cos(94°)=-0.069756,tan(94°)=-14.30 0666sin(95°)=0.996195,cos(95°)=-0.087156,tan(95°)=-11.4 30052sin(96°)=0.994522,cos(96°)=-0.104528,tan(96°)=-9.5 14364sin(97°)=0.992546,cos(97°)=-0.121869,tan(97°)=-8.1 44346sin(98°)=0.990268,cos(98°)=-0.139173,tan(98°)=-7.1 15370sin(99°)=0.987688,cos(99°)=-0.156434,tan(99°)=-6.3 13752sin(100°)=0.984808,cos(100°)=-0.173648,tan(100°)= -5.671282sin(101°)=0.981627,cos(101°)=-0.190809,tan(101°)=-5.144554sin(102°)=0.978148,cos(102°)=-0.207912,tan( 102°)=-4.704630sin(103°)=0.974370,cos(103°)=-0.224951, tan(103°)=-4.331476sin(104°)=0.970296,cos(104°)=-0.241 922,tan(104°)=-4.010781sin(105°)=0.965926,cos(105°)=-0. 258819,tan(105°)=-3.732051sin(106°)=0.961262,cos(106°) =-0.275637,tan(106°)=-3.487414sin(107°)=0.956305,cos(107°)=-0.292372,tan(107°)=-3.270853sin(108°)=0.951057,cos( 108°)=-0.309017,tan(108°)=-3.077684sin(109°)=0.945519,cos(109°)=-0.325568,tan(109°)=-2.904 211sin(110°)=0.939693,cos(110°)=-0.342020,tan(110°)=-2.747 477sin(111°)=0.933580,cos(111°)=-0.358368,tan(111°)=-2.605 089sin(112°)=0.927184,cos(112°)=-0.374607,tan(112°)=-2.475 087sin(113°)=0.920505,cos(113°)=-0.390731,tan(113°)=-2.355 852sin(114°)=0.913545,cos(114°)=-0.406737,tan(114°)=-2.246 037sin(115°)=0.906308,cos(115°)=-0.422618,tan(115°)=-2.144 507sin(116°)=0.898794,cos(116°)=-0.438371,tan(116°)=-2.050 304sin(117°)=0.891007,cos(117°)=-0.453990,tan(117°)=-1.962 611sin(118°)=0.882948,cos(118°)=-0.469472,tan(118°)=-1.880 726sin(119°)=0.874620,cos(119°)=-0.484810,tan(119°)=-1.804 048sin(120°)=0.866025,cos(120°)=-0.500000,tan(120°)=-1.732 051sin(121°)=0.857167,cos(121°)=-0.515038,tan(121°)=-1.664 279sin(122°)=0.848048,cos(122°)=-0.529919,tan(122°)=-1.600 335sin(123°)=0.838671,cos(123°)=-0.544639,tan(123°)=-1.539 865sin(124°)=0.829038,cos(124°)=-0.559193,tan(124°)=-1.482 561sin(125°)=0.819152,cos(125°)=-0.573576,tan(125°)=-1.428 148sin(126°)=0.809017,cos(126°)=-0.587785,tan(126°)=-1.376 382sin(127°)=0.798636,cos(127°)=-0.601815,tan(127°)=-1.327 045sin(128°)=0.788011,cos(128°)=-0.615661,tan(128°)=-1.279 942sin(129°)=0.777146,cos(129°)=-0.629320,tan(129°)=-1.234 897sin(130°)=0.766044,cos(130°)=-0.642788,tan(130°)=-1.191 754sin(131°)=0.754710,cos(131°)=-0.656059,tan(131°)=-1. 150368sin(132°)=0.743145,cos(132°)=-0.669131,tan(132°)=-1.110 613sin(133°)=0.731354,cos(133°)=-0.681998,tan(133°)=-1.072 369sin(134°)=0.719340,cos(134°)=-0.694658,tan(134°)=-1.035 530sin(135°)=0.707107,cos(135°)=-0.707107,tan(135°)=-1.000 000sin(136°)=0.694658,cos(136°)=-0.719340,tan(136°)=-0.965 689sin(137°)=0.681998,cos(137°)=-0.731354,tan(137°)=-0.932 515sin(138°)=0.669131,cos(138°)=-0.743145,tan(138°)=-0.900 404sin(139°)=0.656059,cos(139°)=-0.754710,tan(139°)=-0.869 287sin(140°)=0.642788,cos(140°)=-0.766044,tan(140°)=-0.839 100sin(141°)=0.629320,cos(141°)=-0.777146,tan(141°)=-0.809 784sin(142°)=0.615661,cos(142°)=-0.788011,tan(142°)=-0.781 286sin(143°)=0.601815,cos(143°)=-0.798636,tan(143°)=-0.753 554sin(144°)=0.587785,cos(144°)=-0.809017,tan(144°)=-0.726 543sin(145°)=0.573576,cos(145°)=-0.819152,tan(145°)=-0.700208sin(146°)=0.559193,cos(146°)=-0.829038,tan(146°)=-0.674 509sin(147°)=0.544639,cos(147°)=-0.838671,tan(147°)=-0.649 408sin(148°)=0.529919,cos(148°)=-0.848048,tan(148°)=-0.624 869sin(149°)=0.515038,cos(149°)=-0.857167,tan(149°)=-0.600 861sin(150°)=0.500000,cos(150°)=-0.866025,tan(150°)=-0.577 350sin(151°)=0.484810,cos(151°)=-0.874620,tan(151°)=-0.554 309sin(152°)=0.469472,cos(152°)=-0.882948,tan(152°)=-0.531 709sin(153°)=0.453990,cos(153°)=-0.891007,tan(153°)=-0. 509525sin(154°)=0.438371,cos(154°)=-0.898794,tan(154°)=-0.487 733sin(155°)=0.422618,cos(155°)=-0.906308,tan(155°)=-0.466 308sin(156°)=0.406737,cos(156°)=-0.913545,tan(156°)=-0.445 229sin(157°)=0.390731,cos(157°)=-0.920505,tan(157°)=-0.424 475sin(158°)=0.374607,cos(158°)=-0.927184,tan(158°)=-0.404 026sin(159°)=0.358368,cos(159°)=-0.933580,tan(159°)=-0.383 864sin(160°)=0.342020,cos(160°)=-0.939693,tan(160°)=-0.363 970sin(161°)=0.325568,cos(161°)=-0.945519,tan(161°)=-0.344 328sin(162°)=0.309017,cos(162°)=-0.951057,tan(162°)=-0.324 920sin(163°)=0.292372,cos(163°)=-0.956305,tan(163°)=-0.305 731sin(164°)=0.275637,cos(164°)=-0.961262,tan(164°)=-0.286 745sin(165°)=0.258819,cos(165°)=-0.965926,tan(165°)=-0.267 949sin(166°)=0.241922,cos(166°)=-0.970296,tan(166°)=-0.249 328sin(167°)=0.224951,cos(167°)=-0.974370,tan(167°)=-0.230 868sin(168°)=0.207912,cos(168°)=-0.978148,tan(168°)=-0.212 557sin(169°)=0.190809,cos(169°)=-0.981627,tan(169°)=-0.194 380sin(170°)=0.173648,cos(170°)=-0.984808,tan(170°)=-0.176 327sin(171°)=0.156434,cos(171°)=-0.987688,tan(171°)=-0.158 384sin(172°)=0.139173,cos(172°)=-0.990268,tan(172°)=-0.140 541sin(173°)=0.121869,cos(173°)=-0.992546,tan(173°)=-0.122 785sin(174°)=0.104528,cos(174°)=-0.994522,tan(174°)=-0.105 104sin(175°)=0.087156,cos(175°)=-0.996195,tan(175°)=-0. 087489sin(176°)=0.069756,cos(176°)=-0.997564,tan(176°)=-0.069927sin(177°)=0.052336,cos(177°)=-0.998630,tan(177°)=-0.052 408sin(178°)=0.034899,cos(178°)=-0.999391,tan(178°)=-0.034 921sin(179°)=0.017452,cos(179°)=-0.999848,tan(179°)=-0.017 455sin(180°)=0.000000,cos(180°)=-1.000000,tan(180°)=-0.000 000sin(181°)=-0.017452,cos(181°)=-0.999848,tan(181°)=0.017 455sin(182°)=-0.034899,cos(182°)=-0.999391,tan(182°)=0.034 921sin(183°)=-0.052336,cos(183°)=-0.998630,tan(183°)=0.052 408sin(184°)=-0.069756,cos(184°)=-0.997564,tan(184°)=0.069 927sin(185°)=-0.087156,cos(185°)=-0.996195,tan(185°)=0.087 489sin(186°)=-0.104528,cos(186°)=-0.994522,tan(186°)=0.105 104sin(187°)=-0.121869,cos(187°)=-0.992546,tan(187°)=0.122 785sin(188°)=-0.139173,cos(188°)=-0.990268,tan(188°)=0.140 541sin(189°)=-0.156434,cos(189°)=-0.987688,tan(189°)=0.158 384sin(190°)=-0.173648,cos(190°)=-0.984808,tan(190°)=0.176 327sin(191°)=-0.190809,cos(191°)=-0.981627,tan(191°)=0.194 380sin(192°)=-0.207912,cos(192°)=-0.978148,tan(192°)=0.212 557sin(193°)=-0.224951,cos(193°)=-0.974370,tan(193°)=0.230 868sin(194°)=-0.241922,cos(194°)=-0.970296,tan(194°)=0.249 328sin(195°)=-0.258819,cos(195°)=-0.965926,tan(195°)=0.267 949sin(196°)=-0.275637,cos(196°)=-0.961262,tan(196°)=0.286 745sin(197°)=-0.292372,cos(197°)=-0.956305,tan(197°)=0. 305731sin(198°)=-0.309017,cos(198°)=-0.951057,tan(198°)=0.324 920sin(199°)=-0.325568,cos(199°)=-0.945519,tan(199°)=0.344 328sin(200°)=-0.342020,cos(200°)=-0.939693,tan(200°)=0.363 970sin(201°)=-0.358368,cos(201°)=-0.933580,tan(201°)=0.383 864sin(202°)=-0.374607,cos(202°)=-0.927184,tan(202°)=0.404 026sin(203°)=-0.390731,cos(203°)=-0.920505,tan(203°)=0.424 475sin(204°)=-0.406737,cos(204°)=-0.913545,tan(204°)=0.445 229sin(205°)=-0.422618,cos(205°)=-0.906308,tan(205°)=0.466 308sin(206°)=-0.438371,cos(206°)=-0.898794,tan(206°)=0.487733sin(207°)=-0.453990,cos(207°)=-0.891007,tan(207°)=0.509 525sin(208°)=-0.469472,cos(208°)=-0.882948,tan(208°)=0.531 709sin(209°)=-0.484810,cos(209°)=-0.874620,tan(209°)=0.554 309sin(210°)=-0.500000,cos(210°)=-0.866025,tan(210°)=0.577 350sin(211°)=-0.515038,cos(211°)=-0.857167,tan(211°)=0.600 861sin(212°)=-0.529919,cos(212°)=-0.848048,tan(212°)=0.624 869sin(213°)=-0.544639,cos(213°)=-0.838671,tan(213°)=0.649 408sin(214°)=-0.559193,cos(214°)=-0.829038,tan(214°)=0.674 509sin(215°)=-0.573576,cos(215°)=-0.819152,tan(215°)=0.700 208sin(216°)=-0.587785,cos(216°)=-0.809017,tan(216°)=0.726 543sin(217°)=-0.601815,cos(217°)=-0.798636,tan(217°)=0.753 554sin(218°)=-0.615661,cos(218°)=-0.788011,tan(218°)=0.781 286sin(219°)=-0.629320,cos(219°)=-0.777146,tan(219°)=0. 809784sin(220°)=-0.642788,cos(220°)=-0.766044,tan(220°)=0.839 100sin(221°)=-0.656059,cos(221°)=-0.754710,tan(221°)=0.869 287sin(222°)=-0.669131,cos(222°)=-0.743145,tan(222°)=0.900 404sin(223°)=-0.681998,cos(223°)=-0.731354,tan(223°)=0.932 515sin(224°)=-0.694658,cos(224°)=-0.719340,tan(224°)=0.965 689sin(225°)=-0.707107,cos(225°)=-0.707107,tan(225°)=1.000 000sin(226°)=-0.719340,cos(226°)=-0.694658,tan(226°)=1.035 530sin(227°)=-0.731354,cos(227°)=-0.681998,tan(227°)=1.072 369sin(228°)=-0.743145,cos(228°)=-0.669131,tan(228°)=1.110 613sin(229°)=-0.754710,cos(229°)=-0.656059,tan(229°)=1.150 368sin(230°)=-0.766044,cos(230°)=-0.642788,tan(230°)=1.191 754sin(231°)=-0.777146,cos(231°)=-0.629320,tan(231°)=1.234 897sin(232°)=-0.788011,cos(232°)=-0.615661,tan(232°)=1.279 942sin(233°)=-0.798636,cos(233°)=-0.601815,tan(233°)=1.327 045sin(234°)=-0.809017,cos(234°)=-0.587785,tan(234°)=1.376 382sin(235°)=-0.819152,cos(235°)=-0.573576,tan(235°)=1.428 148sin(236°)=-0.829038,cos(236°)=-0.559193,tan(236°)=1.482 561sin(237°)=-0.838671,cos(237°)=-0.544639,tan(237°)=1.539 865sin(238°)=-0.848048,cos(238°)=-0.529919,tan(238°)=1.600 335sin(239°)=-0.857167,cos(239°)=-0.515038,tan(239°)=1.664 279sin(240°)=-0.866025,cos(240°)=-0.500000,tan(240°)=1.732 051sin(241°)=-0.874620,cos(241°)=-0.484810,tan(241°)=1. 804048sin(242°)=-0.882948,cos(242°)=-0.469472,tan(242°)=1.880 726sin(243°)=-0.891007,cos(243°)=-0.453990,tan(243°)=1.962 611sin(244°)=-0.898794,cos(244°)=-0.438371,tan(244°)=2.050 304sin(245°)=-0.906308,cos(245°)=-0.422618,tan(245°)=2.144 507sin(246°)=-0.913545,cos(246°)=-0.406737,tan(246°)=2.246 037sin(247°)=-0.920505,cos(247°)=-0.390731,tan(247°)=2.355 852sin(248°)=-0.927184,cos(248°)=-0.374607,tan(248°)=2.475 087sin(249°)=-0.933580,cos(249°)=-0.358368,tan(249°)=2.605 089sin(250°)=-0.939693,cos(250°)=-0.342020,tan(250°)=2.747 477sin(251°)=-0.945519,cos(251°)=-0.325568,tan(251°)=2.904 211sin(252°)=-0.951057,cos(252°)=-0.309017,tan(252°)=3.077684sin(253°)=-0.956305,cos(253°)=-0.292372,tan(253°)=3.270 853sin(254°)=-0.961262,cos(254°)=-0.275637,tan(254°)=3.487 414sin(255°)=-0.965926,cos(255°)=-0.258819,tan(255°)=3.732 051sin(256°)=-0.970296,cos(256°)=-0.241922,tan(256°)=4.010 781sin(257°)=-0.974370,cos(257°)=-0.224951,tan(257°)=4.331 476sin(258°)=-0.978148,cos(258°)=-0.207912,tan(258°)=4.704 630sin(259°)=-0.981627,cos(259°)=-0.190809,tan(259°)=5.144 554sin(260°)=-0.984808,cos(260°)=-0.173648,tan(260°)=5.671 282sin(261°)=-0.987688,cos(261°)=-0.156434,tan(261°)=6.313 752sin(262°)=-0.990268,cos(262°)=-0.139173,tan(262°)=7.115 370sin(263°)=-0.992546,cos(263°)=-0.121869,tan(263°)=8. 144346sin(264°)=-0.994522,cos(264°)=-0.104528,tan(264°)=9.514 364sin(265°)=-0.996195,cos(265°)=-0.087156,tan(265°)=11.43 0052sin(266°)=-0.997564,cos(266°)=-0.069756,tan(266°)=14.30 0666sin(267°)=-0.998630,cos(267°)=-0.052336,tan(267°)=19.08 1137sin(268°)=-0.999391,cos(268°)=-0.034899,tan(268°)= 28.636253sin(269°)=-0.999848,cos(269°)=-0.017452,tan(269°)=57.289962sin(270°)=-1.000000,cos(270°)=-0.000000,tan(270°)=无意义sin(271°)=-0.999848,cos(271°)=0.017452,tan(271°)=-57.28 9962sin(272°)=-0.999391,cos(272°)=0.034899,tan(272°)=-28.636253sin(273°)=-0.998630,cos(273°)=0.052336,tan(273°)=-19.081137sin(274°)=-0.997564,cos(274°)=0.069756,ta n(274°)=-14.300666sin(275°)=-0.996195,cos(275°)=0.0871 56,tan(275°)=-11.430052sin(276°)=-0.994522,cos(276°)=0. 104528,tan(276°)=-9.514364sin(277°)=-0.992546,cos(277°)=0.121869,tan(277°)=-8.144346sin(278°)=-0.990268,cos(27 8°)=0.139173,tan(278°)=-7.115370sin(279°)=-0.987688,co s(279°)=0.156434,tan(279°)=-6.313752sin(280°)=-0.98480 8,cos(280°)=0.173648,tan(280°)=-5.671282sin(281°)=-0.98 1627,cos(281°)=0.190809,tan(281°)=-5.144554sin(282°)=-0.978148,cos(282°)=0.207912,tan(282°)=-4.704630sin(283°)=-0.974370,cos(283°)=0.224951,tan(283°)=-4.331476sin(284°)=-0.970296,cos(284°)=0.241922,tan(284°)=-4.010781 sin(285°)=-0.965926,cos(285°)=0.258819,tan(285°)=-3.732 051sin(286°)=-0.961262,cos(286°)=0.275637,tan(286°)=-3.487414sin(287°)=-0.956305,cos(287°)=0.292372,tan(287°)=-3.270 853sin(288°)=-0.951057,cos(288°)=0.309017,tan(288°)=-3.077 684sin(289°)=-0.945519,cos(289°)=0.325568,tan(289°)=-2.904 211sin(290°)=-0.939693,cos(290°)=0.342020,tan(290°)=-2.747 477sin(291°)=-0.933580,cos(291°)=0.358368,tan(291°)=-2.605 089sin(292°)=-0.927184,cos(292°)=0.374607,tan(292°)=-2.475 087sin(293°)=-0.920505,cos(293°)=0.390731,tan(293°)=-2.355 852sin(294°)=-0.913545,cos(294°)=0.406737,tan(294°)=-2.246 037sin(295°)=-0.906308,cos(295°)=0.422618,tan(295°)=-2.144 507sin(296°)=-0.898794,cos(296°)=0.438371,tan(296°)=-2.050 304sin(297°)=-0.891007,cos(297°)=0.453990,tan(297°)=-1.962 611sin(298°)=-0.882948,cos(298°)=0.469472,tan(298°)=-1.880 726sin(299°)=-0.874620,cos(299°)=0.484810,tan(299°)=-1.804 048sin(300°)=-0.866025,cos(300°)=0.500000,tan(300°)=-1.732 051sin(301°)=-0.857167,cos(301°)=0.515038,tan(301°)=-1.664 279sin(302°)=-0.848048,cos(302°)=0.529919,tan(302°)=-1.600 335sin(303°)=-0.838671,cos(303°)=0.544639,tan(303°)=-1.539 865sin(304°)=-0.829038,cos(304°)=0.559193,tan(304°)=-1.482 561sin(305°)=-0.819152,cos(305°)=0.573576,tan(305°)=-1.428 148sin(306°)=-0.809017,cos(306°)=0.587785,tan(306°)=-1.376 382sin(307°)=-0.798636,cos(307°)=0.601815,tan(307°)=-1. 327045sin(308°)=-0.788011,cos(308°)=0.615661,tan(308°)=-1.279 942sin(309°)=-0.777146,cos(309°)=0.629320,tan(309°)=-1.234 897sin(310°)=-0.766044,cos(310°)=0.642788,tan(310°)=-1.191 754sin(311°)=-0.754710,cos(311°)=0.656059,tan(311°)=-1.150 368sin(312°)=-0.743145,cos(312°)=0.669131,tan(312°)=-1.110 613sin(313°)=-0.731354,cos(313°)=0.681998,tan(313°)=-1.072 369sin(314°)=-0.719340,cos(314°)=0.694658,tan(314°)=-1.035 530sin(315°)=-0.707107,cos(315°)=0.707107,tan(315°)=-1.000 000sin(316°)=-0.694658,cos(316°)=0.719340,tan(316°)=-0.965689sin(317°)=-0.681998,cos(317°)=0.731354,tan(317°)=-0.932 515sin(318°)=-0.669131,cos(318°)=0.743145,tan(318°)=-0.900 404sin(319°)=-0.656059,cos(319°)=0.754710,tan(319°)=-0.869 287sin(320°)=-0.642788,cos(320°)=0.766044,tan(320°)=-0.839 100sin(321°)=-0.629320,cos(321°)=0.777146,tan(321°)=-0.809 784sin(322°)=-0.615661,cos(322°)=0.788011,tan(322°)=-0.781 286sin(323°)=-0.601815,cos(323°)=0.798636,tan(323°)=-0.753 554sin(324°)=-0.587785,cos(324°)=0.809017,tan(324°)=-0.726 543sin(325°)=-0.573576,cos(325°)=0.819152,tan(325°)=-0.700 208sin(326°)=-0.559193,cos(326°)=0.829038,tan(326°)=-0.674 509sin(327°)=-0.544639,cos(327°)=0.838671,tan(327°)=-0.649 408sin(328°)=-0.529919,cos(328°)=0.848048,tan(328°)=-0.624 869sin(329°)=-0.515038,cos(329°)=0.857167,tan(329°)=-0. 600861sin(330°)=-0.500000,cos(330°)=0.866025,tan(330°)=-0.577 350sin(331°)=-0.484810,cos(331°)=0.874620,tan(331°)=-0.554 309sin(332°)=-0.469472,cos(332°)=0.882948,tan(332°)=-0.531 709sin(333°)=-0.453990,cos(333°)=0.891007,tan(333°)=-0.509 525sin(334°)=-0.438371,cos(334°)=0.898794,tan(334°)=-0.487 733sin(335°)=-0.422618,cos(335°)=0.906308,tan(335°)=-0.466 308sin(336°)=-0.406737,cos(336°)=0.913545,tan(336°)=-0.445 229sin(337°)=-0.390731,cos(337°)=0.920505,tan(337°)=-0.424 475sin(338°)=-0.374607,cos(338°)=0.927184,tan(338°)=-0.404 026sin(339°)=-0.358368,cos(339°)=0.933580,tan(339°)=-0.383 864sin(340°)=-0.342020,cos(340°)=0.939693,tan(340°)=-0.363 970sin(341°)=-0.325568,cos(341°)=0.945519,tan(341°)=-0.344 328sin(342°)=-0.309017,cos(342°)=0.951057,tan(342°)=-0.324 920sin(343°)=-0.292372,cos(343°)=0.956305,tan(343°)=-0.305 731sin(344°)=-0.275637,cos(344°)=0.961262,tan(344°)=-0.286 745sin(345°)=-0.258819,cos(345°)=0.965926,tan(345°)=-0.267 949sin(346°)=-0.241922,cos(346°)=0.970296,tan(346°)=-0.249 328sin(347°)=-0.224951,cos(347°)=0.974370,tan(347°)=-0.230 868sin(348°)=-0.207912,cos(348°)=0.978148,tan(348°)=-0.212 557sin(349°)=-0.190809,cos(349°)=0.981627,tan(349°)=-0.194 380sin(350°)=-0.173648,cos(350°)=0.984808,tan(350°)=-0.176 327sin(351°)=-0.156434,cos(351°)=0.987688,tan(351°)=-0. 158384sin(352°)=-0.139173,cos(352°)=0.990268,tan(352°)=-0.140 541sin(353°)=-0.121869,cos(353°)=0.992546,tan(353°)=-0.122 785sin(354°)=-0.104528,cos(354°)=0.994522,tan(354°)=-0.105 104sin(355°)=-0.087156,cos(355°)=0.996195,tan(355°)=-0.087 489sin(356°)=-0.069756,cos(356°)=0.997564,tan(356°)=-0.069 927sin(357°)=-0.052336,cos(357°)=0.998630,tan(357°)=-0.052 408sin(358°)=-0.034899,cos(358°)=0.999391,tan(358°)=-0.034 921sin(359°)=-0.017452,cos(359°)=0.999848,tan(359°)=-0.017 455sin(360°)=-0.000000,cos(360°)=1.00000,tan(360°)=-0.0000 00。
sin tan cos三角函数表
sin tan cos三角函数表三角函数是数学中的重要概念,它们在几何学、物理学、工程学等学科中发挥着重要的作用。
其中,sin、tan和cos是最常用的三角函数之一。
本文将给出它们的数值表格,方便读者查找和使用。
1. sin函数表角度(度)弧度值sin值00030π/60.545π/40.70760π/30.86690π/21180π0 2703π/2-1 3602π02. tan函数表角度(度)弧度值tan值00030π/60.577 45π/4160π/3 1.732 90π/2无穷大180π0 2703π/2无穷大3602π03. cos函数表角度(度)弧度值cos值00130π/60.866 45π/40.707 60π/30.590π/20180π-12703π/203602π1以上表格列出了常见角度下sin、tan和cos的值。
其中,“度”表示角度,可以理解为我们通常所用的角度单位;“弧度值”则是以弧度为单位表示的角度值;“sin值”、“tan值”和“cos 值”分别表示对应角度下的sin、tan和cos函数值。
需要注意的是,由于sin和cos函数的值在一个周期内是周期性的,所以在表格中我们仅列出了一个周期内的部分角度值。
读者可以根据需要进行推算,得到其他角度下的函数值。
另外,要特别注意角度为90度和270度时,tan函数的值为无穷大。
这是因为在这两个角度时,cos函数的值为0,而根据tan函数的定义,tan值等于sin值除以cos值,此时导致分母为0,从而导致tan值无穷大。
以上就是sin、tan和cos三角函数的数值表格,希望这个表格能够帮助到读者在数学计算和应用中使用三角函数。
在实际应用中,需要根据具体问题的需求使用适当的函数值,以达到相应的计算和分析效果。
三角函数对照表(转)
tan90=无
cot0=无
cot30=1.732050808 根号3
cot45=1
cot60=0.577350269 三分之根号3
cot90=0
(2)0°~90°的任意角的三角函数值,查三角函数表。(见下)
(3)锐角三角函数值的变化情况
(1)特殊角三角函数值
பைடு நூலகம்
sin0=0
sin30=0.5
sin45=0.7071 二分之根号2
sin60=0.8660 二分之根号3
sin90=1
cos0=1
cos28=0.882947592858927 cos29=0.8746197071393957 cos30=0.8660254037844387
cos31=0.8571673007021123 cos32=0.848048096156426 cos33=0.838670567945424
cos16=0.9612616959383189 cos17=0.9563047559630355 cos18=0.9510565162951535
cos19=0.9455185755993168 cos20=0.9396926207859084 cos21=0.9335804264972017
sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169
初中三角函数值对照表
初中三角函数值对照表
一、正弦函数值对照表
正弦函数是一个周期为360度或2π的周期函数,其在各
个特定角度下的函数值如下表所示:
角度(°)030456090180270360
sin00.5√2/2√3/210-10
二、余弦函数值对照表
余弦函数也是一个周期为360度或2π的周期函数,其在
各个特定角度下的函数值如下表所示:
角度(°)030456090180270360
cos1√3/2√2/20.50-101
三、正切函数值对照表
正切函数在某些角度下会不存在(例如90度),在存在的角度下,其函数值如下表所示:
角度(°)0304560180270360
tan0√3/31√30无0
三角函数值对照表是初中阶段学习三角函数时非常重要的
参考资料,通过对照表的使用,学生可以更清晰地理解各个角度下正弦、余弦、正切函数的数值规律。
希望通过这份对照表,能够帮助初中同学更好地学习和掌握三角函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
SIN
COS
TAN
三角函数
SIN
COS
TAN
0°
0
1
0
90°
1
0
无
1°
89°
2°
88°
3°
87°
4°
86°
5°
85°
6°
84°
7°
83°
8°
82°
9°
81°
10°
80°
11°
79°
12°
78°
13°
77°
14°
76°
15°
75°
16°
74°
17°
73°
18°
72°
19°
71°
20°
1
45°
1
同角基本关系式倒数关系Fra bibliotek商的关系
平方关系
诱导公式
(其中k∈Z)
两角和与差的三角函数公式
万能公式
半角的正弦、余弦和正切公式
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
三角函数的和差化积公式
三角函数的积化和差公式
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
其中 角所在的象限由 、 的符号确定, 角的值由 确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”
70°
21°
69°
22°
68°
23°
67°
24°
66°
25°
65°
26°
64°
27°
63°
28°
62°
29°
61°
30°
60°
31°
59°
32°
58°
33°
57°
34°
56°
35°
55°
36°
54°
37°
53°
38°
52°
39°
51°
40°
50°
41°
49°
42°
48°
43°
47°
44°
46°
45°