超高强度钢的结构与性能研究进展.

合集下载

新型超高强钢突破2000MPa强度极限

新型超高强钢突破2000MPa强度极限


匿洄
£ WS
度, 每平方毫 米可承受 超过 3 0 0 k g 压力 , 并具超 高耐磨性 及变形 能力 。 领 导 该 研 究 计 划 的 香 港 城 市 大 学 副 校 长 兼机 械 工程 学 讲 座 教 授 吕坚 表 示 : “ 这 种 材 料 具有 很 大 的 应 用潜 力 ,性 能, 病 人可 因此 避 免 进 行 第 2 次手 术 以取 出零 件 。 同时 , 镁 是 对 身体 有 益 的 元
密度 纳米析 出强化 的超高 强马 氏体 时效钢 。 新 的超高强 钢不但成 本 降低 , 而且 抗 拉 强度达 到 2 2 0 0 MP a , 同时塑性不 低于 8 %, 大幅度提 高 了高强钢铁 材料 的综合
性能。
匕 京 钢铁 研究 总 院董 瀚教 授表 示 , 钢铁 材料 的性 能极 限化研 究是 近年 来 的 研 究 热点 , 强度 极 限化更是 业 内一直 追求 的梦想 。 业 内普 遍认 为 , 进一 步提 高钢 铁 强度 与韧性 是 非常 困难 的。 吕昭平 团 队的这一 原创 性成果 创新 纳米 析 出的合
大化 的反 应条 件 及周 期性 变 化。 实验 上, 基于 镧 系元 素相 同条 件 下硼 酸熔 融反 应 中周 期性 变化 的认 识 , 将 可生
成2 种 不 同晶格结 构 的镧 系元 素 以相
关, 成 功开 发了 高性 能变形 镁合金 材 料及相 关的 大直 径锭坯 半连 续铸 造技术 和
料 工程实 验室都 时禹研究 员及合作 者 利用第一性 原理密 度泛 函理 论等手段
对 镧系元 素硼酸化 反应 的不 同产物 进
行 了电子 结构与反 应热力学 的理论研 究。 发 现 同一种 镧 系元 素发 生不 同 类

超高强度钢

超高强度钢

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域。

随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。

这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。

超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1,400MPa、屈服强度大于1,200MPa 的钢称为超高强度钢。

超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。

因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。

超高强度钢的发展超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。

典型的低合金超高强度钢是AISI 4340 和D6AC;典型的二次硬化型中,合金超高强度钢是HY180 和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。

1.低合金超高强度钢低合金超高强度钢大多是AISI 4130、4140、4330 或4340的改进型钢种。

AISI 4340 是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。

通过淬火和低温回火处理,AISI 4130、4140、4330 或4340钢的抗拉强度均可超过1,500MPa,而且缺口冲击韧性较高。

为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。

高强钢焊接工艺及接头组织与性能研究

高强钢焊接工艺及接头组织与性能研究

高强钢焊接工艺及接头组织与性能研究摘要高强钢具有高强度、高韧性的优点,被广泛用在液压支架、汽车车壳上。

本文从焊接工艺、焊接接头组织、力学性能等特点对国内外高强钢焊接方面的研究成果进行了综述,得出高强钢焊接接头各个区域的组织与性能不同,在不同焊接规范下相同区域的金相组织基本相似,熔合区因组织不均匀为最薄弱环节,指出防止高强钢热影响区的脆性破坏以及提高钢的韧性是今后高强钢焊接研究的重点。

关键词:高强钢,焊接工艺,组织,力学性能Study on Welding Process and Microstructure and Propertyof High Strength SteelAbstractHigh strength steel with high strength, high toughness advantages, are widely used in hydraulic support, car shell. From aspects of welding process, joint microstructure and mechanical properties of high strength steel welding, the research results of the high strength steel welding at home and abroad were summarized. It indicates that the microstructure and mechanical properties of high strength steel weld joints are different in different regions, while the metallographic structures of the same region are basically similar under different welding parameters, the fusion zone is the weakest area due to the inhomogeneous microstructure. It is pointed out that to prevent the heat affected zone ( HAZ ) from brittle failure and to improve the toughness of the HAZ are the focus of future research on high strength steel welding.Key words:High strength steel, Welding process, organization, Mechanical properties目录摘要 (I)Abstract (II)前言 (1)1. 高强钢的发展状况 (2)1.1 高强钢的生产与发展 (2)1.2 高强钢的性能与分类 (2)1.3 高强钢的应用前景 (5)2. 高强钢焊接研究现状 (6)2.1 激光焊接 (6)2.2 气体保护焊 (7)2.3 电阻点焊 (7)3. 高强钢焊接工艺 (8)4. 高强钢焊接接头组织与性能研究 (9)4.1 焊接接头组织分析 (9)4.2 焊接接头力学性能分析 (10)5. 结语 (10)参考文献 (11)前言高强钢作为21世纪新一代钢铁材料,具有高强度和良好的塑韧性等力学性能,为现代制造业开启了新的发展空间。

高强度钢材钢结构的工程应用及研究进展

高强度钢材钢结构的工程应用及研究进展

高强度钢材钢结构的工程应用及研究进展一、本文概述随着现代工业与建筑技术的飞速发展,高强度钢材钢结构在各类工程项目中的应用越来越广泛。

本文旨在全面综述高强度钢材钢结构的工程应用现状及其研究进展,为相关领域的理论研究和实践应用提供参考。

文章首先简要介绍了高强度钢材的基本特性,包括其高强度、高韧性、良好焊接性和优良的耐腐蚀性等特点。

随后,文章重点分析了高强度钢材在桥梁、高层建筑、海洋工程、石油化工、能源电力等关键工程领域的应用实例,展示了其在提高工程结构性能、节约材料成本、缩短建设周期等方面的显著优势。

本文还综述了高强度钢材钢结构在材料制备、结构设计、施工工艺、耐久性评估等方面的最新研究进展,包括新型高强度钢材的研发、高性能焊接技术的创新、复杂结构体系的分析与设计方法的发展等。

文章最后展望了高强度钢材钢结构未来的发展趋势,包括环保型材料的研发、智能化设计与施工技术的应用、结构健康监测与维护技术的提升等,以期为相关领域的持续发展和创新提供借鉴和指导。

二、高强度钢材钢结构的工程应用随着材料科学技术的不断进步,高强度钢材以其出色的力学性能和优越的经济性,在各类工程结构中得到了广泛的应用。

高强度钢材钢结构的工程应用主要集中在大型桥梁、高层建筑、工业厂房、海洋工程以及能源交通等领域。

在桥梁工程中,高强度钢材因其轻质高强、耐疲劳、耐腐蚀等特点,被广泛应用于大型悬索桥、斜拉桥和拱桥等关键受力部位。

其应用不仅减轻了结构自重,提高了桥梁的跨越能力,而且有效延长了桥梁的使用寿命。

在高层建筑领域,高强度钢材钢结构的应用同样显著。

由于其良好的可塑性和焊接性,可以实现建筑结构的快速安装和灵活设计。

同时,高强度钢材钢结构还具有优良的抗震性能,能够有效抵抗地震等自然灾害的影响,保障建筑的安全性。

在工业厂房的建设中,高强度钢材钢结构以其高效、经济、环保的优势,成为首选的结构形式。

其快速的施工速度和灵活的空间布局,为工业生产的快速部署提供了有力支撑。

超高强度钢研究进展及其在军事上的应用

超高强度钢研究进展及其在军事上的应用

超高强度钢研究进展及其在军事上的应用随着洁净化、微合金和控轧控冷等先进冶金技术在钢铁企业的逐步推广和应用,钢材的品质得到了大幅度提高,发达国家正在研制相当于目前常用钢材抗拉强度数倍的超高强度钢。

这种钢具有超细化、超洁净、超均质的组织和成分的特征,以及超高强度和超高韧性的特点。

超高强度钢与普通结构钢的强度的界限目前尚无统一规定,习惯上是将室温抗拉强度超过1400MPa、屈服强度大于1200MPa的钢称为超高强度钢。

超高强度钢除了要求其高的抗拉强度外,还要求具有一定塑性和韧性、尽可能小的缺口敏感性、高的疲劳强度、一定的抗蚀性、良好的工艺性能、符合资源情况及价格低廉等。

超高强度钢现在已发展成为应用范围很广的一类重要钢种,如已经大量应用于火箭发动机外壳、飞机起落架、防弹钢板等性能有特殊要求的领域,而且其使用范围正在不断地扩大到建筑、机械制造、车辆和其它军事装备上。

因此,超高强度钢不仅是钢铁材料研究的重要方向,而且具有广阔的应用和发展前景。

超高强度钢的发展超高强度合金钢是为满足某些特殊要求发展起来的,按其物理冶金学特点,超高强度钢大体可以分为低合金超高强度钢、二次硬化超高强度钢和马氏体时效钢。

目前,典型的低合金超高强度钢是AISI4340和D6AC;典型的二次硬化型中,合金超高强度钢是HY180和AF1410,由于马氏体时效钢属高合金钢,在这里将不拟述及。

1低合金超高强度钢低合金超高强度钢大多是AISI4130、4140、4330或4340的改进型钢种。

AISI4340是最早出现的低合金超高强度钢,它于1950年开始研究,并于1955年开始用于飞机起落架。

通过淬火和低温回火处理,AISI4130、4140、4330或4340钢的抗拉强度均可超过1500MPa,而且缺口冲击韧性较高。

为了抑制低合金超高强度钢回火脆性,1952年美国国际镍公司开发了300M。

该钢通过添加了1%~2%的硅来提高回火温度(260~315℃),并可抑制马氏体回火脆性。

高强度钢材钢结构研究进展综述

高强度钢材钢结构研究进展综述

4、工业厂房:大型石油化工、电力能源等工业厂房采用了高强度钢材钢结 构设计,满足了高大空间、重荷载和高耐久性的要求,提高了工业生产的安全和 效益。
五、研究进展
近年来,高强度钢材钢结构的研究取得了诸多进展,主要包括以下几个方面:
1、高强度钢材的研发:随着钢铁材料的不断发展,高强度钢材的屈服强度 和抗拉强度得到了显著提高,为钢结构的设计和制造提供了更好的选择。
高强度钢材钢结构研究进展综述
目录
01 摘要
03
高强度钢材钢结构的 研究现状
02 引言
04
高强度钢材钢结构的 研究问题与挑战
目录
05 高强度钢材钢结构的 未来研究方向
07 参考内容
06 结论
摘要
高强度钢材钢结构是指采用高强度钢材作为主要构成材料,通过合理的结构 设计、制造和安装,使其具有承载力高、抗震性能好、施工速度快等特点的钢结 构形式。随着高层建筑、桥梁、港口等工程领域的快速发展,高强度钢材钢结构 的应用越来越广泛。本次演示旨在综述高强度钢材钢结构领域的研究现状、问题 以及发展趋势,提出未来的研究方向和建议。
在基础抗震设计方面,研究人员提出了基于性能的抗震设计方法,为高强度 钢材钢结构的地震安全性能提供了理论支持和实践指导。
高强度钢材钢结构抗震研究不足:尽管高强度钢材钢结构抗震研究取得了一 定的进展,但仍存在以下不足之处:
பைடு நூலகம்
1、研究深度不够:目前的研究主要集中在基本构件和简单结构上,对复杂 结构和精细的细节构造的研究尚不充分;
高强度钢材钢结构的研究现状
近年来,国内外学者针对高强度钢材钢结构的研究主要集中在轧制工艺、热 处理工艺、材料选择等方面。在轧制工艺方面,研究者们通过对轧制过程中温度、 轧制速度、变形量等参数的控制,制备出具有优良性能的高强度钢材。在热处理 工艺方面,通过适当的加热和冷却条件,可以获得具有较高强度和良好塑性的高 强度钢材。在材料选择方面,研究者们针对不同的应用场景,选用不同成分的高 强度钢材进行钢结构制造。

高强度汽车大梁钢800L组织和性能研究

高强度汽车大梁钢800L组织和性能研究
Abstract:Thedevelopmentofbeam steel800Lwiththecompositiondesignoflowcarbon,microalloyingofniobium, vanadium andtitanium aswellascontrolledrollingandcoolingprocessiscarriedoutinthelab.Moreover,thechemical composition,heatingandholdingtemperatures,rollingandcoolingtechnologiesarestudiedaswellasthemechanicalprop ertiesaretestedandmicrostructureisanalyzed.Theresultsshowedthatthetrial-produced800Lsteelwaswithtwo-stage rollingafterheldat1250℃ andfinishingtemperaturewassetat860℃,laminarcoolingwascarriedoutafterrollingand finishcoolingtemperaturewas600℃ sothatthebeamsteel800Lwithgoodmechanicalpropertieswasobtainedaswellas itsyieldstrength,tensilestrengthandpercentageelongationafterfracturewere753MPa,845MPaand185% respectively aswellasthe180°bendingtestwasqualified. Keywords:highstrength;beam steel;microstructure;mechanicalproperties

高强钢板的车身结构轻量化分析

高强钢板的车身结构轻量化分析

区域治理综合信息高强钢板的车身结构轻量化分析刘阳 江勇 马新伟眉山中车物流装备有限公司,四川 眉山 620010摘要:汽车车身结构设计和制造业不断发展新材料和新技术以适应轻量化设计的要求。

而具有强度、刚度、抗冲击性、回收使用和低成本等方面综合优势的高强度钢板在车身轻量化设计中得到越来越广泛的关注。

基于此,文章就高强钢板的车身结构轻量化展开了研究,具体内容供大家参考和借鉴。

关键词:高强钢;车身结构;轻量化目前,应用高强度钢板实现车身轻量化和高强度,是车身轻量化三种途径结合的典型应用,对其进行性能研究、热成形性分析和应用高强度钢车身进行结构优化研究,完全符合车身轻量化技术的发展路线。

一、新材料实现车身轻量化车身用钢的种类主要包括普通低碳钢板、高强度钢板、镀层钢板、激光拼焊钢板、不等厚棍轧钢板、夹层钢板等。

高强度钢板的性能为:屈服强度在210以上,因其是经固溶强化、析出强化、晶粒细化强化和组织相变强化,使其屈服强度和抗拉强度均较高,具有抗撞性和抗凹性。

主要包括:碳锰钢、无间隙原子钢、烘烤硬化钢等普通高强度钢;双相钢、相变诱导塑性钢、马氏体刚等先进高强度钢。

因力学性能更均匀、回弹量波动小、更高抗撞性和疲劳寿命,故可降低板厚使汽车轻量化。

主要用于需高强度、刚度、抗撞性的汽车零部件,如防撞梁、车门防撞杆、加强板、悬挂系统和车轮等零部件,但强塑积大于20000Mpa%的超高强度钢板因成形性能差带来在汽车应用上的技术挑战。

二、基于高强度钢板的车身结构多目标优化1 高强度钢板车身结构轻量化优化问题分析随着结构分析能力和手段的不断完善与结构优化设计理论的不断发展,车身结构轻量化优化设计的研究范围已开始从单一方面的准则优化减重发展到考虑车身结构各个性能在内的多目标优化。

因此,需要建立包含多个目标的优化设计函数,合理分配各目标之间的权重,确定优化设计的约束条件和设计变量,并通过多目标优化设计算法的求解,得到同时满足多个性能目标要求的优化求解方案。

超高强度钢

超高强度钢
(1)冶炼。采用真空冶炼工艺提高钢的纯净度是改善超高强度钢性能的重大技术措施。真空冶炼主要是降低 钢中的气体和非金属夹杂物含量。40CrNi2MoA钢采用真空冶炼,使钢中氢、氧和氮含量比电弧炉冶炼分别降低 50%、85%和70%。由于冶金质量改善,从而使钢的断裂韧性明显地提高。
(2)夹杂物形态控制。控制夹杂物形态能有效地改善超高强度钢的断裂韧性。为了提高断裂韧性首先要对硫 和磷要有严格的限制,采用冶炼工艺要最大限度地降低钢中硫和磷含量。
发展历史
早在20世纪40年代中期,由于航空和航天技术发展的需要,为了减轻飞行器自重,提高飞行速度,要求结构 材料必须具有更高的比强度。为此,美国人在AISI4130和4340钢的基础上,改变热处理工艺,采用淬火加低温回 火,获得回火马氏体组织,使钢的抗拉强度提高到1600MPa以上。用于制造飞机结构件,对减轻飞行器自重取得 了明显成效。20世纪50年代以后,在提高钢的强度和改善钢的韧性方面不断取得新进展,相继研制成功300M, D6AC和H-11等超高强度钢。1960年美国国际镍公司研制出马氏体时效钢,并逐步形成18Ni马氏体时效钢系列,屈 服强度分别为1400MPa、1700MPa、2100MPa和2400MPa,其断裂韧性达到较高的水平。20世纪70年代以后,超高 强度钢的发展主要是提高韧性。在9NiCo系列之后,美国在Hy180钢的基础上,又研制成功AF1410二次硬化超高强 度钢,该钢采用低碳马氏体和析出合金碳化物弥散强化效应,不仅强度高,韧性高,而且具有很高的抗应力腐蚀 能力。已用于制造飞机起落架和平尾轴等重要结构部件,受到航空和航天部门的重视和青睐。进入20世纪90年代 以来,为了适应航空工业的需要,在AF1410钢的基础上,美国研制成功AerMet100,钢的抗拉强度为1965MPa, 断裂韧性达到120MN·m抗应力腐蚀性能好。用于制造飞机起落架,将大大提高飞行安全可靠性,延长飞机使用寿 命。

超高强度钢的发展及展望

超高强度钢的发展及展望

超高强度钢的发展及展望摘要:超高强度钢是一种在常规合金结构钢基础上发展而成的超高强度高韧性合金钢。

其在航空等相关行业中的应用较为广泛,基于此,文章首先对超高强度钢的分类以及相关应用进行了分析,接着对其发展前景进行介绍,希望能够提供相关借鉴。

关键词:超高强度钢;发展;前景引言近年来,我国的军工、冶金、矿山、航空航天以及航海等相关的行业随着科学技术的进步得到了迅速的发展,这也就意味着将会有越来越多的目光集中在超高强度钢的研制以及应用中。

在常温状态下,超高强度钢的拉伸强度高于1470MPa,屈服强度则大于1380MPa。

在我国的航空起落架、精密齿轮以及高端轴承钢中对其的应用较为广泛,可以作为高端产品的理想选择。

超高强度钢的性能和很多因素都有着较大的关系,其中主要包括了化学成分、内部组织、负载以及外部环境等,这也就意味着未来超高强度钢的主要研究和发展方向要朝着低成本以及绿色环保的方向发展。

1.超高强度钢发展和应用目前我国超强钢主要可以从合金成分的总量和冶金特性来进行分类。

按照合金元素的总量,可以分为低、中高三种,其中,总合金含量在5.0wt%~10.0wt%之间,低合金超高强度钢低于5.0wt%,超过10.0wt%的是高合金超高强度钢,中间是中高合金超高强度钢。

按照其冶金特性,可以将其划分为低合金超高强度钢、二次硬化超高强度钢以及超高强度马氏体时效钢。

下面将根据第二类来说明。

1.1低合金超高强度钢的发展及应用情况低合金超高强钢是一种低合金马氏体结构钢,其合金元素含量低于5.0wt%,其主要原因是马氏体中的碳含量。

1950年,美国首先研制出AISI4340超高强钢,它的主要用途是用于飞机的升降平台。

采用 Mo、 Ni、 Cr、 Si、 Vi等主要合金元素,经淬火-低温回火处理后,其屈服强度超过1300 MPa。

该产品的碳含量应控制在0.30wt%~0.50wt%之间,以获得高强度、高塑性、高韧性和焊接性能。

超高强度船体结构钢焊接性的研究现状和趋势

超高强度船体结构钢焊接性的研究现状和趋势

超高强度船体结构钢焊接性的研究现状和趋势发布时间:2022-08-10T00:49:25.458Z 来源:《科学与技术》2022年第30卷第6期作者:解玉冬[导读] 随着现代科技的持续性发展,我国船舶制造行业也在逐渐朝着大型化以及超大型化的方向发展。

解玉冬扬州中远海运重工有限公司,江苏扬州 225211摘要:随着现代科技的持续性发展,我国船舶制造行业也在逐渐朝着大型化以及超大型化的方向发展。

而随着船舶主体结构的规格和尺寸不断增大,各类型高厚度的船体结构钢在船舶制造行业中的应用也更加广泛。

对于大厚度的高强度船体结构钢来说,为了确保结构钢之间的焊接质量,保障焊接结构也朝着高参数以及大型化的方向发展,必须要研究高强度船体结构钢的焊接性,才能推动高强度船体结构钢焊接工艺的持续发展。

本文主要是分析了目前国内高强度船体结构钢焊接性的研究现状,并且就超高强度船体结构钢焊接性的未来发展趋势进行了探讨,希望能够为不断提升我国船舶制造的水平提供参考意见。

关键词:船舶制造;超高强度船体结构钢;焊接性当超高强度的船体结构钢主导的细晶强化与相变强化达到较为理想的状态是,其焊接过程中的等级就会持续提高,但是焊接等级的持续提高,将不会依赖于细晶强化和相变强化这两项指标,而是会有其他的强化项持续贡献力量。

例如,可以通过超高强度船体结构钢的固溶强化与析出强化,有效地提升超高强度船体结构钢的焊接性,这也意味着,在焊接过程中合金元素的总量将会持续增加。

但是合金含量的持续升高,在焊接过程中极容易出现韧性降低、偏离性较高等问题,因此,必须要进一步的研究超高强度船体结构钢的焊接工艺,通过提升焊接工艺的方式确保在超高强度船体结构钢材料的应用条件下,船体结构焊接的稳定性和牢固性,推动我国船舶制造行业的大型化以及超大型化发展。

一、超高强度船体结构钢焊接性的研究现状(一)超高强度船体结构钢的材料分析随着当前我国科学技术的持续性发展,对于超高强度船体结构钢中的微观组织测定方案也更加精确,能够对超高强度船体结构钢的性能、应用参数以及内部微观组织进行细致地观察,并得出针对性的结论。

《超高强度钢》课件

《超高强度钢》课件

详细描述
通过特殊的表面处理技术,如喷涂防腐涂层 或进行渗碳处理,超高强度钢能够有效地抵 抗各种腐蚀介质,如空气、水、酸碱等。这 种优良的耐腐蚀性使得超高强度钢在海洋工 程、化工设备等领域具有广泛的应用前景。
03 超高强度钢的生产技术
热处理技术
退火
通过加热至一定温度并保温,使钢软化,以便进一步加工。
详细描述:铝合金具有较好的强度与重量比,比超高强 度钢更轻,适合用于需要减轻重量的场合,但在承受高 应力方面不如超高强度钢。
详细描述:铝合金在某些环境下也容易受到腐蚀,但其 耐腐蚀性能优于普通钢材,与超高强度钢相当。
详细描述:铝合金的加工性能较好,易于切割、焊接和 加工,与超高强度钢相比,其加工性能更优。
汽车工业应用
汽车工业是超高强度钢的重要应用领域,主要用于制造汽车底盘、悬挂系统、安全装置等关键部件。随着节能减 排和轻量化需求的增加,超高强度钢在汽车工业的应用将更加广泛。
环境友好性的考虑
绿色生产技术
在超高强度钢的生产过程中,采用绿色生产技术,降低能耗和减少废弃物排放。例如,采用节能环保 的冶炼和连铸技术,减少废气、废水和固废的产生。
制造工艺
总结词
超高强度钢的制造工艺主要包括冶炼、轧制、热处理等环节,其制造工艺复杂 ,技术要求高。
详细描述
超高强度钢的制造需要经过严格的冶炼、轧制、热处理等环节,确保钢材的纯 净度和组织结构均匀性。同时,制造过程中还需采用先进的合金元素添加技术 和精密的加工工艺,以满足钢材的高性能要求。
02 超高强度钢的性能特点
可回收利用
超高强度钢应具有良好的可回收利用性,以便在产品生命周期结束后进行再生利用。通过合理的材料 设计和技术创新,实现超高强度钢的环保和可持续发展。

超高强度结构钢AF1410热处理工艺对力学性能的影响

超高强度结构钢AF1410热处理工艺对力学性能的影响

超高强度结构钢AF1410热处理工艺对力学性能的影响摘要:研究了热处理工艺对超高强度结构钢AF1410力学性能的影响。

结果表明材料的淬火温度、回火温度和回火时间都会影响材料的力学性能,当热处理工艺为盐浴炉860℃×10min,油冷(20~80℃)→低温箱-70℃×100 min,空冷→空气炉510℃×(240~300) min,空冷时,可以满足设计要求的力学指标。

1.简介超高强度结构钢AF1410是一种低碳高合金钢,不仅具有高的硬度和强度、而且具有较高断裂韧度的新型航空材料,是一种可能用于损伤容限设计的超高强度钢[1]。

本文通过热处理工艺试验对该钢种的力学性能进行了研究,以获得该钢种良好的力学性能,满足设计的使用要求。

2.试验过程试验材料为AF1410钢棒材,试验材料尺寸如图1所示,材料的化学成分符合AMS 6533C 美国航空航天材料规范要求,其化学主要成分如表1所示。

材料的主要热处理过程为盐浴炉淬火→冷处理→空气炉回火,其中冷处理可以加速残余奥氏体转换,减少材料淬火应力,提高材料基体硬度。

图1 AF1410材料试验尺寸表1 AF1410材料化学成分1.淬火温度对材料力学性能的影响本节热处理工艺及力学性能如表3和图2所示,通过改变淬火温度研究力学性能,根据力学性能试验结果,860℃和880℃淬火力学性能结果接近,但淬火温度提升至900℃时,材料的力学性能轻微降低,抗拉强度从1660MPa降低至1635MPa,屈服强度从1550MPa降低至1500MPa。

这是因为由于随着淬火温度的提高,奥氏体晶粒尺寸增大,冷却后转变的板条状马氏体组织的尺寸也会相应增大[2,3],随着板条状马氏体组织的尺寸增大,其力学性能中的HRC、σb和σ0.2会相应降低。

表3 淬火温度变化工艺及力学性能图2 淬火温度变化后材料力学性能3.2回火时间对材料力学性能的影响本节热处理工艺及力学性能如表4和图3所示,通过改变回火时间研究力学性能,根据力学性能试验结果,回火温度一定时,降低回火时间,材料的硬度、σb和σ0.2有显著提升,当回火工艺为510℃×240 min,空冷时,抗拉强度为1847MPa,屈服强度为1658MPa。

22MnB5超高强度钢的焊接性能研究

22MnB5超高强度钢的焊接性能研究
本次设计主要是对 22MnB5超高强度钢进行淬火热处理,
之后分别使用淬火与未淬火的钢材进行焊接处理,得到焊接接 头。使用光学金相显微镜、扫描电子显微镜、维氏显微硬度计 和万能试验机等设备进行金相组织观察、显微硬度分析以及拉 伸测试等,观察焊接材料的组织与力学性能,研究 22MnB5高 强度钢的焊接性能。
表 1可知,焊接接头的断后延伸率较大,抗拉强度较高,断口位 置在 BM处,且有明显颈缩现象。
表 1 焊接接头拉伸试验数据
编号
ห้องสมุดไป่ตู้
断后延伸率 δ 抗拉强度 σb
断口位置
/%
/MPa
颈缩
1#
15.7
2#
15.4
878 873
BM

图 2 焊接接头各区域显微硬度变化曲线及实物对比图
如图 2所示,图 2b是焊接接头的显微硬度值分布曲线,图 2a是其实物试样对比图。图 2b是以焊缝中心处为起始点,以 距离焊缝中心的距离为横坐标,显微硬度数值为纵坐标,每隔 0.5mm测量 1个显微硬度数值所得的未淬火对接接头显微硬 度值变化曲线。如图所示,未淬火焊接接头 WZ区域的显微硬 度值为 425.2HV,该点也是未淬火钢板焊接接头出各区域显 微硬度值中硬度值最高的点。在该初始点到 HAZ1之间,显微 硬度值略有下降,但总体保持平稳变化不大。由 WZ到 HAZ1 显微硬度值略有上升,HAZ1的显微硬度值最高可达到 418.9 HV(距焊缝中心距离 2.5mm处)。由 HAZ1到 HAZ2,显微硬 度值出现了明显的下滑。焊接接头处的显微硬度值在 HAZ2 区域持续下滑,直至 BM区域其显微硬度值才趋于稳定,并且 在该区域出现了焊接接头处显微硬度值的最低点 166.4HV (距焊缝中心距离 6.5mm处)。

浅谈高强度钢材在工程结构中的应用研究进展

浅谈高强度钢材在工程结构中的应用研究进展

浅谈高强度钢材在工程结构中的应用研究进展浅谈高强度钢材在工程结构中的应用研究进展高强度结构钢(简称高强钢)是指采用微合金化及热机械轧制技术生产出的具有高强度(屈服强度大于等于 460,MPa)、良好延性、韧性以及加工性能的结构钢材[1].区别于普通强度钢材,由于高强度钢材的屈服平台长度较短、屈强比较高而无法达到抗震规范的要求,其变形能力的验证更加重要。

随着高强钢在工程结构领域的逐渐推广应用,有必要对高强度钢材钢结构的承载力、延性和抗震性能进行系统的研究。

本文旨在总结高强度钢材在工程结构中的应用现状与研究进展,进而说明相应需要深入研究的问题。

1 高强钢的应用状况及限制因素高强钢在发达国家已得到初步推广,取得了良好的效果,其中应用最多的领域是桥梁工程。

德国的1Viaduct Bridge 中均采用了 S460 高强度钢材(屈服强度为 460,MPa 的钢材,简称 S460 高强钢)。

为减小桥墩尺寸,满足外观要求,德国的 Nesenbachtalbruke 桥中受压构件采用了 S690 高强钢;为有效降低自重,便于战时快速运输与安装,瑞典的 48 号军用快速桥采用了 S1100 超高强钢。

高强钢的应用不仅减小了钢板的厚度进而减轻结构自重,同时也减小了焊缝的尺寸从而减少焊接工作量、提高焊缝质量。

因此,在一定程度上缩短了施工工期,同时延长了桥梁的使用寿命。

高强钢已经在一些建筑结构中成功运用。

这些工程大多采用了460~690,MPa 等级钢材,个别工程还使用了 780,MPa 等级钢材。

如日本横滨LandmarkTower 大厦,其工字形截面柱采用 600,MPa 钢材;德国柏林的 Sony Centre 大楼的屋顶桁架采用 S460 和S690 钢材;澳大利亚悉尼的 Star City 在地下室柱子和其内部 Lyric 剧院的 2 个桁架结构中采用 650,MPa和690,MPa 等级的钢材;悉尼的 Latitude 大厦在转换层中采用 690,MPa 高强度钢板;美国休斯顿 ReliantStadium 体育馆的屋顶桁架结构采用 450,MPa 高强度钢材。

超高强度钢的结构与性能研究进展

超高强度钢的结构与性能研究进展

• • • • •
马氏体时效钢的发展趋向为: (1) 生产超纯净马氏体时效钢, 改进马氏体时效钢组织结构的均匀性; ( 2) 进一步研究晶粒超细化工艺; ( 3) 无钴超高强度马氏体时效钢开发及强韧化机理研究; ( 4) 高度弥散金属间化合物的形貌、组分、结构以及残留奥氏体的 数量、形貌、分布状态对马氏体时效钢性能的影响; • ( 5) 稀土元素在马氏体时效钢中作用机理研究。
• 高Co-Ni高强度钢从最初的提高碳来增加强度(HP9-4-X系列),到降 碳增钴提高强度和韧性(AF1410),到现在发展的G99, Aermet100,0.2AF1410又回到了以提高碳提高强度,碳含量现在为 0.2%-0.26%,基体由韧性良好的板条状马氏体转变为韧性较差的片状 马氏体,碳含量达到了极限,现在追求的是Cr+Mo和碳的最佳配比, 最希望同时出现碳化物和金属间化合物。第二个方向是通过调整钢的 成分控制逆转变奥氏体的稳定性。利用奥氏体的相变韧化提高钢的韧 性在TRIP 钢和部分奥氏体不锈钢中获得了很大成功。
• 1946年carnagic Illinors公司,第一个发现stainless w不锈钢。 • 1948年,armco steel公司开发了17-4PH和17-7PH,1965年开发了155PH,1968年通过降低cr含量,增加Ni含量研发强度更高的PH13-8Mo 马氏体沉淀硬化不锈钢。 • Martin等人于1997和2003年获得custom465和custom475的专利。 • 近年来,出现了强度超过1900MPa的超高强钢Ferriums53和F863钢
超高强度马氏体时效钢的发展
• 18Ni,20Ni和25Ni,以18Ni系制造最为容易且应用最为广泛 • 20世纪60年代初由国际镍公司(INCO)首先开发出来的。1961~ 1962年间该公司Decker 等人发现,在Fe-Ni马氏体合金中同时加 入Co、Mo可使马氏体时效硬化效果大大提高,并通过调整Co、Mo、 Ti含量得18Ni系马氏体时效钢。 • 到了70年代,日本因开发浓缩铀离心机,对马氏体时效钢进行了 系统、深入的研究。 • 进入80年代以来,作为战略元素Co的资源短缺、价格不断上涨, 无钴马氏体时效钢的研制始于美国,国际镍公司(INCO) 与钨钒 高速工具钢公司(Vasco) 合作, 开发了T-250无钴马氏体时效钢。 • 在20世纪60年代后期又开发了马氏体时效不高韧性、低脆性转变温度 的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高 钢的Ms(马氏体转变)温度,减少钢中的残余奥氏体,同时,钻在镍 钢中起固溶强化作用,还通过加钻来获得钢的自回火特性,从而使这 类钢具有优良的焊接性能。碳在这类钢中起强化作用。钢中还含有少 量铬和钼,以便在回火时产生弥散强化效应。主要牌号有HP9-4-25, HP9-4-30,HP9-4-45以及改型的AF1410(0.16%C-10%Ni-14%Co-1%Mo2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀性好,具有 良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇亮体等产品 上。

适用于冷冲压成形的超高强钢性能分析~

适用于冷冲压成形的超高强钢性能分析~

适用于冷冲压成形的超高强钢性能分析~车身用钢的发展趋势随着汽车市场对节能、环保、安全、舒适等要求的提高,汽车车身轻量化成为当今汽车技术发展的重要发展方向。

由于高强钢和超高强钢在减轻车身重量的同时,还能提高汽车车身的结构强度及能量吸收能力,因此高强钢和超高强钢在汽车上的应用越来越广泛。

截至目前为止,高强钢和超高强钢仍然是最经济、最有效的轻量化途径之一。

典型的超高强钢应用零件有前、后门左/右防撞杆(梁),前、后保险杠,A柱加强板,B柱加强板,C柱加强板,下边板,地板中通道及车顶加强梁等各种结构件。

高强钢有不同的定义分类方法。

⑴按屈服强度分类:将屈服强度在210~550MPa范围内的钢定义为高强钢(HSS,High Strength Steel),屈服强度在550MPa以上的钢定义为超高强钢(UHSS,Ultra High Strength Steel);⑵按抗拉强度分类:抗拉强度在340~780MPa范围内的钢定义为高强钢(HSS),抗拉强度在780MPa以上的钢定义为超高强钢(UHSS);⑶按照强化机理分类:分为传统高强钢和先进高强钢板,先进高强钢(AHSS,Advanced High Strength Steel)是指通过适当的热处理工艺控制钢的显微组织以得到高强度、高塑性;⑷按其发展历程分类:第一代、第二代和第三代先进高强钢,如图1所示。

图1 高强钢的发展和划分除了钢铁材料之外,铝合金、镁合金、工程塑料、碳纤维及其他轻质材料也加大了在汽车车身上应用研究的力度。

曾有人对2030年时车身的轻量化方案做了预测,不同的轻量化方案下对应着不同的车身用材结构,如图2所示。

不管是哪一种方案,现行车身上用量较大的软钢(抗拉强度340MPa以下)和高强钢(抗拉强度780MPa以下),都将大幅度减少,而超高强钢(抗拉强度在780MPa及以上)的用量将大幅度增加。

图2 2030年时不同轻量化目标下的车身用材结构预测超高强钢冷冲压成形面临的挑战在超高强钢产品开发上,国内外钢厂都进行了大量的工作,日本新日铁、JFE、神户制钢、韩国浦项和瑞典SSAB等钢铁公司已开发出各自的超高强钢产品并在汽车行业得到应用。

高强度钢材钢结构的工程应用及研究进展文玲敏

高强度钢材钢结构的工程应用及研究进展文玲敏

高强度钢材钢结构的工程应用及研究进展文玲敏发布时间:2023-05-30T01:49:53.790Z 来源:《工程管理前沿》2023年6期作者:文玲敏[导读] 近年来,随着社会的发展钢材生产工艺有了很大的提高,从而促进了新型高强度结构钢的出现。

超高强度钢材与普通钢材相比,超高强度钢材轴心受压钢柱的整体稳定性更高,承载力更强,强度优势非常明显。

目前在国内外多个建筑取得了成功的应用。

新疆城建(集团)股份有限公司新疆维吾尔自治区乌鲁木齐市 830000摘要:近年来,随着社会的发展钢材生产工艺有了很大的提高,从而促进了新型高强度结构钢的出现。

超高强度钢材与普通钢材相比,超高强度钢材轴心受压钢柱的整体稳定性更高,承载力更强,强度优势非常明显。

目前在国内外多个建筑取得了成功的应用。

本文主要对我国钢结构工程中超高强度钢材应用进行了分析,并对高强度钢材钢结构以后研究进展进行阐述,以供参考。

关键词:高强度钢材;钢结构;工程应用;进展高强度结构钢材一般称为“高强钢”,其屈服强度不低于460MPa,同时具有良好的韧性、焊接性、冷弯性能等。

随着钢材强度的增加,构件可以采用较小的截面尺寸,从而降低结构的钢材消耗量,减轻结构自重,扩大建筑的使用空间,具有良好的节能环境效益。

自钢结构出现以来,其发展与生产工艺、材料性能有直接关系,在应用中也不断改善,使钢结构的使用性能、承载力及经济性能得到提升,促使钢结构快速发展。

近年来,随着工艺技术的发展,钢材的加工性能及强度都极大提升,使得钢结构施工中对高强度钢材的应用效果得到不断提升。

一、钢结构技术在建筑工程中的应用(一)建筑工程中钢结构的钢材选择与构件制作钢结构在建筑工程的应用中大多选择低合金、高强度钢材,合金元素少于5%,屈服强度超出275MPa,且可焊性理想。

相对于普通钢材来说,低合金高强度钢没有经过热处理,应用范围较为广泛。

钢材的类型、规格等需要符合国家产品设计要求,且在进入施工场地前需要进行严格的质量检验,检验合格后方能进场。

超高强度钢

超高强度钢

超高强度钢超高强度钢超高强度钢一般是指屈服强度大于1380MPa的高强度结构钢。

20世纪40年代中期,美国用AISI4340结构钢通过降低回火温度,使钢的抗拉强度达到1600~1900MPa。

50年代以后,相继研制成功多种低合金和中合金超高强度钢,如300M、D6AC和H一11钢等。

60年代研制成功马氏体时效钢,逐步形成18Ni马氏体时效钢系列,70年代中期,美国研制成功高纯度HP310钢,抗拉强度达到2200MPa。

法国研制的35NCDl6钢,抗拉强度大于1850MPa,而断裂韧度和抗应力腐蚀性能都有明显的改进。

80年代初,美国研制成功AFl410二次硬化型超高强度钢,在抗拉强度为1860MPa时,钢的断裂韧度达到160 MPa·m以上,AFl410钢是目前航空和航天工业部门正在推广应用的一种新材料。

中国于50年代初研制成功30CrMnSiNi2A超高强度钢,抗拉强度为1700MPa。

70年代初,结合中国资源条件,研制成功32Si2Mn2MoVA和40CrMnSiMoVA(GC一4)钢。

1980年以来,从国外引进新技术,采用真空冶炼新工艺,先后研制成功45CrNiMoVA (D6AC)、 34Si2MnCrMoVA金元素总量约在5%左右,Cr、Ni和Mn在钢中的主要作用是提高钢的淬透性,以保证较大的零件在适当的冷却条件下获得马氏体组织,Mo、W 和v的主要作用是提高钢的抗回火能力和细化晶粒等。

几种典型钢种的化学成分如表2·12.1。

该类钢通过淬火处理,在Ms点温度以下发生无扩散相变,形成马氏体组织。

采用适宜的温度进行回火处理,析出ε—碳化物,改善钢的韧性,获得强度和韧性的最佳配合。

提高回火温度(250—450℃回火)时,板条马氏体的ε—碳化物发生转变和残留奥氏体分解形成Fe3C渗碳体,钢的韧性明显下降,此现象称为回火马氏体脆性。

产生此种回火脆性的原因主要是由于钢中的硫、磷等杂质元素在奥氏体晶界偏聚和渗碳体沿晶界分布,降低了晶界结合强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高强度马氏体时效钢的发展
• 18Ni,20Ni和25Ni,以18Ni系制造最为容易且应用最为广泛 • 20世纪60年代初由国际镍公司(INCO)首先开发出来的。1961~ 1962年间该公司Decker 等人发现,在Fe-Ni马氏体合金中同时加 入Co、Mo可使马氏体时效硬化效果大大提高,并通过调整Co、Mo、 Ti含量得18Ni系马氏体时效钢。 • 到了70年代,日本因开发浓缩铀离心机,对马氏体时效钢进行了 系统、深入的研究。 • 进入80年代以来,作为战略元素Co的资源短缺、价格不断上涨, 无钴马氏体时效钢的研制始于美国,国际镍公司(INCO) 与钨钒 高速工具钢公司(Vasco) 合作, 开发了T-250无钴马氏体时效钢。 • 在20世纪60年代后期又开发了马氏体时效不锈钢。
• 1946年carnagic Illinors公司,第一个发现stainless w不锈钢。 • 1948年,armco steel公司开发了17-4PH和17-7PH,1965年开发了155PH,1968年通过降低cr含量,增加Ni含量研发强度更高的PH13-8Mo 马氏体沉淀硬化不锈钢。 • Martin等人于1997和2003年获得custom465和custom475的专利。 • 近年来,出现了强度超过1900MPa的超高强钢Ferriums53和F863钢
• 高Co-Ni高强度钢从最初的提高碳来增加强度(HP9-4-X系列),到降 碳增钴提高强度和韧性(AF1410),到现在发展的G99, Aermet100,0.2AF1410又回到了以提高碳提高强度,碳含量现在为 0.2%-0.26%,基体由韧性良好的板条状马氏体转变为韧性较差的片状 马氏体,碳含量达到了极限,现在追求的是Cr+Mo和碳的最佳配比, 最希望同时出现碳化物和金属间化合物。第二个方向是通过调整钢的 成分控制逆转变奥氏体的稳定性。利用奥氏体的相变韧化提高钢的韧 性在TRIP 钢和部分奥氏体不锈钢中获得了很大成功。
• • • • •
马氏体时效钢的发展趋向为: (1) 生产超纯净马氏体时效钢, 改进马氏体时效钢组织结构的均匀性; ( 2) 进一步研究晶粒超细化工艺; ( 3) 无钴超高强度马氏体时效钢开发及强韧化机理研究; ( 4) 高度弥散金属间化合物的形貌、组分、结构以及残留奥氏体的 数量、形貌、分布状态对马氏体时效钢性能的影响; • ( 5) 稀土元素在马氏体时效钢中作用机理研究。
超高强度钢的结构与性能研究进展
低合金中碳马氏体超强化钢
• 40CrNiMo(AISI4340钢),美国于20世纪40年代中期研制 成功,经淬火和低温回火后,抗拉强度约为1900MPa。在 50年代初,在这种钢的基础上添加1.6%的Si和0.1%的V, 制成300M钢,抗拉强度约在1900-2050MPa。真空熔炼降低 钢中杂质元素含量,改善钢的横向塑性和韧性,由于钢中 合金元素含量较低,成本低,生产工艺简单,广泛用于飞 机大梁、起落架、发动机轴,高强度螺栓,固体火箭发动 机壳体和化工高压容器等。 • 70年代,美国在300M基础上降C增Si,改善韧性,发展成 HP310钢;在马氏体时效钢的基础上研究成AF1410钢,抗 拉强度为1660MPa,断• 热作模具钢的改型钢,典型钢种有4Cr5MoSiV钢。这类钢的含碳量约 0.4%,合金元素总含量约8%, 奥氏体化后空冷,获得马氏体组织。这 类钢的特点是回火稳定性高,在500℃左右条件下使用,仍有较高的强 度,一般用于制造飞机发动机零件。 • 稀土硅铁合金对4Cr5MoSiV钢组织和性能的影响
• (1) 降低钢中气体、夹杂物和有害元素含量,改进马氏体时效不锈钢 组织结构的均匀性, 提高现有钢种的强、韧性以及耐蚀性。 • (2) 进一步研究晶粒超细化工艺。通过改善合金化、控制轧制及形变 热处理, 在析出强化的同时, 充分发挥形变、相变和细晶强化的综合 作用,提高钢的综合力学性能。 • (3) 开发R0.2\1200 MPa 耐海水腐蚀马氏体时效不锈钢, 提高铬、钼 等耐腐蚀元素的含量, 进一步改善马氏体时效不锈钢的耐腐蚀性能。 • (4) 无钴超高强度( Rb \1800 MPa) 马氏体时效不锈钢的开发及强韧 化机理研究。 • (5) 进一步研究高度弥散金属间化合物的形貌、组分、结构以及残留 奥氏体的数量形貌、分布状态对马氏体时效不锈钢性能的影响。 • (6) 稀土元素在马氏体时效不锈钢中作用机理研究。
• 从基体组织看,具备高位错密度的马氏体组织,要有足够的强化相析 出,一般要加入Mo元素,强化相多,细小弥散,可加入少量Ti。从成 分来看,一般为低碳马氏体不锈钢,可以提高耐蚀性,焊接性能。 • 马氏体时效不锈钢是由低碳马氏体相变强化和时效强化两种强化效应 叠加的高强度不锈钢,是20世纪60年代后期发展起来的新钢类 • 1961,美国Carpenter Technology Co.不含钴的Custom 450、 Custom455 及X-15、X-23。同期AM363、Almar326、In736、PH13-8Mo、 UnimarCR
• 高合金中碳Ni—Co型超高强度钢,是在具有高韧性、低脆性转变温度 的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高 钢的Ms(马氏体转变)温度,减少钢中的残余奥氏体,同时,钻在镍 钢中起固溶强化作用,还通过加钻来获得钢的自回火特性,从而使这 类钢具有优良的焊接性能。碳在这类钢中起强化作用。钢中还含有少 量铬和钼,以便在回火时产生弥散强化效应。主要牌号有HP9-4-25, HP9-4-30,HP9-4-45以及改型的AF1410(0.16%C-10%Ni-14%Co-1%Mo2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀性好,具有 良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇亮体等产品 上。
相关文档
最新文档