天线下倾角设置参考表

合集下载

定向天线天线下倾角的设置

定向天线天线下倾角的设置

定向天线天线下倾角的设置摘要:天线下倾角设置是否合理,将对天线的覆盖产生重要的影响,同时会对相邻小区形成不良的影响,因此,正确的理解天线下倾角的设置原理,合理的设置天线下倾角,将对无线基站设计起到积极的作用,使基站能够发挥更好的作用,为无线用户提供更好的服务。

关键词:GSM 下倾覆盖1、概述在过去两个月的工作中,我主要从事无线基站的设计,在勘查和设计的过程中,发现了不少需要解决的问题,针对这些问题,我收集了一些资料进行学习和整理,希望能够为自己和同事在将来的查勘设计过程中提供相关技术应用的理论依据,其中,一个比较重要的课题就是定向天线下倾角的设置。

2、天线下倾的方法2.1 天线倾角的作用为了使信号限制在自己的小区覆盖范围内,并且降低对其他同频小区的干扰,使定向天线波束图形向下倾斜一定角度是非常有效的方法。

天线下倾技术是利用天线的垂直方向性有效控制干扰和覆盖的重要手段:1)天线下倾可以使小区覆盖范围变小;2)天线下倾安装使天线在干扰方向上的增益减小,相当于天线在垂直面上去耦增加;3)天线下倾后加强了本覆盖区内的信号强度,既改善了小区的场强,又增加了抗同频干扰的能力。

2.2 天线下倾的方法有两种使天线方向图向下倾斜的方法:1)机械下倾,通过机械调整改变天线向下倾角。

2)电调下倾。

通过改变天线阵的激励系数来调整波束的倾斜角度。

两种不同的下倾方法将产生不同的辐射情况,在下倾角度较小时,这种区别不明显;但随着角度的加大,它们的区别就非常显著了。

在采用电倾角时,随着下倾角的增加,在主瓣方向覆盖距离明显缩短,天线方向图仍然保持原有形状,能够降低呼损、减小干扰。

但对于机械下倾,随着下倾角的加大,天线主瓣方向信号强度迅速降低,当下倾角增大到一定数值时主瓣方向逐渐凹陷下去,同时旁瓣增益随之增大,这就造成旁瓣对其他方向上的同频基站的干扰。

目前GSM网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械下倾角过大,天线方向图严重变形,要解决高话务区的容量不足,必须缩短站距、加大天线下倾角度,因此采用机械天线很难解决用户高密度区呼损高、干扰大的问题,建议在高话务密度区用带电倾角的天线,而把机械倾角天线安装在农村、郊区等低话务密度地区。

天馈参数调整参考

天馈参数调整参考

一.基本原理天线作为基站天馈系统的核心部分,其性能的好坏直接影响到无线覆盖的质量,所以天线系统的优化是重中之重。

需进行检测的优化指标包括:方位角、下倾角(机械下倾角、电子下倾角)、天线挂高、天线厂家、天线型号、天线覆盖中心受阻情况、天线隔离度、抱杆牢固及垂直度等下倾角计算具体方法,如下图所示:图 1下倾角计算参数关系图可以看出,当天线倾角为0度时天线波束主瓣即主要能量沿水平方向辐射;当天线下倾α度时,主瓣方向的延长线最终必将与地面一点(A点)相交。

由于天线在垂直方向有一定的波束宽度,因此在A点往B点方向,仍会有较强的能量辐射到。

根据天线技术性能,在半功率角内,天线增益下降缓慢;超过半功率角后,天线增益(特别是上波瓣)迅速下降,因此在考虑天线倾角大小时可以认为半功率角延长线到地平面交点(B点)内为该天线的实际覆盖范围,也使主瓣的最大增益点对准覆盖区的边缘。

根据上述分析以及三角几何原理,可以推导出天线高度、下倾角、覆盖距离三者之间的关系为:α=arctg (H/D)+ θ/2-γe上面两个式子中,α为天线的初始机械下倾角,单位为度;H表示站点的有效高度,也就是天线挂高和周围覆盖区域平均高度之差,单位为米;D表示该站点天线到本扇区需要覆盖边缘的距离,单位为米;θ表示天线的垂直波束宽度,单位为度;γe表示天线电下倾的角度,单位为度。

上式可以用来估算倾角调整后的覆盖距离。

但应用该式时有限制条件:倾角必须大于半功率角之一半。

式中垂直波束宽度可以查具体天线技术指标或计算得出。

当基站距离覆盖目标大于800米时,大面积覆盖仍是最重要的关注点,估算天线下倾角时不必考虑垂直半功率角的影响,此时下倾角一般为1-4度;特殊情况下如基站本身已经建在较高位置,此时下倾角也可能较大。

为了便于实际运用和考虑相邻小区间必要的部分区域重叠,密集市区基站到覆盖目标距离D可以简化为小区设计半径;天线高度H指基站与覆盖目标的相对高度,并且本文我们只讨论近似平原地区。

下倾角的计算工具V2

下倾角的计算工具V2
序号 1 2 3 4 5
站名 XXX基站 XXX基站 X型 密集市区 一般市区 县城 高速 乡镇
天线挂高 (m) 45 18 28 40 45
与周边基站 距离(m) 410 496 620 5500 2500
天线类型 F C/F F F F
机械下倾角 5 5 3 0 0
密集市区45410一般市区18496县城28620高速405500乡镇452500天线挂高m与周边基站距离xxx基站电子下倾rounddegreesatan站高覆盖半径xxx基站覆盖半径站间距15xxx基站cf天线垂直半功率角为6xxx基站单f天线垂直半功率角为7xxx基站机械下倾角5度cf天线的机械角度集成原有的设置参考原c网的机械下倾角设置f天线的机械角度可以按照
说明:1.计算下倾角时请输入天线挂高和与周边基站距离 2.计算时需要判断基站所处无线环境,郊区县城按照一般城区考虑 3.设置下倾角还要考虑基站主要覆盖的区域在小区范围中的位置,距离基站较近时,可以考虑加大 4.由于下倾角的计算方法,各个规划区不同。请大家首先判断该站点所属的规划区。例如:如果
较近时,可以考虑加大下倾角1-2度 规划区。例如:如果是密集城区的站点,带入密集市区的一列,输入天线挂高、根据基站站距列表,输入与周边基
距列表,输入与周边基站的距离,则得到下倾角。以此类推。
电子下倾角 8 1 4 4 5
总下倾角 13 6 7 4 5
备注
说明: 电子下倾=ROUND(DEGREES(ATAN(站高/覆盖半径))+IF($O2="C/F",6,7)/2-机械下倾角,0) 覆盖半径=站间距/1.5 C/F 天线垂直半功率角为 6 单F 天线垂直半功率角为 7 机械下倾角<5度 C/F天线 的机械角度集成原有的设置(参考原C网的机械下倾角设置) F天线的机械角度可以按照: 市区取4度-5度,县城取3度。

天线下倾角设置参考表

天线下倾角设置参考表

天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。

由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。

1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。

(1)为减少干扰,应选用水平半功率角接近于60度的天线。

这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。

如下图所示。

(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。

由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。

(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60 度左右的中等增益的双极化天线。

例如水平半功率角为65度的15dBi双极化天线。

2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。

但由于密集城区基站站距往往只有400米到600 米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35 米的情况下,天线下倾角可能设置在14.0 度到11.5 度之间。

此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。

所以密集城区基站选用电子式倾角的水平半功率角为60 度左右的中等增益双极化天线较为合适。

3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。

(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。

下倾角的计算工具

下倾角的计算工具

说明:1.计算下倾角时请输入天线挂高和与周边基站距离
2.计算时需要判断基站所处无线环境,郊区县城按照一般城区考虑
3.设置下倾角还要考虑基站主要覆盖的区域在小区范围中的位置,距离基站较近时,可以考虑加
4.由于下倾角的计算方法,各个规划区不同。

请大家首先判断该站点所属的规划区。

例如:如果
5.密集市区范围:北京东四环、南二环、西三环、北四环之间区域
6.一般市区:五环内除密集市区的区域,回龙观、天通苑、机场、亦庄等区域,郊区县县城按照
7.郊县道路主要指北京到京外高速公路、国道、郊区县间公路以及郊区县城周边区域
426.6667
离基站较近时,可以考虑加大下倾角1-2度
所属的规划区。

例如:如果是密集城区的站点,带入密集市区的一列,输入天线挂高、根据基站站距列表,输入,郊区县县城按照一般城区处理
区县城周边区域
据基站站距列表,输入与周边基站的距离,则得到下倾角。

以此类推。

天线和下倾角

天线和下倾角

Control Systems: Handheld Controller
2° - 10°
???
可调电倾角- 根据网络实际情况进行调整
理想
• 理论模型和实际情况不一致 • 环境的
(6°电倾角 + 0°机械倾角 )
0° Total
(6°电倾角 - 6°机械倾角 )
2° ?°
8° 4°

可调电倾角 存储简单
2-10°
可调电倾角的优点
天线倾角易于调整 不需要更换或移动天线 规划简单 可根据实际情况进行优化
• RS232 interface for link
to local or remote computer
Handheld Controller TTHH-A
• Sets downtilt of single antenna • Adjusts and reads antenna tilt • Menu-driven operation • Commands are sent by connecting the handheld controller to a connector panel in the cell site shelter (one connector per antenna) • Rechargeable battery powered
C/I – 电倾角
高同频干扰
建议 7/21 复用方式
4/12 复用方式会使 得频率恶化
C/I – 机械倾角
同频干扰对比
电倾角
机械倾角
倾角比较
10° 电倾角
6° 电倾角 + 4° 机械倾角
10° 机械倾角
同频干扰比较

天线下倾角设置参考表

天线下倾角设置参考表

天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。

由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。

1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。

(1)为减少干扰,应选用水平半功率角接近于60度的天线。

这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。

如下图所示。

(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。

由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。

(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。

例如水平半功率角为65度的15dBi双极化天线。

2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。

但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi 双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。

此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。

所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。

3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。

(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。

参考文档-天线下倾角理覆盖理论

参考文档-天线下倾角理覆盖理论

一、基站天线的下倾角设置(一)下倾角概述基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。

基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例,而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。

这两个侧重方向分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

1.1.考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二含义如下图所示。

图二、基站天线控制信号强度时的下倾角应用图、下倾角设置的应用分析2.1.下倾角分类目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。

机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的调节方式。

预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。

电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续调节的调节方式。

天线下倾角调测[新版]

天线下倾角调测[新版]

天线下倾角调测[新版]下倾角一般指天线向下和水平面之间的角度.一个合适的下倾角能加强本覆盖区域的信号强度,同时也能减少小区之间的信号盲区或弱区,也不会导致小区与小区之间交叉覆盖、相邻的关系混乱,一个合理的下倾角是保证整个移动通信网络质量的基本保证,所以目前天线下倾角的调整是我们网络优化中的一个非常重要的事情。

一般的天线下倾角共分为机械下倾角跟电子下倾角,机械下倾角是通过人工来调整天线物理下倾来实现,电子下倾角就是通过电子仪器来调整天线的阵子来实现。

在这里我再明确一下,就是我们在施工过程中必须严格按照设计图纸来调整下倾角,机械下倾角和电子下倾角设计是多少度就应该是多少度,包括在我们在验收文档里面,下倾角是不允许有偏差的,就算相差一度也是不行的~根据我们目前的设备,我主要就讲解下京信天线和安德鲁天线的电调仪使用方式。

目前我们使用的安德鲁电调仪安德鲁的电调仪是没有自带显示屏的,所以我们需要用电脑联接电调仪再联接到天线来调整天线的电子下倾角,联接天线后,打开软件,点击面板上“Find Dcvices”按钮软件开始执行新的搜索任务,进度条显示搜索进程,界面下方状态栏显示伴随进程正在搜索的内容完成搜索后弹出对话框,检查已搜索出的设备,如果正确点击“YES”,反之点击“NO”。

经过搜索发现天线后,界面内会弹出一个对话框,显示目前发现驱动器的数量。

同时,软件界面内会显示出已搜索到的天线驱动器的基本信息,其数据显示结构。

点击选中需要配置的驱动器,在主界面下方找到并点击功能键“Edit Selected”进入编辑选择窗口。

在编辑窗口内填写所有的信息后,点击“Configure”,跳出对话框询问点击“YES”,再次跳出对话框点击’“OK”。

点击选中需要配置的驱动器,在主界面下方找到并点击功能键“Move Selected”进入编辑选择窗口。

在编辑窗口内填写所有的信息后,点击“Activate”,跳出对话框询问是否激活,点击“OK”。

定向天线参数表

定向天线参数表
h上行链路所允许的最大损耗无线链路传播损耗nodeb通信距离r有效通信覆盖高度最大允许损耗传播损耗通信距离r通信高度hnodeb参数名称参数值工作频率范围19202170mhz天线增益145175dbi水平波瓣宽度3db6525
参数名称
参数值
工作频率范围
1920~2170Mhz
天线增益
14.5~17.5dBi
水平波瓣宽度(3dB)
65°±2.5°;90°±2.5°
俯仰波瓣宽度(315dB
零点衰落
≥25dB
前后比(F/B)
200W(25dB)
极化方式
垂直极化或45°极化
输入阻抗
50Ω
功率容量
≥200W
输入驻波VSWR
≤1.50
波束控制
俯仰面可调;下倾角0°~ 10°
联接方式
7°~ 15°
功率容量
≥200W
第一旁瓣抑制
≥15dB
输入驻波VSWR
≤1.50
零点衰落
≥25dB
波束控制
下倾角0°~ 10°
联接方式
DIN-F(7/16英寸)
*具备IP65以上的防水能力
DIN-F(7/16英寸)
*具备IP65以上的防水能力
参数名称
参数值
参数名称
参数值
工作频率范围
1920~2170Mhz
前后比(F/B)
200W(25dB)
天线增益
14.5~17.5dBi
极化方式
垂直极化或
45°极化
水平波瓣宽度(3dB)
65°±2.5°;
90°±2.5°
输入阻抗
50Ω
俯仰波瓣宽度(3dB)

天线下倾角计算

天线下倾角计算

下倾角=
站间距
站高
1097
6655515129877662014121098772517141210988302016131210994025201614131211503024201715141260
34
27
23
20
17
16
14
由距离算倾角射灯参数
定向天线参数站高(m)45站高(m)30距离(m)65距离(m)
381垂直波瓣宽度30垂直波瓣宽度6下倾角49.71275
下倾角7.5 6.5 5.5远点
郊区工业园区密集城区
上式是将天线的主瓣方向对准小区边缘时得出的,在实际的调整工作中,一般在由此得出的俯仰角角度的基础上再
上述的LTE对于网络结构的基本要求并不是绝对的,需要和实际的具体场景结
表1 理论下倾角
450其中:H-站高、D-最近站间距、b-天线的垂直波瓣宽度(可参见天线文件)
理论下倾角计算公式:
150200250300350400
5
4465566577687610971210813
12
9
由倾角算距离定向天线参数站高66水平覆盖距离站高(m)40楼间距D 85-246.315
倾角8垂直波瓣宽度50垂直波瓣宽度6下倾角10Dmin(m)########垂直覆盖距离82.29332
站高以下Dmax(m)457.2380.6325.8
82.29332
超过站高
郊区工业园区密集城区
由此得出的俯仰角角度的基础上再加上1-2度,使信号更有效地覆盖在本小区之内。

射灯垂直覆盖距离
场景结合起来。

500600800(可参见天线文件)。

天线下倾角计算工具及型号对照表

天线下倾角计算工具及型号对照表
6° 25 m Dmax (m)
Antenna Height
Dmin (m) Dmax (m)
垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 3.5 219 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 4 190 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 4.5 167 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m) 5 249 垂直波瓣宽度(3dB带宽) = 天线安装高度(m) = 下倾角 Dmin (m)
Page 5
38174622.xls
垂直波瓣宽度(3dB带宽) = 7° 天线安装高度(m) = 100 m 覆盖距离 Dmin (m) Dmax (m) 1634.98555 infinite 1270.62047 infinite 1038.53971 infinite 877.688736 infinite 759.575411 11458.865 669.115624 3818.84593 597.576436 2290.37655 539.551717 1634.98555 491.515703 1270.62047 451.07085 1038.53971 416.529977 877.688736 386.671309 759.575411 360.588351 669.115624 337.594342 597.576436 317.15948 539.551717 298.868496 491.515703 282.391289 451.07085 267.462149 416.529977 253.86479 386.671309 241.421356 360.588351 229.984255 337.594342

LTE基站天线下倾角设置分析

LTE基站天线下倾角设置分析
2017年 第 4 期 (总第 172 期)
信息通信 INFORMATION & COMMUNICATIONS
2017
(Sum. No 172)
LTE基站天线下倾角设置分析
苏 华 彬 ,姚 公 (北京电信规划设计院有限公司,北 京 100048)
摘 要 :针对LTE建 设 ,如何对天线下倾角设置,通过理论、仿真以及结合现有3G 基站设置经验,进行分析探讨,结合以上
(8) 市电恢复后,恢 复 PLC/ATM T自动状态,恢复柴油发 房维护管理工作。
224
信息通信
(3)如下倾角A 小于或等于下倾角B ,则参考下倾角B 为
基 础,结合该扇区的软切换比和天线挂高进行设置:
比< 6 « 校切捵比>=60»
天« « 惠小子3 6 米 天t t t t 惪大子等子3 6 米小子8 0 米 天t f l i 惠大子等子6 0 米 下“ 角扣2 下•♦ 角5 0
角参数设置以下方法:
(1)
运用理论公式计算每个扇区的下倾角,当半功率角上
沿达到两站距离的中点时对应的下倾角设置为下倾角A ;?
(2)
将 下 倾 角 A 与 该 扇 区 3G 网台账的下倾角(在此简称
为下倾角B)进行比对,如下倾角A 大于下倾角B ,该扇区的下
倾角则取定为下倾角A ;
值班人员A 启动柴油发电机指令后,手动启动柴油发电机,观
方法~~
方法二
即现网3GKH+LTE技术修正,考虎到LTE网络一定 即采用以上阐述的技
程 度 上 霣 要 控 制 重 *区 ,考虑在3G现网下傾角薹 术理论公式核m 的天
础 上 ,螯体再下压3皮 I 其中现网3C网络下傾角为 线下傾角穸鈐*

天线挂高下倾角方位角

天线挂高下倾角方位角

天线的覆盖范‎围主要取决于‎天线高度、下倾、天线增益、天线口功率、无线链路等因‎素。

①天线挂高:是指不算地面‎只算天线悬空‎的长度或高度‎。

计算方法:算建筑物的高‎度加支撑架到‎天线的中点的‎距离。

②方位角:正北方向的平‎面顺时针旋转‎到和天线所在‎平面重合所经‎历的角度。

在实际的天线‎放置中,方位角通常有‎0度,120度和2‎40度。

分别对应于A‎小区、B小区、C小区③下倾角是天线‎和竖直面的夹‎角。

天线下倾角的‎计算可以建立‎在如图1所示‎的模型下。

其中H表示天‎线的高度,D表示基站的‎覆盖半径,α就表示天线‎的下倾角,β/2‎表示半功率角。

那么天线的下‎倾角α为arctan‎(H/D)+β/2。

在实际中只要‎已知了基站的‎高度、覆盖半径和半‎功率角就可以‎计算出天线的‎下倾角。

Andori‎d中的方位倾角仪(antenn‎a downti‎l t):是Andro‎i d平台下的‎一款测量方位角和下倾角的软‎件。

根据软件自身‎的功能描述,只要将手机的‎背面对着天线‎,软件就可以测‎量出天线的方‎位角和下倾角‎。

天线下倾角的‎调整是网络优‎化中的一个非‎常重要的事情‎。

选择合适的下‎倾角可以使天‎线至本小区边‎界的射线与天‎线至受干扰小‎区边界的射线‎之间处于天线‎垂直方向图中‎增益衰减变化‎最大的部分,从而使受干扰‎小区的同频及‎邻频干扰减至‎最小;另外,选择合适的覆‎盖范围,使基站实际覆‎盖范围与预期‎的设计范围相‎同,同时加强本覆‎盖区的信号强‎度。

天线方向角的‎调整对移动通‎信的网络质量‎非常重要。

一方面,准确的方向角‎能保证基站的‎实际覆盖与所‎预期的相同,保证整个网络‎的运行质量;另一方面,依据话务量或‎网络存在的具‎体情况对方向‎角进行适当的‎调整,可以更好地优‎化现有的移动‎通信网络。

根据理想的蜂‎窝移动通信模‎型,一个小区的交‎界处,这样信号相对‎互补。

与此相对应,在现行的GS‎M系统(主要指ERI‎C SSON设‎备)中,定向站一般被‎分为三个小区‎,即:A小区:方向角度0度‎,天线指向正北‎;B小区:方向角度12‎0度,天线指向东南‎;C小区:方向角度24‎0度,天线指向西南‎。

基站天线的下倾角设置建议

基站天线的下倾角设置建议

基站天线的下倾角设置建议一、下倾角概述基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。

基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。

合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。

这两个侧重方向分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

1.1.考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是覆盖距离,即覆盖长径R。

1.2.考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二公式二含义如下图所示。

图二、基站天线控制信号强度时的下倾角应用图二、下倾角设置的应用分析2.1.下倾角分类目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。

1)机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的调节方式。

2)预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。

5GAAU 最优下倾角的优化实践

5GAAU 最优下倾角的优化实践

一、案例背景5G AAU是实现5G关键技术Massive MIMO的核心设备,是5G与4G技术在天线形态上最大的差异。

为了实现更多层的数据流传输以及更加精确的波束赋形技术,在建网过程大量使用了192个振子的64TR的AAU设备,5G的AAU设备远比原先的4G无源天线技术更为复杂,天线体积更大,天线参数的设计也更为复杂。

1)AAU 体积更大,现场安装、调整更加困难如上图所示,5G AAU的重量接近45kg,迎风面积接近0.4平方米,安装时对铁塔、抱杆要求更高;安装完毕后,对机械方位角、机械下倾角调整难度更多,很多时候需要两个塔工上塔配合才能完成调整,因此在基站设计、安装阶段一次性对AAU的机械方位角和机械下倾角设计到位就显得尤为重要。

2)AAU的上、下行波形不一致,因而对工参有不同要求对于64T64R MM产品,垂直面单元3dB宽度达到26~28 度,对于32T32R MM 产品,垂直面单元3dB宽度为64T64R MM产品的一半。

由于上、下行波形不一致,MM产品对于工参有着不同的需求:下行:信号经过多端口数字权值赋形后,再从天线发射,波形已经是各通道加权后的结果,此时波束垂直宽度和传统天线近似,所对应的工参也同传统天线近似。

上行:信号在单个通道接收后,再通过权值加权合并产生赋形增益;在进入天线时,波形是单通道的大垂直宽度,因此需要大机械下倾,才能避免邻区的NI落入3dB主瓣接收范围。

二、分析过程2.1,5G 下倾角类型以及不同场景的应用分析目前5G Massive MIMO AAU有64T64R、32T32R两种通道数天线,其区别在于垂直面上分别支持4层、2层波束,具备不同的三维Massive MIMO性能,相比以往的双极化天线在垂直维度上有更好的覆盖增益。

不同通道数的天线对于下倾角的实现和规划方法存在一定差异。

64T64R,192阵子,8列×4 行×2极化,垂直面每个通道由3个振子组成,共4通道,单元方向图为3个振子合成的方向图:32T32R,8列×2 行×2极化,垂直面每个通道由6个振子组成,共2 通道单元方向图为6个振子合成的方向图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天线下倾角设置参考表一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。

由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。

1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。

(1)为减少干扰,应选用水平半功率角接近于60度的天线。

这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。

如下图所示。

(2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。

由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。

(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。

例如水平半功率角为65度的15dBi双极化天线。

2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。

但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在度到度之间。

此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。

所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。

3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。

(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。

例如水平半功率角为90度的天线。

(2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题;而在山区和丘陵地带使用水平半功率角较小的天线易于控制覆盖方向和范围,效果较好。

(3)为保证覆盖半径,应选择高增益天线。

(4)由于极化分集依赖于移动台周围反射体和散射体的分布,对于地物分布相对较稀疏的农村地区,极化分集效果不如空间分集。

因此在安装条件具备的情况下,应尽可能使用单极化天线。

(5)如果基站周围各方向上都没有明显阻挡,话务需求较小,预期覆盖范围也较小,可以选用全向天线。

综上所述,CDMA网络农村地区定向基站宜选用水平半功率角较大的高增益单极化天线,例如水平半功率角为90度的17dBi单极化天线;GSM网络农村地区定向基站宜选用水平半功率角适配的高增益单极化天线,例如水平半功率角为90度或65度的17dBi单极化天线。

全向基站则可以选用11dBi的全向天线。

4、郊区基站天线郊区的情况介于城区和农村之间。

对于站距较大的基站,可以参照农村基站天线的选用原则;反之则参照城区基站天线的选用原则。

5、交通干线基站天线如果覆盖目标仅为高速公路或铁路等交通干线,可以考虑使用8字形天线。

8字形天线有如下特点:(1)8字形天线的辐射方位图与交通干线需覆盖区域的形状匹配较好;(2)8字形天线实际上是全向天线的变形,因此无需采用功分器;(3)使用一根天线代替两扇区天线,成本较低。

如果覆盖目标为交通干线及其一侧的村镇,则可采用方向角为210度的天线。

这种天线的辐射方位特性使得天线波瓣能够同时顾及到交通干线和村镇,它具有与8字形天线类似的特点。

二、基站天线设置基站天线设置需要重点考虑下倾角、方向角、天线挂高、天线分集距离和隔离距离等参数。

1、下倾角设置合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。

通常天线下倾角的设定有两方面侧重,即侧重于干扰抑制和侧重于加强覆盖。

这两方面侧重分别对应不同的下倾角算法。

一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

考虑干扰抑制时的下倾角在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。

因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)+β/2 公式一公式一含义如下图所示。

下倾角计算示意图1图中α为天线的下倾角,H为天线有效高度,β为天线的垂直半功率角。

R为该小区最远的覆盖距离,即覆盖长径R,如下图所示。

定向基站天线覆盖长径示意图在理想情况下R=2D/3。

实际上天线的辐射方向图不可能完全适配三叶草型蜂窝结构。

水平半功率角为60度左右的天线与之比较接近,而水平半功率角为90度的天线则相差较大。

因此对于使用水平半功率角为90度天线的基站,取R=D/2。

考虑加强覆盖时的下倾角在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。

为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。

在基站周围环境理想情况下,下倾角可按以下公式计算。

α=actan(H/R)公式二公式二含义如下图所示。

下倾角计算示意图2倾角设定的实际应用由于基站周围环境十分复杂,天线下倾角设定还必须考虑附近山体、水面和高大玻璃幕墙的反射和阻挡。

因此具体基站的下倾角可利用上述方法,同时结合具体环境最终取定。

综合考虑干扰抑制和加强覆盖的效果,在不同条件下基站天线典型的下倾角取定可参考下表。

天线下倾角设置参考表地形天线有效挂高(米)站距(米)水平半功率角(度)垂直半功率角(度)下倾角(公式一)下倾角(公式二)建议下倾角(度)密集城区 30 400 65 1340 400 65 1350 400 65 1330 500 65 1340 500 65 13一般城区 35 600 65 13 35 700 65 1335 800 65 1335 900 65 1335 1000 65 13郊区 40 1500 65 1340 2000 65 1340 2500 65 1340 3000 65 13农村 55 4000 90 755 5000 90 755 6000 90 755 7000 90 755 8000 90 755 9000 90 755 10000 90 755 4000 65 1355 5000 65 1355 6000 65 1355 7000 65 1355 8000 65 1355 10000 65 132、电子式倾角天线的设置同等类型的电子式下倾天线与机械式下倾天线相比,波形畸变较小,易于控制覆盖范围;干扰规避能力较强,在某种程度上可以改善载干比;RMS延迟范围较小,抗多径效应能力较强。

下表分别列比了某种内置6度、9度电子倾角天线和一般类型天线在不同机械倾角时波形畸变的情况。

基站天线波形畸变情况对照表65°15dBi 天线不同机械倾角时水平波束宽度和前后比实测数据序号电下倾角机械倾角总倾角水平波束宽度前后比(dB)1 0° 0° 0° ° 342 0° 2° 2° °3 0° 4° 4° °4 0° 6° 6° °5 0° 8° 8° ° 246 0° 10° 10° °7 0° 12° 12° °8 0° 14° 14° ° 189 0° 15° 15° °10 0° 16° 16° 152°65°15dBi6°电子倾角天线不同机械倾角时水平波束宽度和前后比实测数据序号电下倾角机械倾角总倾角水平波束宽度前后比(dB)1 6° 10° 16° ° 232 6° 8° 14° 68°3 6° 6° 12° 69°4 6° 4° 10° °5 6° 2° 8° °6 6° 0° 6° °7 6° -6° 0° °8 6° -4° 2° °9 6° -2° 4° °65°15dBi9°电子倾角天线不同机械倾角时水平波束宽度和前后比实测数据序号电下倾角机械倾角总倾角水平波束宽度前后比(dB)1 9° -9° 0° °2 9° -8° 1° °3 9° -6° 3° °4 9° -4° 5° °5 9° -2° 7° °6 9° 0° 9° °7 9° 2° 11° °8 9° 4° 13° °9 9° 6° 15° °电子式下倾天线分为预调电子倾角天线、可调电子倾角天线、遥控式可调电子倾角天线等类型。

预调电子倾角天线与机械式下倾天线价格相仿,而可调电子倾角天线、遥控式可调电子倾角天线的价格则远高于机械式下倾天线。

综合以上考虑,密集城区基站宜选用预调电子式倾角天线。

在工程中,采用预调电子倾角和机械调整倾角两者结合的方式使天线达到需要的下倾角度。

天线需要的下倾角度=电子预调倾角+机械下倾角度。

3、天线方向角的取定理想状况下,即各基站均匀分布、不考虑地形地物等因素、各基站均为定向站的情况下,基站各扇区之间的夹角应均为120度,如此可以达到蜂窝网络的最小干扰。

但实际上由于基站分布极不规则,同时地形地物错综复杂,各基站的方向角可以根据实际情况确定。

相关文档
最新文档