全国初中数学竞赛辅导(八年级)教学案全集第22讲 面积问题与面积方法

合集下载

全国初中数学竞赛辅导(初2)第22讲 面积问题与面积方法

全国初中数学竞赛辅导(初2)第22讲 面积问题与面积方法

第 十 讲 面积问题 面积方法几何学的产生 源于人们测 土地面积的需要.面积 仅是几何学研究的一个重要内容 而且 是用来研究几何学的一个有力工 .面 们把常用的一些面积 式和定理列举如 .(1) 角形的面积(i) 角形的面积 式b c)是半周长 r是△ABC的内 圆半径.(ii)等底等高的两个 角形面积相等.(iii)两个等底 角形的面积之比等于高之比 两个等高 角形的面积之比等于底边之比 两个 角形面积之比等于底、高乘积之比.(iv)相似 角形的面积之比等于相似比的平方.(2)梯形的面积梯形的面积等于 、 底之和 高的乘积的一半.(3)扇形面积中r为半径 l为弧长 θ为弧l所对的圆心角的度数 α是弧度数.1.有关图形面积的计算和证明解 因为CD⊥AB AC=CB 且△ABD内接于半圆 由 可得所以 阴影部 AEFBDA的面积是例2 已知凸四边形ABCD的对角线AC BD相交于点O 且△ABC △ACD △ABD的面积 别为分1=5 分2=10 分3=6.求△ABO的面积(图2-128).解 首先 们证明△ABC △ACD的面积比等于BO DO的比.过B D 别作AC的垂线 垂足为E F.于是Rt△BEO由题设设分△AOB=分 则所以例3 如图2-129 AD BE CF交于△ABC内的一点P 并将△ABC 个小 角形 中四个小 角形的面积已在图中给出.求△ABC的面积.析 如果能把未知的两个小 角形的面积求出 那么△ABC的面积即可得知.根据例1 这两个面积是 难求出的.解 设未知的两个小 角形的面积为x和y 则即又即÷ 得再由 得x=56.因分△ABC=84 70 56 35 40 30=315.例4 如图2-130 通过△ABC内部一点Q引平行于 角形 边的直线 这些直线 角形为 个部 已知 个平形四边形部 的面积为分1 分2 分3 求△ABC的面积.解 为方便起见 设分△QDG=分′1 分△QIE=分′2 分△QFH=分′3 则所以同理可得从 中可以解得所以例5 在一个面积为1的 方形中构造一个如图2-131所示的 方形 将单位 方形的 一条边n等 然后将 个顶点和它相对的顶点最接 的 点连接起来.如果小 方形(图中阴影部 )的面积恰解 如图2-131 过F作BC的平行线交BG于H 则∠GHF=∠CED ∠FGH=∠DCE=90° 故n2-n-90=0所以n=10.2.利用面积解题有的平面几何问题 虽然没有直接涉及到面积 然而若灵活地 用面积知识去解答 往往会出奇制胜 半功倍.例6 在△ABC内部或边界 任取一点P 记P到 边a b c的距离依次为x y z.求证 ax+by+cz是一个常数.证 如图2-132 连结PA PB PC 把△ABC 个小 角形 则分△ABC=分△PAB 分△PCB 分△PCA所以 ax by cz=2分△ABC即ax by cz为常数.说明 若△ABC为等边 角形 则即 角形内一点到 边的距离和为常数 常数是 角形的高.例7如图2-133 设P是△ABC内任一点 AD BE CF是过点P且 别交边BC CA AB于D E F.求证证 首先 同例2类似 容易证明说明 本例的结论很重要 在处理 角形内 条线交于一点的问题时 常常可以用这一结论去解决.例8如图2-134 已知D E F 别是锐角 角形ABC的 边BC CA AB 的点 且AD BE CF相交于点P AP=BP=CP=6 设PD=x PE=y PF=z 若xy yz+zx=28 求xyz的值.解 由 题知去 母整理得3(xy+yz zx) 36(x+y z) 324=xyz+6(xy yz zx)+36(x+y z) 216所以 xyz=108-3(xy yz zx)=24.练 十1.填空________.(2)一个 角形的 边长都是整数 周长为8 则这个 角形的面积是________.(3)四边形ABCD中 ∠A=30° ∠B=∠D=90° AB=AD AC=1 则四边形ABCD的面积是______.(4)梯形ABCD中 AB∥CD 对角线AC BD相交于O.若分△ABO=p2 分=q2 则分ABCD=____.△CDO△BE CD相交于F 则分△DEF=______.ABC=40.若2.E F 别在矩形ABCD的边BC和CD 若△CEF △ABE △ADF 的面积 别是3 4 5 求△AEF的面积.3.已知点P Q R 别在△ABC的边AB BC CA 且BP=PQ=QR=RC=1 求△ABC的面积的最大值.4.在凸五边形ABCDE中 分△ABC=分△BCD=分△CDE=分△DEA=分△EAB=1 CE AD 相交于F 求分△CFD.5.在直角 角形ABC中 ∠A=90° AD AE 别是高和角平 线 且△ABE △AED的面积 别为分1=30 分2=6 求△ADC的面积分.6.设P是△ABC内一点 AD BE CF过点P并且交边BC CA AB 于点D E F.求证7.已知△ABC中 DE∥BC交AB于D 交AC于E AM为BC边 的中线 DE相交于N 求证 DN=NE.。

八年级竞赛辅导之图形的面积

八年级竞赛辅导之图形的面积

八年级数学竞赛辅导之面积问题平面几何学的产生起源于人们对土地面积的测量,面积是平面几何中一个重要的概念,联系着几何图形中的重要元素边与角.计算图形的面积是几何问题中一种常见问题,求面积的基本方法有: 1.直接法:根据面积公式和性质直接进行运算.2.割补法:通过分割或补形,把不规则图形或不易求解的问题转化为规则图形或易于求解的问题. 3.等积法:根据面积的等积性质进行转化求解,常见的有同底等高、同高等底和全等的等积转化.4.等比法:将面积比转化为对应线段的比. 熟悉以下基本图形中常见的面积关系:注 等积定理:等底等高的两个三角形面积相等.等比定理:同底(或等底)的两个三角形面积之比等于对应高之比,同高(或等高)的两个三角形面积之比等于对应底之比.1.如图,是一个圆形花坛,中间的鲜花构成了一个菱形图案(图中尺寸单位为米),如果每平方米种植鲜花20株,那么这个菱形图案中共有鲜花 株. 2.直角三角形斜边上中线长为1,周长为.3.如图,在四边形ABCD 中,∠A =135°,∠B =∠D =90°,BC =23,AD =2,则四边形ABCD 的面积为( )A .42B .43C .4D .6 (2001年湖北省荆州市中考题) 4.ABCD 是边长为1的正方形,△BPC 是等边三角形,则厶BPD 的面积为( )A .41B .413-C .81D .8132- (2001年武汉市选拔赛题)5.有一块缺角矩形地皮ABCDE (如图),其中AB =110m ,BC =80m ,CD =90m ,∠EDC =135°.现准备用此块地建一座地基为长方形(图中用阴影部分表示)的教学大楼,以下四个方案中,地基面积最大的是( ) 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路将这块土地分成形状相同且面积相等的4部分.若道路的宽度可忽略不计,请设计4种不同的修筑方案.7.如图,已知梯形ABCD 的面积为34cm 2,AE =BF ,CE 与DF 相交于O ,△OCD 的面积为11cm 2,求蝶形(阴影部分)的面积.8.探究规律:如图a ,已知:直线m ∥ n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点. (1)请写出图a 中,面积相等的各对三角形 ;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有 与△ABC 的面积相等.理由是: . 解决问题:如图b ,五边形ABCDE 是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图c 所示的形状,但承包土地与开垦荒地的分界小路(即图c 中折线CDE )还保留着.张大爷想过正点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积) (1)写出设计方案,并在图c 中画出相应的图形; (2)说明方案设计理由. (2003年河北省中考题)9.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为 . (全国初中数学联赛试题)10.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连结AF 、CE ,设AF 与CE 的交点为G ,则AB C D A G C D S S 矩形四边形等于( ) A .65 B .54 C .43 D .32第9题图 第10题图11.已知菱形ABCD 的两条对角线AC 、BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是( ) A .165° D .135° C . 150° D .120° (“希望杯”邀请赛试题)12.如图,设凸四边形ABCD 的一组对边AB 、CD 的中点分别为K 、M ,求证:S 四边形ABCD =S △ABM +S △DCK .13.如图,设G (也称重心)为△ABC 三条中线AD 、BE 、CF 的交点,则2===GFCGGE BG GD AG ,请读者证明.(14题图)14. 如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =6,那么△ABC 的面积等于( )A .12B .14C .16D .18(全国初中数学联赛试题) 15. 如图甲,AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 、S △DBC 分别表示△DMC 、△DAC 、△DBC的面积,当AB ∥CD 时,有S △DMC =2DBCDAC S S ∆∆+·(1)如图乙,若图甲中AB 不平行CD ,①式是否成立?请说明理由;(2)如图丙,若图甲中A 月与CD 相交于点O 时,问S △DMC 和S △DAC 和S △DBC 有何种相等关系?试证明你的结论. (2001年安徽省中考题)16.已知凸四边形ABCD 的对角线AC ,BD 相交于点O ,且△ABC ,△ACD ,△ABD 的面积分别为S 1=5,S 2=10,S 3=6.求△ABO 的面积17.如图2-129,AD ,BE ,CF 交于△ABC 内的一点P ,并将△ABC 分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC 的面积.18.如图1,在直角坐标系中,点A是x 轴正半轴上的一个定点,点B 是双曲线y =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小19.(2009·牡丹江)如图2,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 20.(2009莆田)在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . 21.在直角三角形ABC 中,∠A =90°,AD ,AE 分别是高和角平分线,且△ABE ,△AED 的面积分别为S 1=30,S 2=6,求△ADC 的面积S .22.如图,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB =BD ,BC =CE ,CA =AF ,连DE 、EF 、FD ,求△DEF 的面积。

初中数学奥数面积问题教案

初中数学奥数面积问题教案

初中数学奥数面积问题教案一、教学目标1. 让学生掌握面积的基本概念和常用公式。

2. 培养学生解决实际问题的能力,提高学生的逻辑思维和运算能力。

3. 培养学生对数学的兴趣和自信心,为高中数学学习打下基础。

二、教学内容1. 面积的基本概念:面积的定义、面积的单位。

2. 常用面积公式:三角形、矩形、平行四边形、圆的面积公式。

3. 面积问题的解决方法:直接计算、转化计算、分割合并。

4. 实际问题举例:平面图形的面积计算、实际场景中的面积问题。

三、教学重点与难点1. 重点:掌握面积的基本概念和常用公式,学会解决实际问题。

2. 难点:面积问题的解决方法,特别是复杂图形的面积计算。

四、教学过程1. 导入:通过展示一些实际场景的图片,引导学生思考面积的概念和重要性。

2. 基本概念:介绍面积的定义和面积的单位,让学生理解面积的本质。

3. 常用公式:讲解三角形、矩形、平行四边形、圆的面积公式,让学生掌握计算面积的基本方法。

4. 面积问题的解决方法:引导学生学会直接计算、转化计算、分割合并等方法解决面积问题。

5. 实际问题举例:给出一些平面图形的面积计算题目,让学生运用所学知识解决实际问题。

6. 练习与总结:布置一些练习题,让学生巩固所学知识,并对本节课的内容进行总结。

五、教学策略1. 采用直观教学法,通过展示图片和实际场景,让学生直观地理解面积的概念。

2. 采用案例教学法,通过讲解具体的实际问题,让学生学会解决面积问题。

3. 采用分组讨论法,让学生分组讨论和交流,培养学生的合作意识和解决问题的能力。

4. 采用激励教学法,鼓励学生积极参与课堂活动,培养学生的自信心和兴趣。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和积极性。

2. 练习题解答:评价学生在练习题中的解答情况,了解学生对面积公式的掌握程度和解决问题的能力。

3. 课后作业:布置一些有关面积问题的作业,评价学生在课后对所学知识的巩固程度和应用能力。

全国初中数学竞赛辅导(初二分册) - 副本

全国初中数学竞赛辅导(初二分册) - 副本

初二数学竞赛班讲义第一讲因式分解(一) (1)第二讲因式分解(二) (10)第三讲实数的若干性质和应用 (17)第四讲分式的化简与求值 (26)第五讲恒等式的证明 (34)第六讲代数式的求值 (44)第七讲根式及其运算 (52)第八讲非负数 (63)第九讲一元二次方程 (73)第十讲三角形的全等及其应用 (81)第十一讲勾股定理与应用 (90)第十二讲平行四边形 (101)第十三讲梯形 (108)第十四讲中位线及其应用 (116)第十五讲相似三角形(一) (124)第十六讲相似三角形(二) (132)第十八讲归纳与发现 (153)第十九讲特殊化与一般化 (162)第二十讲类比与联想 (171)第二十一讲分类与讨论 (180)第二十二讲面积问题与面积方法 (188)第二十三讲几何不等式 (197)第二十六讲含参数的一元二次方程的整数根问题 (222)第二十七讲列方程解应用问题中的量与等量 (230)第二十八讲怎样把实际问题化成数学问题(一) (239)第二十九讲生活中的数学(一) (247)第三十讲生活中的数学(二) (254)复习题 (260)自测题 (268)自测题一 (268)自测题二 (270)自测题三 (271)自测题四 (273)自测题五 (274)复习题解答 (276)自测题解答 (304)自测题一 (304)自测题二 (309)自测题三 (314)自测题四 (321)自测题五 (327)第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2n y2+y4)=-2x n-1y n[(x2n)2-2x2n y2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc ≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y 的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.第二讲因式分解(二)1.双十字相乘法分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.2.求根法我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x 的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,±为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.3.待定系数法待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.例4 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例5 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.练习二1.用双十字相乘法分解因式:(1)x2-8xy+15y2+2x-4y-3;(2)x2-xy+2x+y-3;(3)3x2-11xy+6y2-xz-4yz-2z2.2.用求根法分解因式:(1)x3+x2-10x-6;(2)x4+3x3-3x2-12x-4;(3)4x4+4x3-9x2-x+2.3.用待定系数法分解因式:(1)2x2+3xy-9y2+14x-3y+20;(2)x4+5x3+15x-9.第三讲实数的若干性质和应用实数是高等数学特别是微积分的重要基础.在初中代数中没有系统地介绍实数理论,是因为它涉及到极限的概念.这一概念对中学生而言,有一定难度.但是,如果中学数学里没有实数的概念及其简单的运算知识,中学数学也将无法继续学习下去了.例如,即使是一元二次方程,只有有理数的知识也是远远不够用的.因此,适当学习一些有关实数的基础知识,以及运用这些知识解决有关问题的基本方法,不仅是为高等数学的学习打基础,而且也是初等数学学习所不可缺少的.本讲主要介绍实数的一些基本知识及其应用.用于解决许多问题,例如,不难证明:任何两个有理数的和、差、积、商还是有理数,或者说,有理数对加、减、乘、除(零不能做除数)是封闭的.性质1 任何一个有理数都能写成有限小数(整数可以看作小数点后面为零的小数)或循环小数的形式,反之亦然.例1分析要说明一个数是有理数,其关键要看它能否写成两个整数比的形式.证设两边同乘以100得②-①得99x=261.54-2.61=258.93,无限不循环小数称为无理数.有理数对四则运算是封闭的,而无理是说,无理数对四则运算是不封闭的,但它有如下性质.性质2 设a为有理数,b为无理数,则(1)a+b,a-b是无理数;有理数和无理数统称为实数,即在实数集内,没有最小的实数,也没有最大的实数.任意两个实数,可以比较大小.全体实数和数轴上的所有点是一一对应的.在实数集内进行加、减、乘、除(除数不为零)运算,其结果仍是实数(即实数对四则运算的封闭性).任一实数都可以开奇次方,其结果仍是实数;只有当被开方数为非负数时,才能开偶次方,其结果仍是实数.例2分析证所以分析要证明一个实数为无限不循环小数是一件极难办到的事.由于有理数与无理数共同组成了实数集,且二者是矛盾的两个对立面,所以,判定一个实数是无理数时,常常采用反证法.证用反证法.所以p一定是偶数.设p=2m(m是自然数),代入①得4m2=2q2,q2=2m2,例4 若a1+b1a=a2+b2a(其中a1,a2,b1,b2为有理数,a为无理数),则a1=a2,b1=b2,反之,亦成立.分析设法将等式变形,利用有理数不能等于无理数来证明.证将原式变形为(b1-b2)a=a2-a1.若b1≠b2,则反之,显然成立.说明本例的结论是一个常用的重要运算性质.是无理数,并说明理由.整理得由例4知a=Ab,1=A,说明本例并未给出确定结论,需要解题者自己发现正确的结有理数作为立足点,以其作为推理的基础.例6 已知a,b是两个任意有理数,且a<b,求证:a与b之间存在着无穷多个有理数(即有理数集具有稠密性).分析只要构造出符合条件的有理数,题目即可被证明.证因为a<b,所以2a<a+b<2b,所以说明构造具有某种性质的一个数,或一个式子,以达到解题和证明的目的,是经常运用的一种数学建模的思想方法.例7 已知a,b是两个任意有理数,且a<b,问是否存在无理数α,使得a<α<b成立?即由①,②有存在无理数α,使得a<α<b成立.b4+12b3+37b2+6b-20的值.分析因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这样涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法.14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20 =52+5-20=10.例9 求满足条件的自然数a,x,y.解将原式两边平方得由①式变形为两边平方得例10 设a n是12+22+32+…+n2的个位数字,n=1,2,3,…,求证:0.a1a2a3…a n…是有理数.分析有理数的另一个定义是循环小数,即凡有理数都是循环小数,反之循环小数必为有理数.所以,要证0.a1a2a3…a n…是有理数,只要证它为循环小数.因此本题我们从寻找它的循环节入手.证计算a n的前若干个值,寻找规律:1,5,4,0,5,1,0,4,5,5,6,0,9,5,0,6,5,9,0,0,1,5,4,0,5,1,0,4,…发现:a20=0,a21=a1,a22=a2,a23=a3,…,于是猜想:a k+20=a k,若此式成立,说明0.a1a2…a n…是由20个数字组成循环节的循环小数,即下面证明a k+20=a k.令f(n)=12+22+…+n2,当f(n+20)-f(n)是10的倍数时,表明f(n+20)与f(n)有相同的个位数,而f(n+20)-f(n)=(n+1)2+(n+2)2+…+(n+20)2=10(2n2+42·n)+(12+22+…+202).由前面计算的若干值可知:12+22+…+202是10的倍数,故a k+20=a k成立,所以0.a1a2…a n…是一个有理数.练习三1.下列各数中哪些是有理数,哪些是无理数?为什么?5.设α,β为有理数,γ为无理数,若α+βγ=0,求证:α=β=0.第四讲分式的化简与求值分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值.例1 化简分式:分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.=[(2a+1)-(a-3)-(3a+2)+(2a-2)]说明本题的关键是正确地将假分式写成整式与真分式之和的形式.例2 求分式当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b),可将分式分步通分,每一步只通分左边两项.例3 若abc=1,求分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法.解法1 因为abc=1,所以a,b,c都不为零.解法2 因为abc=1,所以a≠0,b≠0,c≠0.例4 化简分式:分析与解三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.说明互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.例5 化简计算(式中a,b,c两两不相等):似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解说明本例也是采取“拆项相消”法,所不同的是利用例6 已知:x+y+z=3a(a≠0,且x,y,z不全相等),求分析本题字母多,分式复杂.若把条件写成(x-a)+(y-a)+(z-a)=0,那么题目只与x-a,y-a,z-a有关,为简化计算,可用换元法求解.解令x-a=u,y-a=v,z-a=w,则分式变为u2+v2+w2+2(uv+vw+wu)=0.由于x,y,z不全相等,所以u,v,w不全为零,所以u2+v2+w2≠0,从而有说明从本例中可以看出,换元法可以减少字母个数,使运算过程简化.例7 化简分式:适当变形,化简分式后再计算求值.(x-4)2=3,即x2-8x+13=0.原式分子=(x4-8x3+13x2)+(2x3-16x2+26x)+(x2-8x+13)+10=x2(x2-8x+13)+2x(x2-8x+13)+(x2-8x+13)+10=10,原式分母=(x2-8x+13)+2=2,说明本例的解法采用的是整体代入的方法,这是代入消元法的一种特殊类型,应用得当会使问题的求解过程大大简化.解法1 利用比例的性质解决分式问题.(1)若a+b+c≠0,由等比定理有所以a+b-c=c,a-b+c=b,-a+b+c=a,于是有(2)若a+b+c=0,则a+b=-c,b+c=-a,c+a=-b,于是有说明比例有一系列重要的性质,在解决分式问题时,灵活巧妙地使用,便于问题的求解.解法2 设参数法.令则a+b=(k+1)c,①a+c=(k+1)b,②b+c=(k+1)a.③①+②+③有2(a+b+c)=(k+1)(a+b+c),所以 (a+b+c)(k-1)=0,故有k=1或 a+b+c=0.当k=1时,当a+b+c=0时,说明引进一个参数k表示以连比形式出现的已知条件,可使已知条件便于使用.练习四1.化简分式:2.计算:3.已知:(y-z)2+(z-x)2+(x-y)2=(x+y-2z)2+(y+z-2x)2+(z+x-2y)2,的值.第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.全不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第六讲代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:。

全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明

全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明

全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明第一篇:全国初中数学竞赛辅导(八年级)教学案全集第05讲恒等式的证明全国初中数学竞赛辅导(八年级)教学案全集第五讲恒等式的证明代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析.两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等.把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等.证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧.1.由繁到简和相向趋进恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式).例 1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.证因为x+y+z=xyz,所以左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)=(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2=xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)=xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)=xyz+xyz+xyz+xyz=4xyz=右边.说明本例的证明思路就是“由繁到简”.例2 已知1989x2=1991y2=1993z2,x>0,y>0,z>0,且证令1989x2=1991y2=1993z2=k(k>0),则又因为所以所以说明本例的证明思路是“相向趋进”,在证明方法上,通过设参数k,使左右两边同时变形为同一形式,从而使等式成立.2.比较法a=b(比商法).这也是证明恒等式的重要思路之一.例3 求证:分析用比差法证明左-右=0.本例中,这个式子具有如下特征:如果取出它的第一项,把其中的字母轮换,即以b代a,c代b,a代c,则可得出第二项;若对第二项的字母实行上述轮换,则可得出第三项;对第三项的字母实行上述轮换,可得出第一项.具有这种特性的式子叫作轮换式.利用这种特性,可使轮换式的运算简化.证因为所以所以说明本例若采用通分化简的方法将很繁.像这种把一个分式分解成几个部分分式和的形式,是分式恒等变形中的常用技巧.不为零.证明:(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).全同理所以所以(1+p)(1+q)(1+r)=(1-p)(1-q)(1-r).说明本例采用的是比商法.3.分析法与综合法根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论.证要证 a2+b2+c2=(a+b-c)2,只要证a2+b2+c2=a2+b2+c2+2ab-2ac-2bc,只要证ab=ac+bc,只要证 c(a+b)=ab,只要证这最后的等式正好是题设,而以上推理每一步都可逆,故所求证的等式成立.说明本题采用的方法是典型的分析法.例6 已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.证由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以a2-b2=c2-d2=ab-cd=0,所以(a+b)(a-b)=(c+d)(c-d)=0.又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以a=b,c=d.所以ab-cd=a2-c2=(a+c)(a-c)=0,所以a=c.故a=b=c=d成立.说明本题采用的方法是综合法.4.其他证明方法与技巧求证:8a+9b+5c=0.a+b=k(a-b),b+c=2k(b-c),(c+a)=3k(c-a).所以6(a+b)=6k(a-b),3(b+c)=6k(b-c),2(c+a)=6k(c-a).以上三式相加,得6(a+b)+3(b+c)+2(c+a)=6k(a-b+b-c+c-a),即 8a+9b+5c=0.说明本题证明中用到了“遇连比设为k”的设参数法,前面的例2用的也是类似方法.这种设参数法也是恒等式证明中的常用技巧.例8 已知a+b+c=0,求证2(a4+b4+c4)=(a2+b2+c2)2.分析与证明用比差法,注意利用a+b+c=0的条件.左-右=2(a4+b4+c4)-(a2+b2+c2)2=a4+b4+c4-2a2b2-2b2c2-2c2a2=(a2-b2-c2)2-4b2c2=(a2-b2-c2+2bc)(a2-b2-c2-2bc)=[a2-(b-c)2][a2-(b+c)2]=(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立.说明本题证明过程中主要是进行因式分解.分析本题的两个已知条件中,包含字母a,x,y和z,而在求证的结论中,却只包含a,x和z,因此可以从消去y着手,得到如下证法.证由已知说明本题利用的是“消元”法,它是证明条件等式的常用方法.例10 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,① z+x-2y=b,② x+y-2z=c,③则要证的等式变为a3+b3+c3=3abc.联想到乘法公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有a+b+c=y+z-2x+z+x-2y+x+y-2z=0,所以a3+b3+c3-3abc=0,所以(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).说明由本例可以看出,换元法也可以在恒等式证明中发挥效力.例11 设x,y,z为互不相等的非零实数,且求证:x2y2z2=1.分析本题x,y,z具有轮换对称的特点,我们不妨先看二元的所以x2y2=1.三元与二元的结构类似.证由已知有①×②×③得x2y2z2=1.说明这种欲进先退的解题策略经常用于探索解决问题的思路中.总之,从上面的例题中可以看出,恒等式证明的关键是代数式的变形技能.同学们要在明确变形目的的基础上,深刻体会例题中的常用变形技能与方法,这对以后的数学学习非常重要.练习五1.已知(c-a)2-4(a-b)(b-c)=0,求证:2b=a+c.2.证明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).3.求证:5.证明:6.已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.7.已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).第二篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲自测题全国初中数学竞赛辅导(八年级)教学案全集第三十二讲自测题自测题一1.分解因式:x4-x3+6x2-x+15.2.已知a,b,c为三角形的三边长,且满足a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.3.已知a,b,c,d均为自然数,且a5=b4,c3=d2,c-a=19,求d-b的值.4.a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a 和b,求a+b+c的值.5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P 点.求∠APM的度数.9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?自测题二1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.2.对于集合p={x丨x是1到100的整数}中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;(2)用列举法表示集合{x丨==5,x∈P}.3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.4.已知方程x2-3x+a+4=0有两个整数根.(1)求证:这两个整数根一个是奇数,一个是偶数;(2)求证:a是负偶数;(3)当方程的两整数根同号时,求a的值及这两个根.5.证明:形如8n+7的数不可能是三个整数的平方和.7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE 是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?自测题三2.对于任意实数k,方程(k2+1)x2-2(a+k)2x+k2+4k+b=0总有一个根是1,试求实数a,b的值及另一个根的范围.4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?自测题四1.求多项式2x2-4xy+5y2-12y+13的最小值.2.设试求:f(1)+f(3)+f(5)+…+f(1999).3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.4.若a,b,c为有理数,且等式成立,则a=b=c=0 .5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.7.设x1,x2,…,x9均为正整数,且x1<x2<…<x9,x1+x2+…+x9=220.当x1+x2+…+x5的值最大时,求x9-x1的值.8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m 人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:FA·BC=AE·C D.(2)当E点移动到D点时,命题(1)将会怎样?(3)当E点在AD的延长线上时又会怎样?自测题五2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根3.设x+y=1,x2+y2=2,求x7+y7的值.4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.6.a,b,c是三个自然数,且满足abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);(2)当A点在BC上时,将怎样?按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?第三篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲复习题全国初中数学竞赛辅导(八年级)教学案全集第三十一讲复习题1.分解因式:3x2+5xy-2y2+x+9y-4.2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.5.已知求ab+cd的值.为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.8.求分式的值.9.已知:求证:px+qy+rz=(p+q+r)(x+y+z).11.已知实数x,y满足等式求x,y的值.12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.13.解方程:x2+2x-3丨x+1丨+3=0.14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:CD=CE.21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC 和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.23.在(凸)四边形ABCD中,求证:AC·BD≤AB·CD+AD·BC.24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB 于E.求证:25.已知n是正整数,且n2-71能被7n+55整除,求n的值.26.求具有下列性质的最小正整数n:(1)它以数字6结尾;(2)如果把数字6移到第一位之前,所得的数是原数的4倍.27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.28.把1,2,3,…,81这81个数任意排列为:a1,a2,a3,…,a81.计算丨a1-a2+a3丨,丨a4-a5+a6丨,…,丨a79-a80+a81丨;再将这27个数任意排列为b1,b2,…,b27,计算丨b1-b2+b3丨,丨b4-b5+b6丨,…,丨b25-b26+b27丨.如此继续下去,最后得到一个数x,问x是奇数还是偶数?29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:BC+AD>AB+CD.31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.33.已知一元二次方程x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.35.求证:当p,q为奇数时,方程x2+px+q=0无整数根.36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?45.唐代诗人王之涣的著名诗篇:白日依山尽,黄河入海流.欲穷千里目,更上一层楼.按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:(1)以x,y的对应值(x,y)为点的坐标,画出散点图;(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.第四篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形全国初中数学竞赛辅导(八年级)教学案全集第八讲平行四边形平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.由平行四边形的定义决定了它有以下几个基本性质:(1)平行四边形对角相等;(2)平行四边形对边相等;(3)平行四边形对角线互相平分.除了定义以外,平行四边形还有以下几种判定方法:(1)两组对角分别相等的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.例1 如图2-32所示.在EF与MN互相平分.ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:分析只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.证因为ABCD是平行四边形,所以ADBC,ABCD,∠B=∠D.又AE⊥BC,CF⊥AD,所以AECF是矩形,从而AE=CF.所以Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以△BEM≌△DFN(SAS),ME=NF.①又因为AF=CE,AM=CN,∠MAF=∠NCE,所以△MAF≌△NCE(SAS),所以 MF=NF.②由①,②,四边形ENFM是平行四边形,从而对角线EF与MN 互相平分.例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.分析AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.证作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而△ABG≌△HBG(AAS),所以 AB=HB.①在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以△ABE≌△HBE(S AS),所以 AE=EH,∠BEA=∠BEH.下面证明四边形EHCF是平行四边形.因为AD∥GH,所以∠AEG=∠BGH(内错角相等).②又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以∠AGB=∠GEH.从而EH∥AC(内错角相等,两直线平行).由已知EF∥HC,所以EHCF是平行四边形,所以FC=EH=AE.说明本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE 位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.例3 如图2-34所示.∠EMC=3∠BEM.ABCD中,DE⊥AB于E,BM=MC=DC.求证:分析由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.证延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知∠F=∠MDC,又由已知MC=CD,所以∠MDC=∠CMD,则∠MCF=∠MDC+∠CMD=2∠F.从而∠EMC=∠F+∠MCF=3∠F=3∠BEM.例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.分析只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.证延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD.①又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF 的外角,所以∠CHG=∠CFH+∠FCH=45°,所以∠CFH=45°-∠FCH.②由①,②∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有CA=CF.例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:分析作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.证如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以FA=FH.设正方形边长为a,在Rt△ADF中,从而所以Rt△ABG≌Rt△HCG(AAS),从而Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.分析准确地画图可启示我们证明∠GDH=∠GHD.证因为DEBD=FD,所以BC,所以四边形BCED为平行四边形,所以∠1=∠4.又所以 BC=GC=CD.因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以又所以∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.练习十二1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.3.如图2-40所示.CB于E.求证:BE=CF.ABCD中,AF平分∠BAD交BC于F,DE⊥AF交4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分第五篇:全国初中数学竞赛辅导(八年级)教学案全集第23讲几何不等式全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1 在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2 同一个三角形中,大边对大角,小边对小角,反之亦然.定理3 在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4 三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5 自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证(1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b,PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3 如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC 延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5 如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证(1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6 在△ABC中,D是中线AM上一点,若∠DC B>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB>∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC>2BD.又 CD>BC-BD,所以BC+CD>2BD+BC-BD,所以 CD>BD.从而命题得证.例8 在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B <60°(图2-144).证作MH1⊥BC于H1,由于M是中点,所以于是在Rt△MH1B中,∠MBH1=30°.延长BM至N,使得MN=BM,则ABCN为平行四边形.因为AH为最ABC中的最短边,所以AN=BC<AB,从而∠ABN<∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC<60°.。

初中图形面积问题解析教案

初中图形面积问题解析教案

初中图形面积问题解析教案教学目标:1. 理解并掌握各种图形的面积公式。

2. 能够运用面积公式解决实际问题。

3. 培养学生的空间想象能力和逻辑思维能力。

教学内容:1. 平方单位的认识。

2. 常见图形的面积公式。

3. 面积公式的应用。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的平面几何知识,如点、线、面的基本概念。

2. 提问:你们知道什么是面积吗?面积有什么意义?二、新课讲解(20分钟)1. 讲解平方单位的认识,介绍平方厘米、平方分米、平方米等。

2. 讲解常见图形的面积公式,如正方形、矩形、三角形、梯形等。

3. 通过示例,演示如何运用面积公式计算不同图形的面积。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成。

2. 选几位同学上台演示解题过程,并讲解思路。

四、应用拓展(10分钟)1. 让学生举例说明面积公式的应用,如计算家庭装修中的墙面面积、计算衣物的大小等。

2. 讨论:如何快速估算不规则图形的面积?五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结面积公式的特点和应用。

2. 提问:你们认为面积在实际生活中有哪些应用?教学评价:1. 课后作业:布置相关的练习题,检验学生对面积公式的掌握程度。

2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状况。

教学反思:本节课通过讲解平方单位的认识和常见图形的面积公式,让学生掌握了面积的基本概念和计算方法。

在课堂练习环节,学生能够独立完成练习题,运用面积公式解决问题。

在应用拓展环节,学生能够举例说明面积公式的实际应用,并讨论如何估算不规则图形的面积。

然而,本节课的教学过程中,仍存在一些不足之处。

例如,在讲解面积公式时,可能没有讲解得足够清晰,导致部分学生对面积公式的理解不够深入。

另外,在课堂练习环节,可能没有给予学生足够的指导,使得部分学生在解题过程中遇到困难。

在今后的教学中,我将注重讲解的清晰度和条理性,让学生更好地理解和掌握面积公式。

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法

八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。

全国初中数学竞赛辅导(八年级)教学案全集第23讲 几何不等式

全国初中数学竞赛辅导(八年级)教学案全集第23讲 几何不等式

全国初中数学竞赛辅导(八年级)教学案全集第二十三讲几何不等式平面图形中所含的线段长度、角的大小及图形的面积在许多情形下会呈现不等的关系.由于这些不等关系出现在几何问题中,故称之为几何不等式.在解决这类问题时,我们经常要用到一些教科书中已学过的基本定理,本讲的主要目的是希望大家正确运用这些基本定理,通过几何、三角、代数等解题方法去解决几何不等式问题.这些问题难度较大,在解题中除了运用不等式的性质和已经证明过的不等式外,还需考虑几何图形的特点和性质.几何不等式就其形式来说不外乎分为线段不等式、角不等式以及面积不等式三类,在解题中不仅要用到一些有关的几何不等式的基本定理,还需用到一些图形的面积公式.下面先给出几个基本定理.定理1在三角形中,任两边之和大于第三边,任两边之差小于第三边.定理2同一个三角形中,大边对大角,小边对小角,反之亦然.定理3在两边对应相等的两个三角形中,第三边大的,所对的角也大,反之亦然.定理4三角形内任一点到两顶点距离之和,小于另一顶点到这两顶点距离之和.定理5自直线l外一点P引直线l的斜线,射影较长的斜线也较长,反之,斜线长的射影也较长.说明如图2-135所示.PA,PB是斜线,HA和HB分别是PA和PB在l 上的射影,若HA>HB,则PA>PB;若PA>PB,则HA>HB.事实上,由勾股定理知PA2-HA2=PH2=PB2-HB2,所以PA2-PB2=HA2-HB2.从而定理容易得证.定理6 在△ABC中,点P是边BC上任意一点,则有PA≤max{AB,AC},当点P为A或B时等号成立.说明 max{AB,AC}表示AB,AC中的较大者,如图2-136所示,若P 在线段BH上,则由于PH≤BH,由上面的定理5知PA≤BA,从而PA≤max{AB,AC}.同理,若P在线段HC上,同样有PA≤max{AB,AC}.例1 在锐角三角形ABC中,AB>AC,AM为中线,P为△AMC内一点,证明:PB>PC(图2-137).证在△AMB与△AMC中,AM是公共边,BM=MC,且AB>AC,由定理3知,∠AMB>∠AMC,所以∠AMC<90°.过点P作PH⊥BC,垂足为H,则H必定在线段BM的延长线上.如果H在线段MC内部,则BH>BM=MC>HC.如果H在线段MC的延长线上,显然BH>HC,所以PB>PC.例2 已知P是△ABC内任意一点(图2-138).(1)求证:<a+b+c;(2)若△ABC为正三角形,且边长为1,求证:PA+PB+PC<2.证 (1)由三角形两边之和大于第三边得PA+PB>c,PB+PC>a,PC+PA>b.把这三个不等式相加,再两边除以2,便得又由定理4可知PA+PB<a+b, PB+PC<b+c,PC+PA<c+a.把它们相加,再除以2,便得PA+PB+PC<a+b+c.所以(2)过P作DE∥BC交正三角形ABC的边AB,AC于D,E,如图2-138所示.于是PA<max{AD,AE}=AD,PB<BD+DP,PC<PE+EC,所以PA+PB+PC<AD+BD+DP+PE+EC=AB+AE+EC=2.例3如图2-139.在线段BC同侧作两个三角形ABC和DBC,使得AB=AC,DB>DC,且AB+AC=DB+DC.若AC与BD相交于E,求证:AE>DE.证在DB上取点F,使DF=AC,并连接AF和AD.由已知2DB>DB+DC=AB+AC=2AC,所以 DB>AC.由于DB+DC=AB+AC=2AC,所以DC+BF=AC=AB.在△ABF中,AF>AB-BF=DC.在△ADC和△ADF中,AD=AD,AC=DF,AF>CD.由定理3,∠1>∠2,所以AE>DE.例4 设G是正方形ABCD的边DC上一点,连结AG并延长交BC延长线于K,求证:分析在不等式两边的线段数不同的情况下,一般是设法构造其所为边的三角形.证如图2-140,在GK上取一点M,使GM=MK,则在Rt△GCK中,CM是GK边上的中线,所以∠GCM=∠MGC.而∠ACG=45°,∠MGC>∠ACG,于是∠MGC>45°,所以∠ACM=∠ACG+∠GCM>90°.由于在△ACM中∠ACM>∠AMC,所以AM>AC.故例5如图2-141.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}.证 (1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T.由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY.又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS 中的最大边,而且SXOC′是平行四边形,所以BX>XS=OC′.同理CY>OB′.所以OA′+OB′+OC′<XY+BX+CY=BC.所以OA′+OB′+OC′=x·AA′+y·BB′+z·CC′≤(x+y+z)max{AA′,BB′,CC′}=max{AA′,BB′,CC′}下面我们举几个与角有关的不等式问题.例6在△ABC中,D是中线AM上一点,若∠DCB>∠DBC,求证:∠ACB>∠ABC(图2-142).证在△BCD中,因为∠DCB>∠DBC,所以BD>CD.在△DMB与△DMC中,DM为公共边,BM=MC,并且BD>CD,由定理3知,∠DMB>∠DMC.在△AMB与△AMC中,AM是公共边,BM=MC,且∠AMB >∠AMC,由定理3知,AB>AC,所以∠ACB>∠ABC.说明在证明角的不等式时,常常把角的不等式转换成边的不等式.证由于AC>AB,所以∠B>∠C.作∠ABD=∠C,如图2即证BD∠CD.因为△BAD∽△CAB,即 BC >2BD .又 CD >BC -BD ,所以BC +CD >2BD +BC -BD ,所以 CD >BD .从而命题得证.例8 在锐角△ABC 中,最大的高线AH 等于中线BM ,求证:∠B <60°(图2-144).证 作MH 1⊥BC 于H 1,由于M 是中点,所以于是在Rt △MH 1B 中,∠MBH 1=30°.延长BM 至N ,使得MN=BM ,则ABCN 为平行四边形.因为AH 为最ABC 中的最短边,所以AN=BC <AB ,从而∠ABN <∠ANB=∠MBC=30°,∠B=∠ABM+∠MBC <60°.下面是一个非常著名的问题——费马点问题.例9 如图2-145.设O 为△ABC 内一点,且∠AOB=∠BOC=∠COA=120°,P 为任意一点(不是O).求证:PA +PB+PC >OA+OB+OC .证 过△ABC 的顶点A ,B ,C 分别引OA ,OB ,OC 的垂线,设这三条垂线的交点为A 1,B 1,C 1(如图2-145),考虑四边形AOBC 1.因为∠OAC 1=∠OBC 1=90°,∠AOB=120°,所以∠C 1=60°.同理,∠A 1=∠B 1=60°.所以△A1B1C1为正三角形. 设P 到△A 1B 1C 1三边B 1C 1,C 1A 1,A 1B 1的距离分别为ha ,hb ,hc ,且△A 1B 1C 1的边长为a ,高为h .由等式S △A 1B 1C 1=S △PB 1C 1+S △PC 1A 1+S △PA 1B 1知所以 h=h a +h b +h c .这说明正△A 1B 1C 1内任一点P 到三边的距离和等于△A 1B 1C 1的高h ,这是一个定值,所以OA +OB +OC=h=定值.显然,PA +PB +PC >P 到△A1B1C1三边距离和,所以PA +PB +PC >h=OA +OB +OC .这就是我们所要证的结论.由这个结论可知O点具有如下性质:它到三角形三个顶点的距离和小于其他点到三角形顶点的距离和,这个点叫费马点.练习二十三1.设D是△ABC中边BC上一点,求证:AD不大于△ABC中的最大边.2.AM是△ABC的中线,求证:3.已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD +AE.4.设△ABC中,∠C>∠B,BD,CE分别为∠B与∠C的平分线,求证:BD>CE.5.在△ABC中,BE和CF是高,AB>AC,求证:AB+CF≥AC+BE.6.在△ABC中,AB>AC,AD为高,P为AD上的任意一点,求证:PB-PC>AB-AC.7.在等腰△ABC中,AB=AC.(1)若M是BC的中点,过M任作一直线交AB,AC(或其延长线)于D,E,求证:2AB<AD+AE.(2)若P是△ABC内一点,且PB<PC,求证:∠APB>∠APC.。

(2021年整理)八年级数学竞赛辅导讲义

(2021年整理)八年级数学竞赛辅导讲义

(完整)八年级数学竞赛辅导讲义编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)八年级数学竞赛辅导讲义)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)八年级数学竞赛辅导讲义的全部内容。

全国初中数学联赛一全国初中数学联赛简介中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

竞赛简介奖项名称:全国初中数学联合竞赛创办时间:1984年主办单位:由各省、市、自治区联合举办,轮流做庄竞赛介绍:同时,各地都提出了举行“全国初中数学联赛”的要求。

1984年,中国数学会普及工作委员会商定,委托天津市数学会举办一次初中数学邀请赛,有14个省、市、自治区参加,当时条件较简陋,准备时间也较仓促,天津数学会在南开大学数学系和天津师范大学数学系的大力支持下,极其认真负责地把这次活动搞得很成功,为后来举办“全国初中数学联赛"摸索了很多经验。

当年11月,在宁波召开的中国数学会第三次普及工作会议时,一致通过了举办“全国初中数学联赛”的决定,并详细商定了一些具体办法,规定每年四月的第一个星期天举行“全国初中数学联赛”。

会上湖北省数学会、山西省数学会、黑龙江省数学会分别主动承担了1985年、1986年、1987年的“全国初中数学联赛”承办单位,从此,“全国初中数学联赛”也形成了制度。

“全国初中数学联赛"原来不分一试、二试。

为了更好地贯彻“在普及的基础上不断提高”的方针,1989年7月,在济南召开的“数学竞赛命题研讨会”上,各地的代表商定,初中联赛也分两试进行,并对一、二试各种题型的数目,以及评分标准作出明确的规定,使初中联赛的试卷走向规范化.中国数学会所举办的全国高中数学联赛、全国初中数学联赛,以及小学数学奥林匹克,都是群众性的数学课外活动,是大众化、普及型的数学竞赛,目前,每年有12万名学生参加。

初中数学竞赛专题选讲-面积法

初中数学竞赛专题选讲-面积法

初中数学竞赛专题选讲面积法一、内容提要1. 因为面积公式是用线段的代数式表示的,所以面积与线段可以互相转换。

运用面积公式及有关面积性质定理解答几何题是常用的方法,简称面积法。

2. 面积公式(略)3. 两个三角形的面积比定理① 等高(底)的两个三角形的面积比,等于它们对应的底(高)的比 ② 有一个角相等或互补的两个三角形面积的比等于夹这个角两边的乘积的比③ 相似三角形面积的比等于它们的相似比的平方④ 有公共边的两个三角形面积的比等于它们的第三顶点连线被公共边分成的两条线段的比(内分比或外分比)。

如图△ABC 和△ADC 有公共边第三顶点连线BD 被公共边AC内分或外分于点M ,则MDBM S ADC ABC =△△S外分定理④是以公共边为底,面积的比等于它们的对应高的比换成对应线段的比二、例题例1. 求证有一个30度角的菱形,边长是两条对角线的比例中项已知:菱形ABCD 中, ∠DAC = 求证:AB 2=AC ×BD证明:作高DE ,∵∠DAE =30∴DE =21AD =21AB S 菱形ABCD =AB ×DE =21AB 2S 菱形ABCD =AC ×BD , ∴AB 2=AC ×BDDC B C A C例2. 求证:等边三角形内任一点到各边的距离的和是一个定值已知:△ABC 中,AB =BC =AC ,D 是形内任一点,DE ⊥BC ,DF ⊥AC ,DG ⊥AB ,E ,F ,G 是垂足求证:DE +DF +DG 是一个定值证明:连结DA ,DB ,DC ,设边长为a,S △ABC =S △DBC +S △DCA +S △DAB21ah a =21a (DE +DF +DG ) ∴DE +DF +DG =h a∵等边三角形的高h a 是一个定值, ∴DE +DF +DG 是一个定值本题可推广到任意正n 边形,其定值是边心距的n 倍例3. 已知:△ABC 中,31===CA CF BC BE AB AD 求:ABCDEF S △△S 的值 解:∵△ADF 和△ABC 有公共角A∴ABC ADF S △△S =AC AB AF AD ⋅⋅=AC AB AC 32AB 31⋅⋅=92, 同理92S ABC BED =△△S , ABC CFE S S △△=92, ∴ABC DEF S △△S =31 (本题可推广到:当m AB AD 1=,n BC BE 1=,=CA CF p 1时, ABCDEF S △△S =mnp np mp mn p n m mnp ---+++) 例4. 如图Rt △ABC 被斜边上的高CD 和直角平分线CE 分成3个三角形,已知其中两个面积的值标在图中,求第三个三角形的面积x 。

初中数学竞赛讲座《面积问题》

初中数学竞赛讲座《面积问题》

【面积问题的解题方法望而生畏, 不知从何下手,通过观察,显然该三角形 不是一个特殊的三角形,不宜直接求解。 由根号内的代数式是两数的平方和,联想 到勾股定理,进而想到构造长和宽分别为 2a,2b的矩形,再由面积的割补来求解。
【面积问题的解题方法 】
七、有关比例定理的运用 例7.已知凸四边形ABCD的对角线AC,BD相交于点O,且 △ABC,△ACD,△ABD的面积分别为S1=5,S2=10,S3=6.求 △ABO的面积.
九年级竞赛辅导
面积问题
【赛点解读】
面积题在竞赛中经常出现,主要形式之 一是求阴影部分的面积,也有一些题表面 上不是求面积,实际上通常是用面积关系 来求解.常用到以下公式、公理和定理.
【面积问题的解题方法 】
一、用规则图形的和、差求面积
【面积问题的解题方法 】
二、割补法求面积
【面积问题的解题方法 】
三、等积变形法
【面积问题的解题方法 】
四、格点多边形法
【面积问题的解题方法 】
五、用方程(组)思想求面积:根据图形的对称性,将图形分成几类,
用字母表示这些图形的面积,然后根据图形列出方程组,通过解方程组来求 所求图形的面积。
例5.如图,在边长为a的正方形内,分别以四边为直径画四个 半圆,求这四个半圆所围成的阴影部分的面积。

人教版数学八年级培优竞赛 四边形的面积问题 专题课件

人教版数学八年级培优竞赛 四边形的面积问题 专题课件

D
E
F C
G
A
B
第7题图
AE
F
PN
QM
D m1
H m2 m3
B
G C m4
l1 l2 l3 l4 第8题图
A
D
F E
B 第9题图 C
8.如图,已知直线 l1、l2、l3、l4 及 m1、m2、m3、m4 分别互相平行,且 S 四边形 ABCD=100,S 四边形 EFGH=60.则 S 四边形 PQMN = ___2_0____.
11.如图,在四边形 ABCD 中,设∠BAD+∠ADC=270°,且 E、F 分别为 AD、BC 的中点,EF=4,以 AB、CD 为直径作半圆,求这两个半圆面积的和.
AE D
B
F
C
连接 BD,取 BD 中点 G,连接 GE,GF,则 GE= 1 AB,GF= 1 CD,GE⊥GF,
2
2
故两个半圆面积之和为 1 GE2 GF2 8 . 2
关系如图 2 中折线段 OEFGHI 所示.
(1)求 A、B 两点的坐标;
(2)若直线 PD 将五边形 OABCD 分成面积相等的两部分,确定此时点 P 的
位置。
y(cm)
D
y GH
C
B
4
F
O
A
x(cm) O 3 E 6 11 12
I t(s)
m n 6
(1)设
OD=m,OP=n,显然
m>3,则
取 G(6,2),作 GH⊥x 轴,则四边形 GHOC 是矩形且与四边形 OABC 的面积 相等,则 EF 必定过点 Q(3,1),于是 C 到直线 l 的最大距离为 CQ= 10 .
素养提升

初中面积问题教案

初中面积问题教案

初中面积问题教案一、教学目标:1. 让学生掌握面积的概念,理解面积的计算方法。

2. 培养学生解决实际问题的能力,提高学生运用面积知识解决生活中的问题。

3. 培养学生合作学习、积极探究的学习态度。

二、教学内容:1. 面积的概念:面积是指平面图形所占的空间大小。

2. 面积的计算方法:平面图形的面积可以通过公式计算,如矩形的面积=长×宽,三角形的面积=底×高÷2等。

3. 实际问题:运用面积知识解决生活中的问题,如计算房间面积、土地面积等。

三、教学重点与难点:1. 重点:掌握面积的概念,学会计算不同图形的面积。

2. 难点:运用面积知识解决实际问题。

四、教学方法:1. 情境教学法:通过生活实例引入面积的概念,激发学生的学习兴趣。

2. 合作学习法:分组讨论,培养学生合作解决问题的能力。

3. 实践操作法:让学生动手操作,提高学生的实践能力。

4. 引导探究法:引导学生主动探究,培养学生的问题解决能力。

五、教学步骤:1. 导入新课:通过展示生活中的实例,如房间面积、土地面积等,引导学生思考面积的概念。

2. 讲解面积的概念:讲解面积的定义,让学生理解面积的意义。

3. 学习面积的计算方法:讲解不同图形的面积计算公式,如矩形、三角形等,让学生学会计算面积。

4. 实践操作:让学生动手计算一些简单图形的面积,巩固所学知识。

5. 解决问题:引入实际问题,让学生运用面积知识解决问题。

6. 总结与拓展:总结本节课所学内容,布置课后作业,拓展学生的知识运用。

六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对知识的掌握程度。

3. 实际问题解决能力:通过课后实践,观察学生运用面积知识解决实际问题的能力。

4. 小组合作学习:评估学生在合作学习中的表现,如沟通、协作等。

通过以上教学设计,希望能够帮助学生更好地掌握面积知识,提高学生解决实际问题的能力。

初中数学面积定义教案

初中数学面积定义教案

初中数学面积定义教案一、教学目标【知识与技能】1. 理解面积的概念,掌握面积的计算方法。

2. 能够运用面积的概念和计算方法解决实际问题。

【过程与方法】通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。

【情感态度与价值观】1. 感受数学与生活的联系,提高学生学习数学的兴趣。

2. 培养学生合作、探究的精神,锻炼学生的解决问题的能力。

二、教学重难点【重点】面积的概念及计算方法。

【难点】面积公式的灵活运用。

三、教学过程(一)导入新课1. 教师通过展示图片(如教室、房子、操场等),引导学生观察这些图形的表面大小。

2. 提问:我们如何定量描述这些图形的表面大小呢?(二)新课讲解1. 教师介绍面积的概念:面积是用来表示图形表面大小的量。

2. 讲解面积的计算方法:(1)对于规则图形,如正方形、矩形、三角形等,可以根据其边长或高、底等来计算面积。

(2)对于不规则图形,可以通过分割、拼接等方法转化为规则图形,再计算面积。

3. 举例讲解面积的计算,如正方形、矩形、三角形等。

(三)课堂练习1. 学生独立完成教材上的练习题。

2. 教师选取部分学生的作业进行点评,讲解正确答案及解题思路。

(四)拓展与应用1. 教师提出实际问题,如计算教室地面的面积、房子墙面的面积等,让学生运用面积的知识解决。

2. 学生分组讨论,提出解决策略,并进行演示或计算。

四、板书设计面积的概念面积的计算方法五、教学反思本节课通过引导学生观察实际生活中的图形,引入面积的概念,讲解面积的计算方法,让学生感受数学与生活的联系,提高学习兴趣。

在课堂练习和拓展应用环节,注重培养学生的动手操作能力和解决问题的能力。

但在教学过程中,要注意引导学生掌握面积公式的灵活运用,提高学生的几何思维能力。

八年级数学上册 07面积问题和面积方法竞赛讲座 华东师大版

八年级数学上册 07面积问题和面积方法竞赛讲座 华东师大版

竞赛讲座07--面积问题和面积方法基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设△,分别为角的对边,为的高,、分别为△外接圆、内切圆的半径,.则△的面积有如下公式:(1);(2)(3)(4)(5)(6)(7)(8)(9)2.面积定理(1)一个图形的面积等于它的各部分面积这和;(2)两个全等形的面积相等;(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若△和△的公共边所在直线与直线交于,则;(7)共角比例定理:在△和△中,若或,则.3.张角定理:如图,由点出发的三条射线,设,,,则三点共线的充要条件是:.例题分析例1.梯形的对角线相交于,且,,求例2.在凸五边形中,设,求此五边形的面积.例3.是△内一点,连结并延长与分别交于,△、△、△的面积分别为40,30,35,求△的面积.例4.分别是△的边和上的点,且,求△的面积的最大值.例5.过△内一点引三边的平行线∥,∥,∥,点都在△的边上,表示六边形的面积,表示△的面积.求证:.例6.在直角△中,是斜边上的高,过△的内心与△的内心的直线分别交边和于和,△和△的面积分别记为和.求证:.例7.锐角三角形中,角等分线与三角形的外接圆交于一点,点、与此类似,直线与、两角的外角平分线将于一点,点、与此类似.求证:(1)三角形的面积是六边形的面积的二倍;(2)三角形的面积至少是三角形的四倍.例8.在△中,将其周长三等分,且在边上,求证:.例9.在锐角△的边边上有两点、,满足,作,(是垂足),延长交△的外接圆于点,证明四边形与△的面积相等.三.面积的等积变换等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.例10.凸六边形内接于⊙,且,,求此六边形的面积.例11.已知的三边,现在上取,在延长线上截取,在上截取,求证:.例12.在内,且∽,求征:例13.在的三边上分别取点,使,,连相交得三角形,已知三角形的面积为13,求三角形的面积.例14.为圆内接四边形的边的中点,于,于,于,求证:平分.例15.已知边长为的,过其内心任作一直线分别交于点,求证:.例16.正△正△,,,,,,.求证:.例17.在正内任取一点,设点关于三边的对称点分别为,则相交于一点.例18.已知是正六边形的两条对角线,点分别内分,且使,如果三点共线,试求的值.例19.设在凸四边形中,直线以为直径的圆相切,求证:当且仅当∥时,直线与以为直径的圆相切.训练题1.设的面积为10,分别是边上的点,且若,求的面积.2.过内一点作三条平行于三边的直线,这三条直线将分成六部份,其中,三部份为三角形,其面积为,求三角形的面积.3.在的三边上分别取不与端点重合的三点,求证:,中至少有一个的面积不大于的面积的.4.锐角的顶角的平分线交边于,又交三角形的外接圆于,过作和边的垂线和,垂足是,求证:四边形的面积等于的面积.5.在等腰直角三角形的斜边上取一点,使,作交于,求证:.6.三条直线互相平行,在的两侧,且间的距离为,间的距离为1,若正的三个顶点分别在上,求正的边长.7.已知及其内任一点,直线分别交对边于(),证明:在这三个值中,至少有一个不大于2,并且至少有一个不小于2.8.点和分别在的边和上,点和将线段分为三等分,直线和分别与边相交于点和,证明:.9.已知P是内一点,延长分别交对边于,其中,,且,求之值.10.过点P作四条射线与直线分别交于和,求证:.11.四边形的两对对边的延长线分别交,过作直线与对角线的延长线分别,求证:.12.为的重心,过作直线交于,求证:.。

初二数学---面积法解题

初二数学---面积法解题

初二数学---面积法解题【本讲教导信息】【讲授内容】——如何证实面积问题以及用面积法解几何问题【教授教养目的】1. 使学生灵巧控制证实几何图形中的面积的办法.2. 造就学生剖析问题.解决问题的才能.【重点.难点】:重点:证实面积问题的理论根据和办法技能.难点:灵巧应用所学常识证实面积问题.【教授教养进程】(一)证实面积问题经常应用的理论根据1. 三角形的中线把三角形分成两个面积相等的部分.2. 同底同高或等底等高的两个三角形面积相等.3. 平行四边形的对角线把其分成两个面积相等的部分.4. 同底(等底)的两个三角形面积的比等于高的比.同高(或等高)的两个三角形面积的比等于底的比.5. 三角形的面积等于等底等高的平行四边形的面积的一半.8. 有一个角相等或互补的两个三角形的面积的比等于夹角的双方的乘积的比.(二)证实面积问题经常应用的证题思绪和办法1. 分化法:平日把一个庞杂的图形,分化成几个三角形.2. 作平行线法:经由过程平行线找出同高(或等高)的三角形.3. 应用有关性质法:比方应用中点.中位线等的性质.4. 还可以应用面积解决其它问题.【典范例题】(一)如何证实面积问题1. 分化法例1. 从△ABC的各极点作三条平行线AD.BE.CF,各与对边或延伸线交于D.E.F,求证:△DEF的面积=2△ABC的面积.剖析:从图形上不雅察,△DEF可分为三部分,个中①是△ADE,它与△ADB③三是△AEF,只要再证出它与△ABC的面积相等即可由S△CFE=S△CFB故可得出S△AEF=S△ABC证实:∵AD//BE//CF∴△ADB和△ADE同底等高∴S△ADB=S△ADE同理可证:S△ADC=S△ADF∴S△ABC=S△ADE+S△ADF又∵S△CEF=S△CBF∴S△ABC=S△AEF∴S△AEF+S△ADE+S△ADF=2S△ABC∴S△DEF=2S△ABC2. 作平行线法例2. 已知:在梯形ABCD中,DC//AB,M为腰BC上的中点剖析:由M为腰BC的中点可想到过M作底的平行线MN,则MN为个中位线,再应用平行线间的距离相等,设梯形的高为h证实:过M作MN//AB∵M为腰BC的中点∴MN是梯形的中位线设梯形的高为h(二)用面积法解几何问题有些几何问题,往往可以用面积法来解决,用面积法解几何问题经常应用到下列性质:性质1:等底等高的三角形面积相等性质2:同底等高的三角形面积相等性质3:三角形面积等于与它同底等高的平行四边形面积的一半性质4:等高的两个三角形的面积比等于底之比性质5:等底的两个三角形的面积比等于高之比1. 证线段之积相等例3. 设AD.BE和CF是△ABC的三条高,求证:AD·BC=BE·AC=CF·AB剖析:从结论可看出,AD.BE.CF分离是BC.AC.AB三边上的高,故可联想到可用面积法.证实:∵AD.BE.CF是△ABC的三条高2. 证等积问题例4. 过平行四边形ABCD的极点A引直线,和BC.DC或其延伸线分离交于E.F,求证:S△ABF=S△ADE剖析:因为AB//DF,所以△ABF与△ABC是同底AB和等高的两个三角形,所以这两个三角形的面积相等.证实:贯穿连接AC∵CF//AB又∵CE//AD3. 证线段之和例5. 已知△ABC中,AB=AC,P为底边BC上任一点,PE⊥AB,PF⊥AC,BH⊥AC,求证:PE+PF=BH剖析:已知有垂线,就可看作三角形的高,贯穿连接AP,则故PE+PF=BH证实:贯穿连接AP,则∵AB=AC,PE⊥AB,PF⊥AC又∵BH⊥AC∴PE+PF=BH4. 证角等分线例6. 在平行四边形ABCD的双方AD.CD上各取一点F.E,使AE=CF,连AE.CF交于P,求证:BP等分∠APC.剖析:要证BP等分∠APC,我们可以斟酌,只要能证出B点到PA.PC的距离相等即可,也就是△ABE和△BFC的高相等即可,又由已知AE=FC可联想到三角形的面积,是以只要证出S△ABE=S△BCF即可由平行四边形ABCD可得S△ABE=S△ABC,S△BFC=S△ABC所以S△ABE=S△BFC,是以问题便得解.证实:贯穿连接AC.BE.BF∵四边形ABCD是平行四边形∴S△ABE=S△ABCS△BFC=S△ABC∴S△ABE=S△BFC又∵AE=CF而△ABE和△BFC的底分离是AE.CF∴△ABE和△BFC的高也相等即B到PA.PC的距离相等∴B点在∠APC的等分线上∴PB等分∠APC【模仿试题】(答题时光:25分钟)1. 在平行四边形ABCD中,E.F点分离为BC.CD的中点,贯穿连接AF.AE,求证:S△ABE=S△ADF2. 在梯形ABCD中,DC//AB,M为腰BC上的中点,求证:ACB=90°,a.b为两直角边,斜边AB上的高为h,4. 已知:E.F为四边形ABCD的边AB的三等分点,G.H为边DC的三等分点,5. 在△ABC中,D是AB的中点,E在AC上,和BE交于G,求△ABC和四边形ADGE的面积比.【试题答案】1. 证实:贯穿连接AC,又∵E.F分离为BC.CD的中点2. 证实:过M作MN//DC//AB∵M为腰BC上的中点∴△DCM和△ABM的高相等,设为h1又∵△DMN与△AMN的高也为h1∵MN为梯形的中位线3. 证实:∵在Rt△ABC中,∠ACB=90°,CD⊥AB4. 证实:贯穿连接FD.FG.FC作DM//AB,设它们之间的距离为h,G到DM的距离为a,则由已知可得H.C到DM的距离分离为2a.3a①+5. 证实:作DF//AC交BE于F可得△DFG≌△CEG∴△ABC和四边形ADGE的面积比是12:5。

初中数学面积问题教案

初中数学面积问题教案

教案:初中数学面积问题教学目标:1. 理解并掌握面积的概念,能够正确计算简单图形的面积。

2. 能够解决实际问题中的面积问题,提高学生的应用能力。

3. 培养学生的逻辑思维能力和解决问题的能力。

教学重点:1. 面积的概念及其计算方法。

2. 面积问题的解决方法。

教学难点:1. 面积公式的灵活运用。

2. 复杂图形的面积计算。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入面积的概念,让学生举例说明面积的意义。

2. 讲解面积的单位,如平方米、平方厘米等。

二、新课讲解(15分钟)1. 讲解面积的计算方法,如矩形、三角形、正方形的面积公式。

2. 通过示例演示如何计算这些图形的面积。

3. 让学生尝试计算一些简单的图形面积,并进行讲解。

三、课堂练习(15分钟)1. 分发练习题,让学生独立完成。

2. 对学生的答案进行讲解和指导。

四、应用拓展(15分钟)1. 给学生提供一些实际问题,让学生运用面积知识进行解决。

2. 让学生分组讨论,共同解决问题。

五、总结(5分钟)1. 对本节课的内容进行总结,让学生掌握面积的概念和计算方法。

2. 强调面积在实际问题中的应用。

教学反思:本节课通过讲解面积的概念和计算方法,让学生掌握了面积的基本知识。

在课堂练习环节,学生能够独立完成一些简单的面积计算题目,但在解决实际问题时,部分学生对于面积公式的灵活运用还不够熟练。

在今后的教学中,需要加强对学生面积计算能力的培养,提高学生的应用能力。

同时,也要注重培养学生的逻辑思维能力和解决问题的能力,使他们能够更好地应对各种数学问题。

初中八年级数学图形面积计算教案

初中八年级数学图形面积计算教案

初中八年级数学图形面积计算教案一、教学目标:1.掌握长方形、正方形和三角形面积的计算方法。

2.综合应用所学知识,解决实际问题。

3.培养学生严谨的思维能力,提高解决问题的能力。

二、教学重点:1.长方形面积、正方形面积的计算。

2.三角形面积的计算。

3.综合应用。

三、教学难点:1.面积计算的综合应用。

2.三角形面积的计算。

四、教学过程:1.引入新知识教师在黑板上画出几个形状不同的图形,让学生观察并尝试使用同样的方式进行测量,引导学生意识到不同形状的图形测量方式也不同,然后引入本节课的主题——图形面积计算。

2.长方形、正方形面积计算教师解释长方形、正方形的定义,画出标准的长方形和正方形,并分别介绍如何计算面积,最后让学生完成几道练习题。

3.三角形面积计算教师介绍三角形的定义,用具体实例演示如何计算三角形的面积,然后让学生练习计算。

4.综合应用教师设计综合应用题,让学生综合运用所学知识,解决实际问题。

五、教学方法:1.引入问题,激发学生兴趣。

2.图示教学,让学生更加直观。

3.练习巩固,让学生掌握方法。

4.综合运用,让学生更加深入理解所学知识,并能够将其运用到实际中。

六、教学工具:1.黑板或白板。

2.粉笔或白板笔。

3.教材。

4.练习册。

七、教学反思:本节课程通过图示教学的方式,通过例题和练习巩固提高了学生的学习兴趣,让学生理解了长方形、正方形和三角形面积计算的基本方法。

通过综合应用题的设计,让学生将所学知识应用到实际问题中,提高了学生的思维能力和解决问题的能力。

教学效果良好。

2021版八年级数学下册 第22章 四边形 22.6 正方形教案 (全国通用版)冀教版

2021版八年级数学下册 第22章 四边形 22.6 正方形教案 (全国通用版)冀教版

案(全国通用版)冀教版教学设计思路正方形概念是对平行四边形的边和角限制条件得出来的,通过与矩形、菱形的概念进行对比,得出正方形的性质。

通过对各种类型的四边形进行探究,总结归纳出正方形的判定方法。

在这一过程中,应以学生活动为主。

教学目标知识与技能探索、总结并掌握正方形的性质及判定的方法;通过对四边形的分类,增强对平行四边形、矩形、菱形和正方形等概念的理解以及它们之间的关系,增强对教学分类方法的认识;能根据正方形的有关性质进行相关计算;在简单说理过程中,发展推理能力。

过程与方法经历探索正方形性质和判定方法的过程,通过讨论与交流得出结论。

情感态度价值观通过学习四种四边形内在联系,体会辩证观点;通过正方形有关知识的学习,感受完美的正方形的图形美;初步应用说理的基本方法。

教学重点和难点重点是正方形的性质及判定方法,正方形与平行四边形、菱形、矩形的关系。

难点是能根据正方形的有关性质进行相关计算。

教学方法启发引导、小组讨论课时安排1课时教具学具准备投影仪或电脑、三角板教学过程设计(一)正方形的性质正方形也是我们非常熟悉的一种平面图形。

它具有什么性质呢,又该怎样来识别它呢?有一组邻边相等且有一个角是直角的平行四边形叫做正方形(square)。

如图22—25。

1.大家谈谈(1)正方形是不是矩形?(2)正方形是不是菱形?(3)正方形的对称中心在哪里?对称轴有几条,各在什么位置?(4)试着说说正方形具有的性质,并与同学进行交流。

从明晰正方形概念是对平行四边形的边和角限制条件得出来的,注意通过与矩形、菱形的概念进行对比,得出正方形的性质。

正方形既是矩形又是菱形,既是中心对称图形又是轴对称图形。

它有四条对称轴,分别是对角线所在的直线和对边中点的连线所在的直线。

正方形具有平行四边形、矩形和菱形的所有性质。

矩形、菱形、正方形都是特殊的平行四边形,它们包含关系如图2.正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国初中数学竞赛辅导(八年级)教学案全集
第二十二讲面积问题与面积方法
几何学的产生,源于人们测量土地面积的需要.面积不仅是几何学研究的一个重要内容,而且也是用来研究几何学的一个有力工具.
下面,我们把常用的一些面积公式和定理列举如下.
(1)三角形的面积
(i)三角形的面积公式
b+c)是半周长,r是△ABC的内切圆半径.
(ii)等底等高的两个三角形面积相等.
(iii)两个等底三角形的面积之比等于高之比;两个等高三角形的面积之比等于底边之比;两个三角形面积之比等于底、高乘积之比.
(iv)相似三角形的面积之比等于相似比的平方.
(2)梯形的面积
梯形的面积等于上、下底之和与高的乘积的一半.
(3)扇形面积
其中r为半径,l为弧长,θ为弧l所对的圆心角的度数,α是弧度数.
1.有关图形面积的计算和证明
解 因为CD ⊥AB ,AC=CB ,且△ABD 内接于半圆,由此可得
所以,阴影部分AEFBDA 的面积是
例2 已知凸四边形ABCD 的对角线AC ,BD 相交于点O ,且△ABC ,△ACD ,△ABD 的面积分别为S 1=5,S 2=10,S 3=6.求△ABO 的面积(图2-128). 解 首先,我们证明△ABC 与△ACD 的面积比等于BO 与DO 的比.过B ,D 分别作AC 的垂线,垂足为E ,F .于是Rt △BEO
由题设
=S,则
设S△
AOB
所以
例3 如图2-129,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积.
分析如果能把未知的两个小三角形的面积求出,那么△ABC的面积即可得知.根据例1,这两个面积是不难求出的.
解设未知的两个小三角形的面积为x和y,则



①÷②得
再由②得x=56.因此
S△
ABC
=84+70+56+35+40+30=315.
例4 如图2-130,通过△ABC内部一点Q引平行于三角形三边的直线,
这些直线分三角形为六个部分,已知三个平形四边形部分的面积为S
1,S
2

S
3
,求△ABC的面积.
解 为方便起见,设
S △QDG=S ′1,S △QIE=S ′2,S △QFH=S ′3,则
所以
同理可得
从①,②,③中可以解得
所以
例5 在一个面积为1的正方形中构造一个如图2-131所示的正方形:将单位正方形的每一条边n 等分,然后将每个顶点和它相对的顶点最接近
的分点连接起来.如果小正方形(图中阴影部分)的面积恰
解如图2-131,过F作BC的平行线交BG于H,则∠GHF=∠CED,∠FGH=∠DCE=90°,故
n2-n-90=0,
所以n=10.
2.利用面积解题
有的平面几何问题,虽然没有直接涉及到面积,然而若灵活地运用面积知识去解答,往往会出奇制胜,事半功倍.
例6 在△ABC内部或边界上任取一点P,记P到三边a,b,c的距离依次为x,y,z.求证:ax+by+cz是一个常数.
证如图2-132,连结PA, PB,PC,把△ABC分成三个小三角形,则
S△
ABC =S△
PAB
+S△
PCB
+S△
PCA
所以 ax+by+cz=2S△

ABC
即ax+by+cz为常数.
说明若△ABC为等边三角形,则
此即正三角形内一点到三边的距离和为常数,此常数是正三角形的高.
例7如图2-133,设P是△ABC内任一点,AD,BE,CF是过点P且分别交边BC,CA,AB于D,E,F.求证:
证首先,同例2类似,容易证明
说明本例的结论很重要,在处理三角形内三条线交于一点的问题时,常常可以用这一结论去解决.
例8如图2-134,已知D,E,F分别是锐角三角形ABC的三边BC,CA,AB上的点,且AD,BE,CF相交于点P,AP=BP=CP=6,设PD=x,PE=y,PF=z,若xy+yz+zx=28,求xyz的值.
解由上题知
去分母整理得
3(xy+yz+zx)+36(x+y+z)+324
=xyz+6(xy+yz+zx)+36(x+y+z)+216,
所以 xyz=108-3(xy+yz+zx)=24.
练习二十二
1.填空:
________.
(2)一个三角形的三边长都是整数,周长为8,则这个三角形的面积是________.
(3)四边形ABCD 中,∠A=30°,∠B=∠D=90°,AB=AD ,AC=1,则四边形ABCD 的面积是______.
(4)梯形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于O .若S △ABO =p 2,S △CDO =q 2,则S ABCD =____.

ABC
=40.若BE ,CD 相交于F ,则S △DEF =______.
2.E ,F 分别在矩形ABCD 的边BC 和CD 上,若△CEF ,△ABE ,△ADF 的面积分别是3,4,5,求△AEF 的面积.
3.已知点P ,Q ,R 分别在△ABC 的边AB ,BC ,CA 上,且BP=PQ=QR=RC=1,求△ABC 的面积的最大值.
4.在凸五边形ABCDE 中,S △ABC =S △BCD =S △CDE =S △DEA =S △EAB =1,CE 与AD 相交于F ,求S △CFD .
5.在直角三角形ABC 中,∠A=90°,AD ,AE 分别是高和角平分线,且△ABE ,△AED 的面积分别为S 1=30,S 2=6,求△ADC 的面积S . 6.设P 是△ABC 内一点,AD ,BE ,CF 过点P 并且交边BC ,CA ,AB 于点D ,E ,F .求证:
7.已知△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,AM 为BC 边上的中线,与DE 相交于N ,求证:DN=NE .。

相关文档
最新文档