华师大版初一数学下学期期末模拟试题(含答案)

合集下载

华师大版数学七年级下册期末考试试卷附答案

华师大版数学七年级下册期末考试试卷附答案

华师大版数学七年级下册期末考试试题第I卷(选择题)一、单选题(每小题4分,共40分)1.下列式子属于不等式的个数有()①2 3x>50;①3x=4;①-1>-2;①23x;①2x≠1.A. 1个B. 2个C. 3个D. 4个2.下列方程组中是二元一次方程组的是()A. {x+y=3z+x=5B. {x+y=5y2=4 C. {x+y=3xy=2 D. {x=y+11x2−2x=y+x23.若三角形的两边长分别为7和9,则第三边的长不可能是()A. 5B. 4C. 3D. 24.一个三角形的三个内角中()A. 至少有一个钝角B. 至少有一个直角C. 至多有一个锐角D. 至少有两个锐角5.下列图标中轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个6.如果关于x的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集为()A. x≥﹣1B. x <2C. ﹣1≤x≤2D. ﹣1≤x <27.下列说法中,错误的个数为( )①若a >b ,则a +c >b +c ;②若a >b ,则ac >bc ;③若a >b ,则ac 2>bc 2;④若a >b ,c >d ,则ac >bd ;⑤若a <b <0<c ,则a 2c <b 2c.A. 2个B. 3个C. 4个D. 5个8.一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为()A. ()0.828150%x x +=+B. ()0.8-28150%x x =+C. ()280.8150%x x +=⨯+D. ()-280.8150%x x =⨯+9.如图,将①ABC 绕着点C 顺时针旋转50°后得到①A ’B’C .若∠A =40°,∠B′=110°,则①BCA ′的度数为( )A. 30°B. 50°C. 80°D. 90° 10如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ΔABC 处的A′处,折痕为DE .如果∠A =α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是( )A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180∘−α−β第II 卷(非选择题)二、填空题 (每小题4分,共32分)11.若正多边形的每一个内角为135∘,则这个正多边形的边数是__________.12.不等式组{x+1>01−12x≥0的最小整数解是__________.13.已知a,b,c是ΔABC的三边长,a,b满足|a−7|+(b−1)2=0,c为奇数,则c=__________.14.已知关于x的不等式3x﹣a≤0的正整数解恰是1,2,3,则a的取值范围__________.15.若a、b、c是①ABC的三边,且满足|a+b-8|+|a-b-2|=0,则c的取值范围____________..16.若235,{323x yx y+=-=-则2(2x+3y)+3(3x-2y)=________.17.如图,将周长为15cm的①ABC沿射线BC方向平移2cm后得到①DEF,则四边形ABFD的周长为_____cm 18.如图,五边形ABCDE是正五边形,若l1//l2,则∠1−∠2=__________.21题17题三.解答题。

华师大版七年级下册数学期末测试卷及含答案(基础题)

华师大版七年级下册数学期末测试卷及含答案(基础题)

华师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、2a与3a的大小关系()A. 2a<3aB.2a>3aC.2a=3aD.不能确定2、如图,已知在中,点是边上一点,连接,将沿翻折,得到交中点.若,若,求点到线段的距离()A. B.3 C. D.43、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.4、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5、如图,已知直线与与双曲线交于A、B两点,连接OA,若,则k的值为A. B. C. D.6、一个多边形的每一个外角都是45°,则这个多边形的边数为()A.6B.7C.8D.97、如图,中,,,,以点为圆心,为半径作,当时,与的位置关系是()A.相离B.相切C.相交D.无法确定8、已知关于x、y的二元一次方程组的解是,则的值是()A.1B.2C.﹣1D.09、在图形:(1)线段;(2)等边三角形;(3)矩形;(4)菱形;(5)平行四边形,(6)圆形中,既是轴对称图形又是中心对称图形的个数是()A.2B.3C.4D.510、如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9B.12C.9D.1811、如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为.若,求动点运动路径的长为()A. B. C. D.12、如图所示,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC 于点E,BE=6cm.则AC等于()A.6cmB.5cmC.4cmD.3cm13、下列四个图案中,不是轴对称图案的是()A. B. C. D.14、观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B. C.D.15、如果是关于的方程的解,那么的值为()A.3B.C.D.二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠BAC=90°,点G是重心,联结AG,过点G作DG∥BC,DGAB于D,若AB=6,BC=9,则△ADG的周长等于________.17、如图,在平面直角坐标系中,已知A(-2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA',则A'的坐标为 ________ 。

华师大版七年级数学下册期末综合检测试卷(含答案)

华师大版七年级数学下册期末综合检测试卷(含答案)

期末综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列图形中既是轴对称图形又是中心对称图形的是( A )2.已知⎩⎪⎨⎪⎧ x =1,y =2 是方程组⎩⎪⎨⎪⎧ax +y =-1,2x -by =0 的解,则a +b =( B ) A .2 B .-2 C .4D .- 43.下列正多边形地砖的组合中,能够用来密铺地面的是( B )①正六边形与正三角形;②正五边形与正三角形;③正八边形与正方形;④正三角形与正方形.A .①②③B .①③④C .②③④D .①②③④4.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( D ) A .106元 B .105元 C .118元D .108元5.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( A ) A .5 B .6 C .7D .86.我国民间流传着许多诗歌形式的数学题,如:鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( D )A .⎩⎪⎨⎪⎧x +y =1004x +2y =36B .⎩⎪⎨⎪⎧x +y =1002x +4y =36C .⎩⎪⎨⎪⎧x +y =364x +2y =100D .⎩⎪⎨⎪⎧x +y =362x +4y =1007.如图,∠ABC 和∠ACB 的外角平分线相交于点D ,设∠BDC =α,那么∠A =( D )A .90°-αB .90°-12αC .180°-12αD .180°-2α8.已知关于x 的不等式组⎩⎪⎨⎪⎧12(x -1)>m ,x -m >2 的解集是x > - 1 ,那么m 的取值是( D )A .1B .-1C .3D .-39.已知⎩⎪⎨⎪⎧x +2y =4k ,2x +y =2k +1, 且-1<x -y <0,则k 的取值范围为( D )A .-1<k <-12B .0<k <12C .0<k <1D .12<k <110.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如:[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是( C )A .40B .45C .51D .56二、填空题(每小题3分,共18分)11.若关于x 的方程(k -2)x |k -1|+5k +1=0是一元一次方程,则k +x = 12.12. 如果2m 、m 、1-m 这三个实数是按在数轴上所对应的点从左到右依次排列的,那么m 的取值范围是 m <0 .13.如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是 20° .14.如图,D 、E 、F 分别是△ABC 三边延长线上的点,则∠D +∠E +∠F +∠1+∠2+∠3= 180 度.15.将一筐橘子分给若干名儿童,若每人分4个橘子,则剩下9个橘子;若每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推知共有 7 个儿童分 37 个橘子.16.已知方程组⎩⎪⎨⎪⎧ax +5y =15, ①4x -by =-2, ② 由于甲看错了方程①中的a 得到方程组的解为⎩⎪⎨⎪⎧ x =-3,y =-1; 乙看错了方程②中的b 得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.若按正确的a 、b 计算,则原方程组的解为 ⎩⎪⎨⎪⎧x =14,y =295.三、解答题(共72分) 17.(8分)解方程(组):(1)7x -2=3(x +2); (2)⎩⎪⎨⎪⎧3x -2y =-12,①x +2y =4.②解:(1)去括号,得7x -2=3x +6.移项合并,得4x =8,解得x =2.(2)①+②,得4x =-8,解得x =-2.把x =-2代入②,得y =3,则方程组的解为⎩⎪⎨⎪⎧x =-2,y =3.18.(10分)(1)解不等式x +12>2x +23-1,并写出它的正整数解;(2)解不等式组:⎩⎪⎨⎪⎧6x +5≥4x ,18-7x <10-3x .解:(1)去分母,得3(x +1)>2(2x +2)-6.去括号,得3x +3>4x +4-6.移项,得3x -4x >4-6-3.合并同类项,得-x >-5.系数化为1,得x <5.故不等式的正整数解有1,2,3,4.(2)⎩⎪⎨⎪⎧6x +5≥4x , ①18-7x <10-3x . ②解不等式①,得x ≥-52.解不等式②,得x >2.故原不等式组的解集为x >2.19.(7分)已知x =2是方程2-13(m -x )=2x 的解,求代数式m 2-(6m +2)的值.解:把x =2代入方程,得2-13(m -2)=4,解得m =-4.故m 2-(6m +2)=16-(-24+2)=38.20.(7分)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC ,DF 平分∠ADC ,试问BE 和DF 是否平行,为什么?解:BE 和DF 平行.理由如下:在四边形ABCD 中,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°.因为BE 平分∠ABC ,DF 平分∠ADC ,所以∠CBE =12∠ABC ,∠CDF =12∠ADC ,所以∠CBE +∠CDF =12(∠ABC +∠ADC )=90°.在△BCE 中,因为∠C =90°,所以∠CBE +∠CEB =90°,所以∠CDF =∠CEB ,所以BE ∥DF .21.(8分)某厂接到长沙市一所中学的冬季校服订做任务,计划用A 、B 两台大型设备进行加工.如果单独用A 型设备需要90天做完,如果单独用B 型设备需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)两台设备同时加工,共需多少天才能完成?(2)若两台设备同时加工30天后,B 型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A 型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.解:(1)设共需x 天才能完成.根据题意,得⎝⎛⎭⎫190+160x =1,解得x =36.即两台设备同时加工,共需36天才能完成.(2)设由A 型设备单独完成剩下的任务需要y 天才能完成.根据题意,得⎝⎛⎭⎫190+160×30+ y90=1,解得 y =15.因为 15>13,所以会影响学校发校服的时间.22.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)请画出△ABC 向右平移5个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于点O 对称的△A 2B 2C 2;(3)在直线l 上求作一点P ,使△P AB 的周长最小,并求出此时△P AB 的面积.解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 2如图所示.(3)如图所示,此时△P AB 的周长最小,此时S △P AB =12×(1+2)×3-12×1×1-12×2×2=2.23.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区,要求两个大棚之间有间隔4米的路,设计方案如下图,已知每个大棚的周长为44米.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元;方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?解:(1)设每个大棚的宽为a 米,长为b 米.根据题意,得⎩⎪⎨⎪⎧ a +b =22,2a +4-b =6,解得⎩⎪⎨⎪⎧a =8,b =14.即每个大棚的宽为8米,长为14米.(2)由(1)可知,两个大棚的总面积为2×14×8=224(平方米).若按方案一计算,则造价为224×60-500=12 940(元);若按方案二计算,则造价为224×70×(1-20%)=12 544(元),12 544<12 940,所以选择方案二更优惠.24.(12分)我市某商场出售的A 型冰箱每台售价2190元,每日耗电量为1千瓦时,最近商场又购进一批B 型冰箱,其售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦时,为了减少库存,商场决定对A 型冰箱降价销售.请解答下列问题:(1)已知A 型冰箱进价为1700元,商场为保证利润率不低于3%,试确定A 型冰箱的降价范围;(2)如果只考虑价格与耗电量,那么商场将A 型冰箱的售价至少打几折,消费者购买A 型冰箱比购买B 型冰箱划算?(按使用期为10年,每年为365天,每千瓦时电费为0.40元计算)解:(1)设商场将A 型冰箱降价x 元时,可以保证商场的利润率不低于3%.根据题意,得2190-x -17001700×100%≥3%,解得x ≤439.即A 型冰箱的降价不高于439元时,可以保证商场利润率不低于3%.(2)设商场将A 型冰箱的售价至少打y 折时,消费者购买A 型冰箱比购买B 型冰箱划算.此时购买A 型冰箱使用10年共耗费2190×y10+0.40×1×365×10=(219y +1460)(元);购买B型冰箱使用10年共耗费2190×(1+10%)+0.40×0.55×365×10=3212(元).依题意,得219y +1460≤3212,解得y ≤8.即商场将A 型冰箱的售价至少打8折时,消费者购买A 型冰箱比购买B 型冰箱划算.。

【华东师大版】初一数学下期末试题(含答案)

【华东师大版】初一数学下期末试题(含答案)

一、选择题1.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是()A.2018 B.2019 C.2020 D.20213.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种4.方程组125x yx y+=⎧⎨+=⎩的解为()A.12xy=-⎧⎨=⎩B.21xy=⎧⎨=⎩C.43xy=⎧⎨=-⎩D.23xy=-⎧⎨=⎩5.为了研究吸烟是否对肺癌有影响,某研究所随机地抽查了1000人.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这1000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.2210002.5%0.5%x yx y-=⎧⎪⎨+=⎪⎩B.1000222.5%0.5%x yx y+=⎧⎪⎨-=⎪⎩C.10002.5%0.5%22x yx y-=⎧⎨+=⎩D.10002.5%0.5%22x yx y+=⎧⎨-=⎩6.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 7.若实数a ,b30b -=,则点P(a ,b)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 8.在223.14,, 5.12112111227π+--……中,无理数的个数为 ( ) A .5 B .2 C .3 D .49.下列定理中,没有逆定理的是( ).A .两直线平行,同旁内角互补B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .等腰三角形两个底角相等D .同角的余角相等10.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( )A .2B .3C .4D .511.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 12.如果点P(m ,1m -)在第四象限,则m 的取值范围是( )A .0m >B .01m <<C .1m <D .1m二、填空题13.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.14.为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 16.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .17.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.18.计算:201()( 3.14)20|25|.2π---+--19.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.20.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________. 三、解答题21.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示. 类型价格A 型B 型 进价/(元/盏)15 35 销售价/(元/盏) 20 451100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.22.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A ,B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A ,B 两种型号家用净水器各购进多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,设每台A 型号家用净水器的售价为x 元,则每台A 型号家用净水器的毛利润是元.每台B 型号家用净水器的毛利润是 元,并请列式求出每台A 型号家用净水器的售价至少是多少元.(注:毛利率=售价-进价)23.已知方程组4,6ax by ax by -=⎧⎨+=⎩与方程组35,471x y x y -=⎧⎨-=⎩的解相同,求a ,b 的值. 24.如图,在平面直角坐标系中,O 为坐标原点,点A (4,1)B (1,1),C (4,5),D (6,﹣3),E (﹣2,5).(1)在坐标系中描出各点,并画出△AEC ,△BCD .(2)求出△BCD的面积.25.计算:()223228432-----⨯+26.在ABC中,AB AC=,直线l经过点A,且与BC平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l上画出一点P,使得APC ACB∠=∠;(2)如图②,在直线l上画出所有的点Q,使得12AQC ACB ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<40.故一颗玻璃球的体积在30cm3以上,40cm3以下.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.2.C解析:C【分析】设竖式纸盒x 个,横式纸盒y 个,正方形纸板a 张,长方形纸板b 张,由题意列出方程组可求解.【详解】解:设竖式纸盒x 个,横式纸盒y 个, 正方形纸板a 张,长方形纸板b 张,根据题意得:432x y b x y a +⎧⎨+⎩==, ∴5x+5y=5(x+y )=a+b∴a+b 是5的倍数故选:C .【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.3.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.4.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①②②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 5.A解析:A【分析】根据在“吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人”即可解答.【详解】解:由题意可得,22+10002.5%0.5%x y x y -=⎧⎪⎨=⎪⎩, 故选:A .【点睛】本题主要考查是二元一次方程的应用,正确的理解题意,列出方程是解题的关键. 6.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M 到x 轴的距离为3,到y 轴距离为2,且在第四象限内,则点M 的坐标为(2,-3),故选:B .【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 7.B解析:B【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后即可判断点P 所在的象限.【详解】解:∵30b -=,∴20a +=,30b -=,∴2a =-,3b =,∴点P (2-,3)在第二象限;故选:B .【点睛】本题考查了非负性的应用,以及判断点所在的象限,解题的关键是正确求出a 、b 的值. 8.D解析:D【分析】根据无理数的概念逐一判断即可,其中无限不循环小数是无理数.【详解】3.14是有理数,2π是无理数,===是无理数,0.1=-是有理数,2+227-是有理数, 5.121121112-……是无理数;故选D .【点睛】本题考查了无理数的概念,熟记无限不循环小数为无理数是本题的关键.9.D解析:D【分析】把一个命题的条件和结论互换就得到它的逆命题.再分析逆命题是否为真命题.【详解】解:A 、逆命题是:同旁内角互补,两直线平行,是真命题,故本选项不符合题意;B、逆命题是:到线段两个端点的距离相等的点在这条线段的垂直平分线上,是真命题,故本选项不符合题意;C、逆命题是:如果三角形有两个角相等,那么这个三角形是等腰三角形,是真命题,故本选项不符合题意;D、逆命题是:如果两个角相等,那么这两个角是同一个角的余角,是假命题,故本选项符合题意.故选:D.【点睛】本题主要考查了互逆定理的知识,如果一个定理的逆命题是假命题,那这个定理就没有逆定理.10.D解析:D【分析】=代入不等式得到关于a的不等式,求解即可.将x3【详解】=是不等式的一个解,根据题意,x3--<,∴将x3=代入不等式,得:6a20a>,解得:4则a可取的最小整数为5,故选:D.【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a的不等式是解题的关键.11.C解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A:不等式a<b两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B:不等式a<b两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C:不等式a<b两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D:不等式a<b两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意;故选:C.【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.12.D解析:D【分析】根据点P(m ,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点P(m ,1m -)在第四象限,∴010m m >⎧⎨-<⎩, 解得m >1,故选:D .【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.二、填空题13.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.14.【分析】根据题意表示出上午下午晚上摸到黑白红的次数列数返现的金额式子确定出abc 的值代入计算即可;【详解】设上午黑白红摸到的次数分别是abc 则下午摸到黑白红的次数是3a2b4c 晚上摸到黑白红的次数是解析:2460【分析】根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a ,b ,c 的值代入计算即可;【详解】设上午黑、白、红摸到的次数分别是a ,b ,c ,则下午摸到黑、白、红的次数是3a ,2b ,4c ,晚上摸到黑、白、红的次数是a ,4b ,2c ,晚上返现金额比上午多840,∴36020840b c ⨯+⨯=,∴18020840b c +=,总返现为:5004201405020a b c ++=,根据题意:a ,b ,c 是大于零的正整数,当4b =时满足条件a ,b ,c 为正整数,∴4b =,6c =,5a =,即下午返现的金额为1510086024202460⨯+⨯+⨯=元;故答案是2460.【点睛】本题主要考查了概率公式的应用,准确分析计算是解题的关键.15.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩ 【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩.故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C 的坐标为(-4,2),点C 在点A 的右边时横坐标为1+5=6,此时,点C 的坐标为(6,2)综上所述,则点C 的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x 轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.17.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.18.+5【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案【详解】解:原式=4﹣1++2=+5【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质正确化简各数.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.19.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.20.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①②解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.三、解答题21.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解 .【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<. ∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.22.(1)A 型号家用净水器购进了100台,B 型号家用净水器购进了60台.(2)(x-150);2(x-150);每台A 型号家用净水器的售价至少是200元.【分析】(1)设A型号家用净水器购进了m台,则B型号家用净水器购进了(160-m)台,根据总价=单价×数量结合购进两种型号的家用净水器共用去36000元,即可得出关于m的一元一次方程,解之即可得出结论;(2)设每台A型号家用净水器的售价为x元,则每台A型号家用净水器的毛利润为(x-150)元,每台B型号家用净水器的毛利润为2(x-150)元,根据售完这160台家用净水器的毛利润不低于11000元,即可得出关于x的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设A型号家用净水器购进了m台,则B型号家用净水器购进了(160-m)台,根据题意得:150m+350(160-m)=36000,解得:m=100,∴160-m=60.答:A型号家用净水器购进了100台,B型号家用净水器购进了60台.(2)设每台A型号家用净水器的售价为x元,则每台A型号家用净水器的毛利润为(x-150)元,每台B型号家用净水器的毛利润为2(x-150)元,根据题意得:100(x-150)+60×2(x-150)≥11000;解得:x≥200.答:每台A型号家用净水器的售价至少是200元.【点睛】本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由总的毛利润不低于11000元,列出关于x的一元一次不等式.23.2.51 ab=⎧⎨=⎩【分析】先求出已知方程组(2)的解,再代入方程组(1)即可求出a、b的值.【详解】解:解方程组35,47 1.x yx y-=⎧⎨-=⎩得2,1.xy=⎧⎨=⎩把2,1.xy=⎧⎨=⎩代入方程组4,6.ax byax by-=⎧⎨+=⎩得24,2 6.a ba b-=⎧⎨+=⎩解这个方程组,得2.5,1. ab=⎧⎨=⎩【点睛】本题考查了同解方程组、解二元一次方程组.解答此题的关键是要弄清题意,方程组有相同的解及说明方程组(1)的解也适合(2),不要盲目求解,造成解题过程复杂化.24.(1)见解析;(2)16【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.【详解】解:(1)如图所示:(2)S△BCD=12×4×4+12×4×4=16.【点睛】此题主要考查通过描点法画图、再网格图中通过割补法求三角形面积,正确看图是解题关键.25.8-【分析】先化简绝对值、立方根、算术平方根,然后进行加减运算即可.【详解】(223228432--=222432--⨯+()=412-=8-【点睛】此题考查了实数的运算,熟练掌握算术平方根和立方根的性质是解本题的关键.26.(1)见解析;(2)见解析【分析】(1)以C为圆心,以CA为半径画弧,交点即为所求;(2)以A为圆心,以AC为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠. (2)如图所示,点12Q Q 、即为所求, 理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.。

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共30分)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy2.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤4.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元5.(3分)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>16.(3分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或107.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.8.(3分)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个 B.5个 C.4个 D.3个9.(3分)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形C.正六边形D.正八边形10.(3分)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3二、填空题(每小题3分,共15分)11.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x=.12.方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y=.13.一个多边形的每一个外角都等于72°,则这个多边形是边形.14.一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(本题共8小题,共75分)16.(8分)﹣=1.2.17.(9分)解方程组:.18.(9分)解不等式组:把解集表示在数轴上并求出它的整数解的和.19.(9分)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.21.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=度;(2)求∠EDF的度数.22.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?23.(11分)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017春•淅川县期末)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy【分析】二元一次方程就是含有两个未知数,并且未知数的项的最高次数是1的整式方程,依据定义即可判断.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点评】此题考查了二元一次方程的条件:①只含有两个未知数;②未知数的项的次数都是1;③整式方程.2.(3分)(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2017春•淅川县期末)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤【分析】解方程得出x=﹣4k+3,由解为正数得出﹣4k+3>0,解之可得答案.【解答】解:解方程x﹣2+3k=,得:x=﹣4k+3,∵方程得解为正数,∴﹣4k+3>0,解得:k<,故选:C.【点评】本题主要考查解方程和不等式的能力,根据题意列出关于k的不等式是解题的关键.4.(3分)(2006•恩施州)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.30.2元C.29.7元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5.(3分)(2017春•淅川县期末)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.(3分)(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(3分)(2017春•淅川县期末)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个 B.5个 C.4个 D.3个【分析】根据三角形的三边关系定理可得8﹣3<x<8+3,解出x的取值范围,再根据周长为奇数确定x的值.【解答】解:根据三角形的三边关系可得:8﹣3<x<8+3,即:5<x<11,∵三角形的周长为奇数,∴x=6,8,10,共3个.故选D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9.(3分)(2017春•淅川县期末)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形C.正六边形D.正八边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、正方形的每个内角是90°,能整除360°,能密铺;B、任意三角形的内角和是180°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正八边形每个内角是135°,不能整除360°,不能密铺;故选D.【点评】此题考查了平面镶嵌,用到的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.10.(3分)(2017春•淅川县期末)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥a,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则﹣4<a≤﹣3,故选D.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共15分)11.(3分)(2017春•淅川县期末)若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x=.【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求的m的值,进而求得x的值,从而求解.【解答】解:根据题意得:k﹣2≠0且|k﹣1|=1,解得:k=0.把k=0代入方程得﹣2x+1=0,解得:x=,则k+x=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.(3分)(2017春•淅川县期末)方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y=2.【分析】两数互为相反数,则两数和为0,即x+y=0,x=﹣y.可将x=﹣y代入方程中解出x、y的值,再把x、y的值代入3x+y=2中.即可解出本题.【解答】解:依题意得:x=﹣y.∴3x﹣y=3x+x=4x=4,∴x=1,则y=﹣1.∴3x+y=2.故答案为:2【点评】本题考查的是二元一次方程的解法与相反数的性质的综合题目.注意:两数互为相反数,它们的和为0.13.(3分)(2014•金平区模拟)一个多边形的每一个外角都等于72°,则这个多边形是五边形.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:五.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(3分)(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为7cm,7cm.【分析】题目中只给出了周长为18cm,三角形的一边长为4cm,没有明确该边是底边还是腰,所以分两种情况进行讨论.【解答】解:(1)若4cm为底边,则另外两边均为(18﹣4)=7厘米;(2)若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.故答案为:7,7.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15.(3分)(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=229.4,解得:x≈76.47(舍去);⑤当x>200时,x+×3x=229.4,解得:x≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题(本题共8小题,共75分)16.(8分)(2017春•淅川县期末)﹣=1.2.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=6.4.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.17.(9分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.18.(9分)(2017春•淅川县期末)解不等式组:把解集表示在数轴上并求出它的整数解的和.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,最后求解即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:∴不等式组的最大整数解为﹣4、﹣3、﹣2、﹣1、0、1、2,∴这个不等式组的整数解得和为﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式的解集求出不等式组的解集是解此题的关键.19.(9分)(2017春•淅川县期末)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.【分析】根据全等三角形的性质得出∠D=∠A=48°,∠E=∠B=32°,BC=EF,求出BF=EC,即可求出答案.【解答】解:∵△ABC≌△DEF,∠A=32°,∠B=48°,∴∠D=∠A=48°,∠E=∠B=32°,在△DEF中,∠D+∠E+∠DFE=180°,解得:∠DFE=100°,∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+CF,∴BF=EC,∵BF=3,∴EC=3.【点评】本题考查了全等三角形的性质定理,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.20.(9分)(2017春•淅川县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【点评】此题主要考查了旋转变换以及平移变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.21.(10分)(2017春•淅川县期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=110度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.22.(10分)(2012•河南)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.(11分)(2017春•淅川县期末)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=15度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=45度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.【分析】(1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°﹣30°=15°;(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.【解答】解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,∵∠BAC=45°,∴∠CAE=45°﹣30°=15°,即∠α=15°,故答案为:15;(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,故答案为:45;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a﹣e所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠DBC+∠CAE+∠BDE=180°﹣75°=105°.【点评】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。

华师大版七年级下册数学期末测试卷及含答案(名校卷)学生专用

华师大版七年级下册数学期末测试卷及含答案(名校卷)学生专用

华师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知关于x的方程(m﹣2)x|m﹣1|﹣3=0是一元一次方程,则m的值是()A.2B.0C.1D.0或22、将一副直角三角扳如图放置,使含30°角的三角板的直角边和含45°角的三角扳的一条直角边重合,则∠1的度数为()A.55°B.50°C.65°D.75°3、如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为()A.30°B.35°C.40°D.50°4、一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cmB.14cmC.13cm或14cmD.以上都不对5、如图,在矩形中,,,点E在边上,,垂足为F.若,则线段的长为()A.2B.3C.4D.56、下列不等式中不一定成立的是()A.若,则B.若,则C.若,则 D.若,则7、日历中同一竖列相邻三个数的和不可能是()A.35B.39C.51D.608、在△ABC中,∠A=70°,∠B=55°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形9、如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12mB.20mC.22mD.24m10、不等式的解集是()A. B. C. D.11、如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC 中点;②FG=FC;③S=.△FGC其中正确的是A.①②B.①③C.②③D.①②③12、方程|2x-1|=2的解是( )A.x=B.x=-C.x= 或x=-D.x=-13、如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12mB.20mC.22mD.24m14、《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是()A. B. C. D.15、下列变形正确的是()A.从5 x=4 x+8,得到5 x﹣4 x=8B.从7+ x=13,得到x=13+7C.从9 x=﹣4,得到x=﹣D.从=0,得x=2二、填空题(共10题,共计30分)16、若m是方程3x﹣2=1的解,则30m+10的值为________17、如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB∥CD,点B是等距点.若BC=10,cosA= ,则CD的长等于________.18、如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=6.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=________.19、如图,正六边形内接于,正六边形的周长是12,则的半径是________.20、我们定义,例如=2×5﹣3×4=10﹣12=﹣2,则不等式组1<<3的解集是________.21、如图,在直角坐标系xOy中,直线l过点(0,1)且与x轴平行,△ABC 关于直线l对称,已知点A坐标是(4,4),则点B的坐标是________.22、如图,中,,,,绕点C顺时针旋转得,当落在AB边上时,连接,取的中点D,连接,则的长度是________.23、已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可).24、若x2+mx+=(x﹣)2,则m=________.25、如图,,直线平移后得到直线,则________.三、解答题(共5题,共计25分)26、解方程组:27、如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.28、如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,试求旋转角α的度数.29、如图,中,AB=AC,∠A=36°,DE垂直平分AB,的周长为20,BC=9①求∠ABC的度数;②求的周长30、如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.参考答案一、单选题(共15题,共计45分)1、B3、A4、C5、B6、B7、A8、B9、B10、C11、B12、C13、B14、A15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

华东师大版数学七年级下册期末模拟试题50题含答案

华东师大版数学七年级下册期末模拟试题50题含答案

华东师大版数学七年级下册期末模拟试题50题含答案(填空题+解答题)一、填空题1.如图所示,D 是等腰Rt ABC 内一点,BC 是斜边,如果将ABD △绕点A 逆时针方向旋转到ACD '△的位置,则ADD '的度数为__________.2.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为132°,那么这个“梦想三角形”的最小内角的度数为_____________________.3.x 的13是27,可列方程为____________. 4.如图,已知四边形ABCD 中,对角线BD 平分∠ABC ,∠ADB =32°,∠BCD +∠DCA =180°,那么∠ACD 为_____度.5.如图,75ACD ∠=︒,30A ∠=︒,则∠B =___________°6.《九章算术》中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数、金价各几何?其译文是:假设合伙买金,每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱.问人数、金价各是多少?如果设有x 个人,那么可以列方程为__________.7.关于x的方程(k-4)x|k|-3+1=0是一元一次方程,则k的值是______.8.已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是________________°.9.中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则牛每头价__两”.10.如图,AB∠CD,∠A=35°,∠C=80°,则∠E=____.11.关于x的不等式组22x b ax a b-⎧⎨-⎩><的解集为﹣3<x<3,则ab=___.12.将一副直角三角板如图放置,使含30︒角的三角板的一条直角边和含45︒角的三角板的一条直角边重合,则α∠的度数为______.13.如图,三角形ABC沿着BC方向平移得到三角形A B C''',点P是直线AA'上另一点,若三角形ABC、三角形''PB C的面积分别为S1,S2,则两三角形面积大小关系是S1_______S2 (用“<”或“=”或“>”填空)14.不等式组:21213x xx+>⎧⎨-≤⎩的解集是_________.15.如图,ABC放置在一组等距的平行线中,点A,B,C均在平行线上,AC与1l 交于点D,BC与2l交于点E,若A,E两点恰好关于BD对称,四边形ABED的周长为3,则ABC的周长为_______.16.如图是一个三角板的尺寸,用代数式表示它的面积(阴影部分)为_____________.17.某种商品进价150元,标价200元,但销量较小.为了促销,商场决定在标价的基础上打折销售,若为了保证利润率不低于20%,那么至多打_______折销售.18.已知一个角的余角的补角是这个角补角的 45,则这个角余角的度数是______. 19.若x ≥﹣5的最小值为a ,x ≤5的最大值是b ,则a +b =_____.20.如图是一块长方形的场地,长72AB m =,宽31AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为____________m 2.21.如图,四边形ABCD 为一条长方形纸带,AB ∠CD ,将四边形ABCD 沿EF 折叠,A 、D 两点分别为A '、D '对应,若∠1=∠2,则∠AEF 的度数为______.22.如图,四边形纸片ABCD 中,75A ∠=,65B ∠=,将纸片折叠,使C ,D 落在AB 边上的'C ,'D 处,折痕为MN ,则''AMD BNC ∠+∠=______度.23.如图,在△ABC 中,∠ABC <∠BCA <∠BAC ,∠BAC 和∠ABC 的外角平分线AE 、BD 分别与BC 、CA 的延长线交于E 、D .若AB =AE ,BD =BA .则∠BCA 的度数为____.24.把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=︒,90C ∠=︒,45A ∠=︒,30A ∠=︒,则12∠+∠=______.25.如图,已知∠ABE =142°,∠C =62°,则∠A =___________°.26.若关于x 的方程13x a -=与23304x a +-=的解相同,则=a ____________. 27.某学校要为生物科学活动社团提供实验器材,计划购买A ,B 两种型号的放大镜,A 型号的放大镜每个20元,B 型号的放大镜每个15元,且所需购买A 型号放大镜的数量是B 型号放大镜数量的2倍,且总费用不超过1100元,则最多可以购买A 型号放大镜______个.28.如图,将△ABC 绕点A 顺时针旋转70度后得到△ADE ,点B 与点D 是对应点,点C 与点E 是对应点.如果∠EAB =30度,那么∠DAC 等于_____度.二、解答题29.一个正多边形的一个外角的度数等于它的一个内角度数的13,求这个正多边形的边数.30.解方程组:(1)2332x y x y +=⎧⎨-+=⎩(2)541257x y y x -=⎧⎨-=⎩ (3)32323x y x y -=-⎧⎨+=⎩(4)20%15% 1.257x y x y +=⎧⎨+=⎩31.解方程组4(1)21x y y x +=⎧⎨=+⎩325(2)517x y x y -=⎧⎨+=⎩ 32.如图,直线AB ,CD 相交于点O ,90EOD ∠=︒,OF 平分BOC ∠,1x ∠=.(1)求2∠和3∠的度数(用含x 的式子表示):(2)当x 为何值时?322∠=∠.33.利用等式的基本性质解方程:(1)4123x x -=+;(2)123x x -= 34.定义新运算,对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)1615⊕=⨯-+=-+=-.(1)求(2)3-⊕的值;(2)若3x ⊕的值小于13,求x 的取值范围.35.解不等式:0.20.10.3x +﹣2<322x -. 36.解不等式:4(x ﹣1)﹣12<x . 37.解方程:(1)()()2311210.5x x -+=-+; (2)2121136x x -++=. 38.如图,在∠ABC 中,∠CAE =18°,∠C =42°,∠CBD =27°.(1)求∠AFB 的度数;(2)若∠BAF =2∠ABF ,求∠BAF 的度数.39.如图所示,图1为一个棱长为10的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x =_______,y =______; (2)如果面“2”是左面,面“4”在后面,则上面是_______(填6或10或x 或y ); (3)图1中,点M 为所在棱的中点,在图2中找到点M 的位置,直接写出图2中ABM 的面积.40.填空,完成下列说理过程如图,点A ,O ,B 在同一条直线上,OD ,OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD=65°,求∠AOE 的度数.解:(1)如图,因为OD 是∠AOC 的平分线,所以∠COD=12∠AOC .因为OE 是∠BOC 的平分线,所以∠COE=12 .所以∠DOE=∠COD+ =12(∠AOC+∠BOC)=12∠AOB= °.(2)由(1)可知∠BOE=∠COE= ﹣∠COD= °.所以∠AOE= ﹣∠BOE= °.41.三个连续的正偶数组成一个偶数组,其和不大于24,请求出这样的偶数组. 42.“数形结合”是重要的数学思想.如:()32--表示3与2-差的绝对值,实际上也可以理解为3与2-在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A ,B ,所对应的数分别用a ,b 表示,那么A ,B 两点之间的距离表示为AB a b =-.利用此结论,回答以下问题:(1)数轴上表示2-和5两点之间的距离是__________.(2)若13x ,则x =______.(3)若x 表示一个有理数,142x x ++-的最小值为_________. (4)已知数轴上两点A 、B 对应的数分别为2-,8,现在点A 、点B 分别以3个单位长度/秒和2单位长度/秒的速度同时向右运动,当点A 与点B 之间的距离为2个单位长度时,求点A 所对应的数是多少?43.已知,ABC 中,AB AC =,点E 是边AC 上一点,过点E 作//EF BC 交AB 于点F()1如图∠,求证:AE AF =;()2如图∠,将AEF 绕点A 逆时针旋转(0144)αα<<得到''AE F .连接''CE BF . ∠若'6BF =,求'CE 的长;∠若36EBC BAC ∠=∠=,在图∠的旋转过程中,当'//CE AB 时,直接写出旋转角α的大小.44.折纸是我国一项古老的传统民间艺术,这项具有中国特色的传统文化在几何中可以得到新的解读.已知在∠ABC 中,∠A =80°,请根据题意,探索不同情境中∠1+∠2(或∠1-∠2)与∠A 的数量关系.(1)如图∠,若沿图中虚线DE 截去∠A ,则∠1+∠2=_______.(2)如图∠,若沿图中虚线DE 将∠A 翻折,使点A 落在BC 上的点A ’处,则∠1+∠2=_______.(3)如图∠,翻折后,点A 落在点A ’处,若∠1+∠2=80°,求∠B +∠C 的度数(4)如图∠,∠ABC 纸片沿DE 折叠,使点A 落在点A ’处,若∠1=80°,∠2=24°,求∠A的度数.45.如图,在边长为1个单位长度的小正方形组成的网格中,∠ABC 与∠DEF 关于点O 成中心对称,∠ABC 与∠DEF 的顶点均在格点上,请按要求完成下列各题:(1)请在图中直接画出O 点,并直接填空:OA=______(2)将∠ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到∠A 1B 1C 1,请画出∠A 1B 1C 1.46.解不等式组:()12221x x x ->⎧⎨+≥-⎩,并将其解集用数轴表示出来. 47.∠ABC 是格点三角形,则在图中能够作出与∠ABC 全等的且有一条公共边的格点三角形(不含∠ABC )的个数是______.48.解下列方程.(1)4x -6=2(3x -1); (2)2532168x x +--=.参考答案:1.45°##45度【分析】利用旋转的性质得出∠D′AD=90°,AD=AD′,进而得出答案.【详解】解:由题意可得,∠CAB=90°,∠将∠ABD绕点A逆时针方向旋转到∠ACD′的位置,∠∠D′AD=90°,AD=AD′,∠∠ADD′=∠AD′D=45°.故答案为:45°.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质,根据题意得出AD=AD′是解题关键.2.4°或12°【分析】根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为132°,可得另两个角的和为48°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°-132°-132÷3°=4°,48°÷(1+3)=12°,由此比较得出答案即可.【详解】解:当132°的角是另一个内角的3倍时,最小角为180°-132°-132÷3°=4°;当180°-132°=48°的角是另一个内角的3倍时,最小角为48°÷(1+3)=12°;因此,这个“梦想三角形”的最小内角的度数为4°或12°.故答案是:4°或12°.【点睛】考查三角形的内角和定理,掌握三角形的内角和180°是解决问题的关键.3.127 3x=【分析】“的”是乘号,“是”是等号,根据题意x乘以13等于27,据此列方程即可.【详解】根据题意得:1273x=.【点睛】本题考查一元一次方程的应用,是重要考点,难度容易,根据等量关系列方程是解题的关键.4.58.【分析】延长BA和BC,过D点作DE∠BA于E点,过D点作DF∠BC于F点,根据BD 是∠ABC的平分线可得出DE=DF,过D点作DG∠AC于G点,进而得出CD为∠ACF的平分线,设∠ABD=x°,则∠ABC=2x°,∠EAD=∠ABD+∠ADB=x°+32°,再根据∠BAE+∠BCF=360°,即可得出结论.答案第1页,共25页【详解】延长BA 和BC ,过D 点作DE ∠BA 于E 点,过D 点作DF ∠BC 于F 点,过D 点作DG ∠AC 于G 点,∠BD 是∠ABC 的平分线,∠DE =DF ,又∠∠BCD +∠DCA =180°,∠BCD +∠DCF =180°,∠∠ACD =∠DCF ,∠DG =DF =DE∠AD 为∠EAC 的平分线,设∠ABD =x °,则∠ABC =2x °,∠EAD =∠ABD +∠ADB =x °+32°,∠∠BAE +∠BCF =360°,∠2(x °+32°)+∠BAC +∠ACB +2∠ACD =360°,2x °+64°+180°﹣2x °+2∠ACD =360°,∠ACD =58°.故答案为58.【点睛】此题主要考查角平分线的性质,以及平角的运用,关键是列出关系式,即可解题. 5.45【分析】根据三角形的外角等于与它不相邻的两个内角的和这一性质即可求解. 【详解】 ACD A B ∠=∠+∠,75ACD ∠=︒,30A ∠=︒∴ 753045B ACD A =-=︒-︒=︒∠∠∠ .故答案为:45【点睛】本题主要考查三角形的外角的性质,熟悉性质是解题的关键.6.4003400300100x x -=-【分析】设有x 个人,然后根据每人出400钱,还剩余3400钱;每人出300钱,还剩余100钱,列出方程即可.【详解】解:设有x 个人,由题意得:4003400300100x x -=-,故答案为:4003400300100x x -=-.【点睛】本题主要考查了从实际问题中抽象出一元一次方程,解题的关键在于准确理解题意.7.-4【分析】根据一元一次方程的定义,可得答案.【详解】解:由题意,得|k|-3=1,且k-4≠0,解得k=-4,故答案为-4.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点,解题关键是掌握一元一次方程的一般形式.8.24【分析】设这个多边形是n 边形,它的内角和可以表示成(n −2)∠180°,就得到关于n 的方程,求出边数n .然后根据多边形的外角和是360°,多边形的每个内角都相等即每个外角也相等,这样就能求出多边形的一个外角.【详解】解:设这个多边形是n 边形,根据题意得:(n −2)∠180°=2340°,解得n =15;那么这个多边形的一个外角是360°÷15=24°,即这个多边形的一个外角是24°.故答案为:24.【点睛】考查了多边形内角与外角的关系.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.9.4【分析】设马每匹价x 两,牛每头价y 两,根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”,即可得出关于x ,y 的二元一次方程组,解之即可得出结【详解】解:设每匹马x两,每头牛y两,由题意得,4648 3538x yx y+=⎧⎨+=⎩①②,∠×4﹣∠×3,得:2y=8,解得;y=4,把y=4代入∠,得:4x=48﹣24,解得:x=6,故方程组的解为:64xy=⎧⎨=⎩,答:每头牛价4两.故答案为:4.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是根据马牛总钱数为等量关系列方程组求解.10.45°【分析】由平行线的性质可求得∠BFE,结合三角形的外角的性质可求得∠E.【详解】解:如图,∠AB∠CD,∠C=80°,∠∠BFE=∠C=80°,∠∠A+∠E=∠BFE,∠A=35°,∠∠E=∠BFE﹣∠A=45°,故答案为:45°.【点睛】本题主要考查三角形外角的性质及平行线的性质,掌握两直线平行,同位角相等及三角形的外角等于与它不相邻的两个内角的和是解题的关键.11.-9【分析】利用一元一次不等式组的解法解出不等式组,根据题意列出方程组,解方程组即【详解】解:22x b a x a b -⎧⎨-⎩>①<②, ∠解不等式∠得:x >2a +b ,解不等式∠得:x <2b +a ,又∠不等式组的解集为−3<x <3,∠2323a b b a +=-⎧⎨+=⎩, 解得,33a b =-⎧⎨=⎩, ∠ab =−9,故答案为:−9.【点睛】本题考查的是一元一次不等式组、二元一次方程组的解法,根据题意列出二元一次方程组是解题的关键.12.165︒【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1∠,再求出α∠即可.【详解】解:由三角形的外角性质得,14590135∠=︒+︒=︒,130********α∠=∠+︒=︒+︒=︒.故答案为:165︒.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.13.=【分析】根据平行线间的距离相等可知∠ABC ,∠PB′C′的高相等,再由同底等高的三角形面积相等即可得到答案.【详解】解:∠∠ABC 沿着BC 方向平移得到∠A′B′C′,∠AA′∠BC′,BC=B'C',∠点P是直线AA′上任意一点,∠∠ABC,∠PB′C′的高相等,∠S1=S2.故答案为:=.【点睛】本题主要考查三角形的面积,平移的性质,关键是掌握平移的性质:∠平移不改变图形的形状和大小;∠经过平移,对应点所连的线段平行(或共线)且相等,对应线段平行(或共线)且相等,对应角相等.14.-1<x≤2【分析】分别求出各个不等式的解,再取公共部分,即可得到答案.【详解】21213x xx+>⎧⎨-≤⎩①②,由∠得:x>-1,由∠得:x≤2,∠不等式组的解集是:-1<x≤2.【点睛】本题主要考查解一元一次不等式组,熟练掌握解不等式组的步骤及口诀:“大大取大,小小取小,大小小大中间找”,是解题的关键.15.4.5【分析】根据A,E两点恰好关于BD对称可以得到AD=DE,AB=BE,再根据平行线等距可以得到CD=2AD,CE=BE,最后根据四边形ABED的周长为3,即可等量代换求出三角形ABC的周长.【详解】解:∠A,E两点恰好关于BD对称∠AD=DE,AB=BE∠这组平行线等距∠CD=2AD,CE=BE∠四边形ABED的周长=AB+BE+ED+AD=2AD+2BE=3∠AD+BE=1.5∠∠ABC的周长=AD+CD+CE+BE+AB∠∠ABC的周长= AD+2AD+BE+BE+BE=3(AD+BE)=4.5故答案为:4.5.【点睛】本题主要考查了对称的性质,平行线等距的性质,解题的关键在于能够熟练掌握相关知识进行求解.16.212ab r π- 【详解】试题解析:由图可得, 阴影部分的面积是:212ab r π- 17.九【分析】利润率不低于20%,意思是利润率大于或等于20%,相应的关系式为:(售价-进价)÷进价≥20%,把相关数值代入即可求解.【详解】解:设打x 折,根据题意得20015010100%20%150x ⨯-⨯≥ 解得9x ≥,答:至多打九销售.故答案为:九【点睛】此题主要考查了一元一次不等式的应用,进价本题的关键是得到利润率的相关关系式,注意“不低于”用数学符号表示为“≥”;利润率是利润与进价的比值.18.60°【分析】设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,再根据题意列出方程,求出x 的值,再根据余角的定义即可求解.【详解】解:设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,依题意得:180°-(90°-x )=45(180°-x ), 解得x=30°,90°-30°=60°.故这个角的余角度数是60°.故答案为:60°.【点睛】本题考查的是余角及补角的定义,能根据题意列出关于x 的方程是解答此题的关键.19.0【分析】根据“≥”“≤”的意义,判断出a 和b 的最值即可解答.【详解】解:∠x ≥﹣5的最小值是a ,∠a =﹣5;∠x ≤5的最大值是b ,∠b =5;则a +b =﹣5+5=0.故答案为:0.【点睛】本题考查了用不等式表示数量关系,理解“≥”“≤”的意义是解答本题的关键. 20.2100【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.【详解】由图可知:矩形ABCD 中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(72-2)米,宽为(31-1)米.所以草坪的面积应该是长×宽=(72-2)(31-1)=2100(米2).故答案为:2100.【点睛】本题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.21.60°##60度【分析】由题意知2AEF FEA '∠=∠=∠,1180AEF FEA '∠+∠+∠=︒,角度等量替换,然后求解即可.【详解】解:由翻折的性质可知:AEF FEA '∠=∠∵AB CD∴2AEF FEA '∠=∠=∠∵1180AEF FEA '∠+∠+∠=︒,12∠=∠∴260AEF ∠=︒=∠故答案为:60°.【点睛】本题考查了翻折的性质,平行的性质,平角.解题的关键在于确定角的数量关系.22.80【分析】先由四边形性质求出∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.由折叠性质得∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.再根据三角形内角和得:''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B.【详解】因为,四边形的内角和是360〬,所以,∠C+∠D=360〬-∠A-∠B=360〬-75〬-65〬=220〬.所以由折叠得,∠MD 'C '+∠NC 'D '=∠C+∠D=220〬.又因为,∠NC 'D '=∠B+∠BNC ', ∠MD 'C '=∠A+∠AMD ',所以,''AMD BNC ∠+∠=∠MD 'C '+∠NC 'D '-∠A-∠B=220〬-75〬-65〬=80〬. 故答案为80.【点睛】本题考核知识点:折叠,三角形外角,四边形内角. 解题关键点:熟记三角形外角性质和折叠性质.23.36°【分析】设∠ABC =x ,由∠ABC =∠AEB ,则∠AEB =x ,根据三角形外角的性质得到∠1=∠ABC +∠AEB =2x ,则∠2=2x ,利用对顶角相等得∠3=∠D =4x ,再根据三角形外角的性质得∠BCA =∠2+∠AEC =3x ,∠FBD =∠D +∠BCD =7x ,则∠DBA =∠FBD =7x ,在∠BCD 中利用三角形的内角和定理可得到关于x 的方程,解出x ,然后求得∠BCA 的度数.【详解】设∠ABC =x ,∠∠ABC =∠AEB ,∠∠AEB =x ,∠∠1=∠ABC +∠AEB =2x ,∠∠2=2x ,∠∠3=∠D =4x ,∠BCA =∠2+∠AEC =3x ,∠∠FBD =∠D +∠BCD =7x ,∠∠DBA =∠FBD =7x ,∠7x +7x +x =180°,解得x =12°,∠∠BCA =3x =36°.故填:36°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了角平分线的性质以及三角形外角的性质.24.210°【分析】根据三角形的内角和定理和三角形外角性质解答即可.【详解】解:如图:∠∠1=∠D+∠DOA ,∠2=∠E+∠EPB ,∠∠DOA=∠COP ,∠EPB=∠CPO ,∠∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°-∠C=30°+90°+180°-90°=210°, 故答案为210°.【点睛】本题考查三角形内角和,关键是根据三角形的内角和定理和三角形外角性质解答.25.80【分析】根据平角的概念可得∠ABC =38°,再由三角形内角和定理即可求解;【详解】解:∠∠ABE =142°,∠∠ABC =180°-∠ABE =180°-142°=38°,∠∠A +∠C +∠ABC =180°,∠C =62°,∠∠A =180°-(∠C +∠ABC )=180°-(38°+62°)=80°,故答案为:80.【点睛】本题主要考查三角形的内角和定理、平角的概念,掌握相关知识并灵活应用是解题的关键.26.65【分析】求方程13x a -=的解,代入23304x a +-=中解方程即可. 【详解】解:13x a -=, x-a=3,x=3+a ,∠方程13x a -=与23304x a +-=的解相同, ∠将x=3+a 代入23304x a +-=,得2(3)3304a a++-=,∠6+5a-12=0,解得a=65,故答案为:65.【点睛】此题考查同解方程,正确解方程是解题的关键.27.40【分析】设出A型放大镜为x个,根据不等关系列出不等式,求解即可.【详解】设A型放大镜x个,则B型放大镜为12x个,根据题意可得:20x+15×12x≤1100.解得:x≤40.故答案为:40.【点睛】本题主要考查了一元一次不等式在实际问题中的应用,关键是找出其中的不等量关系,并列出不等式.28.110【分析】根据旋转的性质即可得到结论.【详解】∠将△ABC绕点A顺时针旋转70度后得到△ADE,∠∠CAE=70°,∠∠BAE=30°,∠∠CAB=EAD=40°,∠∠CAD=∠CAB+∠BAE+DAE=110°,故答案为:110.【点睛】本题考查了旋转的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.29.8【分析】首先设正多边形的一个外角等于x°,则内角为3x°,即可得方程:x+3x=180,解此方程得到外角度数,再根据外角和求边数即可.【详解】解:设正多边形的一个外角等于x°,∵外角等于它的一个内角的13, ∴这个正多边形的一个内角为:3x °,∴x +3x =180,解得:x =45,∴这个多边形的边数是:360°÷45°=8.【点睛】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用.30.(1)11x y =⎧⎨=⎩;(2)83193x y ⎧=-⎪⎪⎨⎪=-⎪⎩;(3)511911x y ⎧=⎪⎪⎨⎪=⎪⎩;(4)43x y =⎧⎨=⎩ 【分析】(1)由方程组中x 的系数互为相反数,利用∠+∠消去x ,求解y ,从而可得答案;(2)由方程组中x 的系数互为相反数,利用∠+∠消去x ,求解y ,从而可得答案; (3)把方程∠化为32x y =-,再利用代入法消去x ,求解y ,从而可得答案; (4)把方程∠化为4325x y +=∠,∠-∠3⨯消去y ,求解x ,从而可得答案.【详解】解:(1)2332x y x y +=⎧⎨-+=⎩①② ∠+∠得:55,y =1,y ∴=把1y =代入∠得:23,x +=1,x =∴ 方程组的解是1.1x y =⎧⎨=⎩(2)541257x y y x -=⎧⎨-=⎩①② ∠+∠得:319,y -=19,3y ∴=- 把193y =-代入∠得:76512,3x +=405,3x ∴=- 8,3x ∴=- ∴ 方程组的解是83.193x y ⎧=-⎪⎪⎨⎪=-⎪⎩(3)32323x y x y -=-⎧⎨+=⎩①② 由∠得:32x y =-∠把∠代入∠得:()33223y y -+=1163,y ∴-=9,11y ∴= 把911y =代入∠得:5,11x = ∴ 方程组的解是511.911x y ⎧=⎪⎪⎨⎪=⎪⎩(4)20%15% 1.257x y x y +=⎧⎨+=⎩①② 由∠得:4325x y +=∠∠-∠3⨯得:4,x =把4x =代入∠得:3,y =∴ 方程组的解是4.3x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的解法,掌握利用代入法与加减法解二元一次方程组是解题的关键.31.(1)13x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩ 【分析】(1)使用代入消元法求解即可;(2)使用加减消元法求解即可.【详解】解:(1)421x yy x+=⎧⎨=+⎩①②,将∠代入∠,得:x+2x+1=4,解得x=1,将x=1代入∠,得:y=3,则方程组的解为13xy=⎧⎨=⎩;(2)325517x yx y-=⎧⎨+=⎩①②,∠+∠×2,得:13x=39,解得:x=3,将x=3代入∠,得:15+y=17,解得y=2,所以方程组的解为32xy=⎧⎨=⎩.【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.32.(1)∠2=90°-x,∠3=45°+12x;(2)54°【分析】(1)根据平角的定义利用∠1表示出∠2,再求出∠BOC,根据角平分线的定义表示出∠3;(2)根据∠3=2∠2得出方程,解之即可.【详解】解:(1)∠∠AOB=180°,∠EOD=90°,∠∠2=90°-∠1=90°-x,∠∠BOC=180°-∠2=180°-(90°-x)=90°+x,而OF平分∠BOC,∠∠3=12∠BOC=12(90°+x)=45°+12x;(2)∠∠2=90°-x,∠3=45°+12x,令∠3=2∠2,则45°+12x =2(90°-x ),解得:x =54°,∠当x 为54°时,∠3=2∠2.【点睛】本题考查了平角的定义,角平分线的定义,一元一次方程,主要考查学生的计算能力.33.(1)2x =;(2)3x =【分析】(1)先移项、合并同类项,再系数化为1,即可得到答案;(2)先移项、合并同类项,再系数化为1,即可得到答案;【详解】解:(1)4123x x -=+,∠4231x x -=+,∠24=x ,∠2x =;(2)123x x -=, ∠123x x -=, ∠223x =, ∠3x =.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 34.(1)11;(2)x >-1【分析】(1)根据运算的定义把所求的式子化成一般的形式,然后计算即可;(2)根据运算的定义列出不等式,然后解不等式即可得到结果.【详解】解:(1)由题意可得:(-2)∠3=(-2)×(-2-3)+1=10+1=11;(2)3∠x =3(3-x )+1=10-3x ,根据题意得:10-3x <13,解得:x >-1.【点睛】本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.x >45-【分析】将不等式变形,先去分母,再去括号,移项、合并同类项即可. 【详解】解:不等式整理得,2132232x x +--<, 去分母,得2(2x +1)-12<3(3x -2).去括号,得4x +2-12<9x -6.移项,得4x -9x <-6+12-2.合并同类项,得-5x <4,系数化为1,得x >45-. 【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.x <32. 【分析】根据去括号,移项合并,化系数为1的步骤进行求解即可.【详解】解﹕去括号得:4x ﹣4﹣12<x ,移项合并得:3x <92, 解得:x <32, 所以原不等式的解集为x <32. 【点睛】本题考查了解一元一次不等式,熟练掌握不等式的性质是解题的关键. 37.(1)0x =(2) 1.5x =-【分析】(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【详解】(1)解:()()2311210.5x x -+=-+23312x x --=--31223x x -+=--+20x -=0x =(2)解:2121136x x -++= ()221621x x -+=+42621x x -+=+42126x x -=+-23x =-1.5x =-【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键. 38.(1)∠AFB =87°;(2)∠BAF =62°.【分析】(1)利用三角形的外角性质计算即可;(2)利用三角形内角和定理构建方程求出∠ABF 即可解决问题.【详解】(1)解:∠∠AEB =∠C +∠CAE ,∠C =42°,∠CAE =18°,∠∠AEB =60°,∠∠CBD =27°,∠∠AFB =27°+60°=87°;(2)解:∠∠BAF =2∠ABF ,∠AFB =87°,∠3∠ABF =180°-87°,∠∠ABF =31°,∠∠BAF =62°.【点睛】本题考查了三角形内角和定理,三角形的外角性质等知识,解题的关键是熟练掌握基本知识.39.(1)12,8;(2)6;(3)图见解析,25或125【分析】(1)根据两个面相隔一个面是对面,对面的和是14,可得答案;(2)根据临面,对面的关系,可得答案;(3)根据展开图面与面的关系,可得M 的位置,根据三角形的面积公式,可得答案.【详解】解:(1)如果长方体相对面上的两个数字之和相等,则有x+2=6+y=4+10,所以x=12,y=8;故答案为:12,8;(2)面“2”是左面,面“4”在后面,则上面是6,故答案为:6;(3)如图:S△ABM=12×10×5=25.或S△ABM=12×10×25=125.【点睛】本题考查了正方体的相对两个面上的文字,正方体展开图中相隔一个面的两个面互为对面.40.(1)∠BOC,∠COE,90;(2)∠DOE,25,∠AOB,155【分析】(1)首先根据角平分线定义可得∠COD=12∠AOC,∠COE=12∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.【详解】解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=12∠AOC.因为OE是∠BOC的平分线,所以∠COE=12∠BOC.所以∠DOE=∠COD+ ∠COE =12(∠AOC+∠BOC)=1 2∠AOB= 90 °. (2)由(1)可知∠BOE=∠COE= ∠DOE ﹣∠COD= 25 °.所以∠AOE= ∠AOB ﹣∠BOE= 155 °【点睛】此题主要考查了垂线和角平分线的定义,要注意领会由两角和为90°得互余这一要点.41.2,4,6; 4,6,8和6,8,10【详解】假设连续三个正偶数第一个偶数为x ,则另外两个偶数是2x +,4x + 根据题意,得:2424x x x ++++≤解得:6x ≤因为x 是正偶数,所以x 的值只能是2、4或6故偶数组分别是2,4,6; 4,6,8和6,8,10【点睛】本题考查了求一元一次不等式的正整数解,根据题意列出不等式是关键.42.(1)7;(2)4或2-;(3)142;(4)22或34. 【分析】(1)利用数轴上两点之间的距离公式:AB a b =-,代入计算即可得到答案; (2)由3=3,± 可得13x -=或13,x -=- 再解方程即可得到答案;(3)先画好数轴,如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则此时111444,222AC AB BC x x ⎛⎫=+=++-=--= ⎪⎝⎭而且利用两点之间线段最短,可得此时可得最小值; (4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t 再利用两点之间的距离公式表示,AB 再利用2,AB = 建立绝对值方程,解方程可得答案.【详解】解:(1)数轴上表示2-和5两点之间的距离是:()52527,--=+= 故答案为:7(2) 13x13x ∴-=或13,x -=-解得:4x =或 2.x =-故答案为:4或2-(3)如图,A 表示1,2- B 表示4, 当x 对应的点B 在线段AC 上时,则11,4,22AB x x BC x ⎛⎫=--=+=- ⎪⎝⎭111444,222AC AB BC x x ⎛⎫∴=+=++-=--= ⎪⎝⎭此时:142x x ++-的值最小,为14.2故答案为:14.2(4)如图,A 向右移动后对应的数为:23,t -+ B 向右移动后对应的数为:8+2,t而移动后:2,AB =()8+2232,t t ∴--+=102,t ∴-=102t ∴-=或102,t -=-解得:8t =或12.t =当8t =时,A 向右移动后对应的数为:2322422,t -+=-+=当12t =时,A 向右移动后对应的数为:2323634.t -+=-+=【点睛】本题考查的是数轴上两点之间的距离,绝对值的含义,建立绝对值方程,一元一次方程的解法,掌握数形结合的方法解题是解本题的关键.43.(1)见解析 (2)∠6 ∠36或72【分析】(1)根据等腰三角形两底角相等∠ABC=∠ACB ,再根据平行线的性质得出,∠AFE=∠ABC ,∠AEF=∠ACB ,得出∠AFE=∠AEF ,进一步得出结论;(2)求出AE=AF ,再根据旋转的性质可得∠E′AC=∠F′AB ,AE′=AF′,然后利用“边角边”证明△CAE′和△BAF′全等,根据全等三角形对应边相等证明即可;(3)把△AEF 绕点A 逆时针旋转AE′与过点C 与AB 平行的直线相交于M 、N ,然后分两种情况,根据等腰梯形的性质和等腰三角形的性质分别求解即可.【详解】()1∠AB AC =,∠ABC C ∠=∠,∠//EF BC ,∠AFE A ∠=∠,AEF C ∠=∠,∠AFE AEF ∠=∠,∠AE AF =;()2∠由旋转的性质得,''E AC F AB ∠=∠,''AE AF =,在'CAE 和'BAF 中,''''AE AF E AC F AB AB AC =⎧⎪∠=∠⎨⎪=⎩,∠()''CAE BAF SAS ≅,∠''6CE BF ==;∠由()1可知AE BC =,所以,在AEF 绕点A 逆时针旋转过程中,点E 经过的路径(圆弧)与过点C 且与AB 平行的直线l 相交于点M 、N ,如图,∠当点E 的像'E 与点M 重合时,四边形ABCM 是等腰梯形,所以,72BAM ABC ∠=∠=,又∠36BAC ∠=,∠36CAM α=∠=;∠当点E 的像'E 与点N 重合时,∠'//CE AB ,。

华师大版数学七年级下册期末复习试题(三)(有答案)

华师大版数学七年级下册期末复习试题(三)(有答案)

华师大版数学七年级下册期末复习试题(三)一、选择题(3分×8=24分)1、如果2(23)3250a b c a b c+-+-+=,那么ab的值为()A 、1B 、-1C 、5 D、-52、已知方程组325a xb y mc xd y n+=⎧⎨-=⎩的解是21xy=⎧⎨=-⎩,则方程组(2)3(3)2(2)5(3)a xb y mc xd y n++-=⎧⎨+--=⎩的解是()A21xy=⎧⎨=-⎩B42xy=⎧⎨=⎩C2xy=⎧⎨=⎩D4xy=⎧⎨=-⎩3、小亮在计算多边形内角和时,先测量各个内角的度数,再求和,结果得1570°,下列说法中错误的是()A 、小亮多加了一个内角,这个内角的度数是130°;B 、小亮少加了一个内角,这个内角的度数是50°;C 、小亮测量的多边形的边数可能是10;D、小亮测量的多边形的边数一定是11;4、已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是().A 、k<-3B、1≤ k<3 C 、-3≤k<-1D、k≥-35、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

下列说法错误的是()A 、2秒或5秒时,甲到A、B、C的距离和为40个单位;B 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲、乙在数轴上相遇点代表的数是-10.4;C 、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。

甲、乙在数轴上相遇点代表的数是-44;D、若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,当甲到A、B、C的距离和为40个单位时,甲调头返回。

甲、乙在数轴上相遇点代表的数是-8;6、点A1、A2、A3、……A n(n为正整数)都在数轴上,点A1在原点O的左边,且A1A O=1,点A2在点A1的右边,且A2A1=2,点A3在点A2的左边,且A3A2=3,点A4在点A3的右边,且A4A3=4,……,依照上述规律点A2008、A2009所表示的数分别为()。

华师大版七年级下册数学期末考试试题及答案

华师大版七年级下册数学期末考试试题及答案

华师大版七年级下册数学期末考试试卷一、单选题1.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( )A .﹣1B .0C .1D .22.《侯马盟书》是山西博物馆藏得十大国宝之一,其中很多篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A .B .C .D .3.根据不等式的性质,下列变形正确的是( )A .由a >b 得ac 2>bc 2B .由ac 2>bc 2得a >bC .由-12a >2得a <2 D .由2x+1>x 得x >1 4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5152x y x y =+⎧⎪⎨=-⎪⎩B .5152x y x y =-⎧⎪⎨=+⎪⎩C .525x y x y =+⎧⎨=-⎩D .525x y x y =-⎧⎨=+⎩5.如图,用不等式表示数轴上所示的解集,正确的是( )A .x >﹣2B .x ≥﹣2C .x <﹣2D .x ≤﹣26.如图,在ABC 中,BC 边上的高为( )A .BDB .CFC .AED .BF7.已知等腰三角形两边a ,b ,满足|2a ﹣3b +5|+(2a +3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或108.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重叠,则∠1的度数为()A.45°B.60°C.75°D.85°9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且△ABC的面积为4cm2,则△BEF的面积等于()A.2cm2B.1cm2C.0.5 cm2D.0.25 cm210.、如右图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18 个正三角形,依此递推,第10层中含有正三角形个数是……()A.102个B.114个C.126个D.138个二、填空题11.已知方程2x﹣y=1,用含x的代数式表示y,得_____.12.在△ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC是三角形.13.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有_____14.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=_____度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.三、解答题16.(1)解方程:y﹣12y-=2﹣26y+;(2)解方程组:3 2316 x yx y-=⎧⎨+=⎩.17.解不等式组:513(1)2151132x x x x -<+⎧⎪-+⎨-≤⎪⎩,并写出它所有的整数解.18.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得12C P C P +的值最小.19.“五一”黄金周,小梦一家计划从家B 出发,到景点C 旅游,由于BC 之间是条湖,无法通过,如图所示只有B ﹣A ﹣C 和B ﹣P ﹣C 两条路线,哪一条比较近?为什么?(提示:延长BP 交AC 于点D )20.数学课上,老师出了一道题,如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,∠B =80°,∠C =40°(1)求∠DAE的度数;(2)小红解完第(1)小题说,我只要知道∠B﹣∠C=40°,即使不知道∠B、∠C的具体度数,也能推出∠DAE的度数小红的说法,对不对?如果你认为对,请推导出∠DAE的度数:如果你认为不对,请说明理由.21.科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40台A种机器人、150台B种机器人分拣快递包裹,A、B两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A种机器人工作1.5小时,全部B种机器人工作2小时,一共可以分拣1.38万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹?(2)为进一步提高效率,快递公司计划再购进A、B两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A种机器人多少台?22.已知:如图,E点是正方形ABCD的边AB上一点,AB=4,DE=6,△DAE逆时针旋转后能够与△DCF重合.(1)旋转中心是.旋转角为度.(2)请你判断△DFE的形状,并说明理由.(3)求四边形DEBF的周长和面积.23.阅读材料,并回答下列问题如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC沿射线AC平移到△DEF,若平移的距离为2,且AC=5,则DC=.(3)如图3,圆梦小组展开了探索活动,把△ABC纸片沿DE折叠,使点A落在四边形BCDE 内部点A′的位置,且得出一个结论:2∠A′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC纸片沿DE折叠,使点A落在四边形BCDE外部点A′的位置,此时∠A′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.参考答案1.A【解析】把x=2代入方程得:2m+2=0,解得:m=−1,故选A.2.C【解析】【分析】由题意根据轴对称图形的定义即如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此进行分析即可.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意.故选:C.【点睛】本题主要考查轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.3.B【解析】【详解】解:根据不等式的基本性质可知:A. 由a>b,当c=0时,ac2>bc2不成立,故此选项错误;B. 由ac2>bc2得a>b,正确;C. 由-12a>2得a<-4,故此选项错误;D. 由2x+1>x得x>-1,故此选项错误;选项A、C、D错误;故选B.【点睛】本题考查不等式的基本性质.4.A【解析】【分析】根据题意列出方程组,“现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺”表示为5x y=+;“如果将绳索对半折后再去量竿,就比竿短5尺”表示为152x y=-,即可选出符合的选项.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选:A.【点睛】本题考查了方程组的实际应用,掌握列方程组的方法是解题的关键.5.C【解析】【分析】把每个不等式的解集在数轴上表示时,>、≥向右画;<、≤向左画.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆表示.【详解】解:由题意得,x<﹣2.故选C.【点睛】本题考查了不等式解集的数轴表示法,明确“<”、“>”、“实心圆点”、“空心圆”的含义是解答本题的关键.6.C【解析】【分析】根据从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高进行分析即可.【详解】在△ABC中,BC边上的高是过点A垂直于BC的线是AE.故选:C【点睛】此题主要考查了三角形的高,关键是掌握三角形的高的定义.7.A【解析】【分析】由非负数的性质可得a=2,b=3,同时分a为腰或底两种情况讨论可得等腰三角形的周长. 【详解】解:因为a、b满足|2a﹣3b+5|+(2a+3b﹣13)2=0, 所以2a-3b+5=0 {2a+3b-13=0,解得:a=2{b=3,则等腰三角形的两边长分别为2和3.当等腰三角形的腰为2时, 等腰三角形的周长为2+2+3=7; 当等腰三角形的腰为3时, 等腰三角形的周长为3+3+2=8,故本题正确答案为A.【点睛】本题主要考查二元一次方程组及其解法和等腰三角形.8.C【解析】∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=75°,故选C.!9.B【解析】【分析】依据三角形的面积公式及点D 、E 、F 分别为边BC ,AD ,CE 的中点,推出14BEF ABC SS ∆=从而求得△BEF 的面积.【详解】解:∵点D 、E 、F 分别为边BC ,AD ,CE 的中点, 1111,,,2222ABD ABC BDE ABD CDE ADC BEF BEC S S S S S S S S ∆∆∆∆∆∆∆∆∴==== 14BEF ABC S S ∆∆∴= ∵△ABC 的面积是4,∴S △BEF =1.故选:B【点睛】本题主要考查了与三角形的中线有关的三角形面积问题,关键是根据三角形的面积公式S= 12×底×高,得出等底同高的两个三角形的面积相等. 10.B【解析】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个.此后,每层都比前一层多12个.依此递推,第10层中含有正三角形个数是6+12×9=114个.故选B .11.y =2x ﹣1【解析】【分析】根据题意要把方程2x ﹣y =1,用含x 的代数式表示y ,就要把方程中含有y 的项移到方程的左边,其它的项移到方程的右边,再进一步合并同类项、系数化为1即可.【详解】解:2x﹣y=1移项得﹣y=1﹣2x,系数化1得y=2x﹣1.故答案为:y=2x﹣1.【点睛】本题考查方程的灵活变形,熟练掌握移项、合并同类项、系数化为1的步骤是解题的关键.12.直角三角形【解析】试题分析:由∠A∶∠B∶∠C=1∶2∶3,可设∠A=x°,∠B=2x°,∠C=3x°,根据三角形的内角和为180°,即可得到关于x的方程,解出即得结果.设∠A=x°,∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°,∴x+2x+3x=180解得x=30∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形.考点:本题考查的是三角形的内角和定理,直角三角形的判定点评:通过三角形的内角和180°及内角之间的关系得到关于角的度数的方程是判断三角形形状的关键.13.③俯视图【解析】【分析】由题意直接根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个十字,“十”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图.【点睛】本题考查简单组合体的三视图,掌握从上边看得到的图形是俯视图,同时利用中心对称图形进行分析.14.65【解析】【分析】由题意先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B 的度数.【详解】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为:65.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.248元或296元【解析】【分析】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,找出关于x的一元一次方程,解之即可得出结论.【详解】设小丽第一次购书的原价为x元,则第二次购书的原价为3x元,根据题意得:当3x≤100,即x≤1003时,x+3x=229.4,解得:x=57.35(舍去);当100<3x≤200,即1003<x≤2003时,x+0.9×3x=229.4,解得:x=62,∴x+3x=248;当3x>200且x≤100,即2003<x≤100时,x+0.7×3x=229.4,解得:x=74,∴x+3x=296;当x>100时,0.9x+0.7×3x=229.4,解得:x≈76.47(舍去).答:小丽这两次购书原价的总和是248元或296元.故填:248元或296元.【点睛】本题考查了一元一次方程的应用,分x≤1003、1003<x≤2003、2003<x≤100及x>100四种情况,列出关于x的一元一次方程是解题的关键.16.(1)y=74;(2)52xy=⎧⎨=⎩【解析】【分析】(1)根据题意对方程去分母,去括号,移项合并,把y系数化为1,即可求出解;(2)由题意对方程组利用加减消元法,进行计算求出解即可.【详解】解:(1)去分母得:12y﹣6y+6=24﹣2y﹣4,移项合并得:8y=14,解得:y=74;(2)32316x yx y-=⎧⎨+=⎩①②,①×3+②得:5x=25,解得:x=5,把x=5代入①得:y=2,则方程组的解为52 xy=⎧⎨=⎩.【点睛】此题考查解一元一次方程以及解二元一次方程组,熟练掌握相关运算法则是解本题的关键.17.﹣1≤x<2;﹣1,0,1【解析】【分析】根据题意先分别解两个不等式确定不等式组的解集,再找出其中的整数解即可.【详解】解:513(1)2151132x xx x-<+⎧⎪⎨-+-≤⎪⎩①②,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的整数解为:﹣1,0,1.【点睛】本题考查解一元一次不等式组,根据题意分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集是解题的关键.18.见解析【解析】分析:(1)根据图形平移的性质画出△A1B1C1即可;(2)根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3)连接C1C2交直线m于点P,则点P即为所求点.详解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)连接连接C1C2交直线m于点P,则点P即为所求点.点睛:本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.19.B﹣P﹣C路线较近,见解析【解析】【分析】根据题意延长BP交AC于点D,并依据三角形两边之和大于第三边,进行分析即可得出结论.【详解】解:如图,延长BP交AC于点D.∵△ABD中,AB+AD>BD=BP+PD,△CDP中,PD+CD>CP,∴AB+AD+PD+CD>BP+PD+CP,即AB+AD+CD>BP+CP,∴AB+AC>BP+CP,∴B﹣P﹣C路线较近.【点睛】本题主要考查三角形三边关系,解决问题的关键是延长BP交AC于点D,利用三角形三边关系进行判断.20.(1)∠DAE=20°;(2)对,∠DAE=20°【解析】【分析】(1)根据角平分线的定义求出∠BAE,根据垂直定义求出∠ADB,根据三角形内角和定理求出∠BAC和∠BAD,即可求出答案;(2)由题意根据角平分线的定义和垂直定义以及三角形内角和定理,进行分析即可求解.【详解】解:(1)∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠BAE=12∠BAC=30°,∵AD⊥BC,∴∠ADB=90°,∵∠B=80°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣80°﹣90°=10°,∴∠DAE=∠BAE﹣∠BAD=30°﹣10°=20°;(2)对,理由是:∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣∠B﹣∠C)=90°﹣12(∠B+∠C),∵AD⊥BC,∴∠ADB=90°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣∠B﹣90°=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣12(∠B+∠C)﹣(90°﹣∠B)=12∠B﹣12∠C=12(∠B﹣∠C),∵∠B﹣∠C=40°,∴∠DAE=20°,所以小红的说法正确.【点睛】本题考查角平分线的定义,垂直的定义和三角形的内角和定理,能求出∠BAE和∠BAD的度数是解此题的关键.21.(1)A种机器人每台每小时分拣80件包裹,B种机器人每台每小时分拣30件包裹;(2)至少应购进A种机器人50台【解析】【分析】(1)由题意可知A种机器人每台每小时分拣x件包裹,B种机器人每台每小时分拣y件包裹,根据题意列方程组即可得到结论;(2)根据题意设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得出不等式,进行求解即可得到结论.【详解】解:(1)A种机器人每台每小时拣x件包裹,B种机器人每台每小时分拣y件包裹,由题意得401500.77100001.5402150 1.3810000x yx y+=⨯⎧⎨⨯+⨯=⨯⎩,解得8030 xy=⎧⎨=⎩,答:A种机器人每台每小时分拣80件包裹,B种机器人每台每小时分拣30件包裹;(2)设应购进A种机器人a台,购进B种机器人(100﹣a)台,由题意得,80a+30(100﹣a)≥5500,解得:a≥50,答:至少应购进A种机器人50台.【点睛】本题考查的是二元一次方程组的应用和一元一次不等式的应用,解题的关键是抓住题目中的数量关系,并正确列出方程或不等式.22.(1)D,90;(2)△DFE的形状是等腰直角三角形,见解析;(3)20,16【解析】【分析】(1)由题意可知要确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;(2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;(3)由题意根据△DAE≌△DCF,可以得到:AE=CF,DE=DF,则四边形DEBF的周长就是正方形的三边的和与DE的和.【详解】解:(1)由题意可知旋转中心是点D,即为旋转角为90度.ADC(2)根据旋转的性质可得:△DAE≌△DCF,则DE=DF,∠EDF=∠ADC=90°,则△DFE的形状是等腰直角三角形.(3)四边形DEBF的周长是BE+BC+CF+DF+DE=AB+BC+DE+DF=4+4+6+6=20;由题意可知四边形DEBF的面积等于正方形ABCD的面积=16.【点睛】本题主要考查旋转的性质,注意掌握旋转不改变图形的形状与大小,只改变图形的位置,旋转前后两个图形全等.23.(1)旋转;(2)3;(3)见解析;(4)不成立,正确结论:∠2﹣∠1=2∠A',见解析【解析】【分析】(1)由题意根据三种全等变换翻折、平移、旋转的定义进行判断即可;(2)根据平移的距离的定义可知AD=2,则DC=AC﹣AD进行求解即可;(3)根据轴对称及三角形内角和定理进行分析即可得出结论;(4)由题意根据轴对称及三角形内角和定理,进行分析即可得出结论.【详解】解:(1)除翻折、平移外全等变换的方法还有旋转;故答案为:旋转.(2)∵AD=2,AC=5,∴DC=AC﹣AD=5﹣2=3;故答案为:3.(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED);由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=180°﹣∠A'EA=180°﹣2∠A'ED,∴∠1+∠2=180°﹣2∠A'DE+180°﹣2∠A'ED=2(180°﹣∠A'ED﹣∠A'DE),∴2∠A′=∠1+∠2.(4)∠2﹣∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°﹣(∠A'DE+∠A'ED),由平角定义知,∠2=180°﹣∠A'DA=180°﹣2∠A'DE,∠1=2∠A'ED﹣180°,∴∠2﹣∠1=(180°﹣2∠A'DE)﹣(2∠A'ED﹣180°)=180°-(∠A'DE+∠A'ED),∴∠2﹣∠1=2∠A'.【点睛】本题是三角形综合题,综合考查平移的性质,折叠的性质,三角形内角和定理,全等三角形的性质等知识,灵活运用这些性质进行推理是解答本题的关键.。

华东师大版数学七年级下册期末模拟试题50题(含答案)

华东师大版数学七年级下册期末模拟试题50题(含答案)

华东师大版数学七年级下册期末模拟试题50题含答案(填空题+解答题)一、填空题1.已知方程2y x -=,用含x 的代数式表示y ,那么y =_______. 【答案】x +2【分析】将x 移到方程右边即可.【详解】解:方程y -x =2,移项得:y =x +2.故答案为:x +2.【点睛】本题考查的是方程的基本运算技能:移项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x 的式子表示y 的形式.2.把线段AB 平移一段距离后得到线段 A B '',若5AA '=,则 BB '=__________. 【答案】5【分析】根据平移变换只改变图形的位置不改变图形的大小与形状可得A′B′=AB ,平移的距离可得AA′=BB′=5.【详解】∵线段AB 平移一段距离后得到线段A′B′,∵AA′=BB′=5,故答案为:5.【点睛】本题考查平移的基本性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.如图,CE 平分∵ACD ,∵A=40°,∵B=30°,∵D=104°,则∵BEC=____.【答案】57°##57度【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∵D =∵A+∵B+∵DCA ,∵D =∵BEC+∵B+∵ECD , 则∵DCA =∵D-(∵A+∵B )=34°,4.“x的19与7的差等于x的2倍与5的和”用方程表示为___.5.已知二元一次方程组331x myx my+=⎧⎨-=⎩的解是1x ny=⎧⎨=⎩(1)n的值为______;(2)m的值为______.【答案】12【分析】将y=1代入方程组求得:x=1,将x=1代入∵得:m=2.【详解】解:将y=1代入方程组得:331x mx m+=⎧⎨-=⎩①②,∵+∵得:4x=4,解得:x=1,将x=1代入∵得:m=2,故答案为:1;2.【点睛】本题主要考查的是二元一次方程组的解法,考查重点为:利用适当的方法解方程组.6.当x____________时,代数式2x-3的值是正数.7.关于x 的一元一次方程(2m ﹣6)x ﹣2=0 ,x =1是一元一次方程的解,则m =_____. 【答案】4【分析】将x =1代入原方程求解即可.【详解】解:将x =1代入(2m ﹣6)x ﹣2=0,2620m --=,解得:4m =,故答案为:4.【点睛】本题考查一元一次方程的解,熟练掌握解一元一次方程是解题关键. 8.从六边形的一个顶点出发,分别连接这个点与其余各顶点,可以把这个六边形分割成____________个三角形. 【答案】4【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可得这个六边形分成三角形的个数.【详解】解:根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,∵624-=,即三角形的个数是4.故答案为:4.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n 的值计算,而计算边数时,需利用方程思想,解方程求n .9.“x 的2倍与14的和小于3”用不等式表示为________.10.当5x =和5-时,代数式32ax x bx c +++的值分别为20和40.则c =___________. 【答案】5【分析】分别代入分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩,利用解方程的知识可得答案; 【详解】解:分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩ ,两方程相加得2c =10,c =5,故答案为5.【点睛】本题考查了代数式求值,分别分别把5x =和5-代入32ax x bx c +++中是解题的关键.11.把方程2311x y -+=改写成用x 的式子表示y 的形式是______.12.若一个多边形外角和与内角和相等,则这个多边形是_____.【答案】四边形【分析】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:【详解】解:设这个多边形的边数是n ,则(n ﹣2)•180°=360°,解得n=4.故答案为:四边形.【点睛】本题考查了多边形内角和公式的应用,多边形的外角和,解题的关键是要能列出一元一次方程.13.若方程组2231y x my x m-=⎧⎨+=+⎩的解x,y满足30x y+≥,则m的取值范围是______.x14.若关于x的不等式326m x-<的解集是3x>,则m的值为__________.【答案】4【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【详解】解3m-2x<6,得x>1.5m-3,由不等式的解集为x>3,∴ 1.5m-3=3,解得:m=4,故答案为:4.【点睛】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.15.将含30°的三角板和一把直尺如图放置,测得125∠=︒,则2∠的度数是______.【答案】35°##35度【分析】如图,根据平行线的性质,得∵DCH=∵BAC.根据三角形外角的性质,得∵BAC=∵F+∵1,推断出∵BAC=55°,进而解决此题.【详解】解:如图.由题意得,AB∵CD,∵H=90°,∵F=30°.∵∵DCH=∵BAC,∵∵BAC=∵F+∵1,∵∵BAC=30°+25°=55°,∵∵DCH=55°,∵∵CDE=∵DCH+∵H=55°+90°=145°,∵∵2=180°-∵CDE=180°-145°=35°.故答案为:35°.【点睛】本题主要考查平行线的性质、三角形外角的性质,熟练掌握平行线的性质、三角形外角的性质是解决本题的关键.16.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有________种.【答案】3【分析】设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个,然后根据总费用不超过3100元,列出不等式求解即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个, 由题意得:()50055063100x x +-≤,解得4x ≥,又∵x 为正整数,∵x 的值可以为4、5、6,∵一共有3种购买方式,故答案为:3.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意列出不等式是解题的关键.17.已知12x y =-⎧⎨=⎩是二元二次方程2227ax y -=-的一个解,则=a _______. 【答案】1【分析】先将12x y =-⎧⎨=⎩代入2227ax y -=-,得到关于a 的一元一次方程,然后解方程即可求解.【详解】解:将12x y =-⎧⎨=⎩代入2227ax y -=-,得: a -2×22=﹣7,解得:a =1故答案为:1【点睛】本题考查二元二次方程和根的性质定义,解题的关键是把所给的未知数的值正确代入方程得到关于a 的方程.18.ABC 的三边长为a 、b 、c ,且a 、b 满足a 2﹣4a =0,则c 的取值范围是______.【详解】解:24a a -+19.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是--------------------_____.【答案】10:21.【详解】10:2120.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_.2403,解得30060x-80x答:以后几天平均至少要完成的土方数是故答案为:80.【点睛】此题主要考查了一元一次不等式的应用,解本类工程问题,主要是找准正确的工程不等式(如本题603以天数作为基准列不等式)21.一个角的余角等于它补角的14,则这个角的度数是______度.,则其余角是(90°-的值即可.22.当x =_______时,代数式45x -与39x -的值互为相反数【答案】2【详解】∵代数式45x -与39x -的值互为相反数,∵45x -+39x -=0,∵x=2.故答案是:2.23.若x a y b =⎧⎨=⎩是方程231x y -=的一组解,则846a b -+=__________. 【答案】6【分析】将x a y b =⎧⎨=⎩代入方程2x -3y =1得到关于a ,b 的关系式,再将多项式适当变形后利用整体代入求代数式的值.【详解】解:将x a y b =⎧⎨=⎩代入方程2x -3y =1得: 2a -3b =1.原式=8-2(2a -3b )=8-2×1=6.故答案为:6.【点睛】本题主要考查了二元一次方程的解以及求代数式的值,将方程的解代入原方程是解题的关键.24.如图,已知AOB ∠与BOC ∠互为补角,OD 是AOB ∠的平分线,OE 在BOC ∠中,1,72,2BOE EOC DOE EOC ∠=∠∠=︒∠的度数为_______.【答案】72°25.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.现有27元钱,最多可以购买该商品的件数是________.【答案】10件【分析】设购买该商品x 件,先判断购买件数在5件之上,再根据总价=3×5+3×0.8×超过5件的数量,结合总价不超过27元,即可得出关于x 的一元一次不等式,求出x 的解集即可得出结论.【详解】解:设购买该商品x 件,因为共有27元,所以最多购买的件数超过5件,依题意得:3×5+3×0.8(x -5)≤27,解得:x ≤10,故答案为:10件.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.如图,在Rt ABC △中,90BAC ∠=︒,48C ∠=︒,AH ,BD 分别是ABC 高和角平分线,点E 为边BC 上一个点,当BDE 为直角三角形时,则CDE ∠=_____度.,当BDE 为直角三角形时,存在两种情况:分别根据三角形内和定理和外角的性质,即可得出结论.【详解】解:90BAC ∠=︒180BAC ︒-∠-∠BD 平分ABC ,21DBC ABC ∴∠=∠=︒ 当BDE 为直角三角形时,有以下两种情况:∵当BED ∠=48C ∠=CDE ∴∠∵当BDE ∠BED ∠=CDE ∴∠=综上,CDE ∠故答案为:【点睛】本题考查的是直角三角形的性质,角平分线的有关计算,三角形内和定理与外角的性质,熟知三角形的外角的性质是解答此题的关键.27.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,将一副学生用三角板按如图所示的方式放置.若//AE BC ,则AFD ∠的度数是__.【答案】75︒【分析】首先根据三角形内角和为180°,求得∵C 的度数,又由AE∵BC ,即可求得∵CAE 的值,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得∵AFD 的度数.【详解】解://AE BC ,45E EDC ∴∠=∠=︒,30C ∠=︒75AFD C EDC ∴∠=∠+∠=︒,故答案为75︒【点睛】本题考查三角形内角和定理,熟练掌握计算法则是解题关键.二、解答题28.解方程组225x y x y -=⎧⎨+=⎩【答案】41x y =⎧⎨=⎩. 【分析】利用加减消元法求解即可.【详解】解:225x y x y -=⎧⎨+=⎩①② 由∵-∵,得:3y =3,解得y =1,把y =1代入∵,得:x +1=5,解得:x =4,所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.29.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )【答案】水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.30.A 、B 两市相距300千米,现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问在相遇前,出发多长时间后两车之间的距离为30千米.【答案】3小时【分析】设在相遇前,x 小时后两车之间的距离为30千米,根据路程=速度⨯时间,可列方程求解.【详解】解:设在相遇前,x 小时后两车之间的距离为30千米.()405030030x +=-,3x =.【点睛】本题考查一元一次方程的应用,正确的理解题意,并列出方程是解题的关键.31.解方程:(1)437x x -=-(2)()()423221x x x --=-(3)3252323x x x +--=- (4)0.60.50.030.290.20.063x x x ++--=32.解不等式1211232x x -≤-,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【分析】去分母得:3x-6≤4x-3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x-6≤4x-3∵x≥-3【点睛】本题考查解一元一次不等式.33.解下列方程:(1)2953x x -=+ (2)()32362x x x -+=- (3)122136x x -+=- (4)10.3x -﹣20.5x + 1.2=34.2020年2月,受新冠病毒影响开学延迟,我市中小学各位教师为响应上级部门的号召,积极进行了网上授课.5月全民抗疫取得了阶段性胜利,网课结束.某校对七年级200名学生进行了网课摸底考试,其中数学成绩如下表所示:(1)请根据表格信息,计算这次考试中及格人数和不及格人数各有多少;(2)该校若想在下次的考试中数学成绩的及格率不低于90%,则及格人数至少得增加多少人【答案】(1)及格人数为150人,不及格人数为50人;(2)及格人数至少得增加30人.【分析】(1) 设及格人数为x 人,不及格人数为y 人,由总人数为200人与平均分为76分,列方程组,解方程组即可得到答案;(2)设及格人数增加m 人,利用及格率不低于90%,列不等式,解不等式可得答案.【详解】(1)解:设及格人数为x 人,不及格人数为y 人,则由题意得:()200874376x y x y x y +=⎧⎨+=+⎩解得15050x y =⎧⎨=⎩. 答:及格人数为150人,不及格人数为50人.(2)设及格人数增加m 人,则由题意得,15020090%m +≥⨯,解得30≥m .∵m 为整数,∵至少增加30人.答:及格人数至少得增加30人.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,掌握利用相等关系列方程组与不等关系列不等式是解题的关键.35.解不等式组:38?2(1)6x x x >--⎧⎨-≤⎩①② 【答案】24x -<≤【分析】分别解两个一元一次不等式,再写出不等式组的解集即可.【详解】解不等式∵,得2x >-,解不等式∵,得4x ≤,所以,不等式组的解集为24x -<≤.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式的步骤是解题的关键.36.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∵BDC 等于140°才算合格,小明通过测量得∵A =90°,∵B =19°,∵C=40°后就下结论说此零件不合格,于是爸爸让小明解释这是为什么呢?小明很轻松地说出了原因,并用如下的两种方法解出此题.请你代小明分别写出不合格的理由.(1)如图1,连结AD并延长.(2)如图2,延长CD交AB于E.【答案】(1)证明见解析;(2)证明见解析.【分析】直接利用各个图形中的外角等于与它不相邻的两个内角和可得答案;【详解】解:(1)如图1,连结AD并延长.∠=∠+∠∠=∠+∠13,24,C B∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠BDC B C B BAC C1243=︒+︒+︒=︒≠︒199040149140,所以零件不合格.(2)如图2,延长CD交AB于E.∠=∠+∠∠=∠+∠1,1,A C BDC B∴∠=∠+∠+∠=︒+︒+︒=︒≠︒BDC B A C199040149140,所以零件不合格.【点睛】要考查了三角形的内角和外角之间的关系.三角形的任意一个外角等于与它不相邻的两个内角之和.掌握以上知识是解题的关键.37.已知方程组331x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数. (1)求a 的取值范围.(2)化简:|1|2a a -++38.我们规定,若关于x 的一元一次方程ax b =的解为x b a =-,则称该方程的为差解方程,例如.932x =的解为32x =,且39322=-,则该方程932x =就是差解方程. 请根据以上规定解答下列问题:(1)若关于x 的一元一次方程51x m -=+是差解方程,则m =________;(2)若关于x 的一元一次方程231x ab a =++是差解方程,且它的解为x a =,求代数式()20222ab +的值.39.如图,已知四边形ABCD 中,,AD CB BD ∥平分,:4:1ABC A DBA ∠∠∠=.(1)求A ∠的度数;(2)如果BDC 是直角三角形,直接写出C ∠的度数.【答案】(1)120°(2)60°【分析】(1)根据平行线的判定,可得答案;(2)根据三角形的内角和,平行线的性质,可得答案.(1)解:∵AD∵CB,∵∵ABC+∵A=180°,∵BD平分∵ABC,∵∵ABC=2∵ABD.∵∵A:∵DBA=4:1,∵∵ABC+∵A=180°,∵∵A=120°.(2)解:当∵AD∵CB,∵A=120°,∵∵DBC=∵ABD=30°.由三角形的内角和,得∵C=180°-∵DBC-∵BDC=180°-30°-90°=60°.【点睛】本题考查了平行线的判定与性质,利用平行线的判定与性质是解题关键.40.把正奇数1,3,5,……,2021,2023排成如图所示的数阵,规定从上到下依次为第1行,第2行,第3行,……,从左到右依次为第1列,第2列,第3列,…….(1)∵数阵中共有___________个数,数2023在第___________行,第___________列;∵图表中第n行第8列的数可用n表示为___________;(2)按如图所示的方法用一个“L”形框框住相邻的三个数,设被框的三个数中最小的一个数为x,是否存在这样的x使得被框的三个数的和等于1471?若存在,求出x的值;若不存在,请说明理由.n ;【答案】(1)∵1012;127;4;∵161(2)不存在,理由见解析【分析】∵由第m 个正奇数可表示为21m -可列方程212023m -=,解得1012m =,可知共有1012个数,每行有8个数,则10128126 .....4 ÷=,即可得到问题的答宲; ∵先计算出从第1行第1列的数到第n 行第8列的数共有8n 个数,则281161n n ⨯-=-,所以第n 行第8列的数是161n -;(2)假设存在这样的x ,则161621471x x x +++++=,解得479x =,由21479m -=得240m =,可知479是数阵中的第240个数,而240830÷=,可知479是数阵第30行的最后一个数,说明在数阵中"L "形框框不出这样的三个数.【详解】(1)解∵∵第m 个正奇数可表示为21m -,由212023m -=得1012m =,所以数阵中共有1012个数;10128126 .....4 ÷=所以数2023在第127行第4列,故答案为:1012;127;4;∵因为每行有8个数,所以从第1行第1个数到第n 行第8列的数共8n 个数,所以第n 行第8列的数是281161n n ⨯-=-,故答案为:161n -;(2)不存在,理由∵因为被框的三个数中最小的一个数为x ,所以161621471x x x +++++=,解得479x =,由21479m -=得240m =,240830÷=(行),可见479是数阵中第30行的第8个数,所以"L "形框框不出这样的三个数,所以不存在这样的x 使得被框的三个数的和等于1471.【点睛】本题考查了解一元一次方程、列一元一次方程解应用题,掌握用代数式表示数阵中的数是关键.41.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?42.某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;(2)若师生行李打包后共有m 件,且170 < m ≤ 184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m 的值. 【答案】(1)见解析;(2)176.【分析】(1)设租用甲车x 辆,则乙车()10x -辆,根据根据车辆所载人数不少于360人,行李件数不少于164可列出方程组()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩,据此求得x 的取值范围,结合x 是整数解答即可;(2)设租用甲车y 辆,乙车z 辆,根据题意得:40y + 30z = 360,m = 16y + 20z ,化简得:4y = 36﹣3z ,代入m = 16y + 20z 得:m = 144 + 8z ,结合m 的取值范围可得出3.25 < z ≤ 5,根据z 、y 是非负整数以及4y = 36﹣3z ,求得z 、y 即可.【详解】解:(1)设租用甲车x 辆,则乙车()10x -辆.根据题意得:()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:6 ≤ x ≤ 9.∵x 是整数∵x = 6或7或8或9.共有四种方案:∵当甲车租6辆,则乙车租4辆;∵当甲车租7辆,则乙车租3辆;∵当甲车租8辆,则乙车租2辆;∵当甲车租9辆,则乙车租1辆;(2)设租用甲车y辆,乙车z辆,根据题意得:40y + 30z = 360,m = 16y + 20z化简得:4y = 36﹣3z,代入m = 16y + 20z得:m = 144 + 8z∵170 < m ≤ 184∵170 < 144+8z ≤ 184∵3.25 < z ≤ 5∵z、y是非负整数∵z = 4,y = 6,∵m = 176.【点睛】考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述句,进而找到所求的量的不等关系列出不等式,注意z、y是非负整数.43.若关于x的不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,求a的取值范围.44.如图,在边长为1个单位长度的小正方形组成的网格中,三角形ABC的三个顶点A、B、C均在格点上,请按要求完成下列作图.(1)作出三角形ABC绕着C点逆时针旋转90°得到的三角形A1B1C1.(2)作出三角形ABC关于直线l对称的三角形A2B2C2.【答案】(1)见解析;(2)见解析【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)利用轴对称变换的性质分别作出A,B,C的对应点A2,B2,C2即可.【详解】解:(1)如图,三角形A1B1C1即为所求.(2)如图,三角形A2B2C2即为所求.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是掌握旋转变换,轴对称变换的性质,正确作出图形.45.某水果店从水果生产基地用6400元购进了葡萄和苹果共500千克,葡萄的进价每千克20元,苹果的进价每千克8元,(1)求该水果店购进葡萄和苹果各多少千克?(2)苹果的销售价为每千克12元,在运输过程中葡萄损耗了20%、若水果店老板计划要在这次买卖中获利不少于2000元、则葡萄的售价最少应为多少?【答案】(1)该水果店购进葡萄200千克,苹果300千克;(2)萄的售价最少应为30元.【分析】(1)根据题意列出二元一次方程组求解即可;(2)根据题意设未知数列出不等式求解即可.【详解】解:(1)设该水果店购进葡萄x千克,苹果y千克,由题意列方程得:500 2086400x yx y+=⎧⎨+=⎩,解得:200300xy=⎧⎨=⎩.答:该水果店购进葡萄200千克,苹果300千克(2)设葡萄的售价为m元,根据题意列不等式得:()12300200120%64002000m⨯+⨯--≥,解得:30≥m,答:葡萄的售价最少应为30元.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解题的关键根据题意列出方程组和不等式.46.随着科技的发展,智能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案.(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A 型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所有设备成本和维护成本),一台B型机器人平均每月的总成本为8万元(包含所有设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)【答案】(1)该工厂有熟练工40名,新工人60名;(2)购买方案有三种,方案一:购买A型机器人3台,B型机器人5台;方案二:购买A型机器人6台,B型机器人3台;方案一:购买A型机器人9台,B型机器人1台;(3)选择智能制造生产方式获得台;(3)传统方式:每天生产零件:30×40+20×60=2400个,每月生产:2400×30=720000个=7.2万个,毛利润:7.2×10=72万元,每月的总利润:72-40×0.3-60×0.2-7.2×5=12万元;智能模式:方案一:生产零件:3×1.5+5×2.7=18万个,毛利润;18×10=180万元,每月的总利润:180-3×6-5×8-(3×8+5×12)×1=38万元;方案二:生产零件:6×1.5+3×2.7=17.1万个,毛利润;17.1×10=171万元,每月的总利润:171-6×6-3×8-(6×8+3×12)×1=27万元;方案三:生产零件:9×1.5+1×2.7=16.2万个,毛利润;16.2×10=162万元,每月的总利润:162-9×6-1×8-(9×8+1×12)×1=16万元,综上,选择智能制造生产方式获得利润最大,此时购进A 型机器人3台,B 型机器人5台,最大利润为38万元.【点睛】本题考查了二元一次方程组的应用,二元一次方程组中的方案问题,弄清题意,找准各量间的关系,认真计算是解题的关键.47.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使3BOC AOC ∠=∠,将一直角三角板的直角顶点放在点O 处,边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转45︒至图2的位置,则MOC ∠=______°.(2)将图1中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在AOC ∠的内部,试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由.(3)将图1中的三角尺绕着点O 以每秒15︒的速度按逆时针方向旋转;同时,射线OC 也绕着点O 以每秒5︒的速度按逆时针方向旋转,当一方先完成旋转一周时停止,另一方同时也停止转动,当射线OC 恰好平分MON ∠时,求此时三角板绕点O 的运动时间t 的值. 【答案】(1)90;(2)45AOM CON ∠=∠+︒;(3)18s .【分析】(1)先根据平角定义结合已知条件求出∵AOC 和∵BOC 的度数,再根据旋转角的定义即可得到结论;(2)根据余角定义把∵AOM 用∵AON 表示出来,再把∵CON 用∵AON 表示出来,求∵AOM 与∵CON 的差,即可得到结论;(3)先根据已知条件设OM 的旋转角度为15t ,OC 的旋转角度为5t ,再根据OM 比OC 多旋转180°,列出方程即可得到结论;【详解】(1)∵3BOC AOC ∠=∠,180BOC AOC ∠+∠=︒,∵3180AOC AOC ∠+∠=︒,∵45AOC ∠=︒,145BOC ∠=︒,由题意可知,45BOM ∠=︒,∵90COM BOC BOM ∠=∠-∠=︒.(2)当ON 在AOC ∠内部时,45AON CON ∠+∠=︒,。

华师大版七年级下册数学期末考试试题带答案

华师大版七年级下册数学期末考试试题带答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共21分)1.(3分)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.2.(3分)不等式﹣2x>3的解集是()A.B.C.D.3.(3分)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.4.(3分)下列各图中,正确画出AC边上的高的是()A.B.C.D.5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°7.(3分)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66二、填空题(每小题4分,共40分)8.(4分)已知x=3是方程2x﹣a=1的解,则a=.9.(4分)若代数式5x﹣1的值与6互为相反数,则x=.10.(4分)若a>b,则a+b2b.(填“>”、“<”或“=”)11.(4分)方程组经“消元”后可得到一个关于x、y的二元一次方程组为.12.(4分)一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.(4分)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m 的值为.14.(4分)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为.15.(4分)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于.16.(4分)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是.17.(4分)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC 的面积为m,则△BEF的面积为.三、解答题(共89分)18.(9分)解方程:2(x﹣7)=10+5x.19.(9分)解方程组:.20.(9分)解不等式组:,并把它的解集在数轴上表示出来.21.(9分)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.22.(9分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.23.(9分)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x元.(1)若将该商品按原价的八折出售,则售价为元;(用含x的代数式表示)(2)求出x的值.24.(9分)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.25.(13分)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.26.(13分)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?参考答案与试题解析一、选择题(每小题3分,共21分)1.(3分)(2016春•石狮市期末)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.【分析】看看x=0能使ABCD四个选项中哪一个方程的左右两边相等,就是哪个答案;也可以分别解这四个选项中的方程.【解答】解:A、由x+1=﹣1得,x=﹣2;B、由2x=3x得,x=0;C、由2x=2得,x=1;D、由+4=5x得,x=1.故选B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值2.(3分)(2016春•石狮市期末)不等式﹣2x>3的解集是()A.B.C.D.【分析】直接把x的系数化为1即可.【解答】解:不等式的两边同时除以﹣2得,x<﹣.故选D.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.3.(3分)(2016春•石狮市期末)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣3y=5,解得:x=,故选B【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.4.(3分)(2016春•诸城市期末)下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.(3分)(2016春•石狮市期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2016春•石狮市期末)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°【分析】∠EAG的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【解答】解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠EAG=108°﹣90°=18°.故选A.【点评】本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.7.(3分)(2016春•石狮市期末)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=43,解得:x=,故此选项符合题意;C、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=66,解得:x=22,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.二、填空题(每小题4分,共40分)8.(4分)(2016春•石狮市期末)已知x=3是方程2x﹣a=1的解,则a=5.【分析】把x=3代入方程计算即可求出a的值.【解答】解:把x=3代入方程得:6﹣a=1,解得:a=5,故答案为:5【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(4分)(2016春•石狮市期末)若代数式5x﹣1的值与6互为相反数,则x=﹣1.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣1+6=0,移项合并得:5x=﹣5,解得:x=﹣1,故答案为:﹣1【点评】此题考查了解一元一次方程,以及相反数,熟练掌握相反数的性质是解本题的关键.10.(4分)(2016春•石狮市期末)若a>b,则a+b>2b.(填“>”、“<”或“=”)【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:不等式的两边都加b,不等号的方向不变,得a+b>2b,故答案为:>.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键.11.(4分)(2016春•石狮市期末)方程组经“消元”后可得到一个关于x、y的二元一次方程组为..【分析】先把第1个方程和第3个方程相加消去z,然后把所得的新方程和第2个方程组成方程组即可.【解答】解:,①+③得x+3y=6④,由②④组成方程组得.故答案为.【点评】本题考查了解三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为解二元一次方程组的问题.12.(4分)(2016春•石狮市期末)一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n 边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.【点评】本题考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.13.(4分)(2016春•石狮市期末)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m的值为4.【分析】根据正三角形的每个内角是60°,正六边形的每个内角是120°,结合镶嵌的条件即可求出答案.【解答】解:∵正三角形和正六边形的一个内角分别是60°,120°,而4×60°+120°=360°,∴m=4,n=1,故答案为:4.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.14.(4分)(2016春•石狮市期末)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为25°.【分析】根据垂直定义可得∠ADB=90°,根据直角三角形两锐角互余可得∠BAD的度数,进而可得∠CAD的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=70°,∴∠BAD=20°,∵∠BAC=45°,∴∠DAC=45°﹣20°=25°,故答案为:25°.【点评】此题主要考查了三角形内角和定理,关键是掌握直角三角形两锐角互余.15.(4分)(2016春•石狮市期末)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于8.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为:8.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(4分)(2016春•石狮市期末)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是60°.【分析】首先根据等边三角形的性质可得∠ABC=60°,然后再根据旋转可得∠ABP′=∠CBP,进而可得∠PBP′的度数.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△PBC绕点B逆时针旋转到△P′BA的位置,∴∠ABP′=∠CBP,∴∠PBP′=∠ABP′+∠ABP=∠PBC+∠ABP=60°,故答案为:60°.【点评】此题主要考查了等边三角形的性质和旋转的性质,关键是掌握旋转前、后的图形全等.17.(4分)(2016春•石狮市期末)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF的面积为m.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=m,∴S△BCE=S△ABC=m,∵点F是CE的中点,∴S△BEF=S△BCE=×m=m.故答案为:m.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.三、解答题(共89分)18.(9分)(2016春•石狮市期末)解方程:2(x﹣7)=10+5x.【分析】根据解一元一次方程的一般步骤:去括号、移项、合并同类项、系数化为1,可得答案.【解答】解:去括号,得:2x﹣14=10+5x,移项,得:2x﹣5x=10+14,合并同类项,得:﹣3x=24,系数化为1,得:x=﹣8.【点评】此题考查解一元一次方程,熟练掌握解题步骤是关键.19.(9分)(2016春•石狮市期末)解方程组:.【分析】将第一个方程直接代入第二个方程,然后利用代入消元法求解即可.【解答】解:,①代入②得,3x+10x=26,解得x=2,将x=2代入①得,y=2×2=4,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(9分)(2016春•石狮市期末)解不等式组:,并把它的解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组组的解集.【解答】解:,解①得x<﹣2,解②得x≤1,则不等式组的解集是x<﹣2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(9分)(2016春•石狮市期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是1<BC<9;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.【分析】(1)利用三角形的三边关系确定第三边的取值范围即可;(2)首先利用平行线的性质确定∠EDB的度数,然后利用三角形内角和定理确定∠B的度数即可.【解答】解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.【点评】本题考查了三角形的三边关系及平行线的性质,解题的关键是能够了解三角形的三边关系及两直线平行同位角相等的知识,难度不大.22.(9分)(2016春•石狮市期末)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于点O对称点的性质得出对应点位置;(3)利用轴对称图形的定义得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.【点评】此题主要考查了旋转变换以及平移变换,得出对应点位置是解题关键.23.(9分)(2016春•石狮市期末)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x 元.(1)若将该商品按原价的八折出售,则售价为80%x元;(用含x的代数式表示)(2)求出x的值.【分析】(1)将该商品按原价的八折出售,即按照原价的80%出售;(2)设这种商品的标价是x元.根据定价的七五折出售将亏25元和定价的九折出售将赚20元,分别表示出进价,从而列方程求解.【解答】解:(1)依题意得:80%x.故答案是:80%x;(2)根据题意,得0.75x+25=0.9x﹣20,解得x=300.【点评】考查了一元一次方程的应用,注意:七五折即标价的75%,九折即标价的90%.24.(9分)(2016春•石狮市期末)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.【分析】(1)写出k=1时的方程组,然后将第二个方程乘以2,再利用加减消元法求解即可;(2)两个方程相减表示出S,再根据k的取值范围求解即可.【解答】解:(1)k=1时,方程组为,②×2得,2x+6y=10③,③﹣①得,11y=11,解得y=1,将y=1代入②得,x+3=5,解得x=2,所以,方程组的解是;(2),①﹣②得,x﹣8y=﹣3k﹣3,∵﹣1<k≤1,∴﹣3≤﹣3k<3,﹣6≤﹣3k﹣3<0,∴S的取值范围是﹣6≤S<0.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.25.(13分)(2016春•石狮市期末)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.【分析】(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,根据8件甲产品的总价正好和7件乙产品的总价相等即可得出关于x的一元一次方程,解方程即可得出结论;(2)①设该店购进乙产品至少m件,根据所用资金为590元,且购进甲产品不超过5件,即可得出关于m的一元一次方程,解方程即可得出结论;②假设能,购进甲产品a件,乙产品b件,结合甲、乙产品的单价以及用资金恰好为750元,即可得出70a+80b=750,令a分别等于1,2,3,…,验证b值是否为正整数,当a、b 均为正整数时,即是所求结论.【解答】解:(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,由已知得:8x=7(x+10),解得:x=70,x+10=80.答:甲产品的批发单价为70元/件,乙产品的批发单价为80元/件.(2)①设该店购进乙产品至少m件,由已知得:5×70+80m=590,解得:m=3.答:该店购进乙产品至少3件.②假设能,购进甲产品a件,乙产品b件,由已知得:70a+80b=750,当a=1时,b=,不合适;当a=2时,b=,不合适;当a=3时,b=,不合适;当a=4时,b=,不合适;当a=5时,b=5,合适;当a=6时,b=,不合适;当a=7时,b=,不合适;当a=8时,b=,不合适;当a=9时,b=,不合适;当a=10时,b=,不合适.综上可知:当甲、乙产品各购进5件时,所用资金恰好为750元.【点评】本题考查了一元一次方程,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)①根据数量关系列出关于m的一元一次方程;②代入a值验证b值何时为整数.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.26.(13分)(2016春•石狮市期末)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是垂直;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?【分析】(1)根据翻折变换的性质得到AB=AB′,∠BAC=∠B′AC,根据等腰三角形的性质得到结论;(2)根据三角形的面积公式求出△BB′C的BC边上的高,根据轴对称变换的性质解答;(3)分∠AB′E=90°和∠AEB′=90°两种情况,根据翻折变换的性质和平行线的性质解答.【解答】解:(1)由翻折变换的性质可知,AB=AB′,∠BAC=∠B′AC,∴B′B⊥AC,故答案为:垂直;(2)∵AB=AB′,∠BAC=∠B′AC,∴AC是B′B的垂直平分线,∴点B′与点B关于直线AC轴对称,连接B′Q,则B′Q是PB+PQ的最小值,∵△BB′C的面积为36,BC=8,∴△BB′C的BC边上的高为36×2÷8=9,当B′Q⊥BC时,B′Q最小,∴PB+PQ的最小值为9;(3)①如图1,当∠ACB=45°时,∠AEB′=90°.∵由翻折变换的性质可知,∠BCA=∠B′CA,∴∠BCB′=90°,∵△ABC≌△CDA,∴AB=CD,BC=AD,∴四边形ABCD的平行四边形,∴AD∥BC,∴∠AEB′=∠BCB′=90°;②如图2,由翻折变换的性质可知,当∠ABC=90°时,∠AB′E=90°.【点评】本题考查的是翻折变换的性质、轴对称﹣最短路径问题、等腰三角形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。

华师大版七年级下册数学期末试题试卷及答案

华师大版七年级下册数学期末试题试卷及答案

华师大版七年级下册数学期末考试试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.2.(3分)下列长度的各组线段能组成一个三角形的是()A.7cm、10cm、15cm B.4cm、5cm、10cmC.3cm、5cm、8cm D.1cm、5cm、7cm3.(3分)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤04.(3分)等腰三角形两边长分别为5和7,则它的周长是()A.19 B.11 C.17 D.17或195.(3分)下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形6.(3分)如果三角形的一个外角与它不相邻的两个内角的和为180°,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.(3分)一个多边形的每个外角都相等且都小于45°,则这个多边形的边数最少是()A.7 B.8 C.9 D.108.(3分)用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.B.C.y=150000a2D.y=150000a9.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°10.(3分)三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形二、填空题(共10小题,每小题3分,满分30分)11.(3分)不等式组的所有整数解的和为.12.(3分)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有种.13.(3分)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为.14.(3分)若一个正多边形的每一个内角都等于120°,则它是正边形.15.(3分)若一个正多边形的周长是63,且内角和1260°,则它的边长为.16.(3分)正八边形不能单独铺满地面,其原因是它每个内角是°,而°不是这个度数的整数倍,拼接有缝隙.17.(3分)正三角形有条对称轴.18.(3分)如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为.19.(3分)如图,四边形ABCD是正方形,△ABF和△ADE经旋转后得到的,则可知旋转中心为,旋转了度,如果连接EF,那么△AEF是三角形.20.(3分)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为.三、解答题(共7小题,满分60分)21.(8分)若两个多边形的边数之比是1:2,内角和度数之比为1:3,求这两个多边形的边数.22.(8分)求不等式组的最大整数解.23.(10分)三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.24.(6分)如图,点P在∠AOB内,点M、N分别是P点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.25.(10分)如图,△ABC的三条中线AD、BE、CF交于点O,请找出图中所有面积相等的三角形.26.(9分)如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A′B′C′的位置,且使A′B′经过点A.(1)求∠ACA′的度数,判断△ACA′的形状;(2)求线段AC与线段AB的数量关系.27.(9分)某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少?(提示:可设购进B款汽车x辆)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•漳州)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【分析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.2.(3分)(2017春•洛宁县期末)下列长度的各组线段能组成一个三角形的是()A.7cm、10cm、15cm B.4cm、5cm、10cmC.3cm、5cm、8cm D.1cm、5cm、7cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、10+7>15,能组成三角形;B、5+4<10,不能组成三角形;C、3+5=8,不能组成三角形;D、1+5<7,不能组成三角形.故选A.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.(3分)(2016•聊城)不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.4.(3分)(2017春•洛宁县期末)等腰三角形两边长分别为5和7,则它的周长是()A.19 B.11 C.17 D.17或19【分析】分长为5的边为度和腰两种情况进行讨论,利用三角形的三边关系进行验证即可.【解答】解:当长为5的边为腰时,则三边长分别为5、5、7,符合三角形三边关系,此时三角形的周长为5+5+7=17;当长为5的边为底时,则三边长分别为5、7、7,符合三角形三边关系,此时三角形的周长为5+7+7=19;故选:D.【点评】本题主要考查等腰三角形的性质和三角形三边关系,分情况讨论并进行三边关系的验证是解题的关键.5.(3分)(2017春•洛宁县期末)下列叙述中错误的是()A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形【分析】能够完全重合的两个图形叫做全等形,结合各选项进行判断即可.【解答】解:A、能够重合的图形称为全等图形,说法正确,故本选项错误;B、全等图形的形状和大小都相同,说法正确,故本选项错误;C、所有正方形不一定都是全等图形,说法错误,故本选项正确;D、形状和大小都相同的两个图形是全等图形,说法正确,故本选项错误;故选C.【点评】本题考查了全等图形的知识,要求同学们掌握全等图形的定义及性质.6.(3分)(2005•新疆)如果三角形的一个外角与它不相邻的两个内角的和为180°,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【分析】三角形的一个外角等于它不相邻的两个内角的和,以及三角形内角和为180°,据此即可得出结论.【解答】解:因为三角形的一个外角等于它不相邻的两个内角的和,又三角形内角和为180°,所以另外一个内角和它的外角相等,都是90°,因此为直角三角形.故选C.【点评】知道三角形的一个外角等于它不相邻的两个内角的和,所以为直角.7.(3分)(2017春•洛宁县期末)一个多边形的每个外角都相等且都小于45°,则这个多边形的边数最少是()A.7 B.8 C.9 D.10【分析】利用一个多边形的每一个外角都相等,且小于45°,根据多边形的外角和为360°,列出不等式,据此求出n的取值范围,得到n的最小值.【解答】解:设多边形的边数为n,∵多边形的外角和是360°,且多边形的每一个外角都相等,∴根据题意得,<45,∴45n>360,n>,n>8,由于n是整数,∴n的最小值为9,故选:C.【点评】此题考查了多边形的内角与外角,利用外角小于45得出不等式是解题的关键.8.(3分)(2006•连云港)用规格为50cm×50cm的地板砖密铺客厅恰好需要60块.如果改用规格为acm×acm的地板砖y块也恰好能密铺该客厅,那么y与a 之间的关系为()A.B.C.y=150000a2D.y=150000a【分析】客厅面积为:50×50×60=150000,那么所需地板砖块数=客厅面积÷一块地板砖的面积.【解答】解:由题意设y与a之间的关系为,y=,由于用规格为50cm×50cm的地板砖密铺客厅恰好需要60块,则k=50×50×60=150000,∴.故选:A.【点评】本题考查了由实际问题列反比例函数的解析式,由题意找到所求量的等量关系是解决问题的关键.9.(3分)(2015•合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°【分析】先根据旋转的性质得∠C=∠E=70°,∠BAC=∠DAE,再根据垂直的定义得∠AFC=90°,则利用互余计算出∠CAF=90°﹣∠C=20°,所以∠DAE=∠CAF+∠EAC=85°,于是得到∠BAC=85°.【解答】解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选B.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.10.(3分)(2017春•洛宁县期末)三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形【分析】根据三角形按边的分类方法即可确定.【解答】解:三角形按边分类可分为不等边三角形、等腰三角形,故选:D.【点评】本题考查了三角形的分类,要注意等腰三角形与等边三角形两个概念的区别.二、填空题(共10小题,每小题3分,满分30分)11.(3分)(2014•河南)不等式组的所有整数解的和为﹣2.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.【解答】解:,由①得:x≥﹣2,由②得:x<2,∴﹣2≤x<2,∴不等式组的整数解为:﹣2,﹣1,0,1.所有整数解的和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.(3分)(2017春•洛宁县期末)为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有8种.【分析】可设6人的帐篷有x顶,4人的帐篷有y顶.根据两种帐篷容纳的总人数为100人,可列出关于x、y的二元一次方程,根据x、y均为非负整数,求出x、y的取值.根据未知数的取值即可判断出有几种搭建方案.【解答】解:设6人的帐篷有x顶,4人的帐篷有y顶,依题意,有:6x+4y=100,整理得y=25﹣1.5x,因为x、y均为非负整数,所以25﹣1.5x≥0,解得0≤x≤16,从0到16的偶数共有9个,所以x的取值共有9种可能,由于需同时搭建两种帐篷,x不能为0(舍去),即共有8种搭建方案.故答案是:8.【点评】本题考查了二元一次方程的应用.解决本题的关键是找到人数的等量关系,及帐篷数的不等关系.13.(3分)(2015•朝阳)一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为8.【分析】首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.14.(3分)(2015•黄冈模拟)若一个正多边形的每一个内角都等于120°,则它是正6边形.【分析】首先设这个正多边形的边数为n,根据多边形内角和公式:180°(n﹣2),列出方程进行计算即可.【解答】解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=120n解得:n=6.故答案为:6.【点评】此题主要考查了多边形内角和,关键是掌握多边形内角和公式.15.(3分)(2017春•洛宁县期末)若一个正多边形的周长是63,且内角和1260°,则它的边长为7.【分析】先根据多边形的内角和公式求出多边形的边数,再用周长63除以边数求解即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=1260°,解得n=9,∵多边形的各边相等,∴它的边长是:63÷9=7.故答案为:7.【点评】主要考查了多边形的内角和公式,熟记公式求出多边形的边数是解题的关键.16.(3分)(2017春•洛宁县期末)正八边形不能单独铺满地面,其原因是它每个内角是135°,而360°不是这个度数的整数倍,拼接有缝隙.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.【解答】解:正八边形不能单独铺满地面,其原因是它每个内角是135°,而360°不是这个度数的整数倍,拼接有缝隙.故答案为:135,360.【点评】本题考查平面密铺的知识,注意掌握用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.17.(3分)(2017春•洛宁县期末)正三角形有3条对称轴.【分析】一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:等边三角形有3条对称轴.故答案为3.【点评】本题主要考查了轴对称图形的定义,本题是一个基础题,比较简单.18.(3分)(2017春•洛宁县期末)如图:直角△ABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为30.【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.【解答】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.【点评】主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.19.(3分)(2017春•洛宁县期末)如图,四边形ABCD是正方形,△ABF和△ADE经旋转后得到的,则可知旋转中心为点A,旋转了90度,如果连接EF,那么△AEF是等腰直角三角形.【分析】根据图形旋转的概念可得,旋转中心是点A,对应点与旋转中心所连线段的夹角等于旋转角,等腰直角三角形的判定方法进行判断即可.【解答】解:如图,∵△ABF是△ADE的旋转图形,∴旋转中心是点A;∵∠DAB=90°,且AD与AB是对应边,∴旋转了90°,∵AE=AF,∠FAE=90°,∴△AEF是等腰直角三角形;故答案为:点A,90,等腰直角.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.(3分)(2017春•洛宁县期末)等腰三角形一腰上的高与另一腰的夹角为40°,则顶角的度数可能为50°或130°.【分析】等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.三、解答题(共7小题,满分60分)21.(8分)(2017春•洛宁县期末)若两个多边形的边数之比是1:2,内角和度数之比为1:3,求这两个多边形的边数.【分析】设多边形的边数为n,则另一个为2n,分别表示出两个多边形的内角和得到有关n的方程求解即可.【解答】解:∵两个多边形的边数之比为1:2,∴设多边形的边数为n,则另一个为2n,∵内角和度数之比为1:3,∴(n﹣2):2n﹣2=1:3解得:n=4,∴2n=8.故这两个多边形的边数分别为:4,8.【点评】本题考查了多边形的内角与外角,正确的设出边数并表示出其内角和是解决本题的关键.22.(8分)(2017春•洛宁县期末)求不等式组的最大整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式x≤+2,得:x≤2,∴不等式组的解集为﹣1<x≤2,则其最大整数解为2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(10分)(2017春•洛宁县期末)三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长.【分析】利用三角形的三边长是三个连续的自然数,可设三角形三边的长分别为x﹣1,x,x+1,根据三角形三边的关系得到x﹣1+x>x+1,解得x>2,根据三角形的周长小于20得到x﹣1+x+x+1<20,解得x<,从而得到x为3,4,5,6,然后分别计算出三角形三边的长.【解答】解:设三角形三边的长分别为x﹣1,x,x+1,则x﹣1+x>x+1,解得x >2,∴x﹣1+x+x+1<20,解得x<,∴2<x<且x为整数,∴x为3,4,5,6,当x=3时,三角形三边为2,3,4;当x=4时,三角形三边为3,4,5;当x=5时,三角形三边为4,5,6;当x=6时,三角形三边为5,6,7.【点评】本题考查了三角形三边关系:三角形两边之和大于第三边.24.(6分)(2017春•洛宁县期末)如图,点P在∠AOB内,点M、N分别是P 点关于OA、OB的对称点,且MN交OA、OB相交于点E,若△PEF的周长为20,求MN的长.【分析】根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长,再根据△PEF的周长为20,即可得出MN的长.【解答】解:∵点M是P点关于OA的对称点,∴EP=EM,∵N是P点关于OB的对称点,∴PF=FN,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∵△PEF的周长为20,∴MN=20cm.【点评】此题主要考查了轴对称的性质:对称轴上的任何一点到两个对应点之间的距离相等.25.(10分)(2017春•洛宁县期末)如图,△ABC的三条中线AD、BE、CF交于点O,请找出图中所有面积相等的三角形.【分析】分三种情况:面积为△ABC的的三角形,面积为△ABC的的三角形,面积为△ABC的的三角形.【解答】解:△ABD、△ACD、△BCE、△BAE、△CAF、△CBF的面积相等,都是△ABC面积的;△OBD、△OCD、△OCE、△OAE、△OAF、△OBF的面积相等,都是△ABC面积的;△OAB、△OBC、△OAC的面积相等,都是△ABC面积的.【点评】本题考查了三角形的面积,注意同底等高三角形面积的求法,等底等高三角形面积的求法,等底同高三角形面积的求法.26.(9分)(2017春•洛宁县期末)如图,△ABC是直角三角形,∠ACB=90°,∠B=30°,以点C为旋转中心,将△ABC旋转到△A′B′C′的位置,且使A′B′经过点A.(1)求∠ACA′的度数,判断△ACA′的形状;(2)求线段AC与线段AB的数量关系.【分析】(1)证明∠BAC=60°;证明AC=A′C,得到∠A′=∠A′AC=60°,求出∠ACA′=60°;(2)由△ABC≌△A′B′C′得到∠A′CB=∠ACB=90°,求得∠B′=∠B=30°,由(1)知:∠ACA′=60°,得到AC=AB′,于是得到结论.【解答】解:(1)如图,∵∠ACB=90°,∠B=30°,∴AB=2AC,∠BAC=60°;∵△ABC≌△A′B′C′,∴∠A′=∠BAC=60°,AC=A′C,∴∠A′=∠A′AC=60°,∴∠ACA′=180°﹣120°=60°,∴△ACA′是等边三角形;(2)∵△ABC≌△A′B′C′,∴∠A′CB=∠ACB=90°,∠B′=∠B=30°,A′B′=AB,由(1)知:∠ACA′=60°,∴∠ACB′=30°,∴AC=AB′,∴AB=A′B′=AA′+AB′=2AC=2AC.【点评】该题主要考查了旋转变换的性质、等腰三角形的性质及其应用问题;解题的关键是灵活运用旋转变换的性质、等腰三角形的性质等来分析、判断、解答.27.(9分)(2017春•洛宁县期末)某汽车销售公司经销某品牌A、B两款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元.(1)公司预计用不多于135万元且不少于129万元的资金购进这两款汽车共20辆,有几种进货方案?(2)如果A款汽车每辆售价为9万元,B款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(1)中所有的方案获利相同,a值应是多少?(提示:可设购进B款汽车x辆)【分析】(1)关系式为:129≤A款汽车总价+B款汽车总价≤135.(2)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设购进A款汽车每辆x辆,则购进B款汽车(20﹣x)辆,依题意得:129≤7.5x+6(20﹣x)≤135.解得:6≤x≤10,∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(2)设总获利为W万元,购进B款汽车x辆,则:W=(9﹣7.5)(20﹣x)+(8﹣6﹣a)(15﹣x)=(0.5﹣a)x+30.当a=0.5时,(1)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车14辆时对公司更有利.【点评】本题考查一元一次不等式组的应用,找到合适的等量关系及不等关系是解决问题的关键.第21 页共21 页。

华师大版 七年级下册期末数学试卷(含答案)

华师大版 七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一、选择题(每小题4分,共40分)1.下列方程中,属于一元一次方程的是()A.x+2y=5B.3x+2=0C.2x>3D.4x2=12.下列方程的根是x=1的是()A.B.C.﹣5x=5D.2(x+1)=03.若a>b,则下列不等式中,错误的是()A.a﹣3>b﹣3B.a+3>b+3C.﹣3a>﹣3b D.>4.已知,则a﹣b等于()A.8B.C.2D.15.有些汉字的字形结构具有和谐稳定、均衡对称的美感.下列不属于轴对称图形的是()A.磊B.品C.晶D.畾6.下列正多边形的地板瓷砖中,单独使用一种不能铺满地面的是()A.正三角形B.正方形C.正六边形D.正八边形7.人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.三角形具有稳定性D.两直线平行,内错角相等8.解方程时,去分母正确的是()A.18x+2(2x﹣1)=18﹣3(x+1)B.3x+2(2x﹣1)=3﹣3(x+1)C.9x+(2x﹣1)=6﹣(x+1)D.3x+(2x﹣1)=3﹣(x+1)9.△ABC的三条边分别为5、x、7,则x的取值范围为()A.5<x<7B.2<x<12C.5≤x≤7D.2≤x≤1210.如图,∠CAB=25°,CA、CB是等腰△ABC的两腰,将△ABC绕点A顺时针进行旋转,得到△ADE.当点B恰好在DE的延长线时,则∠EAB的度数为()A.155°B.130°C.105°D.75°二、填空题(每题4分,共24分)11.方程2x=﹣6的解是.12.将方程5x+y=2写成用含x的代数式表示y,则y=.13.“x的2倍与3的和大于35”用不等式表示.14.已知△ABC≌△DEF,∠B=120°,∠F=35°.则∠D=度.15.四边形的外角和是°.16.如图,将△ABC沿着AB方向,向右平移得到△DEF.若AE=8,DB=2.则CF=.三、解答题(共86分)17.(8分)解方程:2+5x=8+3x18.(8分)解不等式5x<2(x﹣8)+10,并将解集在数轴上表示出来.19.(8分)已知n边形的内角和等于900°,试求出n边形的边数.20.(8分)我国古代数学著作《九章算术》有如下问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是:今有3人坐一辆车,有2辆车是空的;2人坐一辆车,有9个人需要步行.问人与车各多少?试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,在正方形网格中,△ABC的三个顶点分别在正方形网格的格点上,△A′B′C′和△ABC关于直线l成轴对称,其中A′点的对应为A点.(1)请画出△A′B′C′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A′B′C′的面积.22.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.23.(10分)把长方形ABCD沿着EF对折,EF为折痕.对折后,P、C、F三点恰好在同一条直线上,∠DCF=22°.(1)请运用符号“≌”写出图中全等的多边形;(2)试求出∠OEC的度数.24.(13分)已知关于x、y的方程组.(1)当m=2时,请解关于x、y的方程组;(2)若关于x、y的方程组中,x为非负数、y为负数,①试求m的取值范围;②当m取何整数时,不等式3mx+2x>3m+2的解为x<1.25.(13分)如图,将一副三角板的直角顶点重叠在C点.(1)如图①,ED、AB相交于点P,试求∠EPA、∠APD的度数;(2)如图②,Rt△ABC保持不动,将Rt△ECD绕着点C顺时针进行旋转旋转过程中,直线ED 与直线AB的交点设为点P.①设旋转角为x(0<x<90°),试求∠APD的度数(请用含有x的式子表示);②当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,求∠APD的度数.参考答案一、选择题1.B.2.A.3.C.4.C.5.A.6.D.7.C.8.A.9.B.10.C.二、填空题11.x=﹣3.12.2﹣5x.13.2x+3>35.14.25.15.360.16.3三、解答题17.解:2+5x=8+3x,5x﹣3x=8﹣2,2x=6,x=3.18.解:5x<2x﹣16+105x﹣2x<﹣16+103x<﹣6x<﹣2,解集在数轴上表示为:19.解:由题意得(n﹣2)•180°=900°,解得n=7.答:n边形的边数是7.20.解:设车有x辆,则人有3(x﹣2)人,依题意,得:3(x﹣2)=2x+9,解得:x=15,∴3(x﹣2)=39.答:有39人,15辆车.21.解:(1)如图所示:△A′B′C′,即为所求;(2)△A′B′C′的面积为:×2×4=4.22.解:(1)根据题意得:AB=3a+2c,AD=3a+2b.(2)根据题意得:,解得:,∴S=3a2+2bc=3×82+2×18×4=336.答:花圃的总面积S为336平方米.23.解:(1)由翻折可知:四边形ABEF≌四边形POEF.(2)∵四边形ABCD是矩形,∴∠DCB=90°,∵∠DCF=22°,∴∠FCE=68°.∵OE∥CF,∴∠OEC=∠FCE=68°.24.解:(1)把m=2代入方程组中得:,①+②得:2x=10,x=5,①﹣②得:﹣2y=8,y=﹣4,∴方程组的解为:;(2)①,①+②得:2x=18﹣4m,x=9﹣2m,①﹣②得:﹣2y=4+2m,y=﹣2﹣m,∵x为非负数、y为负数,∴,解得:﹣2<m≤;②3mx+2x>3m+2,(3m+2)x>3m+2,∵不等式3mx+2x>3m+2的解为x<1,∴3m+2<0,∴m<﹣,由①得:﹣2<m≤,∴﹣2<m<﹣,∵m整数,∴m=﹣1;即当m=﹣1时,不等式3mx+2x>3m+2的解为x<1.25.解:(1)∵∠BAC=60°,∠E=45°,∴∠EPA=∠BAC﹣∠E=60°﹣45°=15°∴∠APD=180°﹣∠EPA=180°﹣15°=165°;(2)①如图②,在四边形PACD中,∵∠A=60°,∠ACE=x,∠ECD=90°,∠D=45°∴∠APD=360°﹣90°﹣60°﹣45°﹣x=165°﹣x;②分6种情况:1,当AB∥CD时,如图③,∴∠APD+∠D=180°,∵∠D=45°,∴∠APD=135°,2,当ED∥AC时,如图④,∴∠APD+∠A=180°∵∠A=60°∴∠APD=120°3,当AB∥EC时,如图,∴∠APD=∠CED=45°4,当AB∥CD时,如图⑤∴∠APD=∠CDE=45°5,当AC∥DE时,如图⑥∴∠APD=∠BAC=606,当AB∥CE时,如图⑦,此时P与A重合,∠APD=0°综上所述,当Rt△ABC与Rt△ECD有一组边互相平行(不含AB∥ED)时,∠APD的度数为135°或120°或45°或60°或0°.。

七年级下册数学期末练习试题(三)华东师大新版(有答案)

七年级下册数学期末练习试题(三)华东师大新版(有答案)

七年级下册数学期末练习试题(三)华东师大新版(有答案)一.选择题(共12小题,满分48分,每小题4分)1.下列图形中是轴对称图形的是()A.B.C.D.2.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.不等式3x≤6的解集在数轴上表示为()A.B.C.D.4.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为()A.16B.14C.12D.105.如果不等式(a﹣3)x>a﹣3的解集是x<1,那么a的取值范围是()A.a>0B.a<0C.a>3D.a<36.下列说法中,①三角形的内角中最多有一个钝角;②三角形的中线将三角形分成面积相等的两部分;③从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,因此,n边形的内角和是(n﹣2)•180°;④六边形的对角线有7条,正确的个数有()A.4个B.3个C.2个D.1个7.已知关于x,y的方程组和的解相同,则(a+b)2021的值为()A.0B.﹣1C.1D.20218.已知方程mx+2y=﹣2,当x=3时y=5,那么m为()A .B .﹣C .﹣4D .9.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n 个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A .n 2+4n +2B .6n +1C .n 2+3n +3D .2n +410.如图所示,BD 是△ABC 的角平分线,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,则∠C 的度数是( )A .100°B .105°C .110°D .115°11.某车间56名工人,每人每天能生产螺栓16个或螺母24个,每个螺栓配两个螺母;设安排x 名工人生产螺栓,才能使每天生产出来的螺栓和螺母刚好配套,下列方程中正确的是( )A .2×16x =24(56﹣x )B .2×24x =16(56﹣x )C .16x =24(56﹣x )D .24x =16(56﹣x )12.如图,△ABC 中,∠A 的平分线交BC 于D ,过点D 作DE ⊥AC ,DF ⊥AB ,垂足为点E 、F ,下面四个结论中:①∠AEF =∠AFE ;②AD 垂直平分EF ;③S △BFD :S △CED =BF :CE ;④EF ∥BC ,正确的是( )A .①②③B .①③④C .①②④D .②③④二.填空题(共6小题,满分24分,每小题4分)13.已知代数式8x﹣7与6﹣2x的值互为相反数,那么x的值等于.14.如图,E是正方形ABCD中CD边上的中点,AB=4,把△ADE绕点A顺时针旋转90°得到△ABF,若连接EF,则EF=.15.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出十二,盈八;人出十,不足六,问人数、物价各几何?译文:今有人合伙购物,每人出12钱,会多8钱;每人出10钱,又会差6钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.16.不等式组的解是.17.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.18.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…按此规律继续旋转,直到点P2020为止,则AP2020等于.三.解答题(共7小题,满分78分)19.解方程(组)(1)﹣=1(2).20.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)P为x轴上一动点,当AP+CP有最小值时,求这个最小值.21.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°、40°、20°的三角形是“灵动三角形”;三个内角分别为80°、75°、25°的三角形也是“灵动三角形”等等.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为°,△AOB.(填“是”或“不是”)“灵动三角形”;(2)若∠BAC=70°,则△AOC(填“是”或“不是”)“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.22.疫情期间为了满足口罩需求,某学校决定购进A,B两种型号的口罩.若购进A型口罩10盒,B型口罩5盒,共需1000元;若购进A型口罩4盒,B型口罩3盒,共需550元,(1)求A,B两种型号的口罩每盒各需多少元?(2)若该学校决定购进这两种型号的口罩共计200盒,考虑到实际需求,要求购进A型号口罩的盒数不超过B型口罩盒数的6倍,请为该学校设计出最省钱的方案,并说明理由.23.若关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m﹣n的值.24.阅读理解若在一个两位正整数N的个位数字与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为364;若将一个两位正整数M加6后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为40.(1)30的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被9整除;(3)若一个两位正整数B的“明德数”的各位数字之和是B的“至善数”各位数字之和的一半,求B的最大值.25.将锐角△ABC放置在一块正方形卡纸DEFG上,使点B,C在正方形的DG和DE边上.(1)如图①,若∠A=35°,则∠ABC+∠ACB=度.∠DBC+∠DCB=度,∠ABD+∠ACD=度.(2)如图②,改变正方形卡纸DEFG的位置,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论(3)如图③,正方形卡纸的顶点D在△ABC外,且在AB边的左侧,请探究∠ABD,∠ACD,∠A三者之间存在怎样的数量关系,直接写出探究结果,不必验证.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:不等式解得:x≤2,表示在数轴上,如图所示,.故选:B.4.解:第三边的取值范围是大于4且小于8,又第三边是偶数,故第三边是6.则该三角形的周长是14.故选:B.5.解:∵(a﹣3)x>a﹣3的解集是x<1,∴a﹣3<0,解得a<3,故选:D.6.解:①假设一个三角形有两个钝角,那么这两个钝角的和大于180°,与三角形的内角和为180°相矛盾.故三角形的内角中最多有一个钝角,正确;②三角形的中线把三角形分成的两个三角形的底边相等,高相同,所以面积相等,正确;③因为连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的一个顶点不能与它本身及左右两个邻点相连成对角线,故从n边形的一个顶点可以引(n﹣3)条对角线,把n边形分成(n﹣2)个三角形,每一个三角形的内角和是180°,因此,n边形的内角和是(n﹣2)•180°,正确;④n边形共有条对角线,所以六边形的对角线有6×3÷2=9条,错误.故选:B.7.解:联立得:,①×5+②×3得:29x=58,解得:x=2,把x=2代入①得:y=1,代入得:,解得:,则原式=(﹣2+2)2021=0.故选:A.8.解:把x=3,y=5代入方程得:3m+10=﹣2,移项合并得:3m=﹣12,解得:m=﹣4,故选:C.9.解:由图形可知图形①的黑色正三角形和白色正六边形的个数总和=4×1+3=7个,图形②的黑色正三角形和白色正六边形的个数总和=4×2+5=13个…依此类推,图形n的黑色正三角形和白色正六边形的个数总和=4n+2n+1=6n+1个.故选:B.10.解:∵∠A=45°,∠BDC=60°,∴∠ABD=∠BDC﹣∠A=15°.∵BD是△ABC的角平分线,∴∠ABC=2∠ABD=30°,∴∠C=180°﹣∠ABC﹣∠A=180°﹣30°﹣45°=105°.故选:B.11.解:设有x 名工人生产螺栓,根据题意可得,2×16x =24(56﹣x ), 故选:A .12.解:∵∠A 的平分线交BC 于D ,DE ⊥AC ,DF ⊥AB , ∴DE =DF ,∴∠DEF =∠DFE ,又∠AED =∠AFD =90°, ∴∠AEF =∠AFE ,①正确; ∵∠AEF =∠AFE , ∴AE =AF ,又DE =DF , ∴AD 垂直平分EF ,②正确;S △BFD :S △CED =×BF ×DF :×CE ×DE =BF :CE ,③正确; EF 与BC 不一定平行,④错误, 故选:A .二.填空题(共6小题,满分24分,每小题4分) 13.解:根据题意得:(8x ﹣7)+(6﹣2x )=0, 即8x ﹣7+6﹣2x =0, 移项合并得:6x =1, 解得:x =. 故答案为: 14.解:连接EF ,∵把△ADE 绕点A 顺时针旋转90°得到△ABF , ∴AE =AF ,∠EAF =90°, ∵四边形ABCD 是正方形, ∴AB =CD =AD =4, ∵E 是CD 的中点,∴DE=CD=2,∴AE===2,∴EF===2,故答案为:2.15.解:依题意,得:.故答案为:.16.解:解不等式2x≤6,得:x≤3,解不等式3x﹣4>2,得:x>2,则不等式组的解集为2<x≤3.故答案为:2<x≤3.17.解:设这支足球队胜了x场,平了y场,依题意,得:,解得:.故答案为:9.18.解:∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,BC=,∴将△ABC绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…∵2020÷3=673 (1)∴AP2020=673(3+)+2=2021+673,故答案为:2021+673三.解答题(共7小题,满分78分)19.解:(1)﹣=1,去分母得:2(2x+1)﹣(5x﹣1)=6,去括号得:4x+2﹣5x+1=6,移项得:4x﹣5x=6﹣2﹣1,合并同类项得:﹣x=3,系数化为1得:x=﹣3;(2),①+②×4得:9x=63,∴x=7,把x=7代入①得:7﹣4y=﹣1,解得:y=2,∴原方程组的解为.20.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:P点即为所求,当AP+CP有最小值时,这个最小值为:=.21.解:(1)∵AB⊥OM,∴∠BAO=90°,∵∠AOB=60°,∴∠ABO=90°﹣60°=30°,∵90°=3×30°,∴△AOB是“灵动三角形”.故答案为:30,是.(2)∵∠OAB=90°,∠BAC=70°,∴∠OAC=20°,∵∠AOC=60°=3×20°,∴△AOC是“灵动三角形”.故答案为:是.(3:①∠ACB=3∠ABC时,∠CAB=60°,∠OAC=30°;②当∠ABC=3∠CAB时,∠CAB=10°,∠OAC=80°.③当∠ACB=3∠CAB时,∠CAB=37.5°,可得∠OAC=52.5°.综上所述,满足条件的值为30°或52.5°或80°.22.解:(1)设购进A型口罩每盒需x元,B型口罩每盒需y元,依题意,得:,解得:.答:购进A型口罩每盒需25元,B型口罩每盒需150元.(2)设购进m盒A型口罩,则购进(200﹣m)盒B型口罩,依题意,得:m≤6(200﹣m),解得:m≤171.设该学校购进这批口罩共花费w元,则w=25m+150(200﹣m)=﹣125m+30000.∵﹣125<0,∴w随m的增大而减小,又∵m≤171,且m为整数,∴当m=171时,w取得最小值,此时200﹣m=29.∴最省钱的购买方案为:购进171盒A型口罩,29盒B型口罩.23.解:(1)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴这个相同的解为(2)∵关于x,y的二元一次方程组与方程组有相同的解,∴解得∴m﹣n=3﹣2=1.答:m﹣n的值为1.24.解:(1)30的“至善数”是360;“明德数”是30+6=36故答案为:360;36.(2)证明:设A的十位数字为a,个位数字为b则其“至善数与“明德数”分别为:100a+60+b;10a+b+6它们的差为:100a+60+b﹣(10a+b+6)=90a+54=9(10a+6)∴其“至善数”与“明德数”之差能被9整除.(3)设B的十位数字为a,个位数字为b则B的至善数的各位数字之和是a+6+bB的明德数各位数字之和是a+b+6(当0≤b<4时)或a+1+(6+b﹣10)(当4≤b≤9时)由题意得:0≤b<4时,a+b+6=(a+6+b)∴a+b=﹣6,不符合题意;或者:当4≤b≤9时,a+1+(6+b﹣10)=(a+6+b)∴a+b=12∴当b=4,a=8时,B最大,最大值为84.25.解:(1)∵∠A=35°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣35°=145°,∵四边形DEFG为正方形,∴∠D=90°,∴∠DBC+∠DCB=90°,∴∠ABD+∠ACD=∠ABC+∠ACB﹣(∠DBC+∠DCB)=145°﹣90°=55°.故答案为:145,90,55;(2)∠ABD+∠ACD=90°﹣∠A.证明如下:∵∠ABC+∠ACB=180°﹣∠A,∴∠ABD+∠DBC+∠ACD+∠BCD=180°﹣∠A,∵四边形DEFG为正方形,∴∠BDC=90°,∴∠DBC+∠BCD=90°,∴∠ABD+∠ACD+90°=180°﹣∠A,∴∠ABD+∠ACD=90°﹣∠A.(3)∠ABD=∠A+∠ACD﹣90°.若AB,CD交于点M,∵∠DMB=∠AMC,∠D+∠DBM+∠DMB=180°,∠A+∠ACD+∠AMC=180°,∴∠D+∠ABD=∠A+∠ACD,∵∠D=90°,∴∠ABD=∠A+∠ACD﹣90°.。

华师大版七年级数学下册《期末测试卷》(含答案)

华师大版七年级数学下册《期末测试卷》(含答案)

一、选择题(共10小题,每小题3分,共30分)1.已知关于x的方程3x+m+4=0的解是x=﹣2,则m的值为()A.2 B.3 C.4 D.52.下列等式变形正确的是()A.若﹣3x=5,则x =﹣B .若,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=13.不等式组的解集在数轴上应表示为()A .B .C .D .4.我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是()A .B .C .D .5.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为()学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.38°B.39°C.42°D.48°6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A.B.C.D.7.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20 B.24 C.25 D.268.如图,将一个含30°角的直角三角板ABC绕点A旋转,得点B,A,C′,在同一条直线上,则旋转角∠BAB′的度数是()A.60°B.90°C.120°D.150°9.用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形10.把一些书分给几名同学,若();若每人分11本,则不够.依题意,设有x名同学可列不等式7(x+9)<11x.A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本二、填空题(每小题3分,共15分)11.方程2x﹣5=3的解为.12.写出不等式5x+3<3(2+x)所有的非负整数解.13.如果将一副三角板按如图方式叠放,那么∠1=.14.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.15.如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=a,则∠BED=.(用含a 的代数式表示)三、解答题(本大题8个小题,满分75分)16.(8分)解方程组.17.(9分)解不等式组,并把它们的解集表示在数轴上.18.(9分)在如图所示的方格中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN;③将△ABC绕A点顺时针旋转90°.(2)计算△ABC的面积.19.(9分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16 (1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(9分)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)如图,①在图中找出与∠DBA相等的角,并说明理由;②若∠BAC=100°,求∠DHE的度数;(2)若△ABC中,∠A=50°,直接写出∠DHE的度数是.21.(10分)浠水县商场某柜台销售每台进价分别为160元、120元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(10分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.23.(11分)如图1,将一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.(1)如图1,求∠EFB的度数;(2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.①当旋转至如图2所示位置时,恰好CD∥AB,则∠ECB的度数为°;②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.参考答案一、选择题1.A.2.D.3.C.4.D.5.A.6.A.7.D.8.D.9.B.10.A.二、填空题11.4.12.0,1.13.105°.14.6.15.α.三、解答题16.解:原方程组整理为一般式可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,所以方程组的解为.17.解:,解不等式①得,x<2,解不等式②得,x≥﹣1,在数轴上表示如下:所以不等式组的解集为:﹣1≤x<2.18.解:(1)如图,DF、MN、△AB′C′为所作;(2)△ABC的面积=×2×1=1.19.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.20.解:(1)①∠DBA=∠ECA证明:∵BD、CE是△ABC的两条高,∴∠BDA=∠AEC=90°,∴∠DBA+∠BAD=∠ECA+∠EAC=90°,又∵∠BAD=∠EAC,∴∠DBA=∠ECA;②∵BD、CE是△ABC的两条高,∴∠HDA=∠HEA=90°,在四边形ADHE中,∠DAE+∠HDA+∠DHE+∠HEA=360°,又∵∠HDA=∠HEA=90°,∠DAE=∠BAC=100°,∴∠DHE=360°﹣90°﹣90°﹣100°=80°;(2)当∠A=50°时,①△ABC是锐角三角形时,∠DHE=180°﹣50°=130°;②△ABC是钝角三角形时,∠DHE=∠A=50°;故答案为:50°或130°.21.【解答】(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.22.解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠ACD=180°﹣(∠ADC+∠ACD)=180°﹣(180°﹣∠A)=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).23.解:(1)∵∠A=30°,∠CDE=45°,∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;(2)①∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;如图2,DE∥AB时,延长CD交AB于F,则∠BFC=∠D=45°,在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,=180°﹣60°﹣45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°;如图3,CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°;如图4,CE∥AB时,∠ECB=∠B=60°,如图5,DE∥AB时,∠ECB=60°﹣45°=15°.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。

华师大版数学七年级下册期末考试试题及答案

华师大版数学七年级下册期末考试试题及答案

华师大版数学七年级下册期末考试试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.下面的四个汉字可以看作是轴对称图形的是 A .B .C .D .2. 若1x =是方程2x k +=的解,则k 的值是 A .3 B .1 C .0 D .-13. 下列各组数不是..方程2x y +=的解为 A .02x y =⎧⎨=⎩ B .22x y =⎧⎨=⎩ C .31x y =⎧⎨=-⎩ D .20x y =⎧⎨=⎩4.不等式10x -的解集在数轴上表示正确的是 A . B . C .D .5.下列方程的变形正确的是A .由25x +=,得52x =+B .由43x =,得43x =C .由()126x -+=,得126x -+=D .由3122x -+=,得324x -+= 6.一个三角形的两边长分别是2和4, 则第三边的长可以是 A .1 B .2 C .4 D .7 7.下列正多边形中,能够铺满地面的是A .正方形B .正五边形C .正七边形D .正八边形8.如图,将AOB ∆绕着点O 顺时针旋转得到COD ∆,若45AOB ∠=︒,30BOC ∠=︒,则旋转的角度是A .15°B .30°C .45°D .75°9.若关于x 的一元一次方程20x a -+=的解是正数,则a 的取值范围是 A .2a B .2a > C .2a < D .2a10.小王到药店购买N95口罩和一次性医用口罩, 已知N95口罩每个15元, 一次性医用口罩每个2元, 两样都买,共花了100元, 则可供他选择的购买方案有 A .6种 B .5种 C .4种 D .3种二、填空题(本题共6小题,每题4分,满分24分)11.若关于x 的方程1235n x ++=是一元一次方程,则n 的值是 . 12.若代数式41x -与2x +的值相等, 则x 的值是 .13.如图,ABC ∆沿着BC 方向平移至DEF ∆, 若80A ∠=︒,40F ∠=︒, 则B ∠的度数是 度.14.已知方程组4,5ax by bx ay +=⎧⎨+=⎩的解是1,2,x y =⎧⎨=⎩那么a b +的值是 .15.如图,将一副三角板叠放在一起,使含45°的直角三角板的一个锐角顶点E 恰好落在另一个含30°的直角三角板的斜边AB 上,DE 与AC 交于点G .如果110BEF ∠=︒, 那么AGE ∠= 度.16.若25m n =+,且3n m ,则m 的取值范围是 .三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.考生根据要求作答.17.解方程:()3121x x +=-. 18.解方程组:2, 2 1. x y x y +=⎧⎨-=⎩①②19.解不等式组:24, 11. 42x x >⎧⎪⎨+⎪⎩①②20.如图,在ABC ∆中,5AC =,4BC =,将ABC ∆沿BA 方向平移得到DEF ∆,且2AE =,14DB =.(1)求线段AD 的长; (2)求四边形DBCF 的周长.21.我国元朝朱世杰所著的《算学启蒙》(1299年)一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.” 其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,问快马几天可以追上慢马? 22.在如图正方形网格中按要求画出图形:(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、C 的对应点分别为点E 、 F ,请画出DEF ∆;(2)画出ABC ∆绕点A 旋转180︒后的11AB C ∆;(3)已知11AB C ∆与DEF ∆关于点P 成中心对称,请在图中画出点P . 23.如图,在ABC ∆中,40B ∠=︒,70C ∠=︒,105ADB ∠=︒.(1)请说明AD 平分BAC ∠;(2)过点A 作AE BC ⊥, 垂足为E , 求EAD ∠的度数.24.在开学复课期间,某校为了防控病毒积极进行校园环境消毒,分别购买了甲、乙两种消毒液共100瓶, 其中甲种60元/瓶,乙种40元/瓶.(1)如果购买这两种消毒液共用4900元, 求甲、乙两种消毒液各购买多少瓶?(2)消毒液全部用完后,该校准备再次购买这两种消毒液,使新购买的甲种瓶数是乙种瓶数的2倍,且所需费用不高于5000元,求乙种消毒液最多能再购买多少瓶?25.如图,在钝角ABC ∆中,B C ∠=∠,点P 为BC 边上的动点(不与点B 、C 重合),过点P 作射线PQ 交AB 于点Q ,使CAP BPQ ∠=∠.(1)请说明APQ B ∠=∠;(2)当2AQP APQ ∠=∠时,请说明//QP AC ;(3)当APQ ∆为直角三角形时,请探索APQ ∠与CAP ∠之间的数量关系.参考答案一、选择题1-5: ABBCD 6-10:CADBD二、填空题11.0 12.11 13.60 14.3 15.125 16.1m -三、解答题17.解:3122x x +=-, 3221x x -=--,3x =-.18.解法一:①+①,得33x =, 即1x =.把1x =代入①,得12y +=,解得1y =.①1,1.x y =⎧⎨=⎩解法二:由①,得2y x =-.① 把①代入①,得2(2)1x x --=.解得1x =代入①,得1y =.①1,1.x y =⎧⎨=⎩19.解:解不等式①,得2x >. 解不等式①,得1x .①此不等式组的解集为2x >.20.解:(1)①ABC ∆沿BA 方向平移得到DEF ∆,①DE AB =.①2AE =,14DB =, ①14262DE AB -===.①8AD AE DE =+=.(2)①ABC ∆沿BA 方向平移得到DEF ∆, ①5DF AC ==,8CF AD ==.①四边形DBCF 的周长1448531DB BC CF DF =+++=+++=.21.解:设快马x 天可以追上慢马. 依题意,得()24015012x x =+. 解这个方程,得20x =. 经检验,符合题意.答:快马20天可以追上慢马.22.解:(1)如图所示,DEF ∆即为所求; (2)如图所示,11AB C ∆即为所求;(3)如图所示,点P 即为所求.23.解:(1)①12180B ∠+∠+∠=︒, ①11802B ∠=︒-∠-∠18040105=︒-︒-︒35=︒.①2DAC C ∠=∠+∠,①2DAC C ∠=∠-∠10570=︒-︒35=︒.①1DAC ∠=∠,①AD 平分BAC ∠.(2)①AE BC ⊥, ①90AEB ∠=︒. ①23AEB ∠=∠+∠,①1059015EAD ∠=︒-︒=︒.24.解:(1)设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶.依题意,得100,60404900.x y x y +=⎧⎨+=⎩解得45,55.x y =⎧⎨=⎩(2)设乙种消毒液再购买a 瓶,则甲种消毒液再购买2a 瓶. 依题意,得602405000a a ⨯+, 解得1314a . ①a 取最大整数, ①31a =.答:(1)甲、乙两种消毒液分别购买45瓶和55瓶.(2)乙种消毒液最多能再购买31瓶.25.解:(1)①1APB C ∠=∠+∠,又23APB ∠=∠+∠, ①123C ∠+∠=∠+∠. ①13∠=∠,①2C ∠=∠.①B C ∠=∠,①APQ B ∠=∠.(2)①422∠=∠,43B ∠=∠+∠, ①223B ∠=∠+∠. ①2B ∠=∠, ①23B B ∠=∠+∠. ①3B ∠=∠. ①B C ∠=∠, ①3C ∠=∠,①//QP AC .(3)分三种情况: ①如图1,当90AQP ∠=︒时,390B ∠+∠=︒.①2B ∠=∠,13∠=∠, ①90APQ CAP ∠+∠=︒. ①如图2,当90PAQ ∠=︒时,90B BPA ∠+∠=︒,①3290B ∠+∠+∠=︒. ①13∠=∠,2B ∠=∠, ①290APQ CAP ∠+∠=︒. ①当90APQ ∠=︒时,①90APQ B ∠=∠≠︒,因此这种情况不存在.综上所述,当APQ ∆为直角三角形时,90APQ CAP ∠+∠=︒或290APQ CAP ∠+∠=︒.。

(模拟题)(模拟题)华师大版七年级下册数学期末测试卷及含答案

(模拟题)(模拟题)华师大版七年级下册数学期末测试卷及含答案

华师大版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD中,对角线相交于点O,E,F,G,H分别是AD,BD,BC,AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.2、若,则a取值的最小整数值是()A.4B.5C.6D.73、通过连接对角线的方法,可以把十边形分成互不重叠的三角形的个数()A.7个B.8个C.9个D.10个4、若一个多边形的内角和为 540°,那么这个多边形对角线的条数为()A.5B.6C.7D.85、等腰三角形两边长为3和6,则周长为()A.12B.15C.12或15D.无法确定6、已知关于的方程,下列说法正确的是()A.当时,方程无解B.当时,方程有一个实数解C.当时,方程有两个相等的实数解 D.当时,方程总有两个不相等的实数解7、已知三角形两边的长分别是5和9,则此三角形第三边的长可能是()A.5B.10C.15D.208、运用等式性质的变形,正确的是()A.如果a=b,那么a+c=b﹣cB.如果,那么a=bC.如果a=b,那么 D.如果a=3,那么a 2=3a 29、不等式的解集为()A. B. C. D.10、如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A. B. C. D.11、下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是A. B. C. D.12、如图,在△ABC中,D是CA延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A.36°B.116°C.26°D.104°13、如图,在平面直角坐标系中,轴于点,,双曲线过点,交于点,连接,.若,,则的值为()A. B. C. D.14、下列图形中,不是轴对称图形的是()A. B. C. D.15、如图,AB为某河流的宽,为了估测河流的宽,在笔直的河岸上依此取点C,E,B,F,使DE⊥CF,且DA∥CF,测得CE=2米,EB=4米,BF=7米,且∠C=∠FDC,则AB的长为()米A. B.6.9 C. D.7二、填空题(共10题,共计30分)16、已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可).17、如图,在中,点是上的点,,将沿着翻折得到,则________°.18、已知一个多边形的每一个外角都等于72°,则这个多边形的边数是________.19、已知:如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12.在直线AC、BC 上分别取一点M、N,使得△AMN≌△ABN,则CN=________.20、如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处,已知BC=24,∠B=30∘,则DE的长是________.21、如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为________22、在①x+1;②3x﹣2=﹣x;③|π﹣3|=π﹣3;④2m﹣n=0,等式有________,方程有________.(填入式子的序号)23、根据平移的知识可得图中的封闭图形的周长(图中所有角都是直角)为________.24、如图,等边△ABC中,BC=6,D、E分别在BC、AB上,且DE∥AC,MN是△BDE的中位线.将线段DE从BD=2处开始向AC平移,当点D与点C重合时停止运动,则在运动过程中线段MN所扫过的区域面积为________.25、某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程________三、解答题(共5题,共计25分)26、解方程:.27、如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC 于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.28、超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.如果要使每天销售饮料获利14000元,问每箱应降价多少元?同时为了减少库存,那应降价多少?29、解不等式组,并在数轴上表示出其解集.30、已知y=y +y ,y 与x 成正比例,y 与x-1成反比例,并且x=0时y=1,x=-1时y=2;求当x=2时y的值.参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A5、B6、C7、B8、B9、D10、A11、D12、A13、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册期末模拟试卷(考试时间:120分钟,总分:150分)注意事项:1.答题前,考生在答题卡上务必将自己的姓名、学校、班级、考号填写清楚,并贴好条形码.请认真核准条形码上的考号、姓名和科目.2.解答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.解答填空题、解答题时,请在答题卡上各题的答案区域内作答. 一、选择题:(本大题共12个小题,每小题3分,共36分).在每小题给出的四个选项中,只有一项是符合题目要求的.(注意:在试题卷上作答无效............) 1.已知2x =是关于x 的一元一次方程15ax +=的解,那么a 的值为( ) A.3- B.2- C.2 D.3 2.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3.下列哪一种正多边形不能..铺满地面( ) A.正三边形 B.正四边形 C.正六边形 D.正八边形 4.已知ABC △两边长分别是2和3,则第三边长可以是( ) A.1 B.2 C.5 D.8 5.已知x y >,则下列不等式成立的是( )A.33x y -<-B.33x y <C.22x y -<-D.22x y < 6.多边形每一个外角都是45︒,那么这个多边形是( )A.六边形B.七边形C.八边形D.九边形 7.二元一次方程2311x y +=的正整数解有( )A.2组B.3组C.4组D.5组8.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )第8题图G FED C BAA.80︒B.90︒C.100︒D.110︒9.关于x 的不等式20x m -<的正整数解是1、2、3,那么m 的取值范围是( ) A.322m <≤ B.322m ≤≤ C.322m ≤< D.322m << 10.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工大齿轮20个或小齿轮15个.已知3个大齿轮和2个小齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( ) A.()201534x x =- B.()22031534x x ⨯=⨯- C.()32021534x x ⨯=⨯- D.()32034215x x ⨯-=⨯11.甲、乙两位同学在解关于x 、y 的方程组212x ay bx y +=⎧⎨-=⎩时,甲同学看错a 得到方程组的解为34x y =⎧⎨=⎩,乙同学看错b 得到方程组的解为23x y =⎧⎨=-⎩,则x y +的值为( )A.0B.14 C.34 D.5412.在直角三角形ABC 中,=90C ∠︒,AD 平分BAC ∠交BC 于点D ,BE 平分ABC ∠交AC 于点E ,AD 、BE 相交于点F ,过点D 作DG AB ∥,过点B 作BG DG ⊥交DG 于点G .下列结论:①135AFB ∠=︒;②2BDG CBE ∠=∠;③BC 平分ABG ∠;④BEC FBG ∠=∠.其中正确的个数是( )A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分).请把答案直接填在答题卡对应题目中的横线上.(注意:在试题卷上作答无效............) 13.2x 与1的差是非负数,用不等式表示为 . 14.在公式()12s a b h =+中,已知16s =, 3.6a =, 4.4b =,则h 的值是 . 15.如图,已知AD 是ABC △的中线,且ABD △的周长比ACD △的周长多4cm .若16AB cm =,那么AC = cm . 16.某校七年级篮球联赛,每个班分别要比赛36场,积分规则是:胜1场计2分,负1场计1分.七(1)班和七(2)班为争夺一个出线名额,展开激烈竞争.目前七(1)班的战绩是17胜13负积47分,七(2)班的战绩是15胜16负积46分.则七(1)班在剩下的比赛中至少需胜 场可确保出线.ADCB17.如图,在ABC △中,90ACB ∠=︒,把ABC △沿AC 方向平移得到DEF △,DE 与BC交于点G .已知2BG =,6EF =,3CF =,则四边形ABGD 的面积是 . 18.如图,长方形ABCD 是由m 个完全相同的小长方形组成,上下各有3个水平放置的小长方形,中间竖放若干个小长方形.若宽AB 是长BC 的59,则m 的值为 .步骤.19.(本题16分,每小题8分)(注意:在试题卷上作答无效............) (1)解方程:2143x x +=-; (2)解方程组:23,127 5.x y x y -=⎧⎨+=⎩①②20.(本小题12分)(注意:在试题卷上作答无效............) 如图,在边长为1个单位长度的88⨯的小正方形网格中. (1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C '''△; (2)请画出A B C '''''△,使A B C '''''△和A B C '''△关于点C '成中心对称;(3)直接写出A A B '''''△的面积.21.(本小题12分)(注意:在试题卷上作答无效............) 已知一元一次不等式组2(1)3413 1.24x x x x -≥-⎧⎪⎨+-≥-⎪⎩,①②(1)求一元一次不等式组的解集,并将其解集在数轴上表示出来; (2)设35w x =-+,在(1)的结论中,求w 的最大值和最小值. 22.(本小题12分)(注意:在试题卷上作答无效............)NM A如图,在ABC △中,CM AB ⊥于点M ,ACB ∠的平分线CN 交AB 于点N ,过点N 作ND AC ∥交BC 于点D .若78A ∠=︒,50B ∠=︒. 求:①CND ∠的度数;②MCN ∠的度数. 23.(本小题12分)(注意:在试题卷上作答无效............) 2018年宜宾市创建全国文明城市的过程中,某小区决定购买文明用语提示牌和文明信息公示栏.若购买2个提示牌和3个公示栏需要510元;购买3个提示牌和5个公示栏需要840元.(1)求提示牌和公示栏的单价各是多少元?(2)若该小区购买提示牌和公示栏共50个,要求购买公示栏至少..12个,且总费用不.超过..3200元.请你列举出所有购买方案,并指出哪种方案费用最少,最少费用为多少元?24.(本小题12分)(注意:在试题卷上作答无效............) 定义:对于任何有理数m ,符号[]m 表示不大于m 的最大整数.例如:[4.5]4=,[8]8=,[ 3.2]4-=-.(1)填空:[]π=________,[ 2.1]5-+=________; (2)如果52[]43x-=-,求满足条件的x 的取值范围; (3)求方程43[]50x x -+=的整数解.25.(本小题14分)(注意:在试题卷上作答无效............) 在ABC △中,ACB ∠的平分线CD 与外角EAC ∠的平分线AF 所在的直线交于点D . (1)如图1,若60B ∠=︒,求D ∠的度数;(2)如图2,把ACD △沿AC 翻折,点D 落在D '处.①当AD AD '⊥时,求BAC ∠的度数;②试确定DAD '∠与BAC ∠的数量关系,并说明理由.2019七年级 数学参考答案一、 选择题1-12 CBDBC CACAB BC 二、 填空题13.210x -≥ 14.4 15.12 16.4 17.15 18.15 三、解答题19.(1)解:2431x x -=-- ………………………4分24x -=- ………………………6分 2x = ………………………8分(2)解:由①得:23x y =+… ③ ………………………2分把③代入②得:12(23)75y y ++= ………………………3分 ∴1y =- ……………………5分把1y =-代入③1x ∴= ……………………7分∴方程组的解11x y =⎧⎨=-⎩……………………8分 20.(1)(2)如图所示C'B''A''B'A'BCA(3)321.(1)解:由不等式①得:2x ≤ …………………………2分由不等式②得:1x ≥- …………………………4分 在数轴上表示如图所示:…………………………6分∴不等式组的解集为:12x -≤≤ …………………………8分 (2)由35w x =-+得:53w x -+=∴5123w -+-≤≤ …………………………9分 解得:18w -≤≤ …………………………11分 ∴w 的最大值为8,最小值为1- …………………………12分22.(1)解:在ABC △中,∵=78=50A B ∠︒∠︒,∴52ACB ∠=︒ …………………………2分 又∵CN 平分ACB ∠∴11522622ACN ACB ∠=∠=⨯︒=︒ …………………………4分∵ND AC ∥∴=26CND ACN ∠∠=︒ …………………………6分 (2)在ACN △中,=180()180(7826)76ANC A ACN ∠︒-∠+∠=︒-︒+︒=︒ …………………8分又∵CM AB ⊥∴907614MCN ∠=︒-︒=︒ …………………………12分 23.(1)解:设提示牌和公示栏的单价各是x 元,y 元. ……………………1分由题得:2351035840x y x y +=⎧⎨+=⎩ ……………………3分解之得:30150x y =⎧⎨=⎩……………………5分 答:提示牌和公示栏的单价各是30元,150元. ……………………6分 (2)设购买m 个公示栏,则购买提示牌(50m -)个.由题:1215030(50)3200m m m ≥⎧⎨+-≤⎩……………8分不等式组解集为:112146m ≤≤ ……………9分∵m 是整数∴12,13,14m =,共有三种方案.方案1:购买12个公示栏,38个提示牌; 方案2:购买13个公示栏,37个提示牌;方案3:购买14个公示栏,36个提示牌. ……………10分 当购买购买12个公示栏,38个提示牌时,费用最少, ………………11分 最少费用为:1501230382940⨯+⨯=元. ……………………12分24. (1)3,2 ……………………4分(2)由题:52433x--≤<- ……………………6分 解得不等式组的解集为:1772x <≤ ……………………8分 (3)由题得:45[]3x x +=∴4513x x x +-<≤ ……………………10分 解得不等式组的解集为:85x -<≤- ……………………11分 ∵[]x 是整数设453x n +=(n 是整数) ∴354n x -=35854n --<≤- 解得不等式组的解集为:95n -<≤- ∵n 是整数 ∴8,7,6,5n =----∴当5n =-,方程的整数解为5x =-. ……………………12分 24.解:(1)∵CD 平分ACB ∠∴12ACD ACB ∠=∠ ……………………1分∵AF 平分EAC ∠∴12FAC EAC ∠=∠ ……………………2分∵EAC B ACB ∠=∠+∠,FAC D ACD ∠=∠+∠∴11()3022D EAC ACB B ∠=∠-∠=∠=︒ ……………………4分(2)①∵AD AD '⊥∴90DAD '∠=︒ ……………………5分 ∵ACD △沿AC 翻折得到ACD '△∴360901352DAC D AC ︒-︒'∠=∠==︒ ……………………7分 ∴45FAC ∠=︒,45EAF ∠=︒ ∴45DAB EAF ∠=∠=︒∴1354590BAC ∠=︒-︒=︒ ……………………9分 ②180DAD BAC '∠+∠=︒,理由如下: ……………………10分 设DAD x '∠=∵ACD △沿AC 翻折得到ACD '△ ∴3602xDAC D AC ︒-'∠=∠= ∴36018022x xFAC ︒-∠=︒-= ∴2xEAF ∠=……………………12分 ∴2x DAB EAF ∠=∠=∴18018022x xBAC x ∠=︒--=︒-即:180DAD BAC '∠+∠=︒ ……………………14分。

相关文档
最新文档