高光谱端元自动提取的迭代分解方法
优化端元提取方法的高光谱混合像元分解
![优化端元提取方法的高光谱混合像元分解](https://img.taocdn.com/s3/m/98a2693291c69ec3d5bbfd0a79563c1ec5dad706.png)
优化端元提取方法的高光谱混合像元分解
高光谱混合像元分解是一种常用的方法,用于从高光谱遥感图像中提取端元信息。
但是在实际应用中,由于许多因素的影响,如光照变化、材质反射率等,混合像元分解结果可能存在一定的误差。
为了优化端元提取的效果,可以采取以下方法:
1. 数据预处理:在进行混合像元分解之前,对高光谱图像进行预处理,包括大气校正、辐射定标、大气矫正等,以降低噪声和光照变化对端元提取的影响。
2. 端元选择:根据具体应用需求,选择合适的端元库。
端元库是由已知材质的光谱响应函数构成,选择适当的端元可以更准确地反映实际场景中的材质组成,提高分解的准确性。
3. 混合像元分解算法选择:目前常用的混合像元分解算法有N-FINDR、PPI等。
根据具体情况选择合适的算法进行端元提取。
可以尝试多种算法并进行对比分析,选择效果较好的算法。
4. 约束条件引入:在混合像元分解过程中,可以引入额外的约束条件,如非负性约束、稀疏性约束等,以提高分解结果的稳定性和准确性。
5. 后处理方法:对提取的端元进行后处理,如噪声去除、光谱平滑、分类判别等,进一步提高分解结果的质量。
6. 结合其他数据源:结合其他遥感数据,如高分辨率光学影像、地面采样数据等,可以在一定程度上提高混合像元分解的准确性。
可以通过数据融合的方法,将不同数据源的信息相互补充,得到更可靠的端元提取结果。
通过上述优化方法的综合应用,可以提高高光谱混合像元分解的准确性和稳定性,从而更准确地获取端元信息。
需要根据具体应用场景和数据特点进行针对性的优化。
基于多尺度特征的高光谱端元提取方法
![基于多尺度特征的高光谱端元提取方法](https://img.taocdn.com/s3/m/106ccb7e24c52cc58bd63186bceb19e8b8f6ec78.png)
基于多尺度特征的高光谱端元提取方法罗菁;刘悦;李云雷【摘要】为提升高光谱端元提取效率,避免同种地物端元的多次重复提取,根据高光谱同种地物光谱曲线主要特征近似、全体像元中端元个体两两具有极大差异的原则,提出了一种基于多尺度特征的高光谱图像端元提取方法,即多尺度特征像元纯度指数方法(MSPPI).首先利用一维离散小波变换获取多尺度的光谱信息,然后利用光谱角距离和欧式最小距离提取相应的多尺度的光谱特征,并利用像元和其邻域内像元点之间的关联,引入距离测度提取纯像元,最终实现端元提取.通过在高光谱数据库USGS和AVIRIS中的实验验证算法有效性,并与SPPI算法和N-FINDR算法进行对比.结果表明:MSPPI算法能够提取全部端元,且每种地物端元提取百分比低于5%,SPPI虽然能够提取全部端元但提取百分比均高于10%,端元重复提取现象严重,而N-FINDR不能有效提取小面积地物,说明MSPPI算法性能优于N-FINDR算法和SPPI算法.%In order to enhance the efficiency of the endmember extraction and avoid the repetitious extraction on those same object endmembers, according to the principle that the hyper spectral curves of same objects have similar fea-tures and the difference between endmembers is greatest in all pixels, a multi-scale hyperspectral image end-member extraction method, named as multi-scale pixel purityindex(MSPPI), is proposed. Firstly, The one-di-mension discrete wavelet transform(1-DWT) is used to obtain multi-scale spectral information. Then, the multi-scale features are extracted from spectral angle distance (SAD) and euclidean minimum distance (EMD), and based on the correlation between the pixels and the pixels in the neighborhood, the distancemeasure is used to extract the pure pixels, which helps the endmember extraction finally to be realized. The validity of the algorithm is tested through the experiments on the hyperspectral database USGS and AVIRIS respectively, and compared with the N-FINDR algorithm and the SPPI algorithm. The experimental results show that the MSPPI can extract all the endmembers with the percentage of endmember extraction less than 5%of each object;the endmembers are also extracted completely by SPPI with a percentage higher than 10%and a serious endmember repeated ex-traction phenomenon has arisen;the endmembers in small areas can not be extracted effectively by N-FINDR. It illustates that the performance of MSPPI algorithm is superior to those of N-FINDR algorithm and SPPI algorithm.【期刊名称】《天津工业大学学报》【年(卷),期】2017(036)006【总页数】8页(P73-80)【关键词】多尺度特征;一维离散小波变换;像素纯度指数;端元提取;高光谱图像;光谱角距离【作者】罗菁;刘悦;李云雷【作者单位】天津工业大学电工电能新技术天津市重点实验室,天津 300387;天津工业大学电气工程与自动化学院,天津 300387;天津工业大学电工电能新技术天津市重点实验室,天津 300387;天津工业大学电气工程与自动化学院,天津 300387;天津工业大学电工电能新技术天津市重点实验室,天津 300387;天津工业大学电气工程与自动化学院,天津 300387【正文语种】中文【中图分类】TP751在现代遥感体系中,相较于其他遥感技术,高光谱遥感技术具有光谱范围窄、波段连续、蕴含近似连续的地物光谱信息、地物识别能力较强等优点,目前被越来越广泛地应用于土地资源的调查及开发和自然灾害监测等领域.端元,指能够代表一种地物完整光谱特性的纯净像元.获取高光谱中的端元信息是高光谱图像精准分类的前提,端元提取作为高光谱图像分类的核心技术,受到了广泛关注.对于端元提取,目前国内外研究主要分为基于特征空间的投影算法,和基于高光谱图像数据在特征空间中呈凸面单形体的单形体体积最大算法.前者常用的方法有像元纯度指数算法(pixel purity index,PPI)[1-3]、顶点成分分析算法(vertex component analysis,VCA)[4-5]等;后者常用的方法有:N-FINDER算法[6-9]等.基于特征空间的投影算法,是将高光谱像元光谱投影到空间中的一组向量上,端点上的点则认为是端元,其端元提取结果受到投影向量选择的制约,随机性较大[10-12];单形体体积最大算法,则是通过对完整高光谱数据进行迭代计算,选择能使空间单形体体积最大的点作为端元,若要保证端元提取的精确度,必然要承担运行时间和CPU占用率增加的后果.而由于高光谱图像本身数据量大,且信号传播距离长,不可避免会受到噪声的影响,为了减少噪声影响并降低算法复杂度,PPI算法和N-FINDR算法选择借助最小噪声分离(minimum noise fraction,MNF)来滤除噪声并降低高光谱数据维度,而MNF算法实现的前提是获取高光谱数据的噪声信息,噪声信息的获取效率决定了MNF算法的效果,并进一步影响PPI算法和N-FINDR算法的端元提取效率.此外,由于端元位于高光谱凸体顶点,地物的像元基数大小直接影响了其端元的提取效率,针对小面积地物,N-FINDR算法不能保证其端元提取率.为改善这类算法复杂度,崔建涛[10]等提出了空间像素纯度指数算法(spatial pixel purity index,SPPI),利用像元邻域内的局部特征提取代替了完整高光谱数据的迭代,有效降低算法复杂度,但SPPI算法将像元间的角度差异与距离差异无差别叠加,模糊了像元间光谱角距离(spectral angle distance,SAD)[7]和欧式最小距离(euclidean minimum distance,EMD)分别存在的差异,对于同种地物不同光照等状态下的像元光谱不能够很好地分辨,导致同类像元多次重复提取,降低端元提取效率.为了快速而有效地提取不同地物的端元信息,本文提出一种基于多尺度特征的高光谱图像端元提取方法,即多尺度特征像元纯度指数方法(multi-scale pixel purity index,MSPPI).将一维离散小波变换(onedimension discrete wavelet transform,1-DWT)引入高光谱端元提取中.一方面,一维离散小波变换(1-DWT)能够克服噪声对高光谱数据的影响,并且有效解决像元光谱的高维度问题;另一方面,和SPPI相比,多尺度特征能够有效分离像元间的角度差异与距离差异,从而能够更加精细地描述地物的纹理信息,解决同种地物在不同光照等状态下的像元光谱差异大的问题和不同地物在噪声、光照影响下像元光谱差异小的问题,减少端元重复提取.特征提取将分2个部分进行:一是利用一维离散小波变换(1-DWT)分离高光谱像元的低频与高频信息;二是在分离所得信息的基础上,利用光谱角距离(SAD)[13-14]和欧式最小距离(EMD)[15]获取多尺度特征.高光谱图像数据中包含大量噪声信息,由于同种地物的像元光谱在噪声以及光照分布的影响下存在差异,导致“同物异谱”现象产生.而一维离散小波变换(1-DWT)具有平移旋转不变性,并能够将信号分解为高频信息和低频信息,分离后的信号长度是原始信号的一半,其中低频部分体现原始信号的轮廓信息,高频部分体现信号的细节信息.针对高光谱数据的噪声问题和高维度问题,一维离散小波变换(1-DWT)能够有效降低数据中的噪声,同时降低数据维数并减少空间冗余,有效实现高光谱数据压缩的目的.当f(λ)表示一个像元的光谱曲线时,经一维离散小波变换得到低频和高频子带信号,如图1所示.其中cAi表示第i层低频分量,cDi表示第i层高频分量,继续分解得到光谱曲线的多尺度下分量,即多尺度能多方向、更精细地描述光谱曲线的纹理信息.高光谱图像进行1次一维离散小波变换(1-DWT),其原理如式(1)和式(2)所示:式中:指离散后的小波基函数,由于实验不需要重构光谱向量,小波基函数的选取对结果影响很小,故选择Daubechies小波即db小波完成一维离散小波变换(1-DWT)相关部分实验;m为尺度离散化的幂级数;n为单位时间间隔数.机载可见红外成像光谱仪(airborne visible infrared imaging spectrometer,AVIRIS)数据库[6]1992 年采集的印第安纳州西北部高光谱数据3D示意图如图2所示,从中选取同类地物中2个不同像元,其位置如图3所示.图3中,横坐标表示像元的水平方向上的索引,点的颜色代表地物编号.本文选择一维离散小波变换(1-DWT)对像元光谱进行尺度分离,其1次1-DWT结果如图4所示.由图4可以看出,2像元经分离后的轮廓信息趋势基本一致,细节信息上则出现了部分曲线走向相悖.根据光谱信息的特点,本文利用1-DWT对像元A进行5层分解,分解所得轮廓信息结果如图5所示.由图5可以看出,经4次1-DWT后光谱信息已被过度滤除,为尽可能地保留像元光谱曲线的主要特征,选择2次1-DWT和3次1-DWT所得的低频与高频特征作进一步分析.SPPI算法中所用的SAD特征取值范围为[0,π],而EMD描述了像元间的偏差.由于高光谱数据的特殊性,同类像元空间结构形状相似,具有近似的SAD,但由于客观环境因素影响,同类像元可能具有很大的EMD值,即“同类异谱”现象.此时SAD对纯像元判定结果的影响几乎忽略不计,SPPI值受EMD主导,导致了端元重复提取.类似的,异类像元空间结构形状不同,但在客观因素影响下,其累计偏差可能近似,即“异物同谱”现象.这样得出的不同地物光谱的SPPI值是近似的,可能会误提混合像元,不利于最终端元提取.由于多尺度特征能够更加精确地描述信号中的纹理信息,与SPPI算法中所采用的融合SAD和EMD两项特征的测度相比,1-DWT的多尺度特征则是将像元分离成多个尺度再分别提取特征形成特征向量,将像元间的角度差异与距离偏差分别进行比较,避免2项特征所占比重不均的问题,同时细化了像元光谱的特征,基本解决“同物异谱”和“异物同谱”导致的端元重复提取和错误提纯的问题.根据高光谱图像中同种地物像元光谱相似且空间聚集分布这一特性,对像元进行提纯,能够减少端元提取的像元基数,并进一步降低算法复杂度和运算时间.本文利用不同尺度下像元间光谱角距离和欧式最小距离作为判定纯像元的标准,从空间角度和直接距离,即像元光谱空间形状上的相似性和像元光谱向量中元素数值上的偏差,对像元的差异性进行描述,并利用像元和其邻域内像元点之间的关联,完成像元提纯,其计算方法如式(3)所示.式中:P指某像元提取得到的特征,该特征由N个尺度提取而来,第i尺度提取的特征命名为Pi,包括和,其计算方法如式(4)—式(7)所示.式中:xi(a,b)指空间1像素点的第i个尺度下的光谱向量;(a,b)为该像素的空间坐标;(s,t)为该像素点邻域窗口K内像素点的坐标;K为5×5大小的空间邻域;y1和y2均为像元光谱向量.由于高光谱图像纯像元具有相似的特征并呈区域性分布,因此选择距离测度D和阈值Th来区分纯像元与混合像元,其计算方法如式(8)所示.式中:Pi,j为坐标(i,j)的像元特征;Ps,t为其邻域内的像元点,(s,t)为对应坐标.将每个像元的测度D由小到大依次排列,D越小说明像元纯度越高,利用阈值Th完成纯像元筛选,这里Th由全体像元的测度D的均值确定.提纯后得到的“纯像元”,需作进一步处理以得到数量更少的端元.由于同类像元具有相似的空间结构,本文采用像元的特征作为区分端元的标准,完成端元提取.对于高光谱数据X,提取总数为n的端元,提取策略步骤如下:(1)记已求得的纯像元集为Xp,根据已求得的高光谱图像X的测度D,取其中具有最小D的像素点作为图像的第1个端元e1=x1,并初始化端元集E={e1}.k表示已被提取的端元个数;p表示待提取的第p个端元,p=k+1;q表示第q个待判断的像元.此时,k=1,p=2,q=2.(2)计算 xq 与端元集 E={e1,e2,…,ei,…,ek}中所有端元的值,记为SADq,i,1≤i≤k.如果min(SADq,i)≤ThSAD(ThSAD为选定的阈值),则q=q+1,转步骤(2);否则,更新E=E∪{ep},k=p,继续.(3)判断k=n是否成立,成立则算法结束,端元集为E;否则令p=p+1,返回步骤(2).为更好地验证算法效果,本文分别设计了验证实验和测试实验.本仿真实验数据出自美国地质勘探局(United states geological survey,USGS)光谱数据库,选取其中的4种地物,其光谱曲线如图6所示.仿真实验所用地物光谱均包含2 151个波段,其波长范围为0.35~2.5 μm,光谱分辨率为10 nm.为了使仿真数据能够更好地模拟真实地物的空间分布特征,实验数据由这4种光谱曲线线性叠加而成,具体生成过程如下:(1)新建48×48的像素点阵,并将其分成6×6个8×8的小块,每一小块随机初始化为一种地物光谱,其分布情况如图7所示,根据灰度值由小到大分别对应地物 1、2、3、4.(2)利用高斯低通滤波器产生混合像元,其算子为13×13个单位.(3)为模拟实际光谱在获取过程中易受到噪声如水蒸气影响的现象,加入零均值高斯白噪声,最终得到仿真高光谱图,生成仿真高光谱数据第3波段图像,如图8所示.为验证本文算法的端元提取效率,将N-FINDR算法、SPPI算法与本文提出的MSPPI算法进行比较.当4种地物的端元均被成功提取时,3种算法的端元提取结果如图9所示,黑色为背景,其余点按照灰度值由小到大的顺序对应地物1、2、3、4.由图9可以看出,N-FINDR算法提取端元数目较多且较为分散,SPPI算法对第2种地物明显提取过多,而本文MSPPI算法提取了非常少量的端元.为定量分析,统计每种地物被提取的像素点个数以及所需时间,结果如表1所示.由表1可以看出,N-FINDR算法针对大面积地物提取端元数明显多于小面积地物,且算法运行时间很长;SPPI算法几乎提取了第2种地物的全部像元作为端元,受同物异谱现象影响严重,在第2种地物的端元提取上出现了明显的重复提取现象,运行时间较长;本文算法(MSPPI)在第2种地物的端元提取上虽然也出现重复提取现象,但对比SPPI算法已经有明显改善,同时所需时间最短.由此说明,本文MSPPI方法在保证算法运行时间的同时,能够减弱同物异谱现象对端元提取效率的影响.实验采用AVIRIS于1992年采集的印第安纳州西北部的高光谱数据集,数据记录了波长为0.4~2.5范围内包括224个波段的光谱图像,剔除低信噪比和受水蒸气影响较大的波段后剩余200个波段,每一波段对应的图像包含145 145个像素点.根据相关文献描述,数据所记录的区域包括16种地物,典型地物包括:玉米、草地、树、苜蓿、黄豆和燕麦等.本文首先对原始高光谱数据进行尺度分离,再取邻域为5×5像素窗口,计算每个像素点的MSPPI特征,并利用该特征对像元提纯,利用所得的纯像元集,进一步完成端元提取.为了更好地体现本文算法的优势,同时选择NFINDR算法、SPPI算法进行端元提取,并与MSPPI算法进行比较.高光谱理想地物分布如图10所示.NFINDR算法、SPPI算法和MSPPI算法端元提取结果如图11所示.图10和图11中,不同颜色代表不同的地物,共有16种.由图11能够明显看出,SPPI算法提取的端元数目最多,MSPPI算法次之,N-FINDR算法丢失了小面积地物的信息.具体每种地物的端元提取结果如表2所示,其端元提取百分比如图12所示.由表2可知:经N-FINDR算法提取得到的端元最少,但有6种小面积地物的端元并未被提取,如牧草、燕麦、小麦等,由于N-FINDR算法是基于单形体体积最大理论的,小面积地物对单形体体积影响很小,因而被忽略.SPPI算法提取了全部16种地物的端元,但提取百分比均高于10%,对于部分大块地物的端元提取出现了过多重复提取的现象,导致端元数目大大增加,为高光谱进一步解混增加了压力.这是由于当同种地物像元受到光照等因素影响时,其像元光谱会出现细节上的差异,当这种差异大到一定程度时,SPPI算法中提取的用于描述像素纯度的特征过于简单而不足以区分这些差异,所以产生误判.而MSPPI算法完整提取了全部种类的地物.由图12可知,MSPPI算法与N-FINDR算法相比,二者提取的端元占总数的百分比相近,每种地物端元提取数目基本低于对应像元总数的5%,但在小面积地物的端元提取效率上,本文算法(MSPPI)具有明显优势;与SPPI算法相比,MSPPI 算法对各类地物端元的提取率曲线明显更加平缓,即算法对不同地物端元的提取效果受地物本身像元基数或外界因素的影响较小,再一次验证了MSPPI算法的优越性.本文提出了一种多尺度高光谱图像端元提取方法,即MSPPI算法,利用1-DWT获取多尺度的光谱信息,利用SAD和EMD提取相应的多尺度光谱特征,利用像元和其邻域内像元点之间的关系引入距离测度提取纯像元,最终实现端元提取.实验结果表明:(1)MSPPI能够提取全部端元,且每种地物端元提取数目基本低于对应像元总数的5%,并有效减弱同物异谱和异物同谱现象对端元提取的影响;SPPI算法虽然能够提取全部端元,但提取百分比均高于10%,端元重复提取现象严重;而N-FINDR算法不能有效提取小面积地物.(2)与N-FINDR算法、SPPI算法相比,MSPPI算法降低了数据维数和程序复杂度,在运行时间方面的性能优于N-FINDR算法和SPPI算法.(3)MSPPI算法基本能够解决“同物异谱”和“异物同谱”导致的端元重复提取和错误提纯的问题.但当前实验中,阈值是经过多次测试后效果最好的一组,是固定不变的,并没有针对每次迭代结果对阈值进行规则性地调整以达到更好的端元提取效果.更加科学系统的阈值自适应调节方法还有待进一步研究.【相关文献】[1]ALIM S,LI J,LIU S C,et al.Improved hyperspectral image classification by active learning using pre-designed mixed pixels[J].Pattern Recognition,2016,51:43-58. [2]WU X Y,HUANG B M,ANTONIO P,et al.Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs[J].IEEE Geoscience and Remote Sensing Letters,2014,11(5):955-959.[3]CHANG C I,WU C C.Iterative pixel purity index[C]//Workshop on Hyperspectral Image and Signal Processing,Evolution in Remote Sensing.Washington DC:IEEE Computer Society,2012:1-4.[4]孟强强,杨桄,孙嘉成,等.利用小波分解和顶点成分分析的高光谱异常检测[J].光电子·激光,2014,25(6):1152-1157.MENG Q Q,YANG G,SUN J C,et al.Anomaly detection algorithm based on wavelet decomposition and vertex component analysis in hyperspectral images[J].Journal of Optoelectronics·Laser,2014,25(6):1152-1157(in Chinese).[5]CHANG C I,CHEN S Y,LI H C,et parative study and analysis among ATGP,VCA,and SGA for finding endmembers in hyperspectral imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing,2017,9(9):4280-4306.[6]王丽姣,厉小润,赵辽英.快速实现基于单形体体积生长的端元提取算法[J].光学学报,2014,34(11):308-314.WANG L J,LI X R,ZHAO L Y.Fast implement of the simplex growing algorithm for endmember extraction[J].Acta Optica Sinica,2014,34(11):308-314(in Chinese).[7]WINTER M E.N-FINDR:An algorithm for fast autonomous spectral endmember determination in hyperspectral data[C]//Proceedings of SPIE-The International Society for Optical Engineering.[s.l.]:SPIE,1999,3753:266-275.[8]李琳,孟令博,孙康,等.基于代数余子式的N-FINDR快速端元提取算法[J].电子与信息学报,2015,37(5):1128-1134.LI L,MENG L B,SUN K,et al.A fast N-FINDR algorithm based on cofactor of a determinant[J].Journal of Electronics&InformationTechnology,2015,37(5):1128-1134(inChinese).[9]赵春晖,郭蕴霆.一种改进的快速N-FINDR端元提取算法[J].光子学报,2015,44(10):36-44.ZHAO C H,GUO Y T.An improved fast N-FINDR endmember extractionalgorithm[J].Acta Photonica Sinica,2015,44(10):36-44(in Chinese).[10]崔建涛,王晶,厉小润,等.基于空间像素纯度指数的端元提取算法[J].浙江大学学报:工学版,2013,43(9):1524-1530.CUI J T,WANG J,LI X R,et al.Endmember extraction algorithm based on spatial pixel purity index[J].Journal of Zhejiang University:Engineering Science,2013,43 (9):1524-1530(in Chinese).[11]杨可明,刘士文,王林伟,等.光谱最小信息熵的高光谱影像端元提取算法 [J].光谱学与光谱分析,2014,34(8):2229-2233.YANG K M,LIU S W,WANG L W,et al.An algorithm of spectral minimum shannon entropy on extracting endmember of hyperspectralimage[J].Spectroscopy and Spectral Analysis,2014,34(8):2229-2233(in Chinese). [12]王丽姣.基于单形体体积增长的高光谱图像端元提取及快速实现[D].杭州:浙江大学,2015.WANG L J.Hyperspectral endmember extraction and its fast implementation basedon simplex growing theory[D].Hangzhou:Zhejiang University,2015(in Chinese). [13]韩静,岳江,张毅,等.光谱角匹配加权核特征空间分离变换高光谱异常检测算法 [J].红外与毫米波学报,2013,32(4):359-365.HAN J,YUE J,ZHANG Y,et al.SAM weighted KEST algorithm for anomaly detection in hyperspectral imagery[J].Journal of Infrared and Millimeter Waves,2013,32(4):359-365(in Chinese).[14]PANDA A,PRADHAN D.Hyperspectral image processing for target detection using spectral angle mapping[C]//2015 International Conference on Industrial Instrumentation and Control.New York:Institute of Electrical and Electronics Engineers Inc,2015:1098-1103.[15]陈宏达,普晗晔,王斌,等.基于图像欧氏距离的高光谱图像流形降维算法 [J].红外与毫米波学报,2013,32(5):450-455.CHEN H D,PU H H,WANG B,et al.Image euclidean distance-based manifold dimensionality reduction algorithm for hyperspectral imagery[J].Journal of Infrared and Millimeter Waves,2013,32(5):450-455(in Chinese).。
优化端元提取方法的高光谱混合像元分解
![优化端元提取方法的高光谱混合像元分解](https://img.taocdn.com/s3/m/02731a3dfe00bed5b9f3f90f76c66137ee064f9e.png)
优化端元提取方法的高光谱混合像元分解黄作维;张岁丰;张陶新【期刊名称】《西南交通大学学报》【年(卷),期】2018(053)006【摘要】高光谱图像的混合像元分解将原始图像分解为多种纯净地物及相应的丰度,端元提取是混合像元分解的关键技术.针对传统算法计算速度慢、搜索范围较大的特点,基于改进的ICA(independent component analysis)算法以及优化的候选端元判断方法,提出了一种优化的混合像元分解方法.首先使用改进的算法优化端元提取方法;然后利用相邻像素的光谱特征和空间特征信息,结合并行算法对候选端元进行优化;最后利用真实的高光谱数据对该方法的性能进行了验证.验证结果表明:该方法能有效提高端元提取精度,降低复杂度,与经典的端元提取算法N-FINDER相比,准确度提高了3.55%,解混后得到的地物分类精度有了明显改善(总体分类精度提高了2.88%).【总页数】8页(P1150-1156,1172)【作者】黄作维;张岁丰;张陶新【作者单位】湖南工业大学农牧业废弃物资源化综合利用湖南省重点实验室,湖南株洲412000;湖南工业大学农牧业废弃物资源化综合利用湖南省重点实验室,湖南株洲412000;湖南工业大学农牧业废弃物资源化综合利用湖南省重点实验室,湖南株洲412000【正文语种】中文【中图分类】P407.41【相关文献】1.一种基于离散粒子群优化算法的高光谱图像端元提取方法 [J], 张兵;孙旭;高连如;杨丽娜2.基于粒子群优化的高光谱影像端元提取算法 [J], 陈伟;余旭初;张鹏强;王鹤3.高光谱混合像元分解的稀疏优化算法 [J], 肖宿;洪留荣;郑颖4.混沌离散粒子群优化的高光谱影像端元提取算法 [J], 杨可明;张涛;刘士文;王林伟;侯海倩5.高光谱图像快速Gram行列式端元提取优化方法 [J], 许宁;孙康;胡玉新;耿修瑞因版权原因,仅展示原文概要,查看原文内容请购买。
一种高光谱遥感影像端元自动提取方法
![一种高光谱遥感影像端元自动提取方法](https://img.taocdn.com/s3/m/ad576d11ef06eff9aef8941ea76e58fafab045e6.png)
一种高光谱遥感影像端元自动提取方法王晓玲;杜培军;谭琨;曹文【期刊名称】《遥感信息》【年(卷),期】2010(000)004【摘要】针对人工样本选择和端元提取存在的不确定性和工作量大等缺点,提出一种集成非监督分类、纯净像元指数计算、线性光谱混合模型和凸面单形体理论的自动端元提取算法,能够有效地提取端元用于高光谱遥感影像分类和混合像元分解.利用北京昌平地区的OMIS高光谱遥感数据进行了验证,结果表明算法可行有效,自动化程度较高,作为训练样本进行分类能够获得较高精度,优于常规方法.【总页数】5页(P8-12)【作者】王晓玲;杜培军;谭琨;曹文【作者单位】中国矿业大学国土资源与灾害监测国家测绘局重点实验室,徐州,221116;中国矿业大学江苏省资源环境信息工程重点实验室,徐州,221116;中国矿业大学国土资源与灾害监测国家测绘局重点实验室,徐州,221116;中国矿业大学江苏省资源环境信息工程重点实验室,徐州,221116;中国矿业大学国土资源与灾害监测国家测绘局重点实验室,徐州,221116;中国矿业大学国土资源与灾害监测国家测绘局重点实验室,徐州,221116【正文语种】中文【中图分类】TP79【相关文献】1.一种利用单形体体积自动提取高光谱图像端元的算法 [J], 耿修瑞;赵永超;周冠华2.一种自动的高分辨率遥感影像道路提取方法 [J], 刘如意;宋建锋;权义宁;许鹏飞;雪晴;杨云;苗启广3.一种遥感影像镶嵌线自动提取方法 [J], 蔡红玥4.一种顾及背景信息的遥感影像自动化水体提取方法 [J], 李林蓉;吴曌月;郑盼;姚文静;苏红军5.一种面向对象结合变差函数的高分辨率遥感影像茶种植区自动提取方法 [J], 张世超;王常颖;李劲华;张志梅因版权原因,仅展示原文概要,查看原文内容请购买。
融合简单线性迭代聚类的高光谱混合像元分解策略
![融合简单线性迭代聚类的高光谱混合像元分解策略](https://img.taocdn.com/s3/m/ee4e991ff78a6529647d53cf.png)
2 01 5 焦
农 业 工 程 学 报
T r a n s a c t i o n s o f t h e Ch i n e s e S o c i e t y o f Ag r i c u l t u r a l E n g i n e e r i n g
3 1 ( 1 7 ) :1 9 9 -2 0 6 .
Zh ng a F e i  ̄i , S u n Xu , Xu e Li ng a y o n g ,Ga o L i a n r u , Li u Ch ng a x i n g . Hy p e r s p e c t r a l mi x e d p i x e l d e c o mp o s i t i o n p o l i c y me r g i n g
Vb l - 3 1 NO . 1 7 S e p .2 01 5 1 9 9
9 月
融合简单线性迭代 聚类 的高光谱混合 像元分解 策略
张飞飞 1 , 2 孙 旭 2 ※ ,薛 良勇 ,高连如 2 ,刘长星
( 1 . 西安科技大学测绘科学与技术学院,西安 7 1 0 0 5 4 ; 2 . 中国科学 院遥感与数字地球研究所 ,北京 1 0 0 0 9 4 ; 3 . 中国矿业大 学计算机科学 与技术学 院,徐州 2 2 1 1 1 6 ) 摘 要 :高光谱 图像中的混合像元 问题广泛存在 ,混合像元 的分解 效率一直是遥感应用研究 的难 点和热 点。 目前 成熟的
( 1 i g h t n e s s . A. B) 、数据格式 ( J P G B I N)和算法参数 对高光谱图像超像元分割结果的影响,并进一步分析了 S L I C超 像元分割结果对 2种 典型端元提取算法 ( A VMA X、MV E S )产 生的不 同效果 。试验结果表 明,随着 K 值 的增大 ,混合 像元分解 的时间逐渐增加 ,均方根误差 ( r o o t me n a s q u a r e e r r o r , R MS E)持平或减少 ,而 J P G( 有损压缩 )数据格式 的时 间始终 比 B N ( I 无损压缩 )数据格式的要短 。S L I C + MVE S的 R MS E略高于 MV E S的 R MS E,低于 A V MA X的R MS E, 但时间远小于 MV ES 。当 足够大的时候 ,S L I C + MVE S的效果就近似 MV E S的效果 了。在大部分情况下 ,最大噪声分 数 的降维效果优于主成分分析 。以最大噪声分数作为降维方法、以 J P G作为数据格式 、以 L B 作为色彩空 间对混合像元 A 分解结 果较 为有利 。另外 ,S L I C的参数 的取值在 5 ~1 0之 间较 为合适 。该研究 中的 S L I C超像元分割算法简单 易行 ,
一种高光谱遥感影像端元自动提取方法-遥感信息
![一种高光谱遥感影像端元自动提取方法-遥感信息](https://img.taocdn.com/s3/m/4062cdcc26fff705cc170a58.png)
; & < 6 ( &! ! " " " ## ' / ? ( + / $ ( + ( +> / " 04 " , % + ( " 3 ' " $/ " 0@ % # / # $ ' +8 ( $ 'A & + ' / &( & + , ' % " " 08 / % " = -> -) .( )* )* ./ 1 1 ."
! " # $ % $ & $ ' ( & + , ' % " " 0* / $ % / 2! " ( + 3 / $ % ( "4 " % " ' ' + % " 5 6 % " /7 " % , ' + # % $ % " % " " 09 ' : 6 " ( 2 ( ! )* ./ 1 ) . ." -( )8 ./ . -"
一种高光谱遥感影像端元自动提取方法
王晓玲 杜培军 谭琨 曹文
! 徐州 ! ! " " " ## 中国矿业大学测绘与空间信息工程研究所 " 徐州 ! $ ! " " " # 国土环境与灾害监测国家测绘局重点实验室 "
摘要 针对人工样本选择和端元提取存在的不确定 性 和 工 作 量 大 等 缺 点 提 出 一 种 集 成 非 监 督 分 类 纯净像 线性光谱混合模型和凸面单形体理论的自动端元提取算法 能够有效 地 提 取 端 元 用 于 高 光 谱 遥 感 影 元指数计算 像分类和混合像元分解 利用北京昌平地区的 89 结果表明算法可行有效 自动 : ; 高光谱遥感数据进行了 验 证 作为训练样本进行分类能够获得较高精度 优于常规方法 化程度较高 关键词 线性混合模型 凸面单形体 端元 ' ( % " $5 ) % # % 5 / = = 3 5 " $ $ $&) " * *5 ! $ " $5 $ '5 $ $ ! < 中图分类号 > ? * % 文献标识码 + 文章编号 " $ $ $&) " * * ! $ " $ " " $&
用于高光谱图像端元提取的分层查找法
![用于高光谱图像端元提取的分层查找法](https://img.taocdn.com/s3/m/f9119468c950ad02de80d4d8d15abe23482f0382.png)
用于高光谱图像端元提取的分层查找法
郭山;孙卫东
【期刊名称】《高技术通讯》
【年(卷),期】2008(18)12
【摘要】通过分析线性混合模型及几何端元在空间投影中所具有的特性,提出了用于高光谱图像端元提取的分层查找法.该方法基于几何形态学与几何端元的概念,将确定单形体端点的过程分层处理,以实现对高光谱图像中端元的快速、准确估计.该方法不需要预先确定端元个数,而是在提取端元过程中自动调整端元个数.基于模拟数据与真实数据的实验的结果表明,在端元个数未知的情况下,分层查找法能够对高光谱图像中所包含的端元及端元个数给出较准确的快速估计,较好地解决了实际高光谱图像端元提取过程中端元个数难以确定的问题.
【总页数】7页(P1297-1303)
【作者】郭山;孙卫东
【作者单位】清华大学电子工程系,北京,100084;清华大学电子工程系,北
京,100084
【正文语种】中文
【中图分类】TP3
【相关文献】
1.一种正交子空间投影高光谱图像端元提取算法 [J], 赵岩;王东辉;张春晶;黄奕程;于明华
2.一种正交子空间投影高光谱图像端元提取算法 [J], 赵岩;王东辉;张春晶;黄奕程;于明华;
3.高光谱图像快速Gram行列式端元提取优化方法 [J], 许宁;孙康;胡玉新;耿修瑞
4.结合局部空谱信息的高光谱图像多端元提取 [J], 杨华东;郝永平
5.顶点成分分析法应用于高光谱图像端元提取 [J], 王丽;王威;刘勃妮
因版权原因,仅展示原文概要,查看原文内容请购买。
一种高光谱遥感影像端元自动提取方法
![一种高光谱遥感影像端元自动提取方法](https://img.taocdn.com/s3/m/e75221cdaa00b52acfc7caad.png)
An Au o tc En me b r Ex r c in Al o i m r m p r p cr lI g t ma i d m e ta to g rt h f o Hy e s e ta ma e
W ANG a qig Xio n 。~ , DU e-u 0, P i n TAN n , AO e ① j Ku 0 C W n
o t fau omato . i n
Ke r s 1 e p c r lmi t r d l c n e i lx; n me e y wo d :i rs e ta x u emo e ; o v x smp e e d mb r n
1 引 言
高光 谱遥感 影像 波段多 、 信息量 大 , 提供 更 丰富 的地物信 息 , 利用 高光谱 进行 目标检测 、 影像 分类 和 参数 反演是 当前遥感 科学 技术 领域 的研 究热点 。由 于传 感器 的空间分 辨 率 以及 地 面 的复 杂 多样 性 , 混 合像元 普遍存 在于遥 感 图像 中。有效提 取纯净 像元
( C iaU ies y o n n n e h oo y,e b r tr o n v rn e t n ① hn n v ri f Mi ig a d T c n lg k yl o ao y f r a d En io m n d t a l a
优化端元提取方法的高光谱混合像元分解
![优化端元提取方法的高光谱混合像元分解](https://img.taocdn.com/s3/m/4021845bb6360b4c2e3f5727a5e9856a57122649.png)
优化端元提取方法的高光谱混合像元分解高光谱混合像元分解是一种常用的遥感数据分析方法,可以用于提取地物信息和监测环境变化。
在实际应用中,为了提高分解结果的准确性和可靠性,需要进行端元提取的优化。
端元提取是指从高光谱数据中选择代表地物的像元进行分解。
传统的端元提取方法主要基于经验或人工选择,存在以下问题:首先,传统方法需要人工选择代表地物样本进行端元提取,这种方式受主观因素干扰较大,容易引入误差。
为了减少主观因素的干扰,可以使用统计学方法来进行自动化的端元提取。
常用的统计学方法有聚类分析、主成分分析和最大似然分类等。
其次,传统方法在进行端元提取时通常只考虑了光谱信息,而忽略了空间信息。
然而,地物的空间分布特征对端元提取和混合像元分解结果的准确性和可靠性有重要影响。
因此,应该将空间信息考虑进来,可以利用地物边界信息和多源遥感数据进行融合,以提高端元提取的准确性。
此外,高光谱混合像元分解还需要考虑混合像元的数量和选择。
传统方法通常假设混合像元是由两个或三个端元组成的,但实际情况往往更为复杂,混合像元可能由多个端元组成。
因此,可以利用自适应光谱混合方法,对混合像元数量进行估计,并选择最优的混合像元组合来进行分解。
最后,在进行端元提取和混合像元分解时还应考虑光谱响应的非线性和光谱混叠的影响。
非线性效应会导致混合像元分解结果的偏差,光谱混叠则会造成端元提取的困难。
因此,可以利用非线性光谱混合像元分解方法和反混叠技术,来克服这些问题,提高分解结果的准确性。
综上所述,优化端元提取方法的高光谱混合像元分解可以使用统计学方法进行自动化的端元提取,同时考虑空间信息和光谱非线性效应等因素。
通过合理选择混合像元数量和采用反混叠技术,可以提高分解结果的准确性和可靠性,从而更好地应用于地物信息提取和环境监测等领域。
基于RMS误差分析的高光谱图像自动端元提取算法
![基于RMS误差分析的高光谱图像自动端元提取算法](https://img.taocdn.com/s3/m/e32866394531b90d6c85ec3a87c24028915f850a.png)
基于RMS误差分析的高光谱图像自动端元提取算法
薛绮;匡纲要;李智勇
【期刊名称】《遥感技术与应用》
【年(卷),期】2005(20)2
【摘要】提出了一种基于RMS(rootmeansquare)误差分析的自动端元提取算法。
对图像每做一次线性解混合,就得到一幅以均方根RMS误差表示的残余误差图像,
从中选出误差较大的像素作为新的端元开始下一次解混合,通过多次迭代,直到得到
了要求数目的端元。
该算法克服了以往端元提取方法监督特性的局限,减少了对先
验信息的依赖,同时保留了图像中的异常。
利用仿真和实验数据验证了该算法的有
效性。
【总页数】6页(P278-283)
【关键词】RMS;高光谱图像;端元提取;线性混合模型
【作者】薛绮;匡纲要;李智勇
【作者单位】国防科技大学电子科学与工程学院
【正文语种】中文
【中图分类】TP75
【相关文献】
1.一种利用单形体体积自动提取高光谱图像端元的算法 [J], 耿修瑞;赵永超;周冠华
2.基于改进人工蜂群算法的高光谱图像端元提取方法 [J], 李冰;孙辉;孙宁;王坤
3.基于顶点成分分析的高光谱图像端元提取算法 [J], 方凌江;粘永健;雷树涛;倪志
扬
4.基于端元提取的高光谱图像亚像元目标异常检测算法 [J], 孟强强;杨桄;卢珊;何高攀
5.基于独立分量分析的高光谱图像端元提取算法 [J], 王福祥;柳重堪;张军
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1) 代入( 2) 得到:
$f = ( PT P )- 1PT E0
( 3)
记 R = ( PT P ) , A= R- 1, 并假设 2E0= R2I , 则有:
$f 2 = R2Tr ( A)
( 4)
其中 Tr ( A)表示对 A矩阵求迹。如果选取端元光谱存在
误差时, 等于在 P 基础上加相应的一个微小变量 $p , 则
矢量间的欧几里得距离和光谱角度有关, 且有成反
比的规律。
下面讨论方程解的稳定性。因 R 是实正定对称
矩阵, 存在正交矩阵 Q, 使得 QT +Q= R, 代入(4) 得:
M
E $f 2 =
R2
i= 1
1 Ki
( Ki > 0)
( 9)
由( 9) 知, 如果 +* 矩阵的对角元素中有很小的
Ki , 则有较大的分解误差, 这时称 R 为病态矩阵, 避
图 1 计算流程图 Fig11 Flow chat of the proposed algorithm
( b) 模型解的可靠性。如果选择 Pk+ 1 为端元,
P = [ p 1, p 2, ,, p k] , 那么为保证不同端元之间的差
别, Pk+ 1投影到 P( k ) 上应当大于一定的值[ 11] 。即:
不同传感器的高光谱数据实例测试了该文的方法, 分析和讨 论了选择迭 代初始值 与参数阈值 的敏感性 问题。
研究结果表明此方法可以自动提取端元光谱, 并且精度较高。
关键词: 端元自动提取; 混合像元; 迭代分解
中图分类号: TP732
文献标识码: A
1引言
由于传感器的空间分辨率以及地面的复杂多样 性, 混合像元普遍存在于遥感图像中。利用成像光 谱仪进行定量遥感应用的一个突出问题就是混合像 元的分解问题, 如何有效地解译混合像元是高光谱 遥感应用的关键问题之一[ 1] 。混合像元分解方法是 以端元光谱( endmember) 为条件建立的, 首先必须以 监督或非监督的方法找到所谓的端元光谱。传统的 方法以监督的手段, 利用人机交互选取端元光谱[ 2] , 很难获取完整的地物端元光谱, 且不利于遥感影像 的快速处理。遥感学者更重视从数据本身挖掘出端 元光谱, 提出了一系列非监督的技术方法自动寻找 端元光 谱。目前比较 成功的方法有 投影追踪法[ 3] ( PP) 、模拟退火算法[ 4] ( SAA ) 、凸锥分析方法[ 5] CCA 和 N- FINDR[ 6] 等等。这些方法都有成功应用的一 面, 但由于端元光谱的不确定性, 目前还没有普适的 方法。文献[ 7] 研究、评价了一些典型的方法, 并认 为联合空间信息有助于提高分解效果。
近年来, 一些研究者利用迭代误差的思路来自 动选取端元光谱[ 8, 9] 。这种方法的本质是根据分块
矩阵的原理, 对影像进行线性分解后的残存误差来 定位端元光谱的位置, 并依据阈值来指导选择端元 光谱。它们共同缺点是没有考虑端元存在的空间关 系。事实上, 端元在空间分布上应当有一定的形状 和积聚性, 充分利用这个特点就相应增加了信息量, 将有助于改善像元的分解结果。另一方面, 如果选 择端元时考虑了端元彼此间的独立关系, 就有可能 获得更好的分解矩阵。因此, 作者认为除了利用误 差信息来定位端元光谱的位置外, 还应从端元的空 间分布和彼此间的关系方面加上相应的约束条件。
图 2 Cuprite 地区的 AVIRIS 数据 Fig12 AVIRIS image data in cuprite region
4 混合像元分解
理论与实验结果都证实了限制性分解较非限制 性方法精度高[ 12] 。本文也采用限制性分解 的模型
计算, 虽然上面推导得到的约束条件是在非限制性
模型下得到的, 但仍然认为适用于限制性分解模型。
2 i0
( 8)
i= 1
式( 8) 中, m 和f i 0是确定的, 所以要减少 $f , 需减小
R2i 和Tr ( A) 的值。减小端元光谱内矢量间的差别就
减小了 R2i , 而减小 Tr ( A) 的值, 也就是需增大端元光
谱矢量间的差别。文献[ 10] 对两个端元情况下像元
分解的误差传播分析, 得到 $f 与这两个端元光谱
免这种情况的办法是使 CN ( R ) 值较小。如果 R 为
对称矩阵, 则 CN( R ) 定义为:
CN ( R) =
Kmax Kmin
( 10)
为减小 CN ( R ) 值, 在选择的端元光谱时, 尽量
使它们相互独立, 即增大不同端元光谱之间的差距。
3 端元光谱提取的算法
现在讨论选择端元光谱矢量。假设 P( k ) =
511 实验 1: 用 AVIRIS 测试初始值对端元提取与 混合像元分解的影响
由于该方法是逐步求取端元, 前面端元的选取
对后面端元的选择可能会有重大的影响, 本实验的 目的在于验证不同初试值对端元提取与混合像元分 解的影响。考虑了以下 3 种方法的初始迭代像元矢 量。( 1) 波段平均值。( 2) 波段最大值。( 3) 任意值, 选择了( 100, 200) 为代表。表 1、表 2、表 3 是计算得 出的结果。( R = 11, 7 = 50, H= 112, = 215) 从表中 数据可以看出不同初始值对结果几乎没有影响, 只 是颠倒了第一与第二个端元的顺序。因第三个端元 以后所有指标都是相同的, 故第三个以后的端元结 果没有列在表上。
[ P 1, P2, ,, Pk ] 为已选定的端元光谱矢量, 首先利 用这些端元对图像分解, 设法找到最大误差的位置 ( xi , yi ) , 其 像元 矢量记 为 Pk+ 1, 现在需 要确 定第 Pk+ 1种光谱矢量是否为端元光谱矢量的问题。
( a) 空间分布信息。如果 Pk+ 1是端元, 则以该点 为中心的一定范围内且与 Pk+ 1相似的光谱矢量数目 S 需要大于某个门限值 7 。因为较大的 7 值可以减 少噪声的干扰, 所以此处需要考察一个较大的邻域, 即开一个较大的窗口。光谱矢量的相似性可以用其 广义角 H度量。如果 H越小, 则相似性越大。
+ Pk+ 1pm + + Pk+ 1 + # +p m +
\
U,
m = 1, 2, ,, k
( 11)
* + 为对角矩阵, 通过选择光谱矢量, 以增大 端元矢量之间的欧几里得距离( 10) 式的条件也在于 选择 P 矩阵, 而( 10) 式可以保证选择的光谱矢量有 较大的差别。所以 Pk+ 1如果 Pk+ 1通过了( a) 和( b) 这两个限制条件的检验, 则认为它是端元, 用它与矩 阵 P 一起构成新矩阵 P ( k + 1) 后, 再分解计算误差 图像; 否则对( xi , y i ) 位置作标记, 对另外的 最大误 差位置的矢量进行相同的考察。
第 k 次非限制性求解的结果, K(1k) 与 K2( k) 是第 k 次
拉格朗日乘数的系数,
A=
(
PT
P
)
-
1。如果有
f
( k+ cls
1)
( i ) , ( i = 1, 2, ,, m) 小于零, 用( 13) 式继续迭代, 直
m
到 E | f i | - F< 1 时结束, 其中 F= 0101, 为一很小的 i=1
fLS = ( PTP )- 1PT Q
( 2)
估计值与 真实值之 差记为 $f = f LS - f 0, 并把
收稿日期: 2004-03-03; 修订日期: 2004-04-27 基金项目: 国家自然科学基金( 40471088) , 国家 973 研究计划( 2003CB415205) , 遥感科学与技术国家重点实验室开放基金资助。 作者简介: 吴波( 1975) ) , 男, 武汉大学摄影测量与遥感专业博士生。主要研究领域图像处理、模式识别、Agent 模型等。
正数。
5 实验分析
根据算法描述, 作者在 VC610 下实现了端元自 动提取与混合像元分解的功能。为考察该方法的有 效性, 从以下 4 个方面进行了测试。 ¹ 考察选择不 同的初始值时, 对端元提取与混合像元分解的影响; º进一步讨论算法中的一些阈值灵敏性问题; »美 国内华达 州 Cuprite 地区的 AVIRIS 数 据的 分解 实 验; ¼ 中国常州地区的 PHI 数据的分解实验。
2 端元选择的约束条件
对混合像元, 利用线性混合模型描述为:
Q= Pf 0 + E0
( 1)
式中 Q为混合像元在n 个光谱通道上测量的反射率
所组成的 n 维列矢量, P 是 n 行 m 列的矩阵 , 它的
列是 m 个像元组分光谱矢量, f 0 是像元组分比, E0 为 n 维误差项。
由最小二乘法, 可以得到 f 0 的估计值 f LS :
效、自动地确定影像的端元光谱。利用非监督的方法快速自动提取高光谱遥感图像的端元光谱是解决这个问
题的主要技术手段。根据迭代误差分析思路, 通过对线性混合 像元模型 分解的误差 传播分析 后, 得到 了端元
选择的约束条件。结合端元存在的空间信息, 自动提取出端 元光谱并 进行了混合 像元分解。利 用不同地 区、
Q= ( P + $p ) f 0 = Pf 0 + $pf 0 ( 5)
假使 E0 是因为选取端元光谱存在误差引起的, 比较( 1) 和( 5) 两式得:
E0 = $pf 0
( 6)
其中 $p 中各列为 Di = [ Di1, Di2, ,, Din] , 进一步假设
Rij有相 同的方差 D2i , 且 $p 中各列 相互独立, 即 E
在( 1) 式的基础上增加限制性条件: