集合概念及集合上的运算1

合集下载

集合的概念和运算

集合的概念和运算

集合的概念和运算集合是数学中重要的基本概念,它可以理解为元素的组合。

在数学中,元素可以是数字、字母、单词等等。

本文将介绍集合的概念、集合的表示方法以及集合的运算。

一、集合的概念集合是由元素构成的,通常用大写字母表示。

假设A是一个集合,x是A的元素,我们可以表示为x∈A,表示x属于A。

相反地,如果x不属于A,我们可以表示为x∉A。

集合可以有有限个或者无限个元素。

如果集合A中的元素个数有限,并且可以一一列举出来,我们称之为有限集。

如果集合A中的元素个数是无穷的,我们称之为无限集。

二、集合的表示方法1. 列举法:我们可以直接将集合中的元素一一列举出来。

例如,集合A = {1, 2, 3}表示A是一个包含元素1、2、3的集合。

2. 描述法:我们可以使用一个条件来描述集合中的元素。

例如,集合B = {x | x是自然数,且x < 5}表示B是一个包含小于5的自然数的集合。

三、集合的运算1. 交集:给定两个集合A和B,它们的交集(记作A∩B)是包含同时属于A和B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A∩B = {2, 3}。

2. 并集:给定两个集合A和B,它们的并集(记作A∪B)是包含属于A或者属于B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A∪B = {1, 2, 3, 4}。

3. 差集:给定两个集合A和B,它们的差集(记作A-B)是包含属于A但不属于B的所有元素的新集合。

例如,A = {1, 2, 3},B = {2, 3, 4},则A-B = {1}。

4. 互斥集:给定两个集合A和B,如果它们的交集为空集,则称它们为互斥集。

例如,A = {1, 2},B = {3, 4},则A∩B = ∅。

5. 补集:给定一个普通集合U和它的一个子集合A,A相对于U的补集(记作A'或者A^c)是包含U中所有不属于A的元素的集合。

高考数学专题知识突破:考点1 集合的概念与运算

高考数学专题知识突破:考点1 集合的概念与运算

考点一集合的概念与运算知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.2.集合间的基本关系关系自然语言符号语言V enn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A B(或B A)集合相等集合A,B中元素完全相同或集合A,B互为子集A=B3.全集与补集(1)如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U表示;(2) 对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.4.集合的运算集合的并集集合的交集集合的补集图形符号A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A} 5.集合关系与运算的常用结论(1)子集个数公式:若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n -1个,真子集有2n-1个.(2) A∩B=A⇔A⊆B,A∪B=B⇔A⊆B.(3)(∁U A)∩(∁U B)=∁U(A∪B),(∁U A)∪(∁U B)=∁U(A∩B) .典例剖析题型一集合的基本概念例1已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是答案 5解析列表根据集合中元素的互异性知,B中元素有0,-1,-2,1,2,共5个.变式训练已知集合A={0,1,2},B={(x,y)|x∈A,y∈A,x-y∈A},则集合B中有________个元素.答案 6解析因为x-y∈A,∴x≥y.当x=0时,y=0;当x=1时,y=0或y=1;当x=2时,y=0,1,2.故集合B={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B中有6个元素.解题要点研究集合问题,通常从代表元素入手,考查其所代表的是数还是点,如果代表元素是数x,则是数集,如果代表元素是数对(x,y),则是点集.在列举集合的元素时可借助表格,或根据元素特征分类列举,列举时应做到不重不漏.例2 设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 2解析 因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,且由a 在分母的位置可知a ≠0,所以a +b =0,则ba =-1,所以a =-1,b =1.所以b -a =2.变式训练 已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 答案 -32解析 因为3∈A ,所以m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去; 当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意,所以m =-32.解题要点 对于含字母参数的集合,应准确进行分类讨论,列出方程或方程组求出字母参数的值.需要特别注意的是,求出字母参数值后,还要检验是否违反了集合中元素的互异性. 题型二 集合间的基本关系例3 集合A ={-1,0,1},A 的子集中,含有元素0的子集共有 个 答案 4解析 根据题意,在集合A 的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1},共四个.变式训练 设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有 个 答案 6解析 集合{1,2,3}的所有子集共有23=8(个),其中一个奇数元素也没有的集合有两个:∅和{2},故满足要求的集合M 共有8-2=6(个).解题要点 解题关键是弄清符合题意的集合其元素应满足的条件.在元素较少时可以采取穷举法列出所有满足条件的集合. 例4 设,若,则a 的取值范围是 .答案解析 根据题意作图:由图可知,,则只要即可,即a 的取值范围是.变式训练 已知集合()2{|540},,,A x x x B a A B =-+≤=-∞⊆,则a 的取值范围是 . 答案 (4,)+∞解析 []2{|540}1,4A x x x =-+≤=,∵,根据题意作图:由图可知,只要即可,即a 的取值范围(4,)+∞.解题要点 对于这类用不等式表示的数集之间的包含关系时,常常借助数轴进行求解.在解题时应注意端点是否可以取到. 题型三 集合的基本运算例5 已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案 5解析 A ∪B ={1,2,3,4,5},共有5个元素.变式训练 已知集合A ={x |x 2-x -2≤0},集合B 为整数集,则A ∩B 等于________. 答案 {-1,0,1,2}解析 A ={x |x 2-x -2≤0}={x |-1≤x ≤2},B 为整数集,A ∩B ={-1,0,1,2}.解题要点 求解集合交、并首先应对各个集合进行化简,准确弄懂集合中的元素,求并集时相同的元素只算一个.例6 已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B ) =________. 答案 {x |0<x <1}解析 ∵A ={x |x ≤0},B ={x |x ≥1}, ∴A ∪B ={x |x ≤0或x ≥1}, 在数轴上表示如图.∴∁U (A ∪B )={x |0<x <1}.变式训练 已知集合A ={x |x 2-2x >0},B ={x |-<x <},则A ∪B =________.答案 R解析 ∵x (x -2)>0,∴x <0或x >2. ∴集合A 与B 可用数轴表示为:由图象可以看出A ∪B =R .解题要点 集合的基本运算是历年高考的热点,常与不等式的解集、函数的定义域、值域相结合命题,解题时先求出各个集合,然后借助数轴求交并是基本方法.当堂练习1. 已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()UA B =________.2.若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于________. 3.已知{菱形},{正方形},{平行四边形},则之间的关系为_______4.已知集合A ={(x ,y )|-1≤x ≤1,0≤y <2,x 、y ∈Z },用列举法可以表示集合A 为________. 5.设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N = .课后作业1.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 2.设集合M ={x |x 2+2x =0,x ∈R },N ={x |x 2-2x =0,x ∈R },则M ∪N =________. 3.已知集合M ={x |-3<x ≤5},N ={x |x <-5或x >4},则M ∪N 等于________. 4.若集合A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则a =________. 5.已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则UA B ()= ________.6.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =________.7.满足条件{0,2}∪M ={0,1,2}的所有集合M 的个数为________. 8.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =________. 9.设全集U ={1,2,3,4,5,6},A ={1,2},B ={2,3,4},则A ∩(∁U B )等于________.10.已知A ={3,5,6,8}且集合B 满足A ∩B ={5,8},A ∪B ={2,3,4,5,6,7,8},则这样的集合B 有________个.11.若集合A ={x |-5<x <2},B ={x |-3<x <3},则A ∩B 等于 .12.已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为 13. 已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.当堂练习答案1. 答案 {4}解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以U (A ∪B )={4}.2.答案 {0,1}解析 由集合M ={-1,0,1},N ={0,1,2},得到M ∩N ={0,1}. 3.答案4.答案 {(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}解析 集合A 表示不等式组⎩⎪⎨⎪⎧-1≤x ≤1,x ∈Z ,0≤y <2,y ∈Z 确定的平面区域上的格点集合,所以用列举法表示集合A 为{(-1,0),(-1,1),(0,0),(0,1),(1,0),(1,1)}. 5.答案 {1,2}解析 由x 2-3x +2=(x -1)(x -2)≤0,解得1≤x ≤2,故N ={x |1≤x ≤2},∴M ∩N ={1,2}.课后作业答案1.答案 (2,3)解析 ∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}=(2,3). 2.答案 {-2,0,2}解析 先确定两个集合的元素,再进行并集运算.集合M ={0,-2},N ={0,2}, 故M ∪N ={-2,0,2}. 3.答案 {x |x <-5或x >-3}解析 在数轴上表示集合M 和N ,如图所示,则数轴上方所有“线”下面的部分就是M ∪N ={x |x <-5或x >-3}. 4.答案 4解析 a =0时,ax 2+ax +1=0无解,此时,A =∅,不合题意;a ≠0时,由题意得方程ax 2+ax +1=0有两个相等实根,则⎩⎪⎨⎪⎧Δ=a 2-4a =0a ≠0,解得a =4.5.答案 {0,2,4}解析 ∵UA ={0,4},U AB ()={0, 2,4}.6.答案 {1,4}解析 ∵x =n 2,n ∈A ,∴x =1,4,9,16. ∴B ={1,4,9,16}.∴A ∩B ={1,4}. 7.答案 4解析 由题可知集合M 中必有1,满足条件的M 可以为{1},{0,1},{2,1},{0,1,2}共4个. 8.答案 0或3解析 ∵A ∪B =A ,∴B ⊆A ,∵A ={1,3,m },B ={1,m },∴m ∈A ,故m =m 或m =3,解得m =0或m =3或m =1,又根据集合元素的互异性m ≠1,所以m =0或m =3. 9.答案 {1}解析 ∵∁U B ={1,5,6},∴A ∩(∁U B )={1,2}∩{1,5,6}={1}. 10.答案 4解析 ∵A ∩B ={5,8},∴5,8∈B ,又∵A ∪B ={2,3,4,5,6,7,8}而A ={3,5,6,8}, ∴2,4,7∈B ,∴3,6可以属于B ,也可不属于B . ∴这样的B 有22=4(个). 11.答案 {x |-3<x <2}解析 由题意,得A ∩B ={x |-5<x <2}∩{x |-3<x <3}={x |-3<x <2}. 12.答案 2解析 A ={…,5,8,11,14,17…},B ={6,8,10,12,14},集合A ∩B 中有两个元素. 13. 答案 -3≤a <-12解析 ∵B ={x |x <-1或x >5},A ∪B =R , ∴⎩⎪⎨⎪⎧2a <-1,a +8≥5, 解得-3≤a <-12.。

集合的概念及其运算

集合的概念及其运算

集合的概念及其运算1、集合中元素的性质:确定性,互异性,无序性2、有n个元素的集合的子集的个数是2n,真子集的个数是2n-13、自然数集N 正整数集N* 整数集Z 有理数集Q 实数集R 复数C4、交集:由所有属于集合A且属于集合B的元素所组成的集合叫做集合A与B的交集,记为A∩B,即A∩B={x|x∈A,且x∈B}并集:由所有属于集合A或属于集合B的元素所组成的集合叫做集合A与B的并集,记为A∪B,即A∪B={x|x∈A,或x∈B}补集:一般地设S是一个集合,A是S的一个子集(即A S),由S中所有不属于A的元素组成的集合,叫做集合A在全集S中的补集(或余集).5、真子集关系对于集合A、B,如果A ⊆ B,并且A≠B,我们就说集合A是集合B的真子集 显然,空集是任何非空集合的真子集1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数是( )A.1B.3C.4D.82.若集合A={x|x2-4x<0},则集合A∩Z中元素的个数为( )A.3B.4C.5D.23.已知集合A={a-2,2a2+5a,12},且-3∈A,则a= .4、已知集合A={1,3,5},B={2,4,6}.定义集合A+B={a+b|a∈A,b∈B},则A+B中元素的个数是( )A.9B.6C.5D.45、满足Φ A⊆{1,2,3}的集合A的个数是( )A.7B.8C.6D.42>0},N={x|x>a}.若M⊆N,求实数a的取值范围6、 已知集合M={x|3+2x-x7、已知集合M={x|x2+x-6=0},N={x|ax-1=0},且M∩N=N,求实数a的值.8、集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0B.1C.2D.49、若A、B、C为三个集合,A∪B=B∩C,则一定有A. A⊆CB.C⊆AC.A≠CD.A=∅10、已知集合A={y|y=log2x,x>1},B={y|y=(1/2)x,x>1},则A∩B等于A. ∅B.{y|0<y<1}C.{y|1/2<y<1}D.{y|0<y<1/211、.设全集U是实数集R,M={x|x2>4},N={x|≥1},则下图中阴影部分所表示的集合是A.{x|-2≤x<1}B.{x|-2≤x≤2}C.{x|1<x≤2}D.{x|x<2}12、.设集合A={5,log2(a2-3a+6)},集合B={1,a,b},若A∩B ={2},则集合A∪B的真子集的个数是A.3个B.7个C.12个D.15个13、.设全集U=R,A={x|x<-3或x≥2},B={x|-1<x<5},则集合{x|-1<x<2}是A. (UA)∪(UB)B. U(A∪B)C. (UA)∩BD.A∩B14、定义集合A*B={x|x∈A,且xB},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为10、A.1 B.2 C.3 D.415、.设集合M={x|x≤m},N={y|y=2-x,x∈R},若M∩N≠,则实数m 的取值范围是A.m≥0B.m>0C.m≤0D.m<016、.已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并把这个元素写出来;命题及其关系充要条件1、2. 用命题的等价性判断:判断p是q的什么条件,其实质是判断“若p,则q”及其逆命题“若q,则p”是真还是假,原命题为真而逆命题为假,p是q的充分不必要条件;原命题为假而逆命题为真,则p是q的必要不充分条件;原命题为真,逆命题为真,则p是q的充要条件;原命题为假,逆命题为假,则p是q的既不充分也不必要条件.3. 原命题为“若P则q,则它的逆命题为若q则p;否命题为若非p则非q,逆否命题为若非q则非p 原命题与它的逆否命题等价,逆命题与它的否命题等价1、写出“面积相等的两个三角形是全等三角形”的逆命题、否命题、逆否命题2、写出“若a>b且c>d,则a+c>b+d”的逆命题、否命题、逆否命题3、设原命题”若p则q”假,而逆命题真,则p是q的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件3、0<x<5是不等式lx-2l<4成立的()A、充分不必要条件B、必要不充分条件C、充要条件 D既不充分也不必要条件4、1命题:“若x2<1,则-1<x<1”的逆否命题是 ( )A.若x2≥1,则x≥1或x≤-1 B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1 D.若x≥1或x≤-1,则x2≥12.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的 ( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件。

01集合的概念及运算

01集合的概念及运算
211 1, 221 2, 231 4, 241 8,
251 16, 261 32, 271 64, 281 128,
且1 4 16 64 128 211,
i1 1, i2 2, i3 5, i4 7, i5 8.
走进高考
综上知,当A⊆B时,a<-8或a≥2.
(2)当 a=0 时,显然 B ⊆A;
当 则 又当∵ 当a则则 又则又<a- 4aaa∵<0≤∵<>1a0-4a-0时 0a4a-- 时4aa≤, 时<≤1a≥>1a<, 0≤1a2,-20∴ ,,2->,若-12>2∴- 若若12212∴, B-12BB⊆ ,<-⊆⊆∴ 12a,,<∴AA1<2a∴,,<0<∴- - .a0- -如如如 <.00128<<1208≤ <--图图图 <≤aa. a≤ ≤a128a,,a<,<<≤<22<0000aa.<<0.0.
走进高考
【2】(10 湖南文 15)若规定 E={a1,a2 ,..., a10}的子集{ai1 ai2 ,..., ain }
为 E 的第 k 个子集,其中 k 2i11 2i2 1 2in 1 ,则
(1){a1, a3} 是 E 的第_____5____个子集;
(2)E 的第 211 个子集是_{__a_1_,__a_2_,__a_5_,__a_7__,_a_8_}___.
(4)常用数集的记法
数集
自然 数集
正整数集
整数 集
有理 数集
实数 集
复数 集
记法 N N(或N ) Z Q R C

第1讲集合的概念和运算

第1讲集合的概念和运算

第1讲 集合的概念和运算必记考点1.集合的基本概念(1)集合元素的三个特征: 、 、 . (2)元素与集合的关系是属于或不属于关系,用符号 或 表示. (3)集合的表示法:列举法、描述法、图示法、区间法.(4)常用数集: N ; N *(或N +) ; Z ;Q ; R . (5)集合的分类:按集合中元素个数划分,集合可以分为有限集、无限集、 . 2.集合间的基本关系(1)子集: ,则A ⊆B (或B ⊇A ). (2)真子集: 则A B (或B A ).若集合A 中含有n 个元素,则A 的子集有2n 个,A 的真子集有2n -1个.(3)空集:空集是 的子集,是 的真子集.即∅⊆A ,∅B (B ≠∅).(4)集合相等:若 ,则A =B . 3.集合的基本运算及其性质(1)并集:A ∪B = . (2)交集:A ∩B = .(3)补集:∁U A = ,U 为全集,∁U A 表示A 相对于全集U 的补集. (4)集合的运算性质①A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B ; ②A ∩A =A ,A ∩∅=∅; ③A ∪A =A ,A ∪∅=A ;④A ∩∁U A =∅,A ∪∁U A =U ,∁U (∁U A )=A .考向一 集合的基本概念【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________.【训练1】集合⎩⎨⎧⎭⎬⎫x ∈N *⎪⎪12x∈Z 中含有的元素个数为( ).考向二 集合间的基本关系【例2】已知集合A ={x |0<x ≤4},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是________.【训练2】已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.考向三 集合的基本运算【例3】►(1)(2012·安徽)设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =( ).A .(1,2)B .[1,2]C .[1,2)D .(1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ). A .{1,2,4} B .{2,3,4} C .{0,2,4}D .{0,2,3,4}(3)设全集U ={1,2,3,4,5,6},集合A ={1,2,4},B ={3,4,5},则图中的阴影部分表示的集合为( ).A .{5}B .{4}C.{1,2} D.{3,5}基础演练1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A B B.B AC.A=B D.A∩B=∅2.设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5}C.{2,3} D.{3,4}4.若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅5.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 6.集合A={x∈R||x-2|≤5}中的最小整数为________.7.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.第2讲函数及其表示必记考点1.函数的概念一般地,设A,B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B 的一个函数.记作.2.函数的三要素函数由、、三个要素构成,对函数y=f(x),x∈A,其中(1)定义域:.(2)值域:.(3)两个函数就相同: .3.函数的表示方法表示函数的常用方法有:解析法、图象法、列表法.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.考向一函数的定义【例1】(1)下列各图形中是函数图象的是().2.下列各组函数表示相同函数的是().A.f(x)=x2,g(x)=(x)2B.f(x)=1,g(x)=x2C.f(x)=⎩⎪⎨⎪⎧x,x≥0,-x,x<0,g(t)=|t|D.f(x)=x+1,g(x)=x2-1x-1考向二 求函数的定义域、值域【例2】►(1) 函数y =x +1x 的定义域为________.(2)函数y =x -3x +1的值域为________.(3) 设函数f (x )=41-x ,若f (a )=2,实数a =________.考向三 分段函数及其应用【例3】(1) 设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( ).A.15 B .3 C.23D.139(2)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( ).A .1B .0C .-1D .π(3)已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ).A.12 B.45 C .2 D .9基础演练1.函数f (x )=11-x +lg(1+x )的定义域是( ).A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)2.下列各组函数中,表示同一函数的是( ). A .f (x )=x ,g (x )=(x )2 B .f (x )=x 2,g (x )=(x +1)2 C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-x3.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( ).A .-3B .±3C .-1D .±14.函数f (x )=lg 1-x 2的定义域为________.5.(2013·皖南八校联考)已知f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,log 2x ,x >0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫-12=________. 6.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.第3讲 函数的性质必记考点 1.函数的单调性 (1)单调函数的定义设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,①若 ,则f (x )在区间D 上是增函数;②若 ,则f (x )在区间D 上是减函数.(2)单调区间的定义若函数f (x )在区间D 上是 或 ,则区间D 叫做f (x )的单调区间.(3)用定义判断函数单调性的步骤: . 2. 函数的奇偶性(1)定义:如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做偶函数.如果对于函数f (x )的定义域内任意一个x ,都有 ,那么函数f (x )就叫做奇函数.(2)性质:奇函数的图象关于 对称;偶函数的图象关于 对称.考向一 确定函数的单调性或单调区间【例1】(1)下列函数中,在区间(0,+∞)上为增函数的是( ).A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x(2)函数y =-x 2+2x -3(x <0)的单调增区间是( ).A .(0,+∞)B .(-∞,1]C .(-∞,0)D .(-∞,-1]考向二 函数单调性的应用【例2】(1)若函数f (x )=4x 2-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=________. (2) 函数y =f(x)在R 上为增函数,且f(2m)>f(-m +9),则实数m 的取值范围是 .考向三 求函数的最值【例3】函数f (x )=2xx +1在[1,2]上的最大值和最小值分别是________.考向四 判断函数的奇偶性【例4】判断下列函数的奇偶性: (1)f (x )=x 3-2x ;(2)f (x )=x 2-1+1-x 2;(3)f (x )=(x -1)- 1+x1-x.考向五 函数奇偶性的应用【例5】(1)函数f (x )=(x +a )(x -4)为偶函数,则实数a =________.(2) 设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________. (3) 设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)= .基础演练1.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b>0,则必有( ).A .函数f (x )先增后减B .f (x )是R 上的增函数C .函数f (x )先减后增D .函数f (x )是R 上的减函数2.函数y =f (x )在R 上为减函数,且f (2m )>f (-m +9),则实数m 的取值范围是 .3.下列函数中,在(0,+∞)上单调递增的函数是( ).A .y =1xB .y =|x |+1C .y =-x 2+1D .y =-2x +14.已知f (x )=x 2-2mx +6在(-∞,-1]上是减函数,则m 的范围为________.5.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围为________. 6.下列函数是偶函数的是( ).A .y =xB .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1]7. 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是 .8. 设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=________.9.已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是________. 10.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0.(1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.第4讲 指数与指数函数必记考点1.指数与指数运算 (1)根式的概念若x n =a ,则x 叫 ,.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.即x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).(2)根式的性质①(na )n = .②当n 为奇数时,na n= ;当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(3)分数指数幂的含义正分数指数幂a m n =na m (a >0,m ,n ∈N *,n >1).负分数指数幂a -m n =1a m n =1na m (a >0,m ,n ∈N *,n >1).(4)幂指数的运算性质a r ·a s = rs aa= (a r )s = (ab )r =2.指数函数的图象与性质考向一 指数幂的化简与求值【例1】化简下列各式: (1)[(0.06415)-2.5]23- 3338-π0;(2) 2132a b ·(-31132a b )÷156613a b(3)a ·3a 25a ·3a考向二 指数函数的性质【例2】(1)方程2x -2+x =0的解的个数是________. (2) 下列各式比较大小正确的是( ). A .1.72.5>1.73 B .0.6-1>0.62C .0.8-0.1>1.250.2 D .1.70.3<0.93.1(3)已知函数f (x )=2x -12x +1,①讨论f (x )的奇偶性;②讨论f (x )的单调性.⎝⎛⎭⎫21412-⎝⎛⎭⎫-350-⎝⎛⎭⎫827-13=________. 已知函数f (x )=4+a x -1(a >0且a ≠1)的图象恒过定点P ,则点P 的坐标是( ).函数y =1-3x 的定义域为________。

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。

集合的基本概念与运算方法

集合的基本概念与运算方法

集合的基本概念与运算方法在数学中,集合是由一组独立的元素组成的。

理解集合的基本概念和运算方法对于解决各种数学问题至关重要。

本文将介绍集合的基本概念以及常用的运算方法。

一、集合的基本概念1. 集合的定义:集合通常用大写字母表示,集合内的元素用逗号分隔,并放在大括号中。

例如,集合A可以表示为:A = {1, 2, 3, 4}。

2. 元素:一个集合由若干个元素组成,元素是集合的基本单位。

例如,集合A中的元素1、2、3、4便是集合A的元素。

3. 子集:若一个集合A的所有元素都属于另一个集合B,则称集合A为集合B的子集。

用符号表示为A ⊆ B。

例如,集合A = {1, 2}是集合B = {1, 2, 3}的子集。

4. 相等集合:若两个集合A和B拥有相同的元素,则称集合A和集合B相等。

用符号表示为A = B。

二、集合的运算方法1. 并集:若A和B为两个集合,他们的并集就是包含两个集合中所有元素的集合。

用符号表示为A ∪ B。

例如,集合A = {1, 2}和集合B = {2, 3}的并集为A ∪ B = {1, 2, 3}。

2. 交集:若A和B为两个集合,他们的交集就是属于A且属于B的所有元素的集合。

用符号表示为A ∩ B。

例如,集合A = {1, 2}和集合B = {2, 3}的交集为A ∩ B = {2}。

3. 补集:设U为全集,若A为一个集合,则相对于全集U,A的补集为U中不属于A的所有元素组成的集合。

用符号表示为A'。

例如,集合A = {1, 2, 3, 4}相对于全集U = {1, 2, 3, 4, 5, 6}的补集为A' = {5, 6}。

4. 差集:若A和B为两个集合,他们的差集就是属于A但不属于B的所有元素的集合。

用符号表示为A - B。

例如,集合A = {1, 2, 3, 4}和集合B = {2, 3}的差集为A - B = {1, 4}。

5. 互斥集:若两个集合A和B的交集为空集,则称它们为互斥集。

集合的概念与运算

集合的概念与运算

分配律
定义
对于任意三个集合A、B和C,如果A∪(B∩C)=(A∪B)∩(A∪C)和 A∩(B∪C)=(A∩B)∪(A∩C),则称集合的运算满足分配律。
解释
分配律意味着并集和交集运算可以分配给括号内的并集和交集运算。 即,括号内的并集和交集运算的结果可以与外部的并集和交集运算 的结果进行交换。
伍 集合的应用
集合的元素
元素可以是具体的, 如苹果、汽车等;也 可以是抽象的,如数 字、图形等。 元素是构成集合的基 本单位,可以是任何 对象或实体。
并集
并集是将两个集合中 的所有元素合并到一 个新的集合中。 并集运算可以用符号 “∪”表示。
交集
交集运算可以用符号“∩”表示。 交集是两个集合中共有的元素组成的集合。

集合的概念与运算
目录 CONTENTS
0 1 集合的基本概念
0 4 集合的应用
0 2 集合的运算
0 5 集合运算的注意事项
0 3 集合运算的性质
贰 集合的基本概念
集的定义
集合中的元素具有确定性、 互异性和无序性。 集合是由确定的、互不相 同的元素所组成的总体。
集合的表示方法
将集合中的元素一一列举出 来,用大括号括起来。 列举法 通过描述集合中元素的共同 特征,用大括号括起来。 描述法
交集是指两个或多个集合中共有的元素的集合,即同时属于A和B的元素组成的集合。 交集的表示方法为A∩B,其中A和B为两个集合。 交集的性质包括交换律、结合律和分配律。
差集
差集是指属于A但不属于B的元素的集合,即所有属于A但不属于B的元素组成的集合。 差集的表示方法为A−B,其中A和B为两个集合。 差集的性质包括反身律、对称律和传递律。
解释

数学集合的概念运算

数学集合的概念运算

课前案1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的所有元素都是集合B的元素x∈A⇒x∈BA B或B A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且存在x0∈B,x0∉AA B或B A 相等集合A,B的元素完全相同A⊆B,B⊆AA=B 空集不含任何元素的集合.空集是任何集合A的子集任意x,x∉∅,∅⊆A ∅3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁U A=(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅.(4)∁U(∁U A)=A;∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B).课中案一、目标导引[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( ) (2)若{x 2,1}={0,1},则x =0,1.( ) (3){x |x ≤1}={t |t ≤1}.( )(4)对于任意两个集合A ,B ,(A ∩B )⊆(A ∪B )恒成立. ( ) (5)若A ∩B =A ∩C ,则B =C .( ) [教材衍化]1.(必修1P12A 组T3改编)若集合P ={x ∈N |x ≤ 2 021},a =22,则( ) A .a ∈P B .{a }∈P C .{a }⊆P D .a ∉P2.(必修1P11例9改编)已知U ={α|0°<α<180°},A ={x |x 是锐角},B ={x |x 是钝角},则∁U (A ∪B )=________.3.(必修1P44A 组T5改编)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为________.[易错纠偏](1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误. 1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.2.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.3.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________. 二典型例题集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .6 D .9(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0 D .0或98(3)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.与集合中的元素有关问题的求解步骤1.(2020·温州八校联考)已知集合M={1,m+2,m2+4},且5∈M,则m的值为() A.1或-1 B.1或3 C.-1或3 D.1,-1或32.已知集合A={x|x∈Z,且32-x∈Z},则集合A中的元素个数为________.集合的基本关系(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C 的个数( ) A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,则实数m的取值范围为________.1.(变条件)在本例(2)中,若A⊆B,如何求解?2.(变条件)若将本例(2)中的集合A改为A={x|x<-2或x>5},如何求解?1.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P2.(2020·绍兴调研)设A={1,4,2x},B={1,x2},若B⊆A,则x=________.3.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为________.集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域等相结合命题,主要以选择题的形式出现.试题多为低档题.主要命题角度有:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求参数.角度一求集合间的交、并、补运算2019·高考全国卷Ⅰ)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}(2)(2020·浙江高考模拟)设全集U=R,集合A={x|x2-x-2<0},B={x|1<x<3},则A∪B=________,∁U(A ∩B)=________.角度二已知集合的运算结果求参数(1)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2 C.a≥-1 D.a>-1(2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0 }C.{1,3} D.{1,5}(1)集合运算的常用方法①若集合中的元素是离散的,常用Venn图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况.(2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[提醒]在求出参数后,注意结果的验证(满足互异性).1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.[2,3] B.(-2,3] C.[1,2) D.(-∞,-2]∪[1,+∞)2.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.核心素养系列 数学抽象——集合的新定义问题定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9解决集合新定义问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.课后案 [A 组]1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2020·温州十五校联合体联考)已知集合A ={}x |e x ≤1,B ={}x |ln x ≤0,则A ∪B =( ) A .(-∞,1] B .(0,1] C .[1,e] D .(0,e]3.已知全集U =A ∪B ={x ∈Z |0≤x ≤6},A ∩(∁U B )={1,3,5},则B =( ) A .{2,4,6} B .{1,3,5} C .{0,2,4,6} D .{x ∈Z |0≤x ≤6} 4.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2} B .{1,2,4} C .{1,2,4,6} D .{x ∈R |-1≤x ≤5} 5.已知全集为R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}6.已知集合A ={x |x 2-3x <0},B ={1,a },且A ∩B 有4个子集,则实数a 的取值范围是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,1) D .(-∞,1)∪(3,+∞) 7.设U ={x ∈N *|x <9},A ={1,2,3},B ={3,4,5,6},则(∁U A )∩B =( ) A .{1,2,3} B .{4,5,6} C .{6,7,8} D .{4,5,6,7,8}8.设集合A =⎩⎨⎧⎭⎬⎫5,b a ,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{-1,2,3,5}B .{-1,2,3}C .{5,-1,2}D .{2,3,5}9.已知集合P ={n |n =2k -1,k ∈N *,k ≤50},Q ={2,3,5},则集合T ={xy |x ∈P ,y ∈Q }中元素的个数为( ) A .147 B .140 C .130 D .11710.已知全集U =R ,集合A ={x |x 2-3x +2>0},B ={x |x -a ≤0},若∁U B ⊆A ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,2]C .[1,+∞)D .[2,+∞)11.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 12.已知全集U =R ,集合A ={x |-1≤x ≤3},集合B ={x |log 2(x -2)<1},则A ∪B =________;A ∩(∁U B )=________.13.设集合A ={n |n =3k -1,k ∈Z },B ={x ||x -1|>3},则B =________,A ∩(∁R B )=________. 14.设全集为R ,集合M ={x ∈R |x 2-4x +3>0},集合N ={x ∈R |2x >4},则M ∩N =________;∁R (M ∩N )=________.15.已知集合M ={x |x 2-4x <0},N ={x |m <x <5},若M ∩N ={x |3<x <n },则m =________,n =________. 16.设全集U ={x ∈N *|x ≤9},∁U (A ∪B )={1,3},A ∩(∁U B )={2,4},则B =________. 17.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3},若C ∩A =C ,则a 的取值范围是________.[B 组]1.已知全集U 为R ,集合A ={x |x 2<16},B ={x |y =log 3(x -4)},则下列关系正确的是( ) A .A ∪B =R B .A ∪(∁U B )=R C .(∁U A )∪B =R D .A ∩(∁U B )=A .2.集合A ={x |y =ln(1-x )},B ={x |x 2-2x -3≤0},全集U =A ∪B ,则∁U (A ∩B )=( )A .{x |x <-1或x ≥1}B .{x |1≤x ≤3或x <-1}C .{x |x ≤-1或x >1}D .{x |1<x ≤3或x ≤-1} 3.(2020·浙江新高考联盟联考)已知集合A ={1,2,m },B ={1,m },若B ⊆A ,则m =________,∁A B =________.4.函数g (x )=⎩⎪⎨⎪⎧x ,x ∈P ,-x ,x ∈M ,其中P ,M 为实数集R 的两个非空子集,规定f (P )={y |y =g (x ),x ∈P },f (M )={y |y =g (x ),x ∈M }.给出下列四个命题:①若P ∩M =∅,则f (P )∩f (M )=∅; ②若P ∩M ≠∅,则f (P )∩f (M )≠∅; ③若P ∪M =R ,则f (P )∪f (M )=R ; ④若P ∪M ≠R ,则f (P )∪f (M )≠R . 其中命题不正确的有________.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.课后案答题纸1 2 3 4 5 6 7 8 9 1011. 12. A ∪B =________;A ∩(∁U B )=________.13、 B =________,A ∩(∁R B )=_14. M ∩N =________;∁R (M ∩N )=________. 15. m =________,n =________.16. B =________. 17.B 组1 23. m =________,∁A B =________.4.5.设[x ]表示不大于x 的最大整数,集合A ={x |x 2-2[x ]=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,求A ∩B .6.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.。

集合的基本概念和运算

集合的基本概念和运算

集合的基本概念和运算集合是数学中的一个基本概念,它是由一些确定的、互不相同的对象构成的整体。

集合的概念在数学中有着广泛的应用,并且在解决实际问题时也发挥着重要的作用。

本文将介绍集合的基本概念以及集合的运算。

一、集合的基本概念集合是由一些确定的对象组成的整体,这些对象称为集合的元素。

用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。

如果一个元素a属于一个集合A,我们可以写作a∈A。

相反地,如果一个元素b不属于一个集合B,我们可以写作b∉B。

集合的元素可以是任何类型的对象,比如数字、字母、符号或者其他集合。

例如,自然数的集合可以表示为N={0,1,2,3,...},其中0、1、2、3等都是集合N的元素。

二、集合的表示方法集合有多种表示方法,其中最常见的是列举法和描述法。

1. 列举法:通过列举集合的元素来表示一个集合。

例如,集合A={1,2,3}表示由整数1、2、3组成的集合A。

2. 描述法:通过描述集合元素的特征来表示一个集合。

例如,集合B={x|x是大于0且小于10的整数}表示在0和10之间的整数构成的集合B。

值得注意的是,集合中的元素是没有顺序的,且集合中的元素是互不相同的。

这意味着{1,2,3}和{3,2,1}表示的是相同的集合。

三、集合的运算集合的运算有并集、交集、差集和补集等。

1. 并集:如果A和B是两个集合,它们的并集表示为A∪B,包含了属于集合A或者属于集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的并集为A∪B={1,2,3,4,5}。

2. 交集:如果A和B是两个集合,它们的交集表示为A∩B,包含了同时属于集合A和集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的交集为A∩B={3}。

3. 差集:如果A和B是两个集合,它们的差集表示为A-B,包含了属于集合A但不属于集合B的所有元素。

例如,集合A={1,2,3}和集合B={3,4,5}的差集为A-B={1,2}。

集合的概念与运算

集合的概念与运算

集合的概念与运算(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除01集合的概念知识梳理1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或?表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A?B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A}并集的性质:A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?B?A.交集的性质:A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?A?B.补集的性质:A∪(?U A)=U;A∩(?U A)=?;?U(?U A)=A.题型一.集合例1. (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m 2+m},若3∈A ,则m 的值为________. 答案 (1)C (2)-32(2)由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.【感悟提升】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.变式1.设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中的元素个数为( )A .3B .4C .5D .6 变式2.设a ,b ∈R ,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 1.B 2.2解析 1.因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4时,a =1,2,3,此时x =5,6,7.当b =5时,a =1,2,3,此时x =6,7,8. 所以根据集合元素的互异性可知,x =5,6,7,8. 即M ={5,6,7,8},共有4个元素.2.因为{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,ba ,b ,a ≠0, 所以a +b =0,得ba =-1,所以a=-1,b=1,所以b-a=2.题型二. 集合间的基本关系例2.(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A?C?B的集合C的个数为()A.1 B.2 C.3 D.4B⊆,则实数m的最大值为(2)已知集合},xm-≤≤xA若A=xBx=m|{121},7≤≤{-|2+_____.答案(1)D(2)4 注:若B是A的真子集,则m的最大值为什么?【感悟提升】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图等来直观解决这类问题.变式1.已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=?C.A?B D.B?A变式2.已知集合A={x|log2x≤2},B={x|x<a},若A?B,则实数a的取值范围是________.答案 1.D 2.(4,+∞)解析 1.A={x|x>-3},B={x|x≥2},结合数轴可得:B?A.2.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B={x|x<a},由于A ?B ,如图所示,则a>4. 题型三. 集合的基本运算例3.(1)已知}2|1||{<-=x x A ,}06|{2<-+=ax x x B ,}0152|{2<--=x x x C , ① ,B B A =⋃求a 的范围;② 是否存在a 的值使C B B A ⋂=⋃,若存在,求出a 的值,若不存在,说明理由. (2)设集合U =R ,A ={x|2x(x -2)<1},B ={x|y =ln(1-x)},则图中阴影部分表示的集合为( )A .{x|x ≥1}B .{x|1≤x<2}C .{x|0<x ≤1}D .{x|x ≤1}答案 (1)✍(-5≤a ≤-1);✍1519,-≤≤-⊆⊆a C B A (2)B变式1.已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3D .1或3变式2.}32|{+≤≤=a x a x A ,}51|{>-<=x x x B 或,∅≠⋂B A ,则a 的取值范围为_______.答案1.B 2.]3,2()21,(⋃--∞【感悟提升】1.一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.2.运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.变式3.(2015·天津)已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩(?UB)等于( )A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6,8}变式4.设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(?UA)∩B =?,则m的值是__________.答案 3.A 4.1或2解析 3.由题意知,?UB={2,5,8},则A∩(?UB)={2,5},选A.4.A={-2,-1},由(?UA)∩B=?,得B?A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠?.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)×(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)×(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.题型四. 集合的新定义问题例4.若集合A具有以下性质:(Ⅰ)0∈A,1∈A;(Ⅱ)若x∈A,y∈A,则x-y∈A,且x≠0时,1x∈A.则称集合A是“好集”.下列命题正确的个数是()(1)集合B={-1,0,1}是“好集”;(2)有理数集Q是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A. A .0 B .1 C .2 D .3 答案 C变式: (2015·湖北)已知集合A ={(x ,y)|x 2+y 2≤1,x ,y ∈Z},B ={(x ,y)||x|≤2,|y|≤2,x ,y ∈Z},定义集合A*B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B},则A*B 中元素的个数为( )A .77B .49C .45D .30 答案 C解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合A*B 显然是集合{(x ,y)||x|≤3,|y|≤3,x ,y ∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A*B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A*B 中元素的个数为45.故选C. 【真题演练】1.【2016高考新课标1理数】设集合{}2430A x x x =-+< ,{}230x x ->,则A B = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D【解析】因为23{|430}={|13},={|},2A x x x x xB x x =+<<<>-所以33={|13}{|}={|3},22A B x x x x x x <<><<故选D.2.【2016高考新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T =( )(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥或,故选D .3.【2016年高考四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素的个数是( )(A )3 (B )4 (C )5 (D )6【答案】C 【解析】由题意,{2,1,0,1,2}A Z =--,故其中的元素个数为5,选C. 4.【2016高考山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)-(B )(0,1) (C )(1,)-+∞ (D )(0,)+∞【答案】C 【解析】}0|{>=y y A ,}11|{<<-=x x B ,则A B =∞(-1,+),选C. 5.【2016高考新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12},(C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】集合{|12,}{0,1}B x x x =-<<∈=Z ,而{1,2,3}A =,所以{0,1,2,3}A B =,故选C.6.【2016高考浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ( )A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】根据补集的运算得.故选B .7.【2015高考陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞ 【答案】A【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤,所以[]0,1M N =,故选A .8.【2015高考福建,理1】若集合{}234,,,A i i i i = (i 是虚数单位),{}1,1B =- ,则A B 等于 ( )A .{}1-B .{}1C .{}1,1-D .φ 【答案】C【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .。

集合的概念及运算

集合的概念及运算
一、集合的基本概念及表示方法
1.集合与元素 某些指定的对象集在一起就成为一个集合 , 简称集, 通常 用大写字母A, B, C, „ 表示. 集合中的每个对象叫做这个集合 的元素, 通常用小写字母a, b, c, „ 表示. 2.集合的分类 集合按元素多少可分为: 有限集(元素个数有限)、无限集 (元素个数无限)、空集(不含任何元素); 也可按元素的属性分, 如: 数集(元素是数), 点集(元素是点)等. 3.集合中元素的性质 对于一个给定的集合, 它的元素具有确定性、互异性、无 序性. 4.集合的表示方法 ①列举法;②描述法;③图示法;④区间法;⑤字母法.
2-x-1=0}, 得 a≥- 1. 由 A={ x | ax 13.解: 4 ∵对任一 x0∈A, 必有 x0B, ∴AB; 又 B 中元素为方程 a(ax2-1)2-1=x 即 a3x4-2a2x2-x+a-1=0 的实根, ∴由 AB 知 a3x4-2a2x2-x+a-1 含有因子 ax2-x-1. ∴a3x4-2a2x2-x+a-1=0 即为 (ax2-x-1)(a2x2+ax-a+1)=0. ∵A=B, ∴a2x2+ax-a+1=0 无实根或其实根为 ax2-x-1=0 的实根. 由 a2x2+ax-a+1=0 无实根得: a< 3 4;
典型例题
1.已知全集为 R, A={y | y=x2+2x+2}, B={y | y=x2+2x-8}, 求: (1) A∩B; (2) A∪CRB; (3) (CRA)∩(CRB). [1, +∞) (-∞, -9)∪[1, +∞) (-∞, -9) 评注 本题涉及集合的不同表示方法, 准确认识集合A、B是 解答本题的关键. 对(3)也可计算CR(A∪B). 2.已知集合A={x | x2-x-6<0}, B={x | 0<x-m<9}. (1)若A∪B=B, 求实数 m 的取值范围; [-6, -2] (2)若A∩B, 求实数 m 的取值范围. (-11, 3) 评注 (1)注意下面的等价关系: ①A∪B=B AB; ②A∩B=A AB; (2)用“数形结合思想”解题时, 要特别注意“端点” 的取舍.

集合的基本概念与运算

集合的基本概念与运算

集合的基本概念与运算在数学领域中,集合是一种包含对象的集合体。

这些对象可以是数字、字母、符号、单词、人或任何其他事物。

集合的概念和运算是数学中重要的基础,本文将介绍集合的基本概念以及常见的集合运算。

一、集合的基本概念集合是由一组对象组成的,并且这些对象是无序的。

用大写字母表示集合,例如A、B、C等,而用小写字母表示集合中的元素,例如a、b、c等。

如果元素a属于集合A,我们可以表示为a∈A。

如果元素x不属于集合A,我们可以表示为x∉A。

在确定一个集合的时候,我们可以列举其中的元素,也可以使用描述集合中元素的特征或性质。

例如,可以表示“大于0的整数”为集合A,可以表示“A={x|x>0, x∈Z}”。

这样即可定义出集合A。

二、集合的基本运算1. 并集运算当我们希望将两个或多个集合合并成一个新的集合时,我们可以使用并集运算。

用符号∪表示并集。

对于集合A和集合B,A∪B表示包含所有属于集合A或属于集合B的元素的新集合。

例如,如果A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

2. 交集运算交集运算是指将两个集合中共有的元素组成一个新集合。

用符号∩表示交集。

对于集合A和集合B,A∩B表示包含所有既属于集合A又属于集合B的元素的新集合。

例如,如果A={1,2,3},B={3,4,5},则A∩B={3}。

3. 差集运算差集运算是指从一个集合中减去另一个集合中的元素。

用符号\表示差集运算。

对于集合A和集合B,A\B表示包含属于集合A但不属于集合B的元素的新集合。

例如,如果A={1,2,3,4},B={3,4,5},则A\B={1,2}。

4. 补集运算在集合理论中,我们还可以定义补集运算。

对于给定的全集U和集合A,A的补集表示U中所有不属于A的元素。

用符号A'或A表示补集。

例如,如果U为全集,A为集合A。

则A'表示U中所有不属于集合A的元素的集合。

三、集合的扩展运算除了基本的集合运算外,还存在集合的扩展运算。

集合的概念与运算总结

集合的概念与运算总结

集合的概念与运算总结在数学中,集合是由一组特定对象组成的。

这些对象可以是数字、字母、词语、人物、事物等等。

集合的运算是指对集合进行交、并、差等操作的过程。

本文将对集合的概念及其运算进行总结。

一、集合的概念集合是数学中的基础概念之一,通常用大写字母表示,如A、B、C 等。

集合中的对象称为元素,用小写字母表示。

一个元素要么属于一个集合,要么不属于,不存在属于但不属于的情况。

表示元素属于某个集合的关系可以用符号∈表示,不属于则用∉表示。

例如,对于集合A={1,2,3},元素1∈A,元素4∉A。

集合还有一些常用的特殊表示方法,如空集∅表示不包含任何元素的集合,全集U表示某一给定条件下所有可能元素的集合。

二、集合的基本运算1. 交集运算(∩)交集运算是指将两个集合中共同拥有的元素合并成一个新的集合。

用符号∩表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},它们的交集为A∩B={2,3}。

2. 并集运算 (∪)并集运算是指将两个集合中所有的元素合并成一个新的集合。

用符号∪表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},它们的并集为A∪B={1,2,3,4}。

3. 差集运算(\)差集运算是指从一个集合中去除另一个集合的所有元素。

用符号\表示。

例如,对于集合A={1,2,3}和集合B={2,3,4},集合A减去集合B的差集为A\B={1}。

4. 补集运算补集运算是指对于给定的全集U,从全集中去除某个集合中的元素得到的集合。

用符号'表示。

例如,对于集合A={1,2,3}和全集U={1,2,3,4,5},A的补集为A'={4,5}。

三、集合运算的性质集合运算具有以下几个基本性质:1. 交换律交换律指的是对于任意两个集合A和B,A∩B = B∩A,A∪B =B∪A。

2. 结合律结合律指的是对于任意三个集合A、B和C,(A∩B)∩C = A∩(B∩C),(A∪B)∪C = A∪(B∪C)。

集合的概念与运算

集合的概念与运算

集合的概念与运算集合是数学中的基本概念之一,它是由若干个确定的对象构成的整体。

在数学中,集合可以用一对花括号 {} 来表示,其中包含了集合中的元素,每个元素之间以逗号分隔。

本文将介绍集合的概念、集合的表示方式以及集合的运算。

一、集合的概念集合是数学中研究对象的一种抽象表达方式,它是一组具有共同特征的对象的整体。

集合中的每个元素都是唯一的,不存在重复。

集合可以包含任意类型的元素,例如数字、字母、单词、几何图形等。

例如,我们可以用集合来表示一组自然数 {1, 2, 3, 4, 5},其中每个元素都是不同的自然数。

二、集合的表示方式集合可以用不同的方式表示,常见的有枚举法、描述法和扩展法。

1. 枚举法:枚举法是最简单直观的表示方式,可以逐个列举集合中的元素。

例如,集合 A = {1, 2, 3, 4, 5} 就是用枚举法表示的。

2. 描述法:描述法是通过描述元素的特征来表示集合。

例如,假设集合 B 表示所有小于 10 的偶数,则可以用描述法表示为 B = {x | x 是小于 10 的偶数}。

3. 扩展法:扩展法是通过指定集合中的一些元素和规律来表示集合。

例如,集合 C 表示所有满足 x^2 < 16 的整数,则可以用扩展法表示为C = {–4, –3, –2, –1, 0, 1, 2, 3}。

三、集合的运算集合之间可以进行多种运算,包括并集、交集、补集和差集等。

下面我们将逐一介绍这些运算。

1. 并集:设 A 和 B 是两个集合,它们的并集表示为 A ∪ B,表示包含了 A 和 B 中所有的元素,且不重复计算。

例如,如果 A = {1, 2, 3},B = {3, 4, 5},则 A ∪ B = {1, 2, 3, 4, 5}。

2. 交集:设 A 和 B 是两个集合,它们的交集表示为A ∩ B,表示包含同时属于 A 和 B 的元素。

例如,如果 A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。

离散数学第三章集合的基本概念和运算

离散数学第三章集合的基本概念和运算
第3章 集合的基本概念和运算
3.1 集合的基本概念
3.2 集合的基本运算
3.3 集合中元素的计数
3.1 集合的基本概念
1.子集:若 B⊆A⇔∀x(x∈B→x∈A),则称B为A的子集. 2.真子集:若 B⊆A ∧ B≠A,则称B为A的真子集. 3.集合相等: B⊆A ∧ A⊆B⇔A=B,称集合A与B相等. 4.空集:不含任何元素的集合称为空集.记作φ. 空集是一切集合的子集;空集是唯一的. 5.n元集:含有n个元素的集合称为n元集. 6.全集:如果所涉及的集合都是某个集合的子集,则称这个集 合为全集(E). 7.幂集:设A为集合,把A的全体子集构成的集合,称为A的幂集 记作P(A),P(A)={x|x⊆A}. 若A是n元集,则P(A)有2n个元集(n元集有2n个子集).
二.集合运算的算律 幂等律:A∪A=A, A∩A=A;
结合律: (A∪B)∪C=A∪(B∪C), (A∩B)∩C=A∩(B∩C); 交换律: A∪B=B∪A , A∩B=B∩A; 分配律: A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C); 同一律: A∪φ=A, 排中律: A∪~A=E; A∩E=A; 零律: A∪E=E, A∩φ=φ;
| Ai I A j I Ak | +... + ( −1) m | A1 I A2 I ...I Am | ∑
推论: 推论:在S中至少具有一条性质的元素数是
| A1 U A 2 U ... U A m |= +
1≤ i < j < k ≤ m
∑|A
i =1
m
i
|−
1≤ i < j ≤ m
∑|AI
i
二.包含排斥原理 包含排斥原理

集合的概念及运算课件人教新课标

集合的概念及运算课件人教新课标
一个给定集合中的元素是互不相同的.也就是说,集合 中的元素是不重复出现的。
无序性:
元素完全相同的两个集合相等,而与列举顺序无关。
两个集合相等当且仅当构成这两个集合的元 素是完全一样的.
4 集合的表示方法
1、列举法: 无序 互异
将集合中的元素一一列举出来,并置于{ }内
2、描述法:
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的情势
综上,a的取值范围是a≤-3. 12分
规律方法总结
1.子集、全集、补集 (1)子集与真子集的区分与联系:集合A的真子集一定 是其子集,而集合A的子集不一定是真子集;若集合A中 有n个元素,则其子集个数为2n,真子集个数为2n-1. (2)集合A与其补集∁UA的关系为:A∩(∁UA)=∅,A∪ (∁UA)=U.
答案:-2,-1
5.设集合A={(x,y)|x-y=0},B={(x, y)|2x-3y+4=0},则A∩B=________.
答案:{(4,4)}
6 集合S,M,N,P如图所示,则图中阴影部分所
表示的集合是( D ) (A) M∩(N∪P)
(B) M∩CS(N∩P) (C) M∪CS(N∩P) (D) M∩CS(N∪P)
在进行集合的运算时,先看清集合的元素和所满足 的条件,再把所给集合化为最简情势,并合理转化求解, 必要时充分利用数轴、Venn图、图象等工具,并会运用 分类讨论、数形结合等思想方法,使运算更加直观,简 洁.
注意:(1)有关集合的运算,要特别注意元 素的互异性,其办法是将所得到的结果进行检 验.(2)要注意∅的性质.
写字母a、b、c…表示.
2.集合的分类 集合按元素多少可分为:有限集(元素个数是有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 集合概念及集合上的运算知识、方法、技能高中一年级数学(上)(试验本)课本中给出了集合的概念;一般地,符合某种条件(或具有某种性质)的对象集中在一起就成为一个集合.在此基础上,介绍了集合的元素的确定性、互异性、无序性.深入地逐步给出了有限集、无限集,集合的列举法、描述法和子集、真子集、空集、非空集合、全集、补集、并集等十余个新名词或概念以及二十几个新符号.由此形成了在集合上的运算问题,形成了以集合为背景的题目和用集合表示空间的线面及其关系,表面平面轨迹及其关系,表示充要条件,描述排列组合,用集合的性质进行组合计数等综合型题目.赛题精讲Ⅰ.集合中待定元素的确定充分利用集合中元素的性质和集合之间的基本关系,往往能解决某些以集合为背景的高中数学竞赛题.请看下述几例.例1:求点集}lg lg )9131lg(|),{(33y x y x y x +=++中元素的个数. 【思路分析】应首先去对数将之化为代数方程来解之. 【略解】由所设知,9131,0,033xy y x y x =++>>及 由平均值不等式,有,)91()31()(3913133333xy y x y x =⋅⋅≥++ 当且仅当333331,91,9131====y x y x 即(虚根舍去)时,等号成立. 故所给点集仅有一个元素.【评述】此题解方程中,应用了不等式取等号的充要条件,是一种重要解题方法,应注意掌握之.例2:已知.}.,22|{},,34|{22B A x x x y y B x x x y y A ⋂∈+--==∈+-==求R R【思路分析】先进一步确定集合A 、B.【略解】,11)2(2≥--=x y 又.33)1(2≤++-=x y∴A=}.31|{},3|{},1|{≤≤-=⋂≤=-≥y y B A y y B y y 故【评述】此题应避免如下错误解法:联立方程组⎪⎩⎪⎨⎧+--=+-=.22,3422x x y x x y 消去.0122,2=+-x x y 因方程无实根,故φ=⋂B A . 这里的错因是将A 、B 的元素误解为平面上的点了.这两条抛物线没有交点是实数.但这不是抛物线的值域.例3:已知集合|}.|||1|||),{(},0,|||||),{(y x xy y x B a a y x y x A +=+=>=+= 若B A ⋂是平面上正八边形的顶点所构成的集合,则a 的值为 . 【思路分析】可作图,以数形结合法来解之. 【略解】点集A 是顶点为(a ,0),(0,a ),(-a ,0),(0,-a )的正方形的四条边构成(如图Ⅰ-1-1-1).将||||1||y x xy +=+,变形为,0)1|)(|1|(|=--y x所以,集合B 是由四条直线1,1±=±=y x 构成.欲使B A ⋂为正八边形的顶点所构成,只有212<<>a a 或这两种情况.(1)当2>a 时,由于正八形的边长只能为2,显然有,2222=-a故 22+=a .(2)当21<<a 时,设正八形边长为l ,则,222,2245cos -=-=︒l l l 这时,.221=+=l a 综上所述,a 的值为,222或+如图Ⅰ-1-1-1中).0,22(),0,2(+B A 【评述】上述两题均为1987年全国高中联赛试题,题目并不难,读者应从解题过程中体会此类题目的解法.Ⅱ.集合之间的基本关系充分应用集合之间的基本关系(即子、交、并、补),往往能形成一些颇具技巧的集合综合题.请看下述几例.例4:设集合},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A 则在下列关系中,成立的是( )A .D CB A ≠≠≠⊂⊂⊂ B .φφ=⋂=⋂DC B A , C .D C C B A ≠⊂⋃=, D .φ=⋂=⋃D C B B A , 【思路分析】应注意数的特征,即.,612613,21221Z ∈+=++=+n n n n n 【解法1】∵},|613{},|21{},|{},|2{Z Z Z Z ∈+=∈+=∈=∈=n n D n n C n n B n n A ∴D C C B A ≠⊂⋃=,.故应选C. 【解法2】如果把A 、B 、C 、D 与角的集合相对应,令图Ⅰ-1-1-1}.|63{},|2{},|{},|2{Z Z Z Z ∈+=∈+='∈='∈='n n D n n C n n B n n A ππππππ 结论仍然不变,显然A ′为终边在坐标轴上的角的集合,B ′为终边在x 轴上的角的集 合,C ′为终边在y 轴上的角的集合,D ′为终边在y 轴上及在直线x y 33±=上的角的集合,故应选(C ).【评述】解法1是直接法,解法2运用转化思想把已知的四个集合的元素转化为我们熟悉的的角的集合,研究角的终边,思路清晰易懂,实属巧思妙解.例5:设有集合B A B A x x B x x x A ⋃⋂<==-=和求和},2|||{}2][|{2(其中[x ]表示不超过实数x 之值的最大整数).【思路分析】应首先确定集合A 与B.从而 .2,.21A x ∈≤≤-显然 ∴}.22|{≤<-=⋃x x B A若 },2,1,0,1{][,2][,2--∈+=⋂∈x x x B A x 则从而得出 ).1]([1)1]([3-=-===x x x x 或 于是 }3,1{-=⋂B A【评述】此题中集合B 中元素x 满足“|x |<3”时,会出现什么样的结果,读者试解之. 例6:设})],([|{},),(|{),,()(2R R R ∈==∈==∈++=x x f f x x B x x f x x A c b c bx x x f 且, 如果A 为只含一个元素的集合,则A=B.【思路分析】应从A 为只含一个元素的集合入手,即从方程0)(=-x x f 有重根来解之.【略解】设0)(},|{=-∈=x x f A 则方程R αα有重根α,于是,)()(2α-=-x x x f )],([..)()(2x f f x x x x f =+-=从而α即 ,)()]()[(222x x x x x +-+-+-=ααα 整理得,0]1)1[()(22=++--ααx x 因α,x 均为实数 .,01)1(2αα=≠++-x x 故 即.}{A B ==α【评述】此类函数方程问题,应注意将之转化为一般方程来解之.例7:已知N N M a y x y x N x y y x M =⋂≤-+=≥=求}.1)(|),{(},|),{(222成立时,a 需满足的充要条件.【思路分析】由.,M N N N M ⊆=⋂可知【略解】.M N N N M ⊆⇔=⋂由).1()12(1)(22222a y a y y x a y x -+-+-≤≤-+得于是,若0)1()12(22≤-+-+-a y a y ①必有.,2M N x y ⊆≥即而①成立的条件是 ,04)12()1(422max≤-----=a a y 即 ,0)12()1(422≤-+-a a 解得 .411≥a 【评述】此类求参数范围的问题,应注意利用集合的关系,将问题转化为不等式问题来求解. 例8:设A 、B 是坐标平面上的两个点集,}.|),{(222r y x y x C r ≤+=若对任何0≥r 都有B C A C r r ⋃⊆⋃,则必有B A ⊆.此命题是否正确?【思路分析】要想说明一个命题不正确,只需举出一个反例即可.【略解】不正确.反例:取},1|),{(22≤+=y x y x A B 为A 去掉(0,0)后的集合.容易看出,B C A C r r ⋃⊆⋃但A 不包含在B 中.【评述】本题这种举反例判定命题的正确与否的方法十分重要,应注意掌握之.Ⅲ.有限集合中元素的个数有限集合元素的个数在课本P 23介绍了如下性质:一般地,对任意两个有限集合A 、B ,有 ).()()()(B A card B card A card B A card ⋂-+=⋃我们还可将之推广为:一般地,对任意n 个有限集合,,,,21n A A A Λ有)(1321n n A A A A A card ⋃⋃⋃⋃⋃-Λ)]()([)]()()()([3121321A A card A A card A card A card A card A card n ⋂+⋂-++++=Λ )]()]([)]()(1232111n n n n n n A A A card A A A card A A card A A card ⋂⋂++⋂⋂+⋂++⋂++---ΛΛΛ ).()1(311n n A A A card ⋂⋂⋂⋅-+--ΛΛ应用上述结论,可解决一类求有限集合元素个数问题.【例9】某班期末对数学、物理、化学三科总评成绩有21个优秀,物理总评19人优秀,化学总评有20人优秀,数学和物理都优秀的有9人,物理和化学都优秀的有7人,化学和数学都优秀的有8人,试确定全班人数以及仅数字、仅物理、仅化学单科优秀的人数范围(该班有5名学生没有任一科是优秀).【思路分析】应首先确定集合,以便进行计算.【详解】设A={数学总评优秀的学生},B={物理总评优秀的学生},C={化学总评优秀的学生}.则.8)(,7)(,9)(,20)(,19)(,21)(=⋂=⋂=⋂===A C card C B card B A card C card B card A card ∵)()()()()()()(A C card C B card B A card C card B card A card C B A card ⋂-⋂-⋂-++=⋃⋃ ),(C B A card ⋂⋂+ ∴.3689201921)()(=--++=⋂⋂-⋃⋃C B A card C B A card这里,)(C B A card ⋃⋃是数、理、化中至少一门是优秀的人数,)(C B A card ⋂⋂是这三科全优的人数.可见,估计)(C B A card ⋃⋃的范围的问题与估计)(C B A card ⋂⋂的范围有关.注意到7)}(),(),(min{)(=⋂⋂⋂≤⋂⋂A C card C B card B A card C B A card ,可知 7)(0≤⋂⋂≤C B A card . 因而可得.43)(36≤⋃⋃≤C B A card 又∵.5)(),()()(=⋃⋃=⋃⋃+⋃⋃C B A card U card C B A card C B A card 其中 ∴.48)(41≤≤U card 这表明全班人数在41~48人之间. 仅数学优秀的人数是).(C B A card ⋃⋂ ∴)()()()()(B card C B A card C B card C B A card C B A card -⋃⋃=⋃-⋃⋃=⋃⋂ .32)()()(-⋃⋃=⋂+-C B A card C B card C card 可见,11)(4≤⋃⋂≤C B A card 同理可知 ,10)(3≤⋃⋂≤C A B card.12)(5≤⋃⋂≤A B C card 故仅数学单科优秀的学生在4~11之间,仅物理单科优秀的学生数在3~10之间,仅化学单科优秀的学生在5~12人之间.。

相关文档
最新文档