现浇箱梁底模标高预拱度计算方法(带附件计算)

合集下载

40m跨径箱梁预拱度计算

40m跨径箱梁预拱度计算

附件3:40m 跨径箱梁预拱度计算一、计算目的计算各类情况下箱梁最大挠度据此设置箱梁预拱度。

二、计算思路箱梁挠度主要由以下两方面组成:1.浇筑过程中因移动模架在箱梁混凝土自重作用下产生挠度1w ,跨中挠度方向向下,悬臂端挠度方向向上;2.箱梁张拉产生的起拱值2w ,跨中挠度方向向上,悬臂端挠度方向向下,首跨跨中位置取2w =2020,悬臂位置取19mm ;标准跨跨中位置取2w =18mm,悬臂位置取17mm ;尾跨跨中位置取2w =14mm,悬臂位置取13mm 。

综上所述,箱梁总体挠度:21w w w +=。

三、已知参数1. C50混凝土弹性模量:3.45×104N/mm2。

2. 40m 箱梁滑模主梁断面经Midas-civil 分析如下:3. 40m 箱梁截面经Midas 分析如下:40m箱梁截面数据及截面特性值4.正负号规定:挠度向上为“+”,挠度方向向下为“-”。

5.横梁编号如下:40m跨径箱梁滑模横梁布置示意图(单位:m)四、40m箱梁挠度计算一)、首跨挠度计算1.1w计算首跨混凝土自重荷载308KN/m,则作用在单侧滑模主梁上的荷载为154KN/m。

Midas建立计算模型如下:首跨滑模主梁计算模型滑模主梁节点坐标及与滑模横梁编号对应关系如下表:节点横梁编号X(m) Y(m) Z(m)1 - 0 0 02 - 7.5 0 03 1 8.47 0 04 - 9.4 0 05 - 9.9 0 06 - 10 0 07 - 12.4 0 08 2 13.27 0 09 3 17.07 0 010 - 18.9 0 011 4 20207 0 012 - 21.3 0 013 5 24.67 0 014 6 28.47 0 015 - 30.3 0 016 7 32.27 0 017 8 36.07 0 018 9 39.87 0 019 - 41.7 0 020 10 42.67 0 021 11 45.07 0 022 12 47.47 0 023 - 47.8 0 024 - 50 0 025 - 50.7 0 026 - 51.4 0 027 13 52.27 0 028 - 53.5 0 029 - 55.87 0 030 14 56.07 0 031 - 58 0 032 15 59.87 0 033 - 62 0 0经运行分析,滑模主梁位移等值线如下图:首跨滑模主梁位移等值线(单位:m)节点位移表格如下:节点荷载DX (m) DY (m) DZ (m)1 40m首跨混凝土自重0 0 0.0522 40m首跨混凝土自重0 0 0.0133 40m首跨混凝土自重0 0 0.0084 40m首跨混凝土自重0 0 0.0035 40m首跨混凝土自重0 0 0.0016 40m首跨混凝土自重0 0 0.0007 40m首跨混凝土自重0 0 -0.0138 40m首跨混凝土自重0 0 -0.0189 40m首跨混凝土自重0 0 -0.03710 40m首跨混凝土自重0 0 -0.04411 40m首跨混凝土自重0 0 -0.05112 40m首跨混凝土自重0 0 -0.05313 40m首跨混凝土自重0 0 -0.06114 40m首跨混凝土自重0 0 -0.06515 40m首跨混凝土自重0 0 -0.06516 40m首跨混凝土自重0 0 -0.06417 40m首跨混凝土自重0 0 -0.05718 40m首跨混凝土自重0 0 -0.04619 40m首跨混凝土自重0 0 -0.03920 40m 首跨混凝土自重 0 0 -0.035 21 40m 首跨混凝土自重 0 0 -0.024 22 40m 首跨混凝土自重 0 0 -0.013 23 40m 首跨混凝土自重 0 0 -0.011 24 40m 首跨混凝土自重 0 0 0.000 25 40m 首跨混凝土自重 0 0 0.003 26 40m 首跨混凝土自重 0 0 0.006 27 40m 首跨混凝土自重 0 0 0.010 28 40m 首跨混凝土自重 0 0 0.015 29 40m 首跨混凝土自重 0 0 0.025 30 40m 首跨混凝土自重 0 0 0.026 31 40m 首跨混凝土自重 0 0 0.034 3240m 首跨混凝土自重 00.042 33 40m 首跨混凝土自重 0 0 0.051首跨滑模主梁节点位移表由以上数据可知,跨中最大挠度为-65mm,悬臂端挠度为+34mm 。

现浇箱梁的施工方案

现浇箱梁的施工方案

现浇箱梁的施工方案现浇箱梁施工方案一、工程概况K135+199.445分离立交桥位于郓城互通区内,横跨338省道,交角为90°,跨径为22-28-22m,全长72m。

该桥基础形式为钻孔灌注桩,共30颗,桥台钻孔桩直径1.2m,长38m,桥墩钻孔桩直径1.5m,右幅钻孔桩桩长47m,左幅钻孔桩桩长48m。

桥墩、桥台桩顶皆设有承台,桥台为肋式台,桥墩为立柱,立柱直径 1.3m。

上部构造为现浇连续箱梁,左幅箱梁宽13.5m,为三室结构,右幅箱梁宽17.0m,为4室结构。

箱梁高1.4m,梁室高0.98m,底板厚0.2m,顶板厚0.22m,腹板宽0.45m。

箱梁采用C50混凝土,共1381.56m3。

二、现浇箱梁施工方案现浇箱梁支架采用满堂式碗扣支架,搭设满堂支架时,封闭338省道交通,从3#台路基进行改道,确保满堂支架施工的安全。

碗扣支架上搭设纵横方木,箱梁底模板及侧模板采用厚1.5cm的高强度竹胶板,箱室内模采用木模板。

箱梁砼浇筑采用二次浇筑法,第一次浇筑至腹板与翼缘板连接处,第二次浇筑顶板,待箱梁砼强度达到100%时进行预应力张拉。

Ⅰ、地基处理1、地基处理1、338省道两侧排水沟回填处理将排水沟内松散浮土和淤泥挖除干净,然后按照50cm一层分层回填山皮石,回填高度略低于省道路面高度,用压路机分层碾压至无沉降为止。

然后填筑40cm厚6%灰土,分两层回填,压实度达到93%以上,回填土顶面与省道路面齐平,并做出2%—4%的横坡,以利于排水。

2、桥梁范围内路基地表处理用平地机及推土机清除地表,并将地表整平。

然后用铧犁翻松30cm厚表面土层,掺入10%生石灰粉,用旋耕犁拌和均匀,待含水量合适实,压路机碾压密实,压实度达到90%以上。

然后再填筑30cm 厚10%灰土,并做出2%—4%横坡,压实度达到93%以上,以高出地面不受雨水浸泡影响。

3、排水沟挖设在10%灰土处理过的地基范围四周挖设50×50cm的排水沟,排水沟与路线右侧的省道两侧的自然排水沟连通,将雨水引进排水沟,防止雨水浸泡地基,避免碗扣支架产生不均匀沉降。

第八节、挠度、预拱度的计算

第八节、挠度、预拱度的计算

立柱式支架,可用于旱桥、不通航河道以及桥墩 不高旳小桥施工;如图a、b所示。
梁式支架,钢板梁合用于跨径不大于20m,钢衍 梁 合用于大子20m旳情况;如图c、d所示。 梁一柱式支架,合用于桥墩较高,跨径较大且支 架下需要排洪旳情况;如图e、f所示。
支架属于施工中旳临时承重构造,除承受桥梁上 部构造旳大部分恒重外,还要承受施工设备及振动荷 载、风力、施工人员旳重力以及支架本身旳自重,因 此需要进行设计计算,以确保支架具有足够旳强度、 刚度、支架基础旳牢固可靠、构件旳结合紧密,并要 求具有足够旳纵、横、斜三个方向旳连接杆件,使支 架形成整体。
(1)混凝土旳运送
混凝土旳运送能力应适应混凝土凝结速度和浇 筑速度旳需要,务必使泥凝土在运到浇筑地点时仍 保持均匀性和要求旳坍落度。不论采用汽车运送还 是搅拌车运送,其运送时间均不宜超出要求旳时间 范围。
采用泵送混凝土应符合下列要求:混凝土旳供 应必须确保输送混凝土泵能连续工作;输送管线宜 直,转弯宜缓,接头应严密,如管道向下倾斜,应 预防混入空气,产生阻塞;泵送前应先用水泥浆润 滑输送管道内壁,混凝土出现离析现象时,应立即 用压力水或其他措施冲洗管内混凝土,泵送间歇时 间不宜超出15min;在泵送过程中,受料斗内应具
⑷将导梁临时占住位置旳预制梁暂放在已架好旳梁上。
⑸待用绞车将导梁移至下一桥孔后,再将暂放一侧旳 预制梁架设完毕。
如此反复,直到将各孔主梁全部架好为止。此法
合用于孔数较多和较长旳桥梁时才比较经济。
由 试验资料来拟定相隔时间。当无法满足上述要求旳间 隔时间时,就必须预先拟定施工缝预留旳位置。一般 将它选择在受剪力和弯矩较小且便于施工旳部位.并 应技下列要求混凝土表层旳 水泥浆和较弱层。 ②经凿毛旳混凝上表面.应用水洗洁净,在浇筑次 层混凝土之前,对垂直施工缝宜刷层净水泥浆,对 于水平缝宜铺一层厚为10一20mm旳122旳水泥砂

施工预拱度计算

施工预拱度计算

施工预拱度计算
在桥梁悬臂施工的控制中,最困难的任务之一就是施工
预拱度的计算。

箱梁预拱度计算根据现场测定的各项参数由
专业程序计算得出并结合实际测量值进行比对:
①在第N#梁段混凝土灌注前,精确测量该梁段端头测
点的标高(即为段测点处的顶板施工立模标高)Ml。

②在第N#梁段混凝土灌注硬化后,精确测量该梁段端
头测点的标高M2。

③在第N#梁段纵向预应力束张拉前,精确测量该梁段
端头测点的标高M3。

④在第N#梁段纵向预应力束张拉压浆完成后、移挂篮前,精确测量该端头测点的标高M4。

⑤计算第N#梁段混凝土灌注前后测点的标高差d1=M2—Ml,以及该段纵向预应力束张拉压浆完成前后的标高差的d2=M4—M3。

将这两个标高差与线形控制软件计算得出的结果ΔMl、ΔM3分别进行比较,如果d1与ΔM 1、d2与ΔM3相比的误差都小于设计值,则按上述步骤进行下一梁段的施工;若两个误差值中有一个或两个都大于规定值,则需要从施工现场和数据文件两个方面查找产生差别的并修改相应的数据文件、输入微机、重新计算后,对下一梁段的立模实际标高进行修正。

按上述步骤不断循环,直至悬灌梁段施工完毕。

后张法现浇箱梁预拱度的设置

后张法现浇箱梁预拱度的设置

梁峁洛河大桥线形控制一、几个相对位置的确定1、支座中心线距相邻梁端部,水平距离110cm ;2、48m 箱梁梁缝中心线距梁端部,水平距离8cm ;可知,梁缝中心线距支座中心线,118cm 。

在5号~8号墩孔跨不存在纵向偏心,故支各部位几何尺寸如下:二、箱梁设计预挠度根据工点设计图设计说明:梁体预挠度设置采用二次抛物线,跨中预设下挠度设计值为26mm ;施工时应根据桥面工程施工时间及检测的混凝土弹性模量等情况确定实际箱梁预设下挠度。

设计预拱度设置,按二次抛物线法分配(支座处预拱度为0):x 24x (L -x)=L δδ⋅⋅ x δ——距左支座x 的预拱度值;x ——距左支座的距离;L ——跨长。

故有以下计算表:5号~8号墩设计预拱度在膺架不同位置处的取值另外,梁峁工点设计图中已明确:4号墩为32mT梁+48m箱梁不等跨墩,设有40cm的纵向预偏心,9号墩为32m箱梁+48m箱梁不等跨墩,设有20cm的纵向预偏心。

故,4号~5号墩、8号~9号墩梁部设计预拱度在膺架不同位置的取值如下表所示。

4号~5号墩设计预拱度在膺架不同位置处的取值8号~9号墩设计预拱度在膺架不同位置处的取值三、贝雷桁架的弯曲变形计算1、基本参数跨度最大13.25m,最小跨度12m(临时支墩处相邻两排仅距3m,故忽略不计);贝雷桁架面宽5m,16榀。

桥面铺木板厚度tp=14mm;单榀普通贝雷梁长3.0m,高1.5m由上、下弦杆、竖杆及斜杆焊接而成(见附图),单层普通贝雷梁单榀允许最大弯矩:67t.m;最大剪力:22.1t;每片梁自重按110kg/m计算。

挠度为负表示有预拱度。

出于安全考虑,各跨径连续梁均按简支梁计算。

2、荷载计算箱梁自重:q1砼=723060n/45m=16068kg/m;桥面铺板q2=1*B*tp*γ= 1*12.6*0.014*900=158.76kg/m;贝雷梁自重q3=12*qb=16*260=4160kg/m;人员设备及其它荷载q4=B*p5= 5*200=1000kg/m均布荷载总计q=q1+q2+q3+q4 =21386.76kg/m跨中挠度(l=13.25m)f=5*q*l^4/E/I/N/384=5*21386.76*13.25^4/2.1E10/.0056925/12/384*100=0.60cm跨中挠度(l=12m)f=5*q*l^4/E/I/N/384+fa=5*21386.76*12^4/2.1E10/.0056925/12/384*100=0.40cm考虑测量误差及模板安装偏差,故箱梁施工时,由于上述荷载产生的挠度可忽略不计。

施工预拱度计算

施工预拱度计算

施工预拱度计算
在桥梁悬臂施工的控制中,最困难的任务之一就是施工
预拱度的计算。

箱梁预拱度计算根据现场测定的各项参数由
专业程序计算得出并结合实际测量值进行比对:
①在第N#梁段混凝土灌注前,精确测量该梁段端头测
点的标高(即为段测点处的顶板施工立模标高)Ml。

②在第N#梁段混凝土灌注硬化后,精确测量该梁段端
头测点的标高M2。

③在第N#梁段纵向预应力束张拉前,精确测量该梁段
端头测点的标高M3。

④在第N#梁段纵向预应力束张拉压浆完成后、移挂篮前,精确测量该端头测点的标高M4。

⑤计算第N#梁段混凝土灌注前后测点的标高差d1=M2—Ml,以及该段纵向预应力束张拉压浆完成前后的标高差的d2=M4—M3。

将这两个标高差与线形控制软件计算得出的结果ΔMl、ΔM3分别进行比较,如果d1与ΔM 1、d2与ΔM3相比的误差都小于设计值,则按上述步骤进行下一梁段的施工;若两个误差值中有一个或两个都大于规定值,则需要从施工现场和数据文件两个方面查找产生差别的并修改相应的数据文件、输入微机、重新计算后,对下一梁段的立模实际标高进行修正。

按上述步骤不断循环,直至悬灌梁段施工完毕。

移动模架现浇连续箱梁预拱度及线形控制

移动模架现浇连续箱梁预拱度及线形控制

移动模架现浇连续箱梁预拱度及线形控制摘要:预拱度及线形控制是移动模架施工连续箱梁的重点,本文结合广州珠江黄埔大桥S12合同段MSS45(下行式)移动模架施工实际,详细介绍了移动模架现浇连续箱梁的预拱度及线形控制要点和方法,为应用移动模架施工连续箱梁提供了借鉴。

关键词:移动模架连续箱梁预拱度线形控制1、工程概况广州珠江黄埔大桥S12合同段第五~七联位于半径4000m的圆曲线上,均为连续刚构箱梁,长795米,双幅18跨。

其中第1~17跨跨径均为45m,梁高2.5m;第18跨跨径为30m,梁高由2.5m渐变至1.8m。

第五~七联除过渡墩处采用单向支座,其余桥墩均为墩梁固结。

根据设计要求,这三联连续刚构箱梁均采用MSS45(下行式)移动模架施工,施工缝均设于距桥墩中心线6m处(过渡墩伸缩缝处除外),箱梁从墩顶至施工缝范围内预拱直线变化,施工顺序从黄埔向番禺方向施工。

2、预拱度控制预拱度控制是移动模架法施工箱梁控制的重中之重,如果预拱度控制不好,则直接影响箱梁的标高,乃至影响整个线路的标高;更为重要的是如果预拱度控制不好,则会影响箱梁结构的受力。

2.1 影响预拱度的主要因素预拱度控制是整个移动模架现浇连续箱梁施工的重点。

预拱度的影响因素要考虑周全,总的来说影响预拱度的因素有两个:一是移动模架系统变形值,二是设计提供的变形值(△设计)。

影响移动模架变形的主要因素有以下五部分:(1)移动模架主梁系统(含横梁及模板)在混凝土浇筑后产生的变形值:Δ主梁;(2)移动模架支承系统(小车、牛腿、销梁等)在浇筑混凝土后产生的变形值:Δ牛腿;(3)后悬臂吊杆伸长产生的变形值(在每联除第一浇筑段的其它浇筑段考虑此值):Δ吊杆;(4)温度对模架变形影响的改正值(该值很小,可忽略不计):Δ温度。

(5)混凝土箱梁的收缩及徐变(一般不计):Δ箱梁。

移动模架现浇连续箱梁工况(浇筑段长度)不同,其变形值亦不同。

2.2 移动模架现浇连续箱梁工况根据设计,移动模架现浇连续箱梁主要分三种工况:(1)工况1:每联第一浇筑段施工时,其浇筑段长为:51m(45m+6m),详见图1;(2)工况2:每联中间浇筑段施工时,其浇筑段长为:45m,详见图2;(3)工况3:每联最后浇筑段施工时,其浇筑段长为:39m(45m-6m),详见图3p第二、MSS45(下行式)移动模架预压试验(工况1)在箱梁混凝土荷载下(含施工荷载)变形曲线。

箱梁预拱设置

箱梁预拱设置

箱梁梁底模板跨中设置预(反)拱的计算采用移动模架造桥机现浇32米铁路简支箱梁,梁底模板跨中设置预(反)拱的计算一、《肆桥设(2006)2221-Ⅵ》定型图中关于线形控制的说明①扣除自重影响后预应力产生的上拱度:直线梁为13.64mm,曲线梁为14.15mm;②静活载挠度:直线梁和曲线梁均为7.54,为跨度的1/4125;③反拱的设置:为保证线路在运营状态下的平顺性,梁体应预设反拱。

理论计算跨中反拱值为20mm,其它位置应按二次抛物线过渡。

实际施工中反拱的设置应根据具体情况,充分考虑收缩徐变的影响以及预计二期恒载上桥时间确定。

本设计二期恒载上桥时间按预加应力后60天计算,理论计算残余徐变拱度值为6.2mm。

二、移动模架造桥机的挠度值移动模架造桥机等载预压时,经实测,底模跨中的挠度值(弹性变形值)为40mm三、跨中梁底模板设置预(反)拱的计算保证线路在运营状态下平顺,即梁体上下结构表面坡度与设计坡度一致。

梁底模板跨中设置的拱度值△L如下式:△L=L1-L2-L3 (mm)L1:模架等载预压时底模跨中的挠度值(弹性变形值)。

现场实测为39mm 。

L2:张拉及混凝土收缩徐变引起的上拱值。

按《肆桥设(2006)2221-Ⅵ》定型图的说明,是20mm(?)L3:预应力60天后的残余徐变拱度值。

按《肆桥设(2006)2221-Ⅵ》定型图的说明,是6.2mm△L = L1- L2 - L3= 39-20-6.2= 12.8 mm根据上式计算,△L为正值,则在立梁底模板时跨中设向上的预拱值12.8 mm。

跨中至支座顶,则按△L值到0mm,按二次抛物线过渡。

这样计算对否?上述一、①及一、②中的数据有何用途?黄玉仁 06.11.22附:中铁十一局的计算资料移动模架造桥机A、梁体变形限值梁体竖向饶度Δ限值:在ZK活载静力作用下,Δ≤L/1500;在中-活载静力作用下,Δ≤L/1200。

B、反拱的设置为保证线路在运营状态下的平顺性,梁底预设反拱,理论计算跨中反拱值为22.5mm,其他位置按二次抛物线过渡。

现浇预应力混凝土连续箱梁施工技术

现浇预应力混凝土连续箱梁施工技术

2003年3月31日完成主体结构二次衬砌,实际施工时间为16个月。

按一般公路双线隧道开挖面积约90m 2折算,平均施工进度为58成洞米/月,施工进度指标一般。

但考虑到本工程的地理位置、周边环境、施工难度,以及施工过程中未发生任何安全质量事故,本工程可以说取得了巨大的成功。

监测结果表明,采取的各种周边建筑物的保护措施是有效的,施工过程中未对周边建、构筑物造成损害。

参考文献[1] 张毅刚等.大跨空间结构[M ].北京:机械工业出版社,2005[2] 冯叔瑜等.城市控制爆破(第二版)[M ].北京:中国铁道出版社,1996[3] 《建筑施工手册》编写组.建筑施工手册(第二版)[M ].北京:中国建筑工业出版社,1999[4] 李明华.路桥隧工程施工技术[M ].北京:中国铁道出版社,2004[5] 景师庭.隧道结构可靠度[M ].北京:中国铁道出版社,2004[6] 王文通,张项铎.城市地铁车站监控量测技术设计[J ].铁道勘察,2005,31(3)[7] 汤勇洛.超浅埋及超高断面结构暗挖施工技术[J ].铁道勘察,2005,31(2)[8] 赵惠祥.城市轨道交通土建工程[M ].北京:中国铁道出版社,2003收稿日期:20051104作者简介:梁伟江(1972—),男,1995年毕业于辽宁工程技术大学地下工程专业,工程师。

现浇预应力混凝土连续箱梁施工技术梁伟江(中铁十六局集团五公司,河北唐山 063303)The Constructi on Technology of Casti n g the PrestressedConcrete Conti n uous Box Beam s at Si ghtL iang W eijiang 摘 要 结合工程实例,介绍了现浇预应力混凝土连续箱梁施工关键工序中的支架基础处理、箱梁底模安装、支架系统预压和卸载、波纹管定位安装、钢绞线张拉及混凝土浇筑的施工方法,为今后类似工程提供了借鉴。

预拱度的计算

预拱度的计算

3。

5挠度、预拱度的计算一、变形(挠度)计算的目的与要求桥梁上部结构在荷载作用下将产生挠曲变形,使桥面成凹形或凸形,多孔桥梁甚至呈波浪形。

因此设计钢筋混凝土受弯构件时,应使其具有足够的刚度,以免产生过大的变形,影响结构的正常使用.过大的变形将影响车辆高速平稳的运行,并将导致桥面铺装的迅速破坏;车辆行驶时引起的颠簸和冲击,会伴随有较大的噪音和对桥梁结构加载的不利影响;构件变形过大,也会给人们带来不安全感。

变形验算是指钢筋混凝土桥梁以汽车荷载(不计冲击力)计算的上部结构最大竖向挠度,不应超过规定的允许值。

《公桥规》对最大竖向挠度的限值规定如下表:钢筋混凝土梁桥允许的挠度值注:1。

此处L为计算跨径,L1为悬臂长度;2.荷载在一个桥跨范围内移动产生正负不同的挠度时,计算挠度应为其正负挠度的最大绝对值之和。

二、刚度和挠度计算桥梁的挠度,根据产生原因可分成永久作用(结构自重力、桥面铺装、预应力、混凝土徐变和收缩作用等)产生的和可变作用(汽车、人群)产生的两种.永久作用产生的挠度是恒久存在的且与持续的时间有关,可分为短期挠度和长期挠度.可变作用产生的挠度是临时出现的,在最不利的作用位置下,挠度达到最大值,随着可变作用位置的移动,挠度逐渐减小,一旦可变作用离开桥梁,挠度随即消失。

永久作用产生的挠度并不表征结构的刚度特性,通常可以通过施工时预设的反向挠度(即预拱度)来加以抵消,使竣工后的桥梁达到理想的设计线形。

可变作用产生的挠度,使梁产生反复变形,变形的幅度越大,可能发生的冲击和振动作用也越强烈,对行车的影响也越大。

因此,在桥梁设计中,需要通过验算可变作用产生的挠度以体现结构的刚度特性。

钢筋混凝土和预应力混凝土受弯构件,在正常使用极限状态下的挠度,可根据给定的构件刚度用结构力学的方法来计算。

对于均布荷载作用下的简支梁,跨中最大挠度值为:4224553844848ql Ml Ml f EI EI b=⋅=⋅=⋅ (1)钢筋混凝土构件220()[1()]cr cr s s cr B B M M B M M B =+-0cr tk M f W γ=; 002/S W γ=(2)预应力混凝土构件1) 全预应力混凝土和A 类预应力混凝土构件 000.95B EI =2) 允许开裂的B 类预应力混凝土构件在开裂弯矩cr M 作用下: 000.95B EI =在(s cr M M -)作用下:cr cr B EI =开裂弯矩: 0()cr pc tk M f W σγ=+受弯构件在使用阶段的挠度应考虑荷载长期效应的影响(长期挠度),即按荷载短期效应计算的挠度值,乘以挠度长期增长系数0η,可按下列规定取值:当采用C40及以下混凝土时,0 1.60η=;当采用C40~C80混凝土时,0 1.45~1.35η=,中间强度等级可按直线内插取用.三、预拱度钢筋混凝土受弯构件预拱度可按下列规定设置:1) 荷载短期效应组合并考虑荷载长期效应影响产生的长期挠度不超过L/1600时,可不设预拱度;2) 不符合上述规定则应设预拱度,预拱度值应按结构自重和1/2可变荷载频遇值计算的长期挠度值之和采用。

现浇箱梁模板计算

现浇箱梁模板计算

1、侧模板计算(1)、侧压力计算计算侧压力P值,假设温度T=35℃,按每小时浇筑30m3砼计算,V =4.5m/h。

则:Pm=4.6V1/4=4.6*4.51/4=6.7KPa考虑振动荷载4KPa,则P=6.7+4=10.7KPa(2)、按强度要求进行计算外侧模板立挡间的间距为50cm,木材采用竹胶板,fc=11MPa,将侧压力化为线布荷载q=7.62*Pm=7.62*10.7=81.5KN/m。

Mmax=qL2/10=81.5*0.52/10=2KN.m需要Wn=2*106/13=153846mm3选用侧模板的截面尺寸为15mm*7200mm截面抵抗矩W=7620*152/6=285750mm3>Wn可满足要求。

=1.25mm符合要求。

(3)、对侧模板采用的横纵肋进行计算由于侧模板计算仅对侧压力进行计算,对于翼板部分由于重量较轻,可不做计算。

施工过程中侧模板的加强肋为水平肋,水平肋被支在垂直肋上,假设垂直肋水平间距定为L=50cm,两水平肋间距定为a=80cm,则分布在该水平肋上的均布荷载为:新浇筑砼对模板的侧压力,若按砼的有效压头3.90m进行计算pmax=r.h=26*3.9=101.4KPaq=P*a=101.4*0.5=50.7KN/m按简支梁考虑,最大弯矩:Mmax=qL2/8=50.7*0.52/8=1.584KN.m水平肋采用60*90mm方木,其截面模量:W=b.h3/3=0.06*0.093/3=1.458*10-5采用落叶松木材,其容许弯应力[σ]=13*103KPa[σ]=Mmax/(nW)n=Mmax/([σ]W)=1.584/(13*103*1.458*10-5)=8.36根实际施工时对于水平肋在3.9m范围内,其带木的根数为9根,水平肋间距应为3.9/8=0.49m。

水平肋间距取0.50m符合要求。

(3)、面板按刚度要求计算ω=qL4/150EL=6.7*7.2*5004/(150*9*103*7200*153/12)=1.103mm<[ω]=500/400=1.25mm则侧模采用1.5cm竹胶板符合要求。

箱梁预压方案及预拱度设置

箱梁预压方案及预拱度设置

支架预压方案及预拱度设置支架搭设完成,在砼箱梁施工前,对支架进行相当于1.2倍箱梁自重的荷载预压,以检查支架的承载能力,减少和消除支架体系的非弹性变形及地基的沉降。

支架压重材料采用相应重量的砂袋(或钢材),并按箱梁结构形式合理布置砂袋数量(见压重布置图)。

待消除支架非弹性变形量及压缩稳定后测出弹性变形量,即完成支架压重施工。

撤除压重砂袋后,设置支架施工预留拱度,调整支架底模高程,并开始箱梁施工。

根据本工程桥跨数量多、线路长、支架情况及工期要求,我部拟仅对第四联右幅其中17#墩-18#墩跨和第六联右幅22#墩-23#墩跨进行压重施工的方案,即作业一队和二队各压重施工一跨,作业一队为贝雷梁支架施工,作业二队为钢管支架施工;其余各跨箱梁可据此二跨压重情况及理论计算相结合的形式,进行支架施工预留拱度的设置。

具体考虑如下:①如对每联进行压重,则压重材料需求大、箱梁施工周期长;仅第四联右幅就须压重2600T,且加载、卸载时间长,投入机具设备多。

②支架压重情况分析a、支架基座在承台和路面时,其承载力好,沉降量极小;其余支架砼基座设置在原状土(亚粘土)上,其承载力较好,沉降量较小,且可较准确计算出其沉降量,贝雷支架跨中基座沉陷经计算取1.5cm。

且经一次压重后可测出沉陷经验值以方便设置支架预拱度。

b、贝雷梁支架和钢管脚手架均为使用较成熟的支架形式,其压缩及挠度值可通过计算得出,以27m跨靠梁高较高跨为例(支架图附后),贝雷梁最大挠度为2.0cm。

c、非弹性变形主要表现在底模抄垫上,但其高度设计较低,木楔及方木间接触面少,其变形值较小,且可通过经验公式推算和一次压重情况进行确定。

以标准跨计算,其非弹性变形为1.5cmd、此两种支架结构形式均比较简单,且我部在其它工程已有压重施工的经验。

综上所述,在地基及支架结构形式一样的情况下,全桥上构每种支架采取一跨压重的方式应可以满足现浇箱梁施工需要。

③预拱度设置:a、集美立交箱梁支架预拱度理论计算与设置b、集美立交箱梁支架压重后预拱度设置。

现浇箱梁预压方案

现浇箱梁预压方案

现浇箱梁预压方案一、总述为了确保支架安全,消除非弹性变形和沉降,测定支架弹性变形量,按施工工艺要求和设计图纸的要求,需要对支架进行预压且重量不少于箱梁重量的90%。

同时,为对现浇箱梁和预压有一个总的施工指导意见,故分以下三个方面进行阐述:A线桥的预压,桥宽9.5m及桥宽8.0m的荷载进行预压。

二、预压荷载的计算(1)A线桥(以A5~A8之间为例)①翼缘板砼:76.33×0.3×2×2=91.58m3翼缘板每m2砼量:0.3m3②箱梁腹板砼:1252-91.58=1160.42m3箱梁腹板底面积(13.5+27.5)/2×76=1558m2箱梁腹板每m2砼量:1160.42/1558=0.7448m3③翼缘板每m2预压荷载为0.3×2.5×0.9=0.675t箱梁腹板每m2预压荷载为0.7448×2.5×0.9=1.676t (2)9.5m宽桥面(以C桥为例)①翼缘板,每延米砼量2.25×0.3×1.0=0.675m3每延米重量0.675×2.5×0.9=1.519t每平方米重量0.3×2.5×0.9=0.675t②一联翼缘板砼量:34×3×0.675×2=137.7m3腹板砼量368.8 m3每延米砼量3.61m3每延米重量3.61×0.9×2.5=8.12t每平方米重量1.62t(3)8.0m桥面宽桥面(以H桥为例)①翼缘板砼每延米:2×0.3×1.0=0.6m3每延米重量:0.6×2.5×0.9=1.35t每平方米重:0.3×2.5×0.9=0.675t②一联翼缘板砼量:0.6×2×98.5=118.2m3一联腹板砼量:437.40-118.2=319.2m3每延米重量:319.2/98.5×2.5=8.10t每平方米重量:0.9×8.10/4=1.823t三、预压袋重量的确定在预压前对预压袋进行随机取样分别取3×10袋,分10袋称出其重量,得三个10袋预压袋的平均重量,再平均得一袋预压袋的重量,将作为预压袋重量的计算袋重,经实际测定,本次预压袋的重量为35kg/袋。

现浇箱梁底模标高预拱度计算方法(带附件计算)

现浇箱梁底模标高预拱度计算方法(带附件计算)

潮音大桥现浇箱梁底模标高预拱度计算方法首先,现浇箱梁施工前,选取第Ⅰ节段长52m段梁体重量主要集中的底板宽范围支架进行预压,根据此段梁体预压结果计算出支架及地基整体的塑性变形和弹性变形,以此调整其它段梁底模板标高。

1、沉降分析:预压期间现场做好沉降观测记录,根据沉降观测记录进行沉降分析,非弹性变形h非=卸载后沉降量h卸,h非为支架杆件及地基基底在荷载作用下的非弹性变形;弹性变形h弹=加载稳定后沉降量h累-卸载后沉降量h卸,h弹为支架节点间、支架杆件及地基基底的弹性变形,是设置预留沉降量的依据,以确定施工预拱度的设置。

2、施工预拱度的设置:(1)卸落支架后,箱梁本身重量二期恒载及活载所产生的竖向扰度δ1的预留值,按设计图纸(图号BS11034)布置。

(2)支架在荷载作用下的弹性变形δ2的预留值(施工支架预拱度),以预压期间沉降观测数据确定,根据桥涵施工手册下册P12,施工支架预拱度设置在跨径中心间,梁两端(支座处)为0,按二次抛物线布置。

其曲线方程按у=4f拱χ(L-χ)/L2(3)支架及支架基底在荷载作用下非弹性变形δ3的预留值,以预压期间沉降观测数据确定。

对于已加载预压实验的节段梁,就不再预留非弹性变形δ3,只需对未加载预压的节段梁预留非弹性变形δ3。

3、沉降观测成果第Ⅰ节段支架于2004年5月26日开始加载预压, 5月31日下午加载完成,预压期间支架设置沉降观测点具体数据见下表:4、弹性变形δ2及非弹性变形δ3的实验值根据以上沉降观测表数据所示。

(1)弹性变形δ2的实验值①2#墩支座处断面弹性变形左=0,中=0,右=-1,该断面弹性变形平均值0mm;②1/4跨处断面弹性变形左=-19,中=-26,右=-11,该断面弹性变形平均值19mm;③跨中处断面弹性变形左=-22,中=-36,右=-18,该断面弹性变形平均值25mm;④3/4跨处断面弹性变形左=-19,中=-25,右=-19,该断面弹性变形平均值21mm;⑤3#墩支座处断面弹性变形左=-1,中=-2,右=-1,该断面弹性变形平均值1mm;由上可知,弹性变形δ2的最大值在跨中断面处,即δ2=25mm。

预制梁起拱度计算

预制梁起拱度计算

预制梁起拱度计算概述预制梁是一种在工厂内预制好的梁体,然后运输到现场进行安装的结构构件。

在预制梁的设计和施工过程中,起拱度的计算是非常重要的一项工作。

起拱度是指梁体在受力后产生的弯曲变形,它对梁体的结构和使用性能都有重要影响。

本文将介绍预制梁起拱度计算的相关内容。

起拱度的计算方法预制梁的起拱度计算主要依据梁体的几何形状、截面性质、荷载情况和材料特性等因素进行。

下面将介绍一种常用的计算方法。

1. 梁体几何形状和截面性质的测量在进行起拱度计算之前,首先需要对预制梁的几何形状和截面性质进行测量,包括梁体的长度、宽度、高度等几何尺寸,以及截面的形状、面积、惯性矩等性质。

这些测量数据将作为起拱度计算的基础。

2. 荷载分析根据实际工程情况,确定预制梁所承受的荷载情况,包括自重、活载、温度荷载等。

对于每种荷载情况,需要确定其作用位置、大小和分布形式。

3. 弯矩计算根据荷载分析结果,可以得到预制梁在不同位置受到的弯矩大小。

弯矩是导致梁体发生起拱变形的主要原因,因此准确计算弯矩非常重要。

可以采用静力学原理和结构力学的知识,通过计算公式或有限元分析等方法进行弯矩计算。

4. 梁体变形分析根据弯矩计算结果,可以进行梁体的变形分析,包括挠度和起拱度的计算。

挠度是指梁体在受力后产生的纵向位移,而起拱度是指梁体在受力后产生的弯曲变形。

通过结构力学的知识和数值计算方法,可以进行梁体变形的分析和计算。

5. 结果评估根据梁体的变形分析结果,可以评估预制梁的起拱度是否满足设计要求。

如果起拱度过大,可能会导致梁体的结构破坏或使用性能下降,需要采取相应的措施进行改进,如增加梁体的截面尺寸或采用加强措施等。

实例分析为了更好地理解预制梁起拱度的计算过程,下面以一座桥梁的预制梁为例进行分析。

假设该桥梁的预制梁长度为10米,宽度为1米,高度为0.5米,截面为矩形。

根据荷载分析,该预制梁承受的活载为10吨,作用位置位于距离梁两端2米的位置。

根据静力学原理和结构力学的知识,可以计算出该位置的弯矩大小为100吨米。

支架法现浇简支箱梁预拱度设置及起拱控制浅谈

支架法现浇简支箱梁预拱度设置及起拱控制浅谈

支架法现浇简支箱梁预拱度设置及起拱控制浅谈摘要:本文主要介绍支架法简支箱梁预拱度的设置方法,针对简支箱梁起拱的主要原因进行分析和探讨,并提出相对应的控制方法。

在实践的过程中更有效的设置相对应的预拱度、使简支箱梁起拱得到切实有效的控制,这样可以更好地控制支架法现浇简支箱梁高程。

本文以实际的工程案例来总结和分析支架法现浇简支箱梁施工的具体情况,希望能够为同行提供一定的参考。

关键词:支架法;现浇简支箱梁预拱度;设置;起拱控制引言针对现浇简支箱梁梁面高程控制而言,要想使其控制效果得到充分的提升,要着重做好两方面工作,第一个方面是从根本上有效控制好箱梁现浇施工时的高程,科学设置,并有效控制好施工过程。

另一个方面是控制好箱梁浇筑后张拉时预应力产生的弹性上拱和混凝土徐变产生的上拱。

对此,第一方面通过支架预压,结合预压成果更科学合理的设置相对应的预拱度,并针对整个施工过程进行精细化的控制。

第二方面进一步全面细致的研究和分析起拱产生的机理,同时更有效地控制好整个过程。

1预拱度设置1.1支架构造支架法现浇简支箱梁支架采取两支点梁柱式支架进行相对应的施工,在每一端都应用螺旋管支架φ630(δ=10mm )作为支撑体系,支点处先进行地基处理,地基检测合格后浇筑C30混凝土条形基础,;为了更加方便支架的拆卸工作,要在钢管的顶端设置相对应的砂箱,在砂箱上采用2根对焊I40a 工字钢做分配梁,贝雷片要直接放在I40a 分配梁上;横梁上面铺设贝雷片作为纵梁,贝雷片横向采用连接片,对其进行充分的连接,使其成为一个整体,之后在上面横向铺设I16工字钢作为分配梁;底模及侧模采取加工完成之后的定型钢模,在内模采用组合钢模进行拼装而成。

1.2预压预压主要是对于支架承受力进行有效检验,从根本上有效规避变形等相关方面的问题,同时观测支架的弹性变形与非弹性变形等相关结果,为铺设、调整底模更有效的设置相对应的预拱度提供相对应的参考数据。

1.2.1对于支架预压方案支架进行相对应的验收,把底侧模板铺设完成,然后有效做好支架预压。

预拱度经验值

预拱度经验值

简支梁起拱度经验值:10m:一般为8-10mm;13m:一般为10-15mm;16m:一般为10-15mm;20m:一般为15-20mm;25m:一般为20-25mm;30m:一般为20-30mm;也有设置反拱度为36mm。

简支梁起拱度一般为梁长的1/1000;钢桁架一般为梁长的3-4/1000简支梁预应力上拱度计算:x=2*(Mpe*L*L)/(8*0.95*EC*In)Mpe——永存应力的弯矩;L——垮径;EC——混泥土弹性模量;In——截面抗弯惯性距。

起拱度没有达到预算的原因:正常来说,张拉完成后,底板当然应该是平的, ,有可能是以下几种原因:1.预应力张拉值不够,未达到设计值.2.设计计算不够准确,张拉力本身偏小.3.箱梁浇注过程中,自身出的问题.如:梁配筋位置偏差,砼浇注厚度偏差,直接影响了张拉后起拱度.4.预应力筋波纹管定位不准确,位置的变化也是影响起拱最关键的一个环节.后张法预应力箱梁预拱度控制:由中铁大桥局股份有限公司承建的广深沿江高速公路机场特大桥上部结构采用先简支后连续的预应力混凝土组合箱梁,每半幅桥由两片边梁和三片中梁组成。

施工要求箱梁成桥阶段桥面基本水平,无论起拱度值偏小或偏大均会导致桥面纵桥向形成波浪线形,影响行车的舒适;同时要求同一孔的5片箱梁的预拱度基本一致,否则会导致箱梁架设后存在桥面错台,影响横桥向桥面的平整度。

箱梁预拱度设置是预制箱梁施工过程中重点控制项目,现在结合现场实际施工对预拱度设置及其控制做简单的陈述与分析。

1 反拱度值计算预制箱梁反拱度值主要根据以下方面计算:1)梁体结构自重;2)预应力钢筋总张拉力;3)混凝土设计强度、弹模及其使用环境温度(影响混凝土收缩徐变);4)桥面二期恒载值;5)反拱度计算龄期(混凝土收缩徐变时间)。

设计图纸中计算的30m预制组合箱梁跨中最大反拱度值为:边梁20mm,中梁15mm。

2 反拱度值设置原则反拱度值设置原则为:其值大小以水泥混凝土铺装前梁的上拱度(向上)不大于2cm,同时满足成桥后的预拱度(即边梁20mm,中梁15mm)要求控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潮音大桥现浇箱梁底模标高预拱度计算方法首先,现浇箱梁施工前,选取第Ⅰ节段长52m段梁体重量主要集中的底板宽范围支架进行预压,根据此段梁体预压结果计算出支架及地基整体的塑性变形和弹性变形,以此调整其它段梁底模板标高。

1、沉降分析:预压期间现场做好沉降观测记录,根据沉降观测记录进行沉降分析,非弹性变形h非=卸载后沉降量h卸,h非为支架杆件及地基基底在荷载作用下的非弹性变形;弹性变形h弹=加载稳定后沉降量h累-卸载后沉降量h卸,h弹为支架节点间、支架杆件及地基基底的弹性变形,是设置预留沉降量的依据,以确定施工预拱度的设置。

2、施工预拱度的设置:
(1)卸落支架后,箱梁本身重量二期恒载及活载所产生的竖向扰度δ1的预留值,按设计图纸(图号BS11034)布置。

(2)支架在荷载作用下的弹性变形δ2的预留值(施工支架预拱度),以预压期间沉降观测数据确定,根据桥涵施工手册下册P12,施工支架预拱度设置在跨径中心间,梁两端(支座处)为0,按二次抛物线布置。

其曲线方程按у=4f拱χ(L-χ)/L2
(3)支架及支架基底在荷载作用下非弹性变形δ3的预留值,以预压期间沉降观测数据确定。

对于已加载预压实验的节段梁,就不再预留非弹性变形δ3,只需对未加载预压的节段梁预留非弹性变形δ3。

3、沉降观测成果
第Ⅰ节段支架于2004年5月26日开始加载预压, 5月31日下午加载完成,预压期间支架设置沉降观测点具体数据见下表:
4、弹性变形δ2及非弹性变形δ3的实验值
根据以上沉降观测表数据所示。

(1)弹性变形δ2的实验值
①2#墩支座处断面弹性变形左=0,中=0,右=-1,该断面弹性变形平均值0mm;
②1/4跨处断面弹性变形左=-19,中=-26,右=-11,该断面弹性变形平均值19mm;
③跨中处断面弹性变形左=-22,中=-36,右=-18,该断面弹性变形平均值25mm;
④3/4跨处断面弹性变形左=-19,中=-25,右=-19,该断面弹性变形平均值21mm;
⑤3#墩支座处断面弹性变形左=-1,中=-2,右=-1,该断面弹性变形平均值1mm;
由上可知,弹性变形δ2的最大值在跨中断面处,即δ2=25mm。

(2)非弹性变形δ3的实验值
①2#墩支座处断面非弹性变形左=11,中=13,右=9,该断面非弹性变形平均值11mm;
②1/4跨处断面非弹性变形左=10,中=14,右=19,该断面非弹性变形平均值14mm;
③跨中处断面非弹性变形左=9,中=20,右=24,该断面非弹性变形平均值18mm;
④3/4跨处断面非弹性变形左=11,中=19,右=22,该断面非弹性变形平均值17mm;
⑤3#墩支座处断面非弹性变形左=8,中=11,右=11,该断面非弹性变形平均值10mm;
由上可知,非弹性变形δ3的总平均值为(①+②+③+④+⑤)/5=14mm,即δ3=14mm。

5、底模标高设计表
现浇箱梁底模控制标高计算表。

相关文档
最新文档