初中数学中考知识点:直角三角形

合集下载

初三中考数学常用知识点整理

初三中考数学常用知识点整理

初三中考数学常用知识点整理求学的三个条件是:多观察、多吃苦、多研究。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。

下面是小编给大家整理的一些中考数学常用的知识点,希望对大家有所帮助。

中考数学常用知识点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。

圆的切线性质:经过切点的半径垂直于圆的切线。

2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

切线长定理:过圆外一点所作的圆的两条切线长相等。

2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。

三角形的内心是三角形的三条角平分线的交点。

3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。

光线叫做投影线,投影所在的平面叫做投影面。

由平行的投射线所形成的投射叫做平行投影。

可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

主视图、左视图和俯视图合称三视图。

产生主视图的投影线方向也叫做主视方向。

九年级中考常用数学知识点圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心

初中数学知识点:三角形的内心、外心、中心、重心三角形的四心定义:1、内心:三角形三条内角平分线的交点,即内切圆的圆心。

内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。

2、外心:是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

3、中心:三角形只有五种心重心、垂心、内心、外心、旁心,当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心。

4、重心:重心是三角形三边中线的交点。

三角形的外心的性质:1.三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心;2三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合;3.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合。

在△ABC中4.OA=OB=OC=R5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA6.S△ABC=abc/4R三角形的内心的性质:1.三角形的三条角平分线交于一点,该点即为三角形的内心2.三角形的内心到三边的距离相等,都等于内切圆半径r3.r=2S/(a+b+c)4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.5.∠BOC = 90 °+∠A/2 ∠BOA = 90°+∠C/2 ∠AOC = 90 °+∠B/26.S△=[(a+b+c)r]/2 (r是内切圆半径)三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

直角三角形知识点

直角三角形知识点

直角三角形知识点直角三角形是初中数学几何部分的重要内容,具有独特的性质和广泛的应用。

接下来,让我们一起深入了解直角三角形的相关知识点。

首先,直角三角形的定义是一个内角为 90 度的三角形。

其中,直角所对的边称为斜边,其余两条边称为直角边。

直角三角形有一个非常重要的定理——勾股定理。

勾股定理指出:在直角三角形中,两条直角边的平方和等于斜边的平方。

即如果直角三角形的两条直角边分别为 a 和 b,斜边为 c,那么 a²+ b²= c²。

这个定理是解决直角三角形相关问题的重要工具。

例如,已知一个直角三角形的两条直角边分别为 3 和 4,那么斜边的长度就可以通过勾股定理计算:3²+ 4²= 9 + 16 = 25,所以斜边的长度为 5 。

直角三角形的性质还有很多。

直角三角形的两个锐角互余,也就是说,两个锐角的和为 90 度。

比如,如果一个锐角是 30 度,那么另一个锐角就是 60 度。

直角三角形斜边上的中线等于斜边的一半。

假设直角三角形 ABC 中,∠C 为直角,D 是斜边 AB 的中点,那么 CD = 1/2 AB 。

在直角三角形中,如果一个锐角等于 30 度,那么它所对的直角边等于斜边的一半。

比如在直角三角形 ABC 中,∠C = 90 度,∠A =30 度,斜边 AB = 10,那么 BC = 1/2 AB = 5 。

直角三角形的面积计算也有独特的方法。

它的面积等于两条直角边乘积的一半,或者等于斜边乘以斜边上高的一半。

接下来,我们再说说直角三角形的判定方法。

如果一个三角形的三条边满足 a²+ b²= c²,那么这个三角形就是直角三角形。

如果一个三角形的两个内角互余,那么这个三角形也是直角三角形。

在实际应用中,直角三角形的知识经常被用到。

比如在建筑工程中,工人师傅常常需要通过测量直角三角形的边长来确定建筑物的角度和尺寸;在导航中,通过测量角度和距离来确定位置也会用到直角三角形的知识。

第三讲 直角三角形的边角关系讲义

第三讲 直角三角形的边角关系讲义

第三讲 直角三角形的边角关系知识点一 正切,正弦及余弦的定义1、正切的定义的对边与邻边的比便随之确定,这个比叫做∠A 的正切,记作例1 如图,△ABC 是等腰直角三角形,求tanC.例2 如图, 已知在Rt △ABC 中,∠C=90°,CD ⊥AB ,AD=8,BD=4,求tanA 的值。

C B A有什么发现?请加以证明。

3、三角函数的定义(重点)能判断谁的木棒更陡吗?说明理由。

同步练习:1、∠C=90°,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,求CD 的长。

2、P 是a 的边OA 上一点,且P 点的坐标为(3,4),求sina 、tana 的值。

3、在△ABC 中,D 是AB 的中点,DC ⊥AC ,且tan ∠BCD=31,求tanA 的值。

4、在Rt △ABC 中,∠C=90°,tanA=125,周长为30,求△ABC 的面积。

5、(2008·浙江中考)在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD=2,AC=3,则sinB 的值是多少?知识点二 30°,45°,60°角的三角函数值例 求下列各式的值。

(1)︒︒-︒60tan 30sin 60sin ;(2)︒-+︒-︒45sin 22460tan 460tan 2。

同步练习:1、 求下列各式的值。

(1)︒+︒+︒45tan 30tan 330sin 2; (2)︒⋅︒+︒30cos 60tan 45cos 2。

(3) 6tan 2 30°-3sin 60°+2tan45°(4)022)30tan 45(sin )60cos (160sin 260sin 60tan 245tan o o o o o oo-+-++----2、 已知a 为锐角,且tana=5,求aa aa sin cos 2cos 3sin +-的值。

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形-知识点归纳及典型题解析

新人教版初中数学——等腰三角形与直角三角形知识点归纳与典型题解析一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2. (2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴. 2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). 4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A∠-︒.典例1 等腰三角形的一个内角为40°,则其余两个内角的度数分别为( ) A .40°,100° B .70°,70°C .60°,80°D .40°,100°或70°,70°【答案】D【解析】①若等腰三角形的顶角为40°时,另外两个内角=(180°–40°)÷2=70°; ②若等腰三角形的底角为40°时,它的另外一个底角为40°,顶角为180°–40°–40°=100°. 所以另外两个内角的度数分别为:40°、100°或70°、70°.故选D .【名师点睛】考查了等腰三角形的性质和三角形的内角和为180o ,解题关键是分情况进行讨论①已知角为顶角时;②已知角为底角时.典例2 如图,在ABC ∆中,AB =AC ,D 是BC 的中点,下列结论不正确的是( )A.AD BC B.∠B=∠CC.AB=2BD D.AD平分∠BAC【答案】C【解析】因为△ABC中,AB=AC,D是BC中点,根据等腰三角形的三线合一性质可得,A.AD⊥BC,故A选项正确;B.∠B=∠C,故B选项正确;C.无法得到AB=2BD,故C选项错误;D.AD平分∠BAC,故D选项正确.故选C.【名师点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质.1.等腰三角形的周长为13cm,其中一边长为4cm,则该等腰三角形的底边为__________cm.考向二等腰三角形的判定1.等腰三角形的判定定理是证明两条线段相等的重要依据,是把三角形中的角的相等关系转化为边的相等关系的重要依据.2.底角为顶角的2倍的等腰三角形非常特殊,其底角平分线将原等腰三角形分成两个等腰三角形.典例3 如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.2.已知在△ABC中,AB=5,BC=2,且AC的长为奇数.(1)求△ABC的周长;(2)判断△ABC的形状.考向三等边三角形的性质1.等边三角形具有等腰三角形的一切性质.2.等边三角形是轴对称图形,它有三条对称轴.3.等边三角形的内心、外心、重心和垂心重合.典例4 如图,在△ABC中,∠B=∠C=60°,点D为AB边的中点,DE⊥BC于E,若BE=1,则AC 的长为__________.【答案】4【解析】∵DE ⊥BC ,∠B =∠C =60°, ∴∠BDE =30°,∴BD =2BE =2,∵点D 为AB 边的中点,∴AB =2BD =4, ∵∠B =∠C =60°,∴△ABC 为等边三角形, ∴AC =AB =4,故答案为:4.【名师点睛】本题主要考查直角三角形的性质、等边三角形的判定和性质,利用直角三角形的性质求得AB =2BD 是解题的关键.3.如图,ABC ∆是等边三角形,点D 在AC 上,以BD 为一边作等边BDE ∆,连接CE . (1)说明ABD CBE ∆≅∆的理由; (2)若080BEC ∠=,求DBC ∠的度数.考向四 等边三角形的判定在等腰三角形中,只要有一个角是60°,无论这个角是顶角还是底角,这个三角形就是等边三角形.典例5 下列推理中,错误的是A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 【答案】B【解析】A,∵∠A=∠B=∠C,∴△ABC是等边三角形,故正确;B,条件重复且条件不足,故不正确;C,∵∠A=60°,∠B=60°,∴∠C=60°,∴△ABC是等边三角形60°,故正确;D,根据有一个角是60°的等腰三角形是等边三角形可以得到,故正确.故选B.4.如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.考向五直角三角形在直角三角形中,30°的角所对的直角边等于斜边的一半,这个性质常常用于计算三角形的边长,也是证明一边(30°角所对的直角边)等于另一边(斜边)的一半的重要依据.当题目中已知的条件或结论倾向于该性质时,我们可运用转化思想,将线段或角转化,构造直角三角形,从而将陌生的问题转化为熟悉的问题.典例6 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若∠B=30°,BD=6,则CD 的长为__________.【答案】3【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°.又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案为:3.5.已知直角三角形的两条边分别是5和12,则斜边上的中线的长度为__________.考向六 勾股定理1.应用勾股定理时,要分清直角边和斜边,尤其在记忆a 2+b 2=c 2时,斜边只能是c .若b 为斜边,则关系式是a 2+c 2=b 2;若a 为斜边,则关系式是b 2+c 2=a 2.2.如果已知的两边没有明确边的类型,那么它们可能都是直角边,也可能是一条直角边、一条斜边,求解时必须进行分类讨论,以免漏解.典例7 cm cm ,则这个直角三角形的周长为__________.【答案】【解析】∵直角边长为cm cm ,∴斜边(cm ),∴周长cm ).故答案为:【名师点睛】本题考查了二次根式与三角形边长,面积的综合运用.熟练掌握勾股定理的计算解出斜边是关键6.如图所示,在ABC ∆中,90B ∠=︒,3AB =,5AC =,D 为BC 边上的中点.(1)求BD 、AD 的长度;(2)将ABC ∆折叠,使A 与D 重合,得折痕EF ;求AE 、BE 的长度.1.直角三角形两直角边长分别为6和8,则此直角三角形斜边上的中线长是 A .3B .4C .7D .52.如图,ABC △是等边三角形,0,20BC BD BAD =∠=,则BCD ∠的度数为A .50°B .55°C .60°D .65°3.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10m ,AD 为支柱(即底边BC 的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于A .10mB .5mC .2.5mD .9.5m4.如图,ABC ∆是边长为1的等边三角形,BDC ∆为顶角120BDC ∠=︒的等腰三角形,点M 、N 分别在AB 、AC 上,且60MDN ∠=︒,则AMN ∆的周长为A.2 B.3 C.1.5 D.2.55.如图,△ABC中,D、E两点分别在AC、BC上,AB=AC,CD=DE.若∠A=40°,∠ABD:∠DBC=3:4,则∠BDE=A.24°B.25°C.30°D.35°6.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为A.22 B.17C.17或22 D.267.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为A.6 B.5C.4 D.38.如图,A、B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC是等腰三角形,则符合条件是点C共有A .8个B .9个C .10个D .11个9.如图,Rt △ABC 中,∠B =90〬,AB =9,BC =6,,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段AN 的长等于A .5B .6C .4D .310.将一个有45°角的三角尺的直角顶点C 放在一张宽为3 cm 的纸带边沿上,另一个顶点A 在纸带的另一边沿上,测得三角尺的一边AC 与纸带的一边所在的直线成30°角,如图,则三角尺的最长边的长为A .6B .C .D .11.三角形的三边a ,b ,c (b ﹣c )2=0;则三角形是_____三角形. 12.如图,等腰△ABC 中,AB =AC =13cm ,BC =10cm ,△ABC 的面积=________.13.已知等腰三角形一腰上的高与另一腰的夹角为35°,则这个等腰三角形顶角的度数为__________. 14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为__________.15.如图,在ABC △中,AB AC =,D 、E 分别是BC 、AC 上一点,且AD AE =,12EDC ∠=︒,则BAD ∠=__________.16.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠EFD=__________°.17.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上的一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为__________.18.如图,在Rt△ABC中,点E在AB上,把△ABC沿CE折叠后,点B恰好与斜边AC的中点D 重合.(1)求证:△ACE为等腰三角形;(2)若AB=6,求AE的长.19.如图,一架2.5 m 长的梯子斜立在竖直的墙上,此时梯足B 距底端O 为0.7 m .(1)求OA 的长度;(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?20.ABC ∆与DCE ∆有公共顶点C (顶点均按逆时针排列),AB AC =,DC DE =,180BAC CDE ∠+∠=︒,//DE BC ,点G 是BE 的中点,连接DG 并延长交直线BC 于点F ,连接,AF AD .(1)如图,当90BAC ∠=︒时, 求证:①BF CD =; ②AFD ∆是等腰直角三角形.(2)当60BAC ∠=︒时,画出相应的图形(画一个即可),并直接指出AFD ∆是何种特殊三角形.21.已知:如图,有人在岸上点C 的地方,用绳子拉船靠岸,开始时,绳长CB =10米,CA ⊥AB ,且CA =6米,拉动绳子将船从点B 沿BA 方向行驶到点D 后,绳长CD (1)试判定△ACD 的形状,并说明理由; (2)求船体移动距离BD 的长度.1.如图,在OAB △和OCD △中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为A .4B .3C .2D .12.在△ABC 中,AB =AC ,∠A =40°,则∠B =__________.3.如图,在△ABC 中,AB =AC ,点D ,E 都在边BC 上,∠BAD =∠CAE ,若BD =9,则CE 的长为__________.4.如图,在四边形ABCD 中,AB CD ∥,连接AC ,BD .若90ACB ∠=︒,AC BC =,AB BD =,则ADC ∠=__________︒.5.腰长为5,高为4的等腰三角形的底边长为__________.6.若等腰三角形的一个底角为72︒,则这个等腰三角形的顶角为__________.7.如图,△ABC 中,AB =BC ,∠ABC =90°,F 为AB 延长线上一点,点E 在BC 上,且AE =CF ,若∠BAE =25°,则∠ACF =__________度.8.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.9.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若∠C =42°,求∠BAD 的度数;(2)若点E 在边AB 上,EF ∥AC 交AD 的延长线于点F .求证:AE =FE .10.如图,在△ABC 中,AB =AC ,点D 、E 分别在AB 、AC 上,BD =CE ,BE 、CD 相交于点O .求证:(1)DBC ECB △≌△; (2)OB OC =.11.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E 作EF ∥BC 交AB 于点F . (1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF ∥AC 叫AD 的延长线于点F .求证:FB =FE .12.在ABC △中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =; (3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:AB AN +=.1.【答案】4cm 或5cm【解析】当长是4cm 的边是底边时,腰长是12(13–4)=4.5, 三边长为4cm ,4.5cm ,4.5cm ,等腰三角形成立;当长是4cm 的边是腰时,底边长是:13–4–4=5cm ,等腰三角形成立. 故底边长是:4cm 或5cm .故答案是:4cm 或5cm【名师点睛】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论,不要漏解. 2.【解析】(1)由题意得:5−2<AB <5+2,即:3<AB <7,∵AB 为奇数,∴AB =5, ∴△ABC 的周长为5+5+2=12. (2)∵AB =AC =5, ∴△ABC 是等腰三角形. 3.【答案】(1)见解析;(2)20°.【解析】(1)由060ABC DBE ∠=∠=,得ABD CBE ∠=∠,由,AB BC BD BE ==, 得ABD CBE ∆≅∆(SAS );(2)由ABD CBE ∆≅∆,得060BCE A ∠=∠=,所以00000180180806040CBE BEC BCE ∠=-∠-∠=--=, 所以000060604020DBC CBE ∠=-∠=-=.【名师点睛】本题主要考查全等三角形的判定和性质以及三角形内角和定理,先证明三角形全等是解决本题的突破口. 4.【答案】5【解析】已知∠AON =60°,当OP =OA =5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5. 5.【答案】6或6.5【解析】分两种情况:①5和12是两条直角边,根据勾股定理求得斜边为13,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6.5;②5是直角边,12为斜边,利用直角三角形斜边的中线等于斜边的一半即可得斜边上的中线的长度为6,故答案为:6或6.5.6.【答案】(1)BD =2,AD =2)136AE =,56BE = 【解析】(1)∵在ABC ∆中,90B ∠=︒,3AB =,5AC =, ∴在Rt ABC ∆中,222225316BC AC AB =-=-=, ∴4BC =,又∵D 为BC 边上的中点, ∴122BD DC BC ===, ∴在Rt ABD ∆中,222222133AD AB BD =+=+=,∴AD =(2)ABC ∆折叠后如图所示,EF 为折痕,连接DE ,设AE x =,则DE x =,3BE x =-,在Rt BDE ∆中,222BE BD DE +=,即()22232x x -+=,解得:136x =, ∴136AE =, ∴135366BE =-=. 【名师点睛】本题主要考查了勾股定理的应用,也考查了折叠的性质.是常见中考题型.1.【答案】D【解析】∵两直角边分别为6和8,∴斜边10=, ∴斜边上的中线=12×10=5,故选D . 【名师点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理的应用,熟记性质是解题的关键. 2.【答案】A 【解析】ABC △是等边三角形,AC AB BC ∴==,又BC BD =,AB BD ∴=,∴20BAD BDA ∠=∠=︒0180CBD BAD BDA ABC ∴∠=-∠-∠-∠0000018020206080=---=,BC BD =,∴11(180)(18080)5022BCD CBD ∠=⨯︒-∠=⨯︒-︒=︒,故选A .【名师点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键. 3.【答案】B【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°, ∵DE ⊥AB ,DF ⊥AC ,垂足为E ,F ,∴DE =12BD ,DF =12DC , ∴DE +DF =12BD +12DC =12(BD +DC )=12B C .∴DE +DF =12BC =12×10=5m .故选B . 【名师点睛】本题考查等腰三角形和直角三角形的性质,熟练掌握相关知识点是解题关键. 4.【答案】A【解析】如图所示,延长AC 到E ,使CE =BM ,连接DE ,∵BD =DC ,∠BDC =120°,∴∠CBD =∠BCD =30°, ∵∠ABC =∠ACB =60°,∴∠ABD =∠ACD =∠DCE =90°,在△BMD 和△CED 中,90BD CDDBM DCE BM CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△BMD ≌△CED (SAS ),∴∠BDM =∠CDE ,DM =DE , 又∵∠MDN =60°,∴∠BDM +∠NDC =60°, ∴∠EDC +∠NDC =∠NDE =60°=∠NDM , 在△MDN 和△EDN 中,DM DEMDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩,∴△MDN ≌△EDN (SAS ), ∴MN =NE =NC +CE =NC +BM ,所以△AMN 周长=AM +AN +MN =AM +AN +NC +BM =AB +AC =2. 故选A.【名师点睛】本题考查全等三角形的判定和性质,做辅助线构造全等三角形,利用等边三角形的性质得到全等条件是解决本题的关键.5.【答案】C【解析】∵AB=AC,CD=DE,∴∠C=∠DEC=∠ABC,∴AB∥DE,∵∠A=40°,∴∠C=∠DEC=∠ABC=18040702,∵∠ABD:∠DBC=3:4,∴设∠ABD为3x,∠DBC为4x,∴3x+4x=70°,∴x=10°,∴∠ABD=30°,∵AB∥DE,∴∠BDE=∠ABD=30°,故答案为C.【名师点睛】本题主要考查了等腰三角形的性质:等边对等角和三角形内角和定理求解,难度适中.6.【答案】A【解析】分两种情况:①当腰为4时,4+4<9,所以不能构成三角形;②当腰为9时,9+9>4,9-9<4,所以能构成三角形,周长是:9+9+4=22.故选A.7.【答案】C【解析】∵AB=AC=5,AD平分∠BAC,BC=6,∴BD=CD=3,∠ADB=90°,∴AD=4.故选C.8.【答案】B【解析】如图,①点C以点A为标准,AB为底边,符合点C的有5个;②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.所以符合条件的点C共有9个.故选B.9.【答案】A【解析】设AN=x,由翻折的性质可知DN=AN=x,则BN=9-x.∵D是BC的中点,∴BD=1632⨯=.在Rt△BDN中,由勾股定理得:ND2=NB2+BD2,即x2=(9-x)2+32,解得x=5,AN=5,故选A.10.【答案】D【解析】如图,作AH⊥CH,在Rt △ACH 中,∵AH =3,∠AHC =90°,∠ACH =30°,∴AC =2AH =6,在Rt △ABC 中,AB ==D .11.【答案】等边【解析】三角形的三边a ,b ,c 2()0b c -=,20,()0b c =-=,0,0a b b c ∴-=-=,解得:,a b b c ==,即a b c ==,则该三角形是等边三角形.故答案为:等边.【名师点睛】本题是一道比较好的综合题,考查了算术平方根的非负性、平方数的非负性、等边三角形的定义. 12.【答案】60cm 2.【解析】过点A 作AD ⊥BC 交BC 于点D , ∵AB =AC =13cm ,BC =10cm , ∴BD =CD =5cm ,AD ⊥BC ,由勾股定理得:AD (cm ), ∴△ABC 的面积=12×BC ×AD =12×10×12=60(cm 2).【名师点睛】本题考查的是等腰三角形的性质及勾股定理,能根据等腰三角形的“三线合一”正确的添加辅助线是关键. 13.【答案】55°或125°【解析】如图,分两种情况进行讨论:如图1,当高在三角形内部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; 如图2,当高在三角形外部时,则∠ABD =35°,∴∠BAD =90°–35°=55°; ∴∠CAB =180°–55°=125°, 故答案为55°或125°.【名师点睛】本题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键. 14.【答案】10【解析】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=10,因为6-6<10<6+6,所以能构成三角形,故腰长为10.故答案为:10. 15.【答案】24︒【解析】∵ADC ∠是三角形ABD 的外角,AED ∠是三角形DEC 的一个外角,CDE x ∠=︒, ∴ADC BAD B ADE EDC ∠=∠+∠=∠+∠,AED EDC C ∠=∠+∠,B BAD ADE x ∠+∠=∠+︒,AEDC x ∠=∠+︒,∵AB AC =,D 、E 分别在BC 、AC 上,AD AE =,CDE x ∠=︒,∴B C ∠=∠,20ADE AED C ∠=∠=∠+︒,∴C BAD C x x ∠+∠=∠︒++︒,∵12EDC ∠=︒,∴24BAD ∠=︒,故答案为:24︒.16.【答案】15【解析】∵△ABC 是等边三角形,∴∠ACB =60°,∠ACD =120°, ∵CG =CD ,∴∠CDG =30°,∠FDE =150°, ∵DF =DE ,∴∠E =15°.故答案为:15.17.【答案】【解析】如图,过点A 1作A 1M ⊥BC 于点M .∵点A 的对应点A 1恰落在∠BCD 的平分线上,∠BCD =90°,∴∠A 1CM =45°,即△AMC 是等腰直角三角形,∴设CM =A 1M =x ,则BM =7-x .又由折叠的性质知AB =A 1B =5,∴在直角△A 1MB 中,由勾股定理得A 1M 2=A 1B 2-BM 2=25-(7-x )2,∴25-(7-x )2=x 2,解得x 1=3,x 2=4,∵在等腰Rt △A 1CM 中,CA 1A 1M ,∴CA 1.故答案为:18.【答案】(1)见解析;(2)4.【解析】(1)∵把△ABC 沿CE 折叠后,点B 恰好与斜边AC 的中点D 重合, ∴CD =CB ,∠CDE =∠B =90°,AD =CD ,在△ADE 和△CDE 中,90AD CDADE CDE ED ED =⎧⎪∠=∠=⎨⎪=⎩,∴△ADE ≌△CDE (SAS ), ∴EA=EC ,∴△ACE 为等腰三角形; (2)由折叠的性质知:∠BEC =∠DEC , ∵△ADE ≌△CDE ,∴∠AED =∠DEC , ∴∠AED =∠DEC =∠BEC =60°,∴∠BCE =30°,∴12BE CE =, 又∵EA=EC ,∴11223BE AE AB ===,∴AE=4.【名师点睛】本题考查了折叠的性质、全等三角形的判定和性质、等腰三角形的定义和30°角的直角三角形的性质,属于常考题型,熟练掌握上述图形的性质是解题关键. 19.【解析】在直角△ABO 中,已知AB =2.5 m ,BO =0.7 m ,则AO , ∵AO =AA ′+OA ′,∴OA ′=2 m ,∵在直角△A ′B ′O 中,AB =A ′B ′,且A ′B ′为斜边, ∴OB ′=1.5 m ,∴BB ′=OB ′-OB =1.5 m -0.7 m=0.8 m . 答:梯足向外移动了0.8 m .20.【答案】(1)①详见解析;②详见解析;(2)详见解析;【解析】(1)证明:①∵//DE BC ,∴GBF GED ∠=∠. 又,BG EG FGB DGE =∠=∠, ∴(ASA)GBF GED ∆∆≌,∴BF ED =. 又CD ED =,∴BF CD =;②当90BAC ∠=︒时,45ABC ACB ∠=∠=︒, ∵180BAC CDE ︒∠+∠=,∴90CDE ︒∠=.∵//DE BC ,∴90,45BCD CDE ACD ︒︒∠=∠=∠=,∴ABF ACD ∠=∠;又,AB AC BF CD ==,∴()ABF ACD SAS ∆∆≌, ∴,AF AD BAF CAD =∠=∠, ∴BAF FAC CAD FAC ∠+∠=∠+∠ 即90BAC FAD ∠=∠=︒,∴AFD ∆是等腰直角三角形.(2)所画图形如图1或图②,此时AFD ∆是等边三角形.图1 图2 与(1)同理,可证ABF ACD ∆∆≌, ∴AF =AD ,60BAC FAD ∠=∠=︒, ∴△AFD 是等边三角形.【名师点睛】本题考查了等边三角形的判定,等腰三角形的判定和性质,以及全等三角形的判定和性质,平行线的性质,解题的关键是正确找到证明三角形全等的条件,利用全等三角形的性质得到边的关系,角的关系.21.【解析】(1)由题意可得:AC =6 m ,DCm ,∠CAD =90°,可得AD(m ), 故△ACD 是等腰直角三角形.(2)∵AC =6 m ,BC =10 m ,∠CAD =90°, ∴AB(m ), 则BD =AB -AD =8-6=2(m ). 答:船体移动距离BD 的长度为2 m .1.【答案】B【解析】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD △中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴AOC BOD △≌△,∴OCA ODB AC BD ∠=∠=,,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠, ∴40AMB AOB ∠=∠=°,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG △和ODH △中,OCA ODBOGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴OCG ODH △≌△,∴OG OH =,∴MO平分BMC ∠,④正确,正确的个数有3个,故选B . 2.【答案】70°【解析】∵AB =AC ,∴∠B =∠C , ∵∠A +∠B +∠C =180°,∴∠B =12(180°-40°)=70°.故答案为:70°. 3.【答案】9【解析】∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,BAD CAE AB ACB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BAD ≌△CAE , ∴BD =CE =9,故答案为:9. 4.【答案】105【解析】作DE AB ⊥于E ,CF AB ⊥于F ,如图所示,则DE CF =,∵CF AB ⊥,90ACB ∠=︒,AC BC =,∴12CF AF BF AB ===, ∵AB BD =,∴1122DE CF AB BD ===,BAD BDA ∠=∠, ∴30ABD ∠=︒,∴75BAD BDA ∠=∠=︒,∵AB CD ∥,∴180ADC BAD ∠+∠=︒,∴105ADC ∠=︒,故答案为:105.5.【答案】6或【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6; ②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴BC == ③如图3,当5AB AC ==,4CD =时,则3AD ==,∴8BD =,∴BC =∴此时底边长为6或【名师点睛】本题考查了勾股定理,等腰三角形的性质,解题的关键是分三种情况分类讨论. 6.【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.【名师点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 7.【答案】70【解析】∵∠ABC =90°,AB =AC ,∴∠CBF =180°–∠ABC =90°,∠ACB =45°, 在Rt △ABE 和Rt △CBF 中,AB CBAE CF=⎧⎨=⎩,∴Rt △ABE ≌Rt △CBF ,∴∠BCF =∠BAE =25°,∴∠ACF =∠ACB +∠BCF =45°+25°=70°,故答案为:70.【名师点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键. 8.【解析】(1)∵CAF BAE ∠=∠,∴BAC EAF ∠=∠,∵AE AB AC AF ==,, ∴BAC EAF △≌△, ∴EF BC =.(2)∵65AB AE ABC =∠=︒,, ∴18065250BAE ∠=︒-︒⨯=︒, ∴50FAG ∠=︒, ∵BAC EAF △≌△, ∴28F C ∠=∠=︒, ∴502878FGC ∠=︒+︒=︒.【名师点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,比较简单,基础知识扎实是解题关键. 9.【解析】(1)∵AB =AC ,AD ⊥BC 于点D ,∴∠BAD =∠CAD ,∠ADC =90°,又∠C =42°,∴∠BAD =∠CAD =90°-42°=48°. (2)∵AB =AC ,AD ⊥BC 于点D , ∴∠BAD =∠CAD , ∵EF ∥AC , ∴∠F =∠CAD , ∴∠BAD =∠F ,∴AE =FE .10.【解析】(1)∵AB =AC ,∴∠ECB =∠DBC ,在DBC △与ECB △中,BD CE DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩,∴DBC △≌ECB △.(2)由(1)DBC △≌ECB △, ∴∠DCB =∠EBC , ∴OB =OC .11.【解析】(1)∵AB AC =,∴C ABC ∠=∠,∵36C ∠=︒, ∴36ABC ∠=︒,∵D 为BC 的中点,∴AD BC ⊥,∴90903654BAD ABC ∠=-∠=-︒=︒︒︒. (2)∵BE 平分ABC ∠,∴ABE EBC ∠=∠, 又∵EF BC ∥,∴EBC BEF ∠=∠, ∴EBF FEB ∠=∠, ∴BF EF =.【名师点睛】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【解析】(1)∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴AD BD DC ==,45ABC ACB ∠=∠=︒,45BAD CAD ∠=∠=︒, ∵2AB =,∴AD BD DC ===,∵30AMN ∠=︒,∴180903060BMD ∠=︒-︒-︒=︒, ∴30BMD ∠=︒,∴2BM DM =,由勾股定理得,222BM DM BD -=,即222(2)DM DM -=,解得DM =∴AM AD DM =-=(2)∵AD BC ⊥,90EDF ∠=︒,∴BDE ADF ∠=∠,在BDE △和ADF △中,B DAF DB DA BDE ADF ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BDE ADF △≌△, ∴BE AF =.(3)如图,过点M 作//ME BC 交AB 的延长线于E ,∴90AME ∠=︒,则AE =,45E ∠=︒,∴ME MA =,∵90AME ∠=︒,90BMN ∠=︒, ∴BME AMN ∠=∠,在BME △和AMN △中,E MAN ME MA BME AMN ∠=∠=∠=∠⎧⎪⎨⎪⎩,∴BME AMN △≌△,∴BE AN =,∴AB AN AB BE AE +=+==.【名师点睛】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质、直角三角形 的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。

2023届初中数学中考复习-一线三垂直与一线三等角

2023届初中数学中考复习-一线三垂直与一线三等角

一线三垂直与一线三等角一、基础知识回顾1) 三角形内角和定理:三角形三个内角和等于180°2)1 平角= 180 度二、模型的概述:1) 一线三垂直模型[模型概述] 只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。

根据全等三角形倒边,得到线段之间的数量关系。

基础构造1构造2一线三垂直模型一:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD +EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠1 + ∠2 = 90°, ∠2 + ∠3 = 90°∴∠1 = ∠3∠1 = ∠3在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE + BD = AD + EC一线三垂直模型二:如图A B ⊥BC,AB = BC,CE ⊥DE,AD ⊥DE,则∆ABD ≌∆BCE,DE =AD - EC证明:∵CE ⊥DE,AD ⊥DE,AB ⊥BC∴∠CEB = ∠ADB = ∠ABC = 90°∴∠A + ∠ABD = 90°, ∠ABD + ∠CBE = 90°∴∠A = ∠CBE∠A = ∠CBE在∆ABD 和∆BCE 中,〈∠CEB = ∠ADB = 90°AB = BC∴∆ABD ≌∆BCE(AAS)∴AD = BE,EC = BD则DE = BE - BD = AD - EC一线三垂直其它模型1) 图1,已知∠AOC = ∠ADB = ∠CED = 90°, AB = DC,得∆ADB ≌∆DEC2) 图2,延长DE 交AC 于点F,已知∠DBE = ∠ABC = ∠EFC = 90°, AC = DE,得∆ABC ≌∆DBE图1图22) 一线三等角模型[模型概述] 三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

初中数学直角知识点总结

初中数学直角知识点总结

初中数学直角知识点总结一、直角三角形的定义和性质1. 直角三角形的定义直角三角形是一个内有一个直角的三角形。

直角三角形的直角边是直角三角形的边中较短的一条。

2. 直角三角形的性质(1)直角三角形的两个锐角的和等于90度。

(2)直角三角形的斜边最长。

(3)两条直角边的平方和等于斜边的平方。

二、勾股定理1. 勾股定理的定义在直角三角形中,直角边的平方和等于斜边的平方。

2. 勾股定理的应用(1)用勾股定理判断三条边是否能组成直角三角形。

(2)利用勾股定理解决各种几何问题。

三、三角函数1. 正弦函数在直角三角形中,三角形的正弦值定义为直角边与斜边的比值。

即sinA = a/c,sinB = b/c。

2. 余弦函数在直角三角形中,三角形的余弦值定义为直角边与斜边的比值。

即cosA = b/c,cosB = a/c。

3. 正切函数在直角三角形中,三角形的正切值定义为直角边与直角边的比值。

即tanA = a/b,tanB =b/a。

四、举例应用1. 解决三角形边长问题如何利用直角三角形的性质和定理,以及三角函数来解决三角形的边长问题。

2. 解决三角形角度问题如何利用直角三角形的性质和定理,以及三角函数来解决三角形的角度问题。

3. 解决实际问题如何将数学知识应用到实际生活中,解决各种实际问题。

五、总结通过学习和掌握直角三角形的相关知识,学生可以更好地理解三角形的性质和定理,提高解决问题的能力。

同时也可以将数学知识应用到实际生活中,解决各种实际问题。

因此,直角三角形的知识是初中数学学习中至关重要的一部分。

希望学生能够认真学习,并善于应用。

直角三角形和勾股定理知识点总结

直角三角形和勾股定理知识点总结

直角三角形和勾股定理知识点总结直角三角形是指其中一个角为90度的三角形。

在直角三角形中,我们常常使用勾股定理来求解其边长关系。

本文将对直角三角形的性质以及勾股定理进行全面总结,帮助读者更好地理解和应用这一知识点。

一、直角三角形的性质1. 直角三角形的定义:直角三角形是指一个角为90度的三角形。

直角三角形的另外两个角则是锐角(小于90度)或钝角(大于90度)。

2. 直角三角形的特点:a) 直角三角形的两条直角边相互垂直,即互为直角的两边垂直。

b) 直角三角形的斜边是直角两边之间最长的一条。

3. 直角三角形的边关系:a) 斜边:直角三角形的斜边是直角两边之间最长的一条边,通常用字母c表示。

b) 直角边:直角三角形的两边中,与直角相邻的边称为直角边,通常用字母a和b表示。

二、勾股定理勾股定理,也称毕达哥拉斯定理,是描述直角三角形边长关系的重要定理。

其数学表达式为:c² = a² + b²。

根据勾股定理,我们可以根据已知条件求解直角三角形的边长,或者判断一个三角形是否为直角三角形。

三、勾股定理的应用1. 求解直角三角形的边长:当我们已知直角三角形的两条直角边的长度时,可以利用勾股定理求解斜边的长度。

根据勾股定理的数学表达式,我们可以列方程并求解未知数。

2. 判断三角形是否为直角三角形:根据勾股定理,如果一个三角形的三条边满足c²= a²+ b²的关系,那么它就是一个直角三角形。

利用这一定理,我们可以快速判断一个三角形是否为直角三角形。

四、勾股定理的证明勾股定理的证明有多种方法,其中最著名的是几何证明和代数证明。

几何证明利用图形的面积关系,代数证明则通过代数运算来证明。

1. 几何证明:几何证明中最著名的方法是利用正方形切割法和相似三角形法,通过将直角三角形和一些几何图形进行拼接和旋转等操作,从而得出勾股定理成立的结论。

2. 代数证明:代数证明主要利用代数运算和数学等式的性质,将勾股定理的数学表达式带入运算,通过推导和化简等步骤,最终得出勾股定理成立的结果。

直角三角形知识点总结

直角三角形知识点总结

直角三角形知识点总结直角三角形是初中数学中的重要内容,具有独特的性质和广泛的应用。

下面我们来详细总结一下直角三角形的相关知识点。

一、直角三角形的定义有一个角为直角的三角形叫做直角三角形。

直角所对的边称为斜边,其余两条边称为直角边。

二、直角三角形的性质1、角的性质(1)直角三角形的两个锐角互余。

即两锐角之和为 90°。

(2)直角三角形斜边上的中线等于斜边的一半。

2、边的性质(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边分别为 a、b,斜边为 c,那么 a²+ b²=c²。

(2)直角三角形中,30°角所对的直角边等于斜边的一半。

3、面积性质直角三角形的面积等于两直角边乘积的一半。

三、直角三角形的判定1、有一个角为 90°的三角形是直角三角形。

2、若一个三角形的三边满足 a²+ b²= c²,则这个三角形是直角三角形。

四、特殊的直角三角形1、等腰直角三角形(1)两条直角边相等。

(2)两个锐角都为 45°。

(3)斜边是直角边的√2 倍。

2、含 30°角的直角三角形(1)30°角所对的直角边是斜边的一半。

(2)较长的直角边是较短直角边的√3 倍。

五、直角三角形的周长和面积计算1、周长直角三角形的周长等于三条边的长度之和。

2、面积面积=直角边×直角边÷2 或者面积=斜边×斜边上的高÷2六、直角三角形与三角函数在直角三角形中,我们可以引入三角函数来描述边与角的关系。

正弦(sin):对边与斜边的比值。

余弦(cos):邻边与斜边的比值。

正切(tan):对边与邻边的比值。

例如,在一个直角三角形中,如果一个锐角为 A,其对边为 a,邻边为 b,斜边为 c,那么:sin A = a / ccos A = b / ctan A = a / b七、直角三角形的应用直角三角形在实际生活中有广泛的应用,比如建筑工程中的测量、导航中的方向计算、物理学中的力学问题等。

最新初中数学三角形的知识点大全

最新初中数学三角形的知识点大全

初中数学三角形的知识点大全①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中30度角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a、b 、c有下面关系a +b =c,那么这个三角形是直角三角形(勾股定理的逆定理)。

以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。

初中数学等腰三角形的性质定理公式下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。

等腰三角形的性质:①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。

初中数学三角形定理公式对于三角形定理公式的学习,我们做下面的内容讲解学习哦。

三角形三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和定理:三角形的三个内角的和等于180度;三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的’和;三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);三角形的三边的垂直平分线交于一点(外心);三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。

中考数学复习方案第四单元三角形第21课时直角三角形及勾股定理

中考数学复习方案第四单元三角形第21课时直角三角形及勾股定理
综上所述,原直角三角形纸片的斜边长是 4 5或 10,
故答案是:4 5或 10.
第二十五页,共四十页。












考向二 勾股定理(ɡōu ɡǔ dìnɡ lǐ)及其逆定理的应用
例2 [教材(jiàocái)题]一架2.5米长的梯子靠在一座建筑物上,梯子的底部离建筑物0.7米,如果
梯子的顶部滑下0.4米,梯子的底部向外滑出多远?












题组二
易错题
【失分点】
直角的不确定引起的分类讨论;求最短距离时,将立体(lìtǐ)图形展开成平面图形求解.
6.[2018·东营]如图 21-2 所示的圆柱的高 AB=3,底面直径 BC=3,现在有一只蚂蚁
想从 A 处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是 (
A.3 1 + π
的中点,连接BM,MN,BN, ∠BAD=60°,AC平分∠BAD,AC=2,则BN的长为
.






图21-6
第二十二页,共四十页。






[答案] 2
1
[解析]在△ CAD 中,∵M,N 分别是 AC,CD 的中点,∴MN∥AD,MN= AD,
2
1
在 Rt△ ABC 中,∵M 是 AC 的中点,∴BM= AC=1.
∵∠ACB=45°,∴AF=CF=1,
∴DF= 2 - 2 = 3,
∴CD=DF-CF= 3-1.

考点16 直角三角形-备战2023届中考数学一轮复习考点梳理(原卷版)

考点16 直角三角形-备战2023届中考数学一轮复习考点梳理(原卷版)

考点16 直角三角形数学中考中,直角三角形一直是一个较为重要的几何考点,考察难度为中等偏上,常考考点为:直角三角形的性质定理、勾股定理及其逆定理等,特别是含特殊角的直角三角形,更加是考察的重点。

出题类型可以是选择填空题这类小题,也可以是各类解答题,以及融合在综合压轴题中,作为问题的几何背景进行拓展延伸。

结合以上考察形式,需要考生在复习这一模块时,准确掌握有关直角三角形的各种性质与判定方法,以及特殊直角三角形常考的考察方向等。

一、直角三角形的性质和判定二、勾股定理及其逆定理三、勾股定理与弦图、拼图考向一:直角三角形的性质和判定一.直角三角形的性质与判定直角三角形的两个锐角互余性质直角三角形斜边上的中线等于斜边长的一半在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边长的一半判定有一个角是90°的三角形时直角三角形有两个角互余的三角形是直角三角形直角三角形摄影定理图形常见的三个应用方向1.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在边AC 上点E 处,若∠B =65°,则∠ADE 的大小为( )A .40°B .50°C .65°D .75°2.如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,交AC 于点D ,若点D 恰好在边BC 的垂直平分线上,则∠C 的度数为( )A .36°B .30°C .40°D .45°3.如图,在△ABC 中,AB =AC =13,∠BAC =120°,AD 是△ABC 的中线,AE 是∠BAD 的平分线,DF ∥AB 交AE 的延长线于点F ,则DF的长为( )A.5.5B.6.5C.7.5D.64.如图,一架梯子AB斜靠在竖直墙上,点M为梯子AB的中点,当梯子底端向左水平滑动到CD位置时,滑动过程中OM的变化规律是( )A.变小B.不变C.变大D.先变小再变大5.如图,在△ABC中,点D在AB边上且CD=CB,BE⊥AC于点E,AB=8,CE=6,∠ABE=30°,则AD的长等于( )A.1B.1.5C.1.6D.26.如图所示,已知∠AOB=60°,点P在边OA上,OP=13,点M,N在边OB上,PM=PN,若MN=2,则OM的长为( )A.4B.5C.6D.5.57.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD,若∠BAD =52°,则∠EBD= °.8.如图,在Rt△ABC中,∠B=90°,∠ACB=15°,∠ADB=30°,AB=3,则CD= cm.9.如图,在△ABC中,CF⊥AB于点F,BE⊥AC于点E,M为BC的中点.(1)求证:△MEF是等腰三角形;(2)若∠EBC=30°,BC=10cm,求CE的长度.考向二:勾股定理及其逆定理勾股定理及其逆定理勾股定理直角三角形两直角边的平方和等于斜边的平方勾股定理逆定理如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形勾股数能够成为直角三角形三条边长的三个正整数,成为勾股数常见的勾股数:3,4,5及其倍数;5,12,13及其倍数;7,24,25及其倍数;8,15,17及其倍数☆:勾股定理是初中数学中求解长度非常重要的等量关系,故很多求长度的问题没方向时,就往直角三角形勾股定理方向去想。

初三数学:《解直角三角形》知识点总结

初三数学:《解直角三角形》知识点总结

初三数学:《解直角三角形》知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来精品学习网初中频道给大家整理解直角三角形知识点整理,供大家参考阅读。

1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。

这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。

否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。

(2)sinsin22是的简写,读作“sin的平方”,不能将22sin 写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。

知识点总结:等边三角形及含30度直角的直角三角形

知识点总结:等边三角形及含30度直角的直角三角形

知识点总结:等边三角形及含30度直角的直角三角形一、引言本文将详细介绍等边三角形和含30度直角的直角三角形的定义、性质、应用及重难点精析。

等边三角形和直角三角形是初中数学中重要的基本图形,掌握它们的性质和判定对于解决数学问题具有重要意义。

二、等边三角形定义及性质1.等边三角形定义:三边长度相等的三角形称为等边三角形。

2.等边三角形性质:a. 三边长度相等,即任意两边之和等于第三边。

b. 三内角相等,即每个角均为60度。

c. 高等于一边长的一半。

三、含30度直角的直角三角形定义及性质1.含30度直角的直角三角形定义:有一个角为90度,另一个角为30度的三角形称为含30度直角的直角三角形。

2.含30度直角的直角三角形性质:a. 30度角对的直角边等于斜边的一半。

b. 勾股定理成立,即勾股定理中的三个边满足a^2 + b^2 = c^2.其中c为斜边。

c. 面积公式为:S = 1/2 * a * b,其中a和b分别为直角三角形的两直角边长。

四、等边三角形与含30度直角的直角三角形的联系与区别1.联系:等边三角形和含30度直角的直角三角形都是基本图形,具有一些共同的性质,例如三内角相等(等边三角形)或一个角为90度(直角三角形)等。

2.区别:等边三角形的三边长度相等,而含30度直角的直角三角形的斜边长度是直角边长度的两倍。

此外,等边三角形的三个内角均为60度,而含30度直角的直角三角形的两个锐角分别为30度和60度。

五、重难点精析1.等边三角形的证明:等边三角形的三边长度相等,因此可以使用三边长度相等的定理进行证明。

可以让学生们掌握等腰三角形性质并理解等边三角形的定义和判定方法。

2.含30度直角的直角三角形的证明:含30度直角的直角三角形可以使用勾股定理进行证明。

应该重点讲解勾股定理的推导过程及应用方法,以便学生们可以更好地掌握含30度直角的直角三角形的判定方法。

3.面积计算:无论是等边三角形还是含30度直角的直角三角形,面积计算都非常重要。

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)

中考数学知识点总结(优秀4篇)一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成"等边对等角")。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

初中数学知识点精讲精析 直角三角形的性质

初中数学知识点精讲精析 直角三角形的性质

24.2 直角三角形的性质学习目标1.掌握直角三角形的特殊性质:勾股定理。

2. 运用勾股定理进行简单的计算。

知识详解1.勾股定理(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(勾股定理)2.直角三角形的性质直角三角形斜边上的中线等于斜边的一半。

【典型例题】例1:下列说法中,不正确的是()A.三个角的度数之比为1:3:4的三角形是直角三角形B.三个角的度数之比为3:4:5的三角形是直角三角形C.三边长度之比为3:4:5的三角形是直角三角形D.三边长度之比为5:12:13的三角形是直角三角形【答案】B【解析】A、根据三角形的内角和公式求得,各角分别为22.5°,67.5°,90°,所以是直角三角形;B、根据三角形的内角和公式求得,各角分别为45°,60°,75°,所以不是直角三角形;C、两边的平方和等于第三边的平方,符合勾股定理的逆定理,所以能构成直角三角形;D、两边的平方和等于第三边的平,符合勾股定理的逆定理,所以能构成直角三角形.例2:如图中字母A所代表的正方形的面积为()A.4B.8C.16D.64【答案】D【解析】根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.例3:将直角三角形的三条边长同时扩大同一倍数,得到的三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【答案】C【解析】将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形。

【误区警示】易错点1:勾股定理1. 已知一个直角三角形的面积为96,并且两直角边的比为3:4,则这个三角形的斜边为()A.10B.20C.5D.15【答案】Ba=16,则这个三【解析】设两直角边的长度分别为3a、4a,则3a•4a÷2=96,解得2易错点2:直角三角形的性质2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.下列结论中,不一定成立的是()A.∠A与∠1互余B.∠B与∠2互余C.∠A=∠2D.∠1=∠2【答案】D【解析】A、在Rt△ACD中,∠ADC=90°,所以∠A与∠1互余,正确;B、在Rt△BCD中,∠BDC=90°,所以∠B与∠2互余,正确;C、∵∠A+∠1=90°,∠1+∠2=90°,∴∠A=∠2,正确;D、当∠A=∠B时,AC=AB,所以CD既是∠C的角平分线,也是斜边上的高与中线,所以∠1=∠2,正确;当∠A≠∠B时,∠1≠∠2,错误【综合提升】针对训练1. 如图,等腰△ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为2. 在△ABC 中,∠C=90°,若AB=5,则222AC BC AB ++= 3. 一个三角形的三边的比为5:4:3,它的周长为60cm ,则它的面积是2cm 1.【答案】10【解析】∵等腰△ABC 的底边BC 为16,底边上的高AD 为6,∴BD=8,2.【答案】50【解析】根据勾股定理可知:222AC BC AB =+,∵AB=5∴222AC BC AB ++=50 3.【答案】150【解析】∵三角形的三边长的比是5:4:3,它的周长是60cm ,∴设此三角形的边长分别是5x ,4x ,3x ,则5x+4x+3x=60,解得x=5cm , ∴此三角形的边长分别是25cm ,20cm ,15cm ,222625152025+==∴此三角形是直角三角形, ∴这个三角形的面积=12×15×20=1502cm 【中考链接】(2014年泉州)如图,Rt △ABC 中,∠ACB=90°,D 为斜边AB 的中点,AB=10cm ,则CD 的长为 cm .【答案】5【解析】∵∠ACB=90°,D 为斜边AB 的中点, ∴CD=12AB=12×10=5cm 课外拓展勾股定理是初等几何学中的一个基本定理,又称毕达哥拉斯定理或毕氏定理。

八年级数学上册直角三角形知识点总结

八年级数学上册直角三角形知识点总结

八年级数学上册直角三角形知识点总结
直角三角形是初中数学中的重要内容,下面是八年级数学上册直角三角形的知识点总结:
1. 三角函数
- 正弦函数:sin(A) = 对边/斜边
- 余弦函数:cos(A) = 邻边/斜边
- 正切函数:tan(A) = 对边/邻边
2. 特殊直角三角形
- 等腰直角三角形:两条直角边相等
- 30度-60度-90度特殊直角三角形:长边:短边:斜边 = 1:√3:2
- 45度-45度-90度特殊直角三角形:两条直角边相等,斜边等于直角边的√2倍
3. 定义和性质
- 直角三角形的定义:一个角为直角(90度)
- 直角三角形的性质:直角三角形的两条直角边平方和等于斜边平方(勾股定理)
4. 三角形的解题方法
- 已知两边求第三边:利用勾股定理求第三边的长度
- 已知一个角和一边求其他边:利用三角函数计算其他边的长度
- 解决实际问题:将实际问题转化为数学问题,利用三角函数解题
这些是八年级数学上册直角三角形的主要知识点总结,请认真研究,掌握这些内容,将有助于你在数学研究中的进一步理解和应用。

初中数学中考一轮复习专题6 三角形 重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题6  三角形 重点、考点知识、方法总结及真题练习

A.
B.
【答案】A.
C.
D.
【解析】解:三角形具有稳定性.
故选:A.
知识点 2 等腰三角形
等腰三角形的概念不性质
1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三
边叫做三角形的底.
2、等腰三角形的性质
①等腰三角形的腰相等
②等腰三角形的两个底角相等(简记为”等边对等角“)
2.如图,在△ABC 中,AB=AC.以点 C 为圆心,以 CB 长为半径作圆弧,交 AC 的延长线于
点 D,连结 BD.若∠A=32°,则∠CDB 的大小为 度.
【答案】37 【解析】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°, 又∵BC=DC,∴∠CDB=∠CBD= ∠ACB=37°.

【答案】40° 【解析】解:∵BO、CO 分别平分∠ABC、∠ACB, ∴∠OBC= ∠ABC,∠OCB= ∠ACB,
而∠BOC+∠OBC+∠OCB=180°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠ABC+∠ACB),
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A, ∴∠BOC=180°﹣ (180°﹣∠A)=90°+ ∠A,
3.如图,在△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数


【答案】3
【解析】解:∵AB=AC,∠A=36°∴△ABC 是等腰三角形,
∠ABC=∠ACB=
=72°,
BD 平分∠ABC,∴∠EBD=∠DBC=36°,
∴在△ABD 中,∠A=∠ABD=36°,AD=BD,△ABD 是等腰三角形,

中考数学解直角三角形

中考数学解直角三角形

中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。

二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。

2、已知直角边a和斜边c,求另一条直角边b:公式: a2 + b2 = c2或 b = √c2 – a2 (在实数范围内进行运算)。

3、已知直角三角形的一个锐角α和斜边c,求另一直角边b:公式: sinα = a / c或 a = c × sinα,求b: tanα = a / b 或 b = a / tanα。

4、判断一个三角形是否是直角三角形的方法:①有一个角是90°的三角形是直角三角形;②两边的平方和等于第三边的平方的三角形是直角三角形;③一边的中线等于这条中线的二分之一的三角形是直角三角形。

解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。

下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。

一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。

一般题型为:已知一个锐角,求其它锐角的三角函数值。

例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。

解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。

二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。

一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。

例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。

解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。

初中三角形知识点

初中三角形知识点

中考数学必备知识点——图形与几何知识点一:三角形1、三角形的定义:是由三条线段首尾顺次相接所组成的平面图形叫做三角形.2、组成三角形的元素:三条边和三个角3、三角形的分类⑴三角形按边的关系分类如下:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形(一般等腰三角形)等腰三角形底边和腰相等的等腰三角形(等边三角形或正三角形)⑵三角形按角的关系分类如下:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形(有一个角是直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角是钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形,它是两条直角边相等的直角三角形. 4、三角形的性质⑴三角形三边关系定理:三角形的任意两边之和大于第三边且任意两边之差小于第三边.⑵三角形的内角和定理:三角形的三个内角和等于︒180. ⑶三角形的外角和定理:三角形的三个外角和等于︒360.⑷三角形的内外角定理:①互补关系:三角形的一个外角与它相邻的内角互补;②相等关系:三角形的一个外角等于和它不相邻的来两个内角的和.③不等关系:三角形的一个外角大于任何一个和它不相邻的内角.⑸三角形的边角关系:在同一个三角形中:大边对大角,等边对等角,小边对小角;反之,大角对大边,等角对等边,小角对小边也成立. 5、三角形的面积:三角形的面积12=⨯底⨯高知识点二:等腰三角形1、等腰三角形:有两条边相等的三角形叫做等腰三角形.2、等腰三角形的性质定理及推论:性质定理:等腰三角形的两个底角相等简称:等边对等角推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高三线合一.推论2:等边三角形的各个角都相等,并且每个角都等于60°. 3、三角形中的中位线⑴三角形中的中位线:连接三角形两边中点的线段叫做三角形的中位线. ⑵三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半;⑶三角形中位线定理的作用:位置关系:可以证明两条直线平行;数量关系:可以证明线段的倍分关系;⑷常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半; 结论2:三条中位线将原三角形分割成四个全等的三角形;结论3:三条中位线将原三角形划分出三个面积相等的平行四边形; 结论4:三角形一条中线和与它相交的中位线互相平分;结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等;知识点三:直角三角形 1、直角三角形的两个锐角互余;2、在直角三角形中,30︒角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半;4、直角三角形两直角边a b 、的平方和等于斜边c 的平方,即222c b a =+5、常用关系式:由三角形面积公式可得:AC BC CD AB ⋅=⋅ ★★★6、直角三角形的射影定理从一定向一直线所引垂线的垂足,叫做这个点在这条直线上的正射影;一条线段在直线上的正射影,是指线段的两个端点在这条直线上的正射影间的线段.点和线段的正射影简称为射影直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;推论:直角三角形中其中一条直角边是该直角边在斜边上的射影与斜边的比例中项.即22290CD AD BDACB AC AD ABCD AB BC BD AB︒⎧=⋅⎫∠=⎪⇒=⋅⎬⎨⊥⎭⎪=⋅⎩知识点四:全等三角形1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形;2、三角形全等的性质:全等三角形的对应边相等,对应角相等;3、全等三角形的判定定理:⑴边角边定理:有两边和它们的夹角对应相等的两个三角形全等可简写成“边角边”或“SAS ”⑵角角边定理:任意两角及其中一角的对边对应相等的两个三角形全等可以简写成“角角边”或“AAS ”;⑶角边角定理:有两角和它们的夹边对应相等的两个三角形全等可简写成“角边角”或“ASA ”⑷边边边定理:有三边对应相等的两个三角形全等可简写成“边边边”或“SSS ”; ★★★直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理斜边、直角边定理:有斜边和一条直角边对应相等的两个直角三角形全等可简写成“斜边、直角边”或“HL ”4、全等变换:只改变图形的位置,不改变其形状大小的图形变换叫做全等变换; 全等变换包括一下三种:①平移变换:把图形沿某条直线平行移动的变换叫做平移变换; ②对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换;③旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换;知识点五:相似三角形1、比例线段的概念:对于四条线段a b c d 、、、,如果其中两条线段的长度的比与另两条线段的长度的比相等,即ac bd或:=a b c d :那么这四条线段叫做成比例线段,简称比例线段.注意:⑴在求线段比时,线段单位要统一,单位不统一应先化成同一单位.⑵当两个比例式的每一项都对应相同,两个比例式才是同一比例式.⑶比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 2、比例的性质基本性质:1bc ad d c b a =⇔=::;2b a c b c c a ⋅=⇔=2::. 反比性质把比的前项、后项交换:cd a b d c ba =⇒=. 合比性质:ddc b b ad c b a ±=±⇒=.发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c dc ba b a cc d a a b d c b a 等等.等比性质:如果)0(≠++++====n f d bm e c a ,那么am e c a =++++ .平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.推论1:经过三角形一边的中点与另一边平行的直线必平分第三边.三角形中位线定理的逆定理 推论2:经过梯形一腰的中点,且与底边平行的直线平分另一腰.梯形中位线定理的逆定理平行线等分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 推论:1平行于三角形一边的直线截其它两边或两边的延长线所得的对应线段成比例.2平行于三角形一边且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形第三边. 4、相似三角形⑴相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相不同;4相似用“∽”表示,读作“相似于”; 5相似三角形的对应边之比叫做相似比.⑵相似三角形的判定方法预备定理:平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例. 定理的基本图形语言:数学符号语言:BC DE // ∴ADE ∆∽ABC ∆.判定定理1:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.判定定理2:如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两个三角形相似.判定定理4:直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.三角形相似的判定方法与全等的判定方法的联系列表如下:类型 斜三角形直角三角形全等三角形的判定SAS SSS AASASA HL相似三角形的判定 两边对应成比例夹角相等三边对应成比例 两角对应相等 一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法. ⑶相似三角形的性质定理:1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比; 2相似三角形的周长比等于相似比;3相似三角形的面积比等于相似比的平方;4相似三角形内切圆与外接圆的直径比、周长比等于相似比,面积比等于相似比的平方.⑷相似三角形的等价关系1反身性:对于任一ABC∆∽ABC∆.∆有ABC2对称性:若ABC∆.BA∆∽ABCBA∆,则'''C∆∽'''C3传递性:若ABC∆,则ABCA''''''∆∽CA''''''B∆.BA'B∆∽C∆''∽CA'∆'',且CB★★★相似直角三角形引理:如果一条直线截三角形的两边或两边的延长线所得的线段成比例,那么这两条直线平行于三角形的第三边.与三角形的中位线定理类似定理:如果两个直角三角形有一个锐角对应相等,那么这两个直角三角形相似.定理:如果两个直角三角形的两条直角边对应成比例,那么这两个直角三角形相似. 定理:如果两个直角三角形的斜边和一直边对应成比例,那么这两个直角三角形相似.经过归纳和总结,相似三角形有以下几种基本类型知识点六:锐角三角函数的概念建立在直角三角形的基础之上1、如图,在△ABC 中,∠C=90° ①sin A a A c ∠==的对边斜边;②cos A bA c ∠==的邻边斜边 ③tan A a A A b ∠==∠的对边的邻边;④cot A bA A a∠==∠的邻边的对边2、一些特殊角的三角函数值 三角函数0︒30°45°60°90° sin α2122 23 1cos α123 22 21 0tan α33 1 3不存在cot α不存在3133 03、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A,tanA=cot90°—A,cotA=tan90°—A2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4弦切关系:tanA=AAcos sin。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章解直角三角形
★重点★解直角三角形
☆内容提要☆
一、三角函数
1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函数值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余两角的三角函数关系:sin(90°-α)=cosα;…
4.三角函数值随角度变化的关系
5.查三角函数表
二、解直角三角形
1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2.依据:①边的关系:
②角的关系:A+B=90°
③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理
1.俯、仰角:
2.方位角、象限角:
3.坡度:
4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

相关文档
最新文档