中考数学真题汇编-一次函数
2023年数学中考试题精选:一次函数应用(一)
2023年数学中考试题精选(一)1.(2023.大连22题)为了增强学生身体素质,学校要求男女同学练习跑步,开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为 4.5m/s,当到达终点时男、女均停止跑步,女生从开始匀速跑到停止跑步共用时120s。
已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则:(1)男女跑步的总路程为________.(2)当男、女相遇时,求此时男、女同学距离终点的距离。
2.(2023.江苏省无锡市26题)某景区旅游商店以20元/kg的价格采购一款旅游食品加工后出售,销售价格不低于22元/kg,不高于45元/kg,经市场调查发现每天的销售量y(kg)与销售价格x(元/kg)之间的函数关系如图所示.(1)求y关于x的函数表达式;(2)当销售价格定为多少时,该商店销售这款食品每天获得的销售利润最大?最大销售利润是多少?【销售利润=(销售价格-采购价格)•销售量】3.(2023.锦州市23题)端午节前夕,某批发部购入一批进价为8元/袋的粽子,销售过程中发现:日销量y(袋)与售价x(元/袋)满足如图所示的一次函数关系。
(1)求y与x之间的函数关系式;(2)每袋粽子的售价定为多少元时,所获日销售利润最大,最大日销售利润是多少元?3.(2023.湖北黄冈市22题)加强劳动教育,落实五育并举,孝礼中学在当地政府的支持下,建成了一处劳动实践基地. 2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜. 经调查发现:甲种蔬菜种植成本y(单位:元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200≤x≤700; 乙种蔬菜的种植成本为50元/m2.(1)当x=____m2时,y=35元/m2;(2)设2023年甲乙两种蔬菜总种植成本为w元,如何分配两种蔬菜的种植面积,使w最小?(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降,若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?4.(2023.牡丹江25题)在一条高速公路上依次有A,B,C三地,甲车从A地出发匀速驶向C地,到达C地休息1h后调头(调头时间忽略不计)按原路原速驶向B地,甲车从A地出发1.5h后,乙车从C地出发匀速驶向A地,两车同时到达目的地,两车距A地路程ykm与甲车行驶时间xh之间的函数关系如图所示,请结合图象信息,解答下列问题:(1)甲车行驶的速度是___km/h,乙车行驶的速度是______km/h; (2)求图中线段MN所表示的y与x之间的函数解析式,并直接写出自变量x的取值范围;(3)乙车出发多少小时,两车距各自出发地路程的差是160km?请直接写出答案。
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
中考数学真题专项汇编解析—平面直角坐标系与一次函数
中考数学真题专项汇编解析—平面直角坐标系与一次函数一.选择题1.(2022·浙江台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B 【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∵飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.2.(2022·湖北宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为()1,3.若小丽的座位为()3,2,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .()1,3B .()3,4C .()4,2D .()2,4【答案】C【分析】根据小丽的座位坐标为()3,2,根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.【详解】解:∵只有()4,2与()3,2是相邻的,∵与小丽相邻且能比较方便地讨论交流的同学的座位是()4,2,故C 正确.故选:C .【点睛】本题主要考查坐标确定位置,关键是根据有序数对表示点的位置,根据点的坐标确定位置.3.(2022·四川眉山)一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∵210m ->解得:12m >∵(,)P m m -在第二象限故选:B【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.4.(2022·浙江金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校【答案】A 【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案. 【详解】解:根据学校和体育场的坐标建立直角坐标系,超市到原点的距离为==A .【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.5.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a 2+1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【详解】∵a 2∵0,∵a 2+1∵1,∵点P(−3,a 2+1)所在的象限是第二象限.故选B. 6.(2022·湖南株洲)在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为( )A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1 【答案】D【分析】令x =0,求出函数值,即可求解.【详解】解:令x =0, 1y =,∵一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.7.(2022·陕西)在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( ) A .15x y =-⎧⎨=⎩ B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩ 【答案】C【分析】先把点P 代入直线4y x =-+求出n ,再根据二元一次方程组与一次函数的关系求解即可;【详解】解:∵直线4y x =-+与直线2y x m =+交于点P (3,n ),∵34n =-+,∵1n =,∵()3,1P ,∵1=3×2+m ,∵m =-5,∵关于x ,y 的方程组40250x y x y +-=⎧⎨--=⎩的解31x y =⎧⎨=⎩;故选:C . 【点睛】本题主要考查了一次函数的性质,二元一次方程与一次函数的关系,准确计算是解题的关键.8.(2022·湖南娄底)将直线21y x =+向上平移2个单位,相当于( ) A .向左平移2个单位 B .向左平移1个单位 C .向右平移2个单位 D .向右平移1个单位【答案】B【分析】函数图象的平移规律:左加右减,上加下减,根据规律逐一分析即可得到答案.【详解】解:将直线21y x =+向上平移2个单位,可得函数解析式为:23,y x 直线21y x =+向左平移2个单位,可得22125,y x x 故A 不符合题意; 直线21y x =+向左平移1个单位,可得21123,y x x 故B 符合题意; 直线21y x =+向右平移2个单位,可得22123,y x x 故C 不符合题意; 直线21y x =+向右平移1个单位,可得21121,y x x 故D 不符合题意;故选B【点睛】本题考查的是一次函数图象的平移,掌握一次函数图象的平移规律是解本题的关键.9.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2022·天津)如图,∵OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB∵x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明∵ACO∵∵BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB∵x轴,∵∵ACO=∵BCO=90°,AB=3,∵OA=OB,OC=OC,∵∵ACO∵∵BCO(HL),∵AC=BC=12∵OA=5,∵OC=4,∵点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.11.(2022·四川乐山)甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是()A.前10分钟,甲比乙的速度慢B.经过20分钟,甲、乙都走了1.6千米C.甲的平均速度为0.08千米/分钟D.经过30分钟,甲比乙走过的路程少【答案】D【分析】结合函数关系图逐项判断即可.【详解】A项,前10分钟,甲走了0.8千米,乙走了1.2千米,则甲比乙的速度慢,故A项正确;B项,前20分钟,根据函数关系图可知,甲、乙都走了1.6千米,故B正确;C项,甲40分钟走了3.2千米,则其平均速度为:3.2÷40=0.08千米/分钟,故C 项正确;D项,经过30分钟,甲走了2.4千米,乙走了2.0千米,则甲比乙多走了0.4千米,故D项错误;故选:D.【点睛】本题考查了一次函数的图像及其在行程问题中的应用,理解函数关系图是解答本题的关键.12.(2022·安徽)甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁【答案】A【分析】根据图象,先比较甲、乙的速度;然后再比较丙、丁的速度,进而在比较甲、丁的速度即可.【详解】乙在所用时间为30分钟时,甲走的路程大于乙走的路程,故甲的速度较快;丙在所用时间为50分钟时,丁走的路程大于丙走的路程,故丁的速度较快;又因为甲、丁在路程相同的情况下,甲用的时间较少,故甲的速度最快,故选A 【点睛】本题考查了从图象中获取信息的能力,正确的识图是解题的关键.13.(2022·江西)甲、乙两种物质的溶解度(g)t℃之间的对应关系如图y与温度()所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至2t℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【答案】D【分析】利用函数图象的意义可得答案.【详解】解:由图象可知,A、B、C都正确,当温度为t1时,甲、乙的溶解度都为30g,故D错误,故选:D.【点睛】本题主要考查了函数的图象,熟练掌握横纵坐标表示的意义是解题的关键.h随飞14.(2022·重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()m行时间()s t的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【答案】D【分析】根据函数图象可直接得出答案.【详解】解:∵函数图象的纵坐标表示一只蝴蝶在飞行过程中离地面的高度()m h , ∵由函数图象可知这只蝴蝶飞行的最高高度约为13m ,故选:D .【点睛】本题考查了从函数图象获取信息的能力,准确识图是解题的关键. 15.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【分析】根据含30°角的直角三角形的性质可得B (2,,利用待定系数法可得直线PB 的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y x +2中可解答.【详解】解:∵点A (4,2),点P (0,2),∵P A ∵y 轴,P A =4,由旋转得:∵APB =60°,AP =PB =4, 如图,过点B 作BC ∵y 轴于C ,∵∵BPC =30°,∵BC =2,PC ∵B (2,, 设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∵2k b ⎧=⎪⎨=⎪⎩∵直线PB 的解析式为:y +2,当y =0+2=0,x =∵点M 1(0)不在直线PB 上,当x =y =-3+2=1,∵M 2(-1)在直线PB 上,当x =1时,y ,∵M 3(1,4)不在直线PB 上,当x =2时,y ,∵M 4(2,112)不在直线PB 上.故选:B . 【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B 的坐标是解本题的关键.16.(2022·湖南邵阳)在直角坐标系中,已知点3,2A m ⎛⎫⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是( )A .m n <B .m n >C .m n ≥D .m n ≤【答案】A【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∵y 随着x 的增大而减小,∵32>2,∵32>∵m <n ,故选:A . 【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.17.(2022·浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∵y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3 ∵若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意; 若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意. 故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.18.(2022·浙江嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( ) A .52B .2C .32D .1【答案】B【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+ ∵2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9∵0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =-∵直线解析式为134=-+y x把(4,)B c 代入134=-+y x 得14324c =-⨯+=故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值.19.(2022·安徽)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .【答案】D【分析】分为0a >和0a <两种情况,利用一次函数图像的性质进行判断即可. 【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a +,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意; 当0a <时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D .【点睛】本题主要考查了一次函数的图像性质.理解和掌握它的性质是解题的关键.一次函数y kx b =+的图像有四种情况:∵当0k >,0b >时,函数y kx b =+的图像经过第一、二、三象限;∵当0k >,0b <时,函数y kx b =+的图像经过第一、三、四象限; ∵当0k <,0b >时,函数y kx b =+的图像经过第一、二、四象限; ∵当0k <,0b <时,函数y kx b =+的图像经过第二、三、四象限.20.(2022·四川凉山)一次函数y =3x +b (b ≥0)的图象一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】根据一次函数的性质可得其经过的象限,进而可得答案. 【详解】解:一次函数()30y x b b =+≥, ∵30k =>∵图象一定经过一、三象限,∵当0b >时,函数图象一定经过一、二、三象限, 当0b =时,函数图象经过一、三象限,∵函数图象一定不经过第四象限,故D 正确.故选:D .【点睛】本题主要考查了一次函数的性质,属于基础题型,熟练掌握一次函数的性质是解题关键.21.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为即可.【详解】解:在菱形ABCD 中,∵A =60°,∵∵ABD 为等边三角形, 设AB =a ,由图2可知,∵ABD 的面积为∵∵ABD的面积2==解得:a = 故选B 【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键. 二、填空题22.(2022·湖南湘潭)请写出一个y 随x 增大而增大的一次函数表达式_________. 【答案】y x =(答案不唯一)【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x =,y 随x 的增大而增大.故答案为:y x =(答案不唯一). 【点睛】此题属于开放型试题,答案不唯一,考查了一次函数的性质,熟练掌握一次函数的增减性是解题关键.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______. 【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1 第2行的第一个数字:()22121=+- 第3行的第一个数字:()25131=+- 第4行的第一个数字:()210141=+- 第5行的第一个数字:()217151=+- …..,设第n 行的第一个数字为x ,得()211x n =+- 设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∵22(1)98n n -≤< ∵n 为整数 ∵10n =∵21182x n =+-=()∵9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质. 24.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论. 【详解】解:四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致, 将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.25.(2022·浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.【答案】3A【分析】如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOE AON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴ 三个正六边形,O 为原点, ,120,BMMO OHAH BMOOHA,BMO OHA ≌,OB OA11209030,18012030,2MOE BMOMOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON ,,A O B ∴三点共线,,A B ∴关于O 对称, 3,3.A故答案为:3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.26.(2022·江苏宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____.【答案】22y x =-+(答案不唯一)【分析】根据题意的要求,结合常见的函数,写出函数解析式即可,最好找有代表性的、特殊的函数,如一次函数、二次函数、反比例函数等.【详解】解:根据题意,甲:“函数值y 随自变量x 增大而减小”;可设函数为:2,y x b =-+又满足乙:“函数图像经过点(0,2)”,则函数关系式为22y x =-+,故答案为:22y x =-+(答案不唯一)【点睛】本题考查学生对函数图象的掌握程度与灵活运用的能力,属于开放性题.27.(2022·天津)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是___________(写出一个..即可). 【答案】1(答案不唯一,满足0b >即可)【分析】根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限, ∵0b >故答案为:1答案不唯一,满足0b >即可)【点睛】本题考查了已知一次函数经过的象限求参数的值,掌握一次函数图象的性质是解题的关键.28.(2022·江苏扬州)如图,函数()0y kx b k =+<的图像经过点P ,则关于x 的不等式3kx b +>的解集为________.【答案】1x <-【分析】观察一次函数图象,可知当y >3时,x 的取值范围是1x <-,则3kx b +>的解集亦同.【详解】由一次函数图象得,当y >3时,1x <-,则y =kx+b >3的解集是1x <-.【点睛】本题考查了一次函数与不等式结合,深入理解函数与不等式的关系是解题的关键.29.(2022·浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∵联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.30.(2022·甘肃武威)若一次函数y=kx−2的函数值y随着自变量x值的增大而增大,则k=_________(写出一个满足条件的值).【答案】2(答案不唯一)【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【详解】解:∵函数值y随着自变量x值的增大而增大,∵k>0,∵k=2(答案不唯一).故答案为:2(答案不唯一).【点睛】本题考查了一次函数的性质,掌握一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小是解题的关键.31.(2022·四川德阳)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥【分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解.【详解】解:如图,观察图象得:当x =2时,y ≥1,即21k k +≥,解得:13k ≥,当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-,∵k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤-【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.32.(2022·湖北黄冈)如图1,在∵ABC 中,∵B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm/s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∵BAC 时,t 的值为________.【答案】2##【分析】根据函数图像可得AB =4=BC ,作∵BAC 的平分线AD ,∵B =36°可得∵B =∵DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB =4,AB +BC =8,∵BC =AB =4,∵∵B =36°,∵72BCA BAC ∠∠︒==,作∵BAC 的平分线AD ,∵∵BAD =∵DAC =36°=∵B ,∵AD =BD ,72BCA DAC ∠∠︒==,∵AD =BD =CD , 设AD BD CD x ===,∵∵DAC =∵B =36°,∵ADC BAC △△,∵AC DC BC AC =,∵x 4x 4x-=,解得: 12x =-+22x =--,∵2AD BD CD ===,此时21AB BD t +==(s),故答案为:2. 【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.三、解答题33.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC平移后得到A B C ''',且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''.【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4; (2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.34.(2022·浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时. 根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∵点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60.(3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =,故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.35.(2022·新疆)A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ;(2)分别求出,y y 甲乙与x 之间的函数解析式;(3)求出点C 的坐标,并写点C 的实际意义.【答案】(1)60(2) 60y x =甲, 100100y x =-乙(3)点C 的坐标为()2.5,150,点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km【分析】(1)观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,路程除以时间即为速度;(2)利用待定系数法分别求解即可;(3)将,y y 甲乙与x 之间的函数解析式联立,解二元一次方程组即可.(1)解:观察图象,由甲先出发1h 可知甲从A 地到B 地用了5h ,∵A ,B 两地相距300km ,∵甲的速度为3005=60 (km/h)÷,故答案为:60;(2)解:设y 甲与x 之间的函数解析式为11y k x b =+甲,将点()0,0,()5,300代入得11103005b k b =⎧⎨=+⎩,解得11060b k =⎧⎨=⎩, ∵y 甲与x 之间的函数解析式为60y x =甲,同理,设y 乙与x 之间的函数解析式为22y k x b =+乙,将点()1,0,()4,300代入得222203004k b k b =+⎧⎨=+⎩, 解得22100100b k =-⎧⎨=⎩, ∵y 乙与x 之间的函数解析式为100100y x =-乙;(3)解:将,y y 甲乙与x 之间的函数解析式联立得,60100100y x y x =⎧⎨=-⎩,解得 2.5150x y =⎧⎨=⎩,∵点C 的坐标为()2.5,150, 点C 的实际意义为:甲出发2.5h 时,乙追上甲,此时两人距A 地150km .【点睛】本题考查一次函数的实际应用,涉及到求一次函数解析式,求直线交点坐标等知识点,读懂题意,从所给图象中找到相关信息是解题的关键.36.(2022·浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150(3)1.2【分析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可; (3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩,解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h,6-4.8=1.2h,∵轿车比货车早1.2h时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.37.(2022·浙江嘉兴)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:∵根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.∵观察函数图象,当4x 时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?。
中考数学函数试卷真题
中考数学函数试卷真题一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的表达式?A. y = 2x + 3B. y = x^2 + 1C. y = √xD. y = sin(x)2. 如果函数f(x) = 3x - 5在x = 2时的值为1,那么下列哪个选项是错误的?A. f(2) = 1B. 3x - 5 = 1C. 3 * 2 - 5 = 1D. x = 23. 抛物线y = ax^2 + bx + c的顶点坐标是(h, k),当a > 0时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右4. 函数y = 2x^3 - 5x^2 + 3x - 1的导数是:A. 6x^2 - 10x + 3B. 6x^2 - 10x + 4C. 6x^3 - 10x^2 + 3D. 6x^3 - 10x^2 + 15. 已知函数g(x) = 4x + 7,求g(-1)的值是:A. 3B. 10C. -9D. 116. 函数y = 1 / x的图像关于:A. 原点对称B. x轴对称C. y轴对称D. 直线y = x对称7. 函数y = |x - 1|的图像在x = 1处的切线斜率是:A. 0B. 1C. -1D. 无法确定8. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 19. 函数y = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. 4π10. 给定函数h(x) = x^3 - 3x^2 + 2x,求h'(x)的值是:A. 3x^2 - 6x + 2B. x^2 - 6x + 2C. 3x^2 - 2xD. x^2 - 2x + 2二、填空题(每题4分,共20分)11. 函数y = 3x + 7的斜率是______。
12. 函数y = x^2在x = -2处的导数值是______。
13. 函数y = log(x)的定义域是______。
中考数学《一次函数》专题训练(附带答案)
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
函数的基本性质-- 一次函数(解析版)-中考数学重难点题型专题汇总
函数的基本性质-中考数学重难点题型一次函数(专题训练)1.一次函数(21)2y m x =-+的值随x 的增大而增大,则点(,)P m m -所在象限为()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【详解】∵一次函数(21)2y m x =-+的值随x 的增大而增大,∴210m ->解得:12m >∴(,)P m m -在第二象限故选:B 【点睛】本题考查了一次函数的性质和各个象限坐标特点,能熟记一次函数的性质是解此题的关键.2.已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =+的图像上,则m 与n 的大小关系是()A .m n>B .m n =C .m n <D .无法确定【答案】C【分析】根据一次函数的增减性加以判断即可.【详解】解:在一次函数y=2x+1中,∵k=2>0,∴y 随x 的增大而增大.∵2<94,32<.∴m<n .故选:C【点睛】本题考查了一次函数的性质、实数的大小比较等知识点,熟知一次函数的性质是解题的关键3.已知一次函数y =kx+3的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是()A .(﹣1,2)B .(1,﹣2)C .(2,3)D .(3,4)【分析】由点A 的坐标,利用一次函数图象上点的坐标特征求出k 值,结合y 随x 的增大而减小即可确定结论.【解析】A 、当点A 的坐标为(﹣1,2)时,﹣k+3=3,解得:k =1>0,∴y 随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,﹣2)时,k+3=﹣2,解得:k =﹣5<0,∴y 随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,2k+3=3,解得:k =0,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,3k+3=4,解得:k =13>0,∴y 随x 的增大而增大,选项D 不符合题意.故选:B .4.在平面直角坐标系中,一次函数51y x =+的图象与y 轴的交点的坐标为()A .()0,1-B .1,05⎛⎫- ⎪⎝⎭C .1,05⎛⎫ ⎪⎝⎭D .()0,1【答案】D【分析】令x=0,求出函数值,即可求解.【详解】解:令x=0,1y =,∴一次函数51y x =+的图象与y 轴的交点的坐标为()0,1.故选:D【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.5.在平面直角坐标系中,若将一次函数21y x m =+-的图象向左平移3个单位后,得到个正比例函数的图象,则m 的值为()A .-5B .5C .-6D .6【答案】A【分析】根据函数图像平移的性质求出平移以后的解析式即可求得m 的值.【详解】解:将一次函数21y x m =+-的图象向左平移3个单位后得到的解析式为:2(3)1y x m =++-,化简得:25y x m =++,∵平移后得到的是正比例函数的图像,∴50m +=,解得:5m =-,故选:A .【点睛】本题主要考查一次函数图像的性质,根据“左加右减,上加下减”求出平移后的函数解析式是解决本题的关键.6.已知在平面直角坐标系xOy 中,直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是()A .y =x+2B .y =2x+2C .y =4x+2D .y =【分析】求得A 、B 的坐标,然后分别求得各个直线与x 的交点,进行比较即可得出结论.【解析】∵直线y =2x+2和直线y =23x+2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0)A 、y =x+2与x 轴的交点为(﹣2,0);故直线y =x+2与x 轴的交点在线段AB 上;B 、y =2x+2与x 轴的交点为(−2,0);故直线y =2x+2与x 轴的交点在线段AB 上;C 、y =4x+2与x 轴的交点为(−12,0);故直线y =4x+2与x 轴的交点不在线段AB 上;D 、y =与x 轴的交点为(−3,0);故直线y =与x 轴的交点在线段AB 上;故选:C .7.在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点,2B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n<B .m n >C .m n ≥D .m n≤【答案】A 【分析】因为直线()0y kx b k =+<,所以随着自变量的增大,函数值会减小,根据这点即可得到问题解答.【详解】解:∵因为直线()0y kx b k =+<,∴y 随着x 的增大而减小,∵32>2,∴322>∴m<n ,故选:A .【点睛】此题考查了一次函数的图象和性质,解题的关键是正确判断一次函数的增减性并灵活运用.8.如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为()A .12y x =B .y x =C .32y x =D .2y x=【答案】D【分析】根据已知解析式求出点A 、B 的坐标,根据过原点O 且将AOB 的面积平分列式计算即可;【详解】如图所示,当0y =时,240x -+=,解得:2x =,∴()2,0A ,当0x =时,4y =,∴()0,4B ,∵C 在直线AB 上,设(),24C m m -+,∴12OBC C S OB x =⨯⨯△,12OCA C S OA y =⨯⨯△,∵2l 且将AOB 的面积平分,∴OBC OCA S S =△△,∴y C C OB x OA ⨯=⨯,∴()4224m m =⨯-+,解得1m =,∴()1,2C ,设直线2l 的解析式为y kx =,则2k =,∴2y x =;故答案选D.【点睛】本题主要考查了一次函数的应用,准确计算是解题的关键.9.如图,一次函数y x=的图像与x轴、y轴分别交于点A、B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A B.C.2D【答案】A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】=+的图像与x轴、y轴分别交于点A、B,解:∵一次函数y x令x=0,则,令y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x ,∴x ,又BD=AB+AD=2+x ,∴2+x=,解得:+1,∴x=+1)故选A .【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.10.已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是().A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∴y 随x 增大而减小,当y=0时,x=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y=−2x+3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.11.一次函数()232y a x =++的值随x 值的增大而减少,则常数a 的取值范围是______.【答案】32a <-【分析】由题意,先根据一次函数的性质得出关于a 的不等式230a +<,再解不等式即可.【详解】解: 一次函数()232y a x =++的值随x 值的增大而减少,230a ∴+<,解得:32a <-,故答案是:32a <-.【点睛】本题考查了一次函数的图象与系数的关系,解题的关键是:熟知一次函数的增减性.12.若21x y +=,且01y <<,则x 的取值范围为______.【答案】102x <<【分析】根据21x y +=可得y =﹣2x+1,k =﹣2<0进而得出,当y =0时,x 取得最大值,当y =1时,x 取得最小值,将y =0和y =1代入解析式,可得答案.【详解】解:根据21x y +=可得y =﹣2x+1,∴k =﹣2<0∵01y <<,∴当y =0时,x 取得最大值,且最大值为12,当y =1时,x 取得最小值,且最小值为0,∴102x <<故答案为:102x <<.【点睛】此题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.13.当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.【答案】2-【分析】分1k <-时,13k -≤≤时,3k >时三种情况讨论,即可求解.【详解】解:①若1k <-时,则当13x -≤≤时,有x k >,故y x k x k =-=-,故当1x =-时,y 有最小值,此时函数1y k =--,由题意,1 3k k --=+,解得:2k =-,满足1k <-,符合题意;②若13k -≤≤,则当13x -≤≤时,0y x k =-≥,故当x k =时,y 有最小值,此时函数0y =,由题意,0 3k =+,解得:3k =-,不满足13k -≤≤,不符合题意;③若3k >时,则当13x -≤≤时,有x k <,故y x k k x =-=-,故当3x =时,y 有最小值,此时函数3y k =-,由题意,3 3k k -=+,方程无解,此情况不存在,综上,满足条件的k 的值为2-.故答案为:2-.【点睛】本题考查了一次函数的性质,绝对值的性质,分类讨论是解题的关键.14.如图,是一个“函数求值机”的示意图,其中y 是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x 与y 的对应值.输人x…6-4-2-02…输出y …6-2-2616…根据以上信息,解答下列问题:(1)当输入的x 值为1时,输出的y 值为__________;(2)求k ,b 的值;(3)当输出的y 值为0时,求输入的x 值.【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x=1代入y=8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x=1时,y=8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩,解得26k b =⎧⎨=⎩;(3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.【点睛】本题主要考查了待定系数法求一次函数关系式,理解“函数求值机”的计算过程是解题的关键.15.在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【分析】(1)先根据直线平移时k 的值不变得出k =1,再将点A (1,2)代入y =x+b ,求出b 的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【解析】(1)∵一次函数y =kx+b (k≠0)的图象由直线y =x 平移得到,∴k =1,将点(1,2)代入y =x+b ,得1+b =2,解得b =1,∴一次函数的解析式为y =x+1;(2)把点(1,2)代入y =mx 求得m =2,∵当x >1时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =x+1的值,∴m≥2.16.表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线1,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线1的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.【分析】(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.【解析】(1)∵直线l′:y=bx+k中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴−b+k=−2k=1,解得k=1b=3,∴直线1′的解析式为y=3x+1;∴直线1的解析式为y=x+3;(2)如图,解y=x+3y=3x+1得x=1y=4,∴两直线的交点为(1,4),∵直线1′:y=3x+1与y轴的交点为(0,1),∴直线l'被直线l和y轴所截线段的长为:12+(4−1)2=10;(3)把y=a代入y=3x+1得,a=3x+1,解得x=a−13;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;当a﹣3+a−13=0时,a=52,当12(a﹣3+0)=a−13时,a=7,当12(a−13+0)=a﹣3时,a=175,∴直线y=a与直线1,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为52或7或175.17.如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x 轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【解析】(1)由y =−12x −1y =−2x +2解得x =2y =−2,∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x+2中,令y =0,则−12x ﹣1=0与﹣2x+2=0,解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △PAB =12AB ⋅|y P |=12×3×2=;(3)如图所示:自变量x 的取值范围是x <2.18.已知一次函数12y kx =+(k 为常数,k≠0)和23y x =-.(1)当k=﹣2时,若1y >2y ,求x 的取值范围;(2)当x<1时,1y >2y .结合图象,直接写出k 的取值范围.【解析】(1)当2k =-时,122y x =-+,根据题意,得223x x -+>-,解得53x <.(2)当x=1时,y=x−3=−2,把(1,−2)代入y 1=kx+2得k+2=−2,解得k=−4,当−4≤k<0时,y 1>y 2;当0<k≤1时,y 1>y 2.∴k 的取值范围是:41k -≤≤且0k ≠.19.如图,已知过点B (1,0)的直线l 1与直线l 2:y=2x+4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.【解析】(1)∵点P (-1,a )在直线l 2:y=2x+4上,∴2×(-1)+4=a ,即a=2,则P 的坐标为(-1,2),设直线l 1的解析式为:y=kx+b (k≠0),那么02k b k b +=⎧⎨-+=⎩,解得11k b =-⎧⎨=⎩.∴l 1的解析式为:y=-x+1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB=3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =1153211222⨯⨯-⨯⨯=.20.在平面直角坐标系xOy 中,直线l :y=kx+1(k≠0)与直线x=k ,直线y=-k 分别交于点A ,B ,直线x=k 与直线y=-k 交于点C .(1)求直线l 与y 轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB ,BC ,CA 围成的区域(不含边界)为W .①当k=2时,结合函数图象,求区域W 内的整点个数;②若区域W 内没有整点,直接写出k 的取值范围.【解析】(1)令x=0,y=1,∴直线l 与y 轴的交点坐标(0,1).(2)由题意,A (k ,k 2+1),B (1k k--,-k ),C (k ,-k ),①当k=2时,A (2,5),B (-32,-2),C (2,-2),在W 区域内有6个整数点:(0,0),(0,-1),(1,0),(1,-1),(1,1),(1,2);②直线AB 的解析式为y=kx+1,当x=k+1时,y=-k+1,则有k 2+2k=0,∴k=-2,当0>k≥-1时,W 内没有整数点,∴当0>k≥-1或k=-2时W 内没有整数点.。
2022年中考数学真题分类汇编:一次函数
2022年中考数学真题分类汇编:一次函数一、单选题(共15题;共45分)1.(3分)(2022·北部湾)已知反比例函数y=b x(b≠0)的图象如图所示,则一次函数y=cx−a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】【解答】解:∵反比例函数y=bx(b≠0)的图象在第一和第三象限内,∴b>0,若a<0,则- b2a>0,所以二次函数开口向下,对称轴在y轴右侧,故A,B,C,D选项全不符合;当a>0,则- b2a<0时,所以二次函数开口向上,对称轴在y轴左侧,故只有C、D两选项可能符合题意,由C、D两选图象知,c<0,又∵a>0,则-a<0,当c<0,a>0时,一次函数y=cx-a图象经过第二、第三、第四象限,故只有D选项符合题意.故答案为:D.【分析】根据反比例函数图象所在的象限可得b>0,若a>0,则-b 2a <0时,二次函数开口向上,对称轴在y 轴左侧,据此排除A 、B ;若a>0,c<0,一次函数图象经过二、三、四象限,据此判断C 、D.2.(3分)(2022·鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx+b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx+b <13x 时,x 的取值范围是( )A .x >3B .x <3C .x <1D .x >1【答案】A【解析】【解答】解:由函数图象可知不等式kx+b <13x 的解集即为一次函数图象在正比例函数图象下方的自变量的取值范围,∴当kx+b <13x 时,x 的取值范围是x >3.故答案为:A.【分析】根据图象,找出一次函数y=kx+b 的图象在直线 y =13x 的图象下方部分所对应的x 的范围即可.3.(3分)(2022·绥化)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟【答案】C【解析】【解答】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0)设AE 的解析式为y=kx+b ,则{0=4k +b a =8k +b ,解得{k =a 4b =−a ∴直线AE 的解析式为y=a4x-3a同理:直线AF 的解析式为:y=-a 4x+3a ,直线OD 的解析式为:y=a12x 联立{y =a 12x y =a 4x −a ,解得{x =6y =a 2联立{y =a12xy =−a 4x +3a,解得{x =9y =3a 4 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【分析】先求出直线AE 和直线OD 的解析式,再联立方程组{y =a12x y =a 4x −a 求出{x =6y =a 2和{y =a12xy =−a 4x +3a 求出{x =9y =3a 4,最后作差即可得到答案。
专题10一次函数及其应用(共41题)(解析版)-学易金卷:2023年中考数学真题分项汇编(全国通用)
专题10一次函数及其应用一、单选题1.(2023·四川乐山·统考中考真题)下列各点在函数21y x =-图象上的是()A .()13-,B .()01,C .()11-,D .()23,【答案】D 【分析】根据一次函数图象上点的坐标特征,将选项中的各点分别代入函数解析式21y x =-,进行计算即可得到答案.【详解】解: 一次函数图象上的点都在函数图象上,∴函数图象上的点都满足函数解析式21y x =-,A.当=1x -时,=3y -,故本选项错误,不符合题意;B.当0x =时,1y =-,故本选项错误,不符合题意;C.当1x =时,1y =,故本选项错误,不符合题意;D.当2x =时,3y =,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了一次函数图象上点的坐标特征,熟练掌握一次函数图象上的点都在函数图象上,是解题的关键.2.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A .23y x =-+B .26y x =-+C .23y x =--D .26y x =--【答案】B【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B .【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.3.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数23y x =-的图象是()....【答案】D【分析】依据一次函数)3-,和302⎛⎫ ⎪⎝⎭,,即可得到一次函数三、四象限.【详解】解:一次函数=3y -;令0y =,则一次函数23y x =-的图象经过点一次函数23y x =-的图象经过一、三、四象限,故选:D .【点睛】本题主要考查了一次函数的图象,一次函数的图象是与坐标轴不平行的一条直线.(2023·新疆·统考中考真题)一次函数A .0k >B .0kb <C .0k b +>DA.8:28B.8:30【答案】A【分析】利用待定系数法求出两条直线的函数解析式,将两个解析式联立,通过解方程求出交点的横坐标即可.【详解】解:令小亮出发时对应的t值为70,小莹到达甲地时对应的t值为40,A.()2,5B.()3,5【答案】C【分析】先根据一次函数解析式求得点∠=︒,=9090OAC∠︒,进而得出ACD故选:C.【点睛】本题考查了一次函数与坐标轴交点问题,旋转的性质,坐标与图形,掌握旋转的性质是解题的关键.10.(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,已知点A.1M B.M【答案】B∴PA y ⊥轴,4PA =,由旋转得:60APB AP ∠=︒=,如图,过点B 作BC y ⊥轴于C ∴30BPC ∠=︒,∴223BC PC ==,,∴()2123B +,),设直线PB 的解析式为:y kx =+则21231k b b ⎧+=+⎪⎨=⎪⎩,∴31k b ⎧=⎪⎨=⎪⎩,∴直线PB 的解析式为:3y x =当=1x -时,31y =-+,∴点()11,3M --不在直线PB 当33x =-时,333y ⎛=⨯- ⎝二、填空题11.(2023·山东·统考中考真题)一个函数过点()1,3,且y 随x 增大而增大,请写出一个符合上述条件的函数解析式_________.【答案】3y x =(答案不唯一)【分析】根据题意及函数的性质可进行求解.【详解】解:由一个函数过点()1,3,且y 随x 增大而增大,可知该函数可以为3y x =(答案不唯一);故答案为3y x =(答案不唯一).【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12.(2023·江苏苏州·统考中考真题)已知一次函数y kx b =+的图象经过点()1,3和()1,2-,则22k b -=________________.【答案】6-【分析】把点()1,3和()1,2-代入y kx b =+,可得32k b k b +=⎧⎨-=-⎩,再整体代入求值即可.【详解】解:∵一次函数y kx b =+的图象经过点()1,3和()1,2-,∴32k b k b +=⎧⎨-+=⎩,即32k b k b +=⎧⎨-=-⎩,∴()()()22326k b k b k b -=+-=⨯-=-;故答案为:6-【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,利用平方差公式分解因式,熟练的利用平方差公式求解代数式的值是解本题的关键.13.(2023·天津·统考中考真题)若直线y x =向上平移3个单位长度后经过点()2,m ,则m 的值为________.【答案】5【分析】根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.【详解】解: 直线y x =向上平移3个单位长度,∴平移后的直线解析式为:3y x =+.平移后经过()2,m ,235m ∴=+=.故答案为:5.【点睛】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.14.(2023·湖南郴州·统考中考真题)在一次函数()23y k x =-+中,y 随x 的增大而增大,则k 的值可以是___________(任写一个符合条件的数........即可).【答案】3(答案不唯一)【分析】根据一次函数的性质可知“当20k ->时,变量y 的值随x 的值增大而增大”,由此可得出结论.【详解】解:∵一次函数23y k x =-+()中,y 随x 的值增大而增大,∴20k ->.解得:2k >,故答案为:3(答案不唯一).【点睛】本题考查了一次函数的性质,解题的关键是根据函数的单调性确定k 的取值范围.本题属于基础题,难度不大,解决该题型题目时,结合一次函数的增减性,得出k 的取值范围是关键.15.(2023·广西·统考中考真题)函数3y kx =+的图象经过点()2,5,则k =______.【答案】1【分析】把点()2,5代入函数解析式进行求解即可.【详解】解:由题意可把点()2,5代入函数解析式得:235k +=,解得:1k =;故答案为:1.【答案】5【分析】分别求出三个函数解析式,然后求出【详解】解:设111y k x b =+过111232b k b =⎧⎨=+⎩,解得:11122k b ⎧=⎪⎨⎪=⎩同理:22275k b +=-+=,k 则分别计算11k b +,223,k b k +故答案为:5.【点睛】本题主要考查了求一次函数解析式,掌握待定系数法是解答本题的关键.三、解答题17.(2023·浙江温州·统考中考真题)如图,在直角坐标系中,点线交y 轴于点()0,3B .(1)求m的值和直线(2)若点()1,P t y在线段【答案】(1)32 m=,钟)之间的函数图象如图所示.(1)当1540x ≤≤时,求乙距山脚的垂直高度y 与x 之间的函数关系式;(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.【答案】(1)12180y x =-;(2)180【分析】(1)待定系数法求解析式即可求解;(2)求得甲距山脚的垂直高度y 与x 之间的函数关系式为460y x =+()2560x ≤≤,联立12180y x =-()1540x ≤≤,即可求解.【详解】(1)解:设乙距山脚的垂直高度y 与x 之间的函数关系式为y kx b =+,将()15,0,()40,300代入得,15040300k b k b +=⎧⎨+=⎩,解得:12180k b =⎧⎨=-⎩,∴12180y x =-()1540x ≤≤;(2)设甲距山脚的垂直高度y 与x 之间的函数关系式为11y k x b =+()2560x ≤≤将点()()25,16060,300,代入得,11112516060300k b k b +=⎧⎨+=⎩解得:11460k b =⎧⎨=⎩,∴460y x =+()2560x ≤≤;(1)A ,B 两地之间的距离是______千米,(2)求线段FG 所在直线的函数解析式;(3)货车出发多少小时两车相距15千米?(直接写出答案即可)【答案】(1)60,1;(2)60120y x =-+;【分析】(1)根据货车从A 地到B 地花了(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组己停工的天数.【答案】(1)30;(2)(3120y x =+30<【分析】(1)由图可知,前30天甲乙两组合作,(2)设乙组停工后y 关于x 的函数解析式为(2)解:设该商场节前购进m 千克A 粽子,则节后购进()400m -千克A 粽子,获得的利润为w 元,根据题意得:()()()2012161040022400w m m m =-+--=+,∵()121040046000m m m ⎧+-≤⎨>⎩,∴0300m <≤,∵20>,∴w 随m 的增大而增大,∴当300m =时,w 取最大值,且最大值为:230024003000w =⨯+=最大,答:节前购进300千克A 粽子获得利润最大,最大利润为3000元.【点睛】本题主要考查了分式方程和一次函数的应用,解题的关键是根据等量关系列出方程和关系式.22.(2023·四川成都·统考中考真题)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元.(1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A 种食材单价是每千克38元,B 种食材单价是每千克30元;(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【分析】(1)设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意列出不等式,得出24x ≤,进而设总费用为y 元,根据题意,()38303681080y x x x =+-=+,根据一次函数的性质即可求解.【详解】(1)解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得,6853280a b a b +=⎧⎨+=⎩,解得:3830a b =⎧⎨=⎩,答:A 种食材的单价为38元,B 种食材的单价为30元;(2)解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意,()236x x ≥-解得:24x ≥,设总费用为y 元,根据题意,()38303681080y x x x =+-=+∵80>,y 随x 的增大而增大,∴当24x =时,y 最小,∴最少总费用为82410801272⨯+=(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次函数关系式是解题的关键.23.(2023·浙江·统考中考真题)我市“共富工坊”问海借力,某公司产品销售量得到大幅提升.为促进生产,公司提供了两种付给员工月报酬的方案,如图所示,员工可以任选一种方案与公司签订合同.看图解答下列问题:(1)直接写出员工生产多少件产品时,两种方案付给的报酬一样多;(2)求方案二y 关于x 的函数表达式;(3)如果你是劳务服务部门的工作人员,你如何指导员工根据自己的生产能力选择方案.【答案】(1)30件;(2)20600y x =+;(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一【分析】(1)由图象的交点坐标即可得到解答;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,利用待定系数法即可得到方案二y 关于x 的函数表达式;(3)利用图象的位置关系,结合交点的横坐标即可得到结论.【详解】(1)解:由图象可知交点坐标为()30,1200,即员工生产30件产品时,两种方案付给的报酬一样多;(2)由图象可得点()()0,600,30,1200,设方案二的函数表达式为y kx b =+,把()()0,600,30,1200代入上式,得600,301200.b k b =⎧⎨+=⎩解得20,600.k b =⎧⎨=⎩∴方案二的函数表达式为20600y x =+.(3)若每月生产产品件数不足30件,则选择方案二;若每月生产产品件数就是30件,两种方案报酬相同,可以任选一种;若每月生产产品件数超过30件,则选择方案一.【点睛】此题考查了从函数图像获取信息、一次函数的应用等知识,从函数图象获取正确信息和掌握待定系数法是解题的关键.24.(2023·浙江金华·统考中考真题)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程s (米)与哥哥离开学校的时间t (分)的函数关系.(1)求哥哥步行的速度.(2)已知妺妺比哥哥迟2分钟到书吧.①求图中a 的值;②妺妺在书吧待了10分钟后回家,速度是哥哥的1.6倍,能否在哥哥到家前追上哥哥?若能,求追上时兄【点睛】本题考查了一次函数的实际应用(行程问题)25.(2023·四川遂宁·统考中考真题)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多乙种粽子的个数相同.(1)甲、乙两种粽子每个的进价分别是多少元?(1)求大巴离营地的路程s 与所用时间t 的函数表达式及(2)求部队官兵在仓库领取物资所用的时间.【答案】(1)4020s t =+,2a =;(2)1h 3【分析】(1)设出函数解析式,利用待定系数法求出函数解析式,将(2)先求出军车的速度,然后分别求出军车到达仓库,和从仓库出发到达基地的时间,用总时间减去两段(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到【答案】(1)200y x =;(2)出发后甲机器人行走【分析】(1)利用待定系数法即可求解;则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.30.(2023·上海·统考中考真题)“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完.(1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元?【答案】(1)900;(2)0.90.27y x =-;(3)1.00【分析】(1)根据10000.9⨯,计算求解即可;(2)由题意知,()0.90.30y x =-,整理求解即可;(3)当7.30x =,则 6.30y =,根据优惠后油的单价比原价便宜()x y -元,计算求解即可.【详解】(1)解:由题意知,10000.9900⨯=(元),答:实际花了900元购买会员卡;(2)解:由题意知,()0.90.30y x =-,整理得0.90.27y x =-,∴y 关于x 的函数解析式为0.90.27y x =-;(3)解:当7.30x =,则 6.30y =,∵7.30 6.30 1.00-=,∴优惠后油的单价比原价便宜1.00元.【点睛】本题考查了有理数乘法应用,一次函数解析式,一次函数的应用.解题的关键在于理解题意,正确的列出算式和一次函数解析式.31.(2023·江苏扬州·统考中考真题)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?请根据相关信息,回答下列问题:(1)①填表:张强离开宿舍的时间/min1102060张强离宿舍的距离/km 1.2(1)小聪在直角坐标系中描出了表中数据对应的点.︒)与加热的时间位:C选填“正比例”“一次”“二次(2)根据以上判断,求(3)当加热110s时,油沸腾了,请推算沸点的温度.【答案】(1)一次;(2)【详解】(1)由表格中两个变量对应值的变化规律可知,时间每增加10s ,油的温度就升高20℃,故可知可能是一次函数关系,故答案为:一次;(2)设这个一次函数的解析式为()0y kt b k =+≠,当0=t 时,10y =;当10t =时,30y =,103010b k b =⎧∴⎨=+⎩,解得210k b =⎧⎨=⎩,∴y 关于t 的函数解析式为210y t =+;(3)当110t =时,211010230y =⨯+=答:当加热110s 时,油沸腾了,推算沸点的温度为230C ︒.【点睛】本题考查函数的表示方法以及求函数值;能够通过表格确定自变量与因变量的变化关系是解题的关键.36.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =-+;2l 的解析式为15y x =-+;(2)①10,20x m y m =+=-;②3l 的解析式为30y x =-+,图象见解析;(3)538a c b+=【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【详解】(1)设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩,∴1l 的解析式为6y x =-+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =-+;(2)①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m -次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m -次后得到的点的横坐标为21010m m m +-=+,纵坐标为()21020m m m +-=-,∴10,20x m y m =+=-;②由于102030x y m m +=++-=,∴直线3l 的解析式为30y x =-+;函数图象如图所示:(3)∵点,,A B C 的横坐标依次为,,a b c ,且分别在直线∴()()(),6,,15,,30A a a B b b C c c -+-+-+,设直线AB 的解析式为y mx n =+,把A 、B 两点坐标代入,得615ma n a mb n b +=-+⎧⎨+=-+⎩,解得:9196m b a a n b a ⎧=-+⎪⎪-⎨⎪=-⎪-⎩,∴直线AB 的解析式为916y x b a ⎛⎫=-++ ⎪-⎝⎭∵A ,B ,C 三点始终在一条直线上,∴991630a c c b a b a ⎛⎫-++-=-+ ⎪--⎝⎭,整理得:538a c b +=;即a ,b ,c 之间的关系式为:538a c b +=.【点睛】本题是一次函数和平移综合题,主要考查了平移的性质和一次函数的相关知识,正确理解题意、熟练掌握平移的性质和待定系数法求一次函数的解析式是解题关键.37.(2023·广西·统考中考真题)【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:中秤盘质量0m 克,重物质量m 克,秤砣质量【方案设计】m=,目标:设计简易杆秤.设定01050厘米.任务一:确定l和a的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于(1)男女跑步的总路程为_______________(2)当男、女相遇时,求此时男、女同学距离终点的距离.【答案】(1)1000m ;(2)315m【分析】(1)根据男女同学跑步的路程相等,求得男生跑步的路程,乘以(2)根据题意男生从开始匀速跑步到停止跑步的直线解析式为:出解析式为 3.580y x =+,【详解】(1)解:∵开始时男生跑了100s .∴男生跑步的路程为50 4.5+(1)=a___________,b=___________(2)请分别求出1y,2y与x的函数关系式;(3)当上升多长时间时,两个气球的海拔竖直高度差为【答案】(1)12,30;(2)110y x=+【分析】(1)根据1号探测气球的出发海拔和速度即可计算和运动时间可计算2号探测气球的速度可计算(1)图中a的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距。
一次函数-三年中考数学真题分项汇编(解析版)
一次函数一、单选题1.(2020年浙江舟山)一次函数21y x =-的图象大致是( )A .B .C .D .【答案】B【解析】【分析】根据一次函数的性质,直接判断即可.【详解】对于一次函数21y x =-,∵20k =>,10b =-<,∵函数的图象经过第一、三、四象限.故选B .【点睛】本题主要考查一次函数的图象和性质,掌握一次函数的系数和图象所经过的象限之间的关系是解题的关键.2.(2022年浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y > 【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y=−2x+3∵y随x增大而减小,当y=0时,x=1.5∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3∵若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.3.(2020年浙江杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【答案】A【解析】【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∵2=a+a,解得a=1,∵y=x+1,∵直线交y轴的正半轴,且过点(1,2),故选:A.【点睛】此题考查一次函数表达式及图像的相关知识.4.(2022年浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A.B.C.D.【答案】A【解析】【分析】分别对每段时间的路程与时间的变化情况进行分析,画出路程与时间图像,再与选项对比判断即可.【详解】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分种,路程600米,s从0增加到600米,t从0到10分,对应图像为在凉亭休息10分钟,t从10分到20分,s保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t从20分到30分,s从600米增加到1200米,对应图像为故选:A.【点睛】本题考查了一次折线图像与实际结合的问题,注意正确理解每段时间与路程的变化情况是解题关键.5.(浙江衢州2021年)已知A,B两地相距60km,甲、乙两人沿同一条公路从A地出发到B地,甲骑自行车匀速行驶3h到达,乙骑摩托车.比甲迟1h出发,行至30km处追上甲,停留半小时后继续以原速行驶.他们离开A地的路程y与甲行驶时间x的函数图象如图所示.当乙再次追上甲时距离B地()A.15km B.16km C.44km D.45km【答案】A【解析】【分析】根据图象信息和已知条件,用待定系数法求出y 20x =甲,6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭,6090y x 乙(522x ≤≤),再根据追上时路程相等,求出答案.【详解】解:设y kx =甲,将(3,60)代入表达式,得:603k =,解得:20k =,则y 20x =甲,当y =30km 时,求得x =32h , 设11+y k x b 乙312x ⎛⎫≤≤ ⎪⎝⎭,将(1,0),3302⎛⎫ ⎪⎝⎭,,代入表达式,得: 1111 03302k b k b +=⎧⎪⎨+=⎪⎩,得:11 60 60b k =-⎧⎨=⎩, ∴6060y x 乙312x ⎛⎫≤≤ ⎪⎝⎭, ∵60/V km h =乙,1T h =乙,∵乙在途中休息了半小时,到达B 地时用半小时,∵当522x ≤≤时,设22+y k x b 乙,将(2,30),5(,60)2代入表达式,得到: 22222?305602k b k b +=⎧⎪⎨+=⎪⎩,得:22 90 60b k =-⎧⎨=⎩, ∴6090y x 乙(522x ≤≤), 则当y y =甲乙时,206090x x =-,解得:94x =, ∵45y y km ==甲乙,∴当乙再次追上甲时距离A 地45km所以乙再次追上甲时距离B 地15.km故选:A .【点睛】本题主要考查了利用一次函数图像解决实际问题,关键在于理解题意,明白追击问题中追上就是路程相等,再利用待定系数法求出函数表达式,最后进行求解.6.(浙江嘉兴2021年)已知点(),P a b 在直线34y x =--上,且250a b -≤,则下列不等式一定成立的是( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 【答案】D【解析】【分析】 根据点(),P a b 在直线34y x =--上,且250a b -≤,先算出a 的范围,再对不等式250a b -≤变形整理时,需要注意不等号方向的变化.【详解】解:点(),P a b 在直线34y x =--上,34b a ∴=--,将上式代入250a b -≤中,得:25(34)0a a -⨯--≤,解得:2017a ≤-, 由250ab -≤,得:25a b ≤, 202,175b a a ≤-∴≤(两边同时乘上一个负数,不等号的方向要发生改变), 故选:D .【点睛】本题考查了解一元一次不等式,解题的关键是:要注意在变形的时候,不等号的方向的变化情况. 7.(2022·浙江金华)如图是城某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超B .医院C .体育场D .学校【答案】A【解析】【分析】根据学校和体育场的坐标建立直角坐标系,利用勾股定理求出各点到原点的距离,由此得到答案.【详解】解:根据学校和体育场的坐标建立直角坐标系,22215+223110+223110+224225+=故选:A.【点睛】此题考查了根据点坐标确定原点,勾股定理,正确理解点坐标得到原点的位置及正确展望勾股定理的计算是解题的关键.8.(2020年浙江湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y2x+2C.y=4x+2D.y23x+2【答案】C【解析】【分析】分别求出点A、B坐标,再根据各选项解析式求出与x轴交点坐标,判断即可.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∵A(﹣1,0),B(﹣3,0)A.y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B.y2+2与x20);故直线y2+2与x轴的交点在线段AB上;C.y=4x+2与x轴的交点为(﹣12,0);故直线y=4x+2与x轴的交点不在线段AB上;D. y 23+2与x 30);故直线y 23+2与x 轴的交点在线段AB 上; 故选:C【点睛】本题考查了求直线与坐标轴的交点,注意求直线与x 轴交点坐标,即把y =0代入函数解析式.9.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .1【答案】B【解析】【分析】把(,)A a b 代入3y kx =+后表示出ab ,再根据ab 最大值求出k ,最后把(4,)B c 代入3y kx =+即可.【详解】把(,)A a b 代入3y kx =+得:3b ka =+∵2239(3)3()24ab a ka ka a k a k k =+=+=+- ∵ab 的最大值为9∵0k <,且当32a k=-时,ab 有最大值,此时994ab k =-= 解得14k =- ∵直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B .【点睛】本题考查一次函数上点的特点、二次函数最值,解题的关键是根据ab 的最大值为9求出k 的值. 10.(2020年浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .【答案】C【解析】【分析】由图2知小球速度先是逐渐增大,后来逐渐减小,则随着时间的增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案.【详解】由图2知小球速度不断变化,因此判定小球运动速度v 与运动时间t 之间的函数关系是()()11112222000v k t k v k t b k b ⎧=>⎪⎨=+⎪⎩,(1t 为前半程时间,2t 为后半程时间), ∵前半程路程函数表达式为:2111y k t =,后半程路程为2222222=+=v k t t bt y ,∵2100,><k k ,即前半段图像开口向上,后半段开口向下∵C 项图像满足此关系式,故答案为:C .【点睛】此题考查根据函数式判断函数图像的大致位置.11.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x之间函数关系的图象中,正确的是( )A .B .C .D .【答案】C【解析】【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min 到公园,表示从(0,400)运动到(8,0);在公园,停留4min ,然后匀速步行6min 到学校,表示从(12,0)运动到(18,600);故选:C .【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象. 12.(2022年浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在13M ⎛⎫ ⎪ ⎪⎝⎭,()23,1M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M【答案】B【解析】【分析】根据含30°角的直角三角形的性质可得B(2,3,利用待定系数法可得直线PB的解析式,依次将M1,M2,M3,M4四个点的一个坐标代入y3+2中可解答.【详解】解:∵点A(4,2),点P(0,2),∵P A∵y轴,P A=4,由旋转得:∵APB=60°,AP=PB=4,如图,过点B作BC∵y轴于C,∵∵BPC=30°,∵BC=2,PC3∵B(2,3,设直线PB的解析式为:y=kx+b,则22232k bb⎧+=+⎪⎨=⎪⎩∵32 kb⎧=⎪⎨=⎪⎩∵直线PB的解析式为:y3+2,当y=03+2=0,x=23,∵点M1(30)不在直线PB上,当x=3y=-3+2=1,∵M2(3-1)在直线PB上,当x=1时,y3,∵M3(1,4)不在直线PB上,当x=2时,y3,∵M4(2,112)不在直线PB上.故选:B.【点睛】本题考查的是图形旋转变换,待定系数法求一次函数的解析式,确定点B的坐标是解本题的关键.二、填空题13.(2020年浙江金华、丽水)点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______.【答案】-1(答案不唯一,负数即可)【解析】【分析】根据第二象限的点符号是“-,+”,m取负数即可.【详解】∵点P(m,2)在第二象限内,∵0m<,m取负数即可,如m=-1,故答案为:-1(答案不唯一,负数即可).【点睛】本题考查了已知点所在象限求参数,属于基础题,掌握第二象限点坐标的符号是“-,+”是解题的关键.14.(2022年浙江杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组31x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【解析】【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∵联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩, 即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组,熟练掌握一次函数的交点坐标与二元一次方程组的解的关系是解题的关键.15.(2022年浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(3,3),则A 点的坐标是___________.【答案】3,3A【解析】【分析】 如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,证明,BOEAON 可得,,A O B 三点共线,可得,A B 关于O 对称,从而可得答案.【详解】解:如图,延长正六边形的边BM 与x 轴交于点E ,过A 作AN x ⊥轴于N ,连接AO ,BO ,∴三个正六边形,O为原点,,120,BM MO OH AH BMO OHA,BMO OHA≌,OB OA11209030,18012030,2MOE BMO MOB60,90,BOE BEO同理:120303060,906030,AON OAN,BOE AON,,A O B∴三点共线,,A B∴关于O对称,3,3.A故答案为:3,3.A【点睛】本题考查的是坐标与图形的性质,全等三角形的判定与性质,关于原点成中心对称的两个点的坐标特点,正多边形的性质,熟练的应用正多边形的性质解题是解本题的关键.16.(浙江宁波2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y,我们把点11,Bx y⎛⎫⎪⎝⎭称为点A的“倒数点”.如图,矩形OCDE的顶点C为()3,0,顶点E在y轴上,函数()2=>y xx的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则OBC的面积为_________.【答案】14或32 【解析】【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:∵当点B 在边DE 上时;∵当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】 解:根据题意,∵点11,B x y ⎛⎫ ⎪⎝⎭称为点(),A x y 的“倒数点”, ∵0x ≠,0y ≠,∵点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x的图像上, 设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∵3OC =,∵当点B 在边DE 上时;点A 与点B 都在边DE 上,∵点A 与点B 的纵坐标相同,即22x x =,解得:2x =, 经检验,2x =是原分式方程的解; ∵点B 为1(,1)2, ∵OBC 的面积为:133122S =⨯⨯=; ∵当点B 在边CD 上时;点B与点C的横坐标相同,∵13x=,解得:13x=,经检验,13x=是原分式方程的解;∵点B为1 (3,)6,∵OBC的面积为:1113264S=⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.三、解答题(共0分)17.(浙江嘉兴2021年)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”(m/s)与路程()mx之间的观测数据(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.【答案】(1)y是x的函数,理由见解析;(2)“加速期”结束时,小斌的速度为10.4m/s;(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【分析】(1)根据函数的概念进行解答;(2)通过识图读取相关信息;(3)根据图像信息进行解答.【详解】解:(1)y 是x 的函数.在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m/s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.【点睛】本题考查通过函数图像读取信息,理解函数的概念,准确识图是解题关键.18.(2022年浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5(2)s =100t -150 (3)1.2【解析】(1)根据货车行驶的路程和速度求出a 的值;(2)将(a ,0)和(3,150)代入s =kt +b 中,待定系数法解出k 和b 的值即可;(3)求出汽车和货车到达乙地的时间,作差即可求得答案.(1)由图中可知,货车a 小时走了90km ,∵a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∵轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h ,6-4.8=1.2h ,∵轿车比货车早1.2h 时间到达乙地.【点睛】本题考查了一次函数的应用,主要利用待定系数法求函数解析式,路程、速度、时间三者之间的关系,从图中准确获取信息是解题的关键.19.(浙江丽水2021年)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?【答案】(1)工厂离目的地的路程为880千米;(2)80880(011)s t t =-+≤≤;(3)251542t <<. 【解析】【分析】(1)根据图象直接得出结论即可;(2)根据图象,利用待定系数法求解函数表达式即可;再求出油量为(3)分别求出余油量为10升和0升时行驶的路程,根据函数表达式求出此时的t 值,即可求得t 的范围.【详解】解:(1)由图象,得0=t 时,880s =,答:工厂离目的地的路程为880千米.(2)设(0)s kt b k =+≠,将0880t s ==,和4,560t s ==分别代入表达式, 得880,5604.b k b =⎧⎨=+⎩,解得80880k b =-⎧⎨=⎩, ∵s 关于t 的函数表达式为80880(011)s t t =-+≤≤.(3)当油箱中剩余油量为10升时,880(6010)0.1380s =--÷=(千米),38080880t ∴=-+,解得254t =(小时). 当油箱中剩余油量为0升时,880600.1280s =-÷=(千米),28080880t ∴=-+,解得152t =(小时). 800,k s =-<∴随t 的增大而减小,t ∴的取值范围是251542t <<. 【点睛】 本题考查一次函数的应用,解答的关键是理解题意,能从函数图象上提取有效信息解决问题.20.(2022年浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】【分析】(1)设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时,根据路程两车行驶的路程相等得到()60401x x =+即可求解;(2)由(1)中轿车行驶的时间求出点B 的坐标是()3,120,进而求出直线AB 的解析式;(3)根据大巴车行驶路程与小轿车行驶路程相等即可得到()40 1.560 1.5a +=⨯,进而求出a 的值(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+, 解得x =2.则60602120x =⨯=千米,∵轿车出发后2小时追上大巴,此时,两车与学校相距120千米. (2)解:∵轿车追上大巴时,大巴行驶了3小时, ∵点B 的坐标是()3,120. 由题意,得点A 的坐标为()1,0. 设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∵AB 所在直线的解析式为s =60t -60. (3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时.【点睛】本题考查了一次函数的实际应用、待定系数法求一次函数的解析式,解题的关键是读懂题意,明确图像中横坐标与纵坐标代表的含义.21.(浙江台州2021年)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R 1, R 1与踏板上人的质量m 之间的函数关系式为R 1=km +b (其中k ,b 为常数,0≤m ≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R 0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U 0 ,该读数可以换算为人的质量m , 温馨提示:∵导体两端的电压U ,导体的电阻R ,通过导体的电流I ,满足关系式I =UR;∵串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k ,b 的值;(2)求R 1关于U 0的函数解析式; (3)用含U 0的代数式表示m ;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.【答案】(1)2402b k =⎧⎨=-⎩;(2)1024030R U =-;I (3)0120135m U =-;(4)该电子体重秤可称的最大质量为115千克. 【解析】 【分析】(1)根据待定系数法,即可求解;(2)根据“串联电路中电流处处相等,各电阻两端的电压之和等于总电压”,列出等式,进而即可求解; (3)由R 1=12-m +240,1024030R U =-,即可得到答案; (4)把06U =时,代入0480540m U =-,进而即可得到答案.【详解】解:(1)把(0,240),(120,0)代入R 1=km +b ,得2400120bk b =⎧⎨=+⎩,解得:2402b k =⎧⎨=-⎩;(2)∵001830U U R -=, ∵1024030R U =-; (3)由(1)可知:2402b k =⎧⎨=-⎩,∵R 1=2-m +240, 又∵1024030R U =-, ∵024030U -=2-m +240,即:0120135m U =-; (4)∵电压表量程为0~6伏, ∵当06U =时,1201351156m =-= 答:该电子体重秤可称的最大质量为115千克. 【点睛】本题主要考查一次函数与反比例函数的实际应用,熟练掌握待定系数法,是解题的关键.22.(浙江衢州2020年)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ∵货轮出发后几小时追上游轮? ∵游轮与货轮何时相距12km ?【答案】(1)C 点横坐标的实际意义是从杭州出发前往衢州共用了23h ;游轮在“七里扬帆”停靠的时长为2h ; (2)∵货轮出发后8小时追上游轮;∵0.6h 或21.6h 或22.4h 时游轮与货轮何时相距12km 【解析】 【分析】(1)根据图中信息解答即可.(2)∵求出B ,C ,D ,E的坐标,利用待定系数法求解即可;∵分相遇前与相遇后两种情形分别构建方程求解即可.(1)解:由题意知,C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h ; ∵游轮在“七里扬帆”停靠的时长23(42020)2=-÷=(h ). (2)解:∵∵2802014÷=h , ∵A (14,280),B (16,280), ∵36600.6÷=(h ), ∵230.622.4-=, ∵E (22.4,420),设BC 的解析式为20s t b =+,把B (16,280)代入20s t b =+,解得40b =-, ∵()20401623s t t =-≤≤,同理,由D (14,0),E (22,4,420)可得DE 的解析式为()507001422.4s t t =-≤≤, 由题意可得:204050700t t -=-, 解得22t =, ∵22148-=(h ),∵货轮出发后8小时追上游轮. ∵分相遇前与相遇后两种情况求解:相遇之前相距12km 时,则2045070012t t ---=(),解得21.6t =; 相遇之后相距12km 时,则50700204012t ---=(),解得22.4t =;当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km , 所以此时两船应该也是相距12km ,即在0.6h 的时候,两船也相距12km. ∵当t 为0.6h 或21.6h 或22.4h 时,游轮与货轮何时相距12km . 【点睛】本题考查一次函数的应用.解题的关键在于从图象中获取正确的信息.23.(浙江绍兴2021年)I 号无人机从海拔10m 处出发,以10m/min 的速度匀速上升,II 号无人机从海拔30m 处同时出发,以a (m/min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min .(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式. (2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.【答案】(1)630(015)y x x =+;(2)无人机上升12min ,I 号无人机比II 号无人机高28米 【解析】 【分析】(1)直接利用I 号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,求出其5分钟后的高度即可; (2)将I 号无人机的高度表达式减去II 号无人机高度表达式,令其值为28,求解即可. 【详解】解:(1)1010560b =+⨯=. 设y kx b =+,将(0,30),(5,60)代入得:630(015)y x x =+,∵60b =;()630015y x x =+.(2)令(1010)(630)28x x +-+=, 解得1215x =<,满足题意;∴无人机上升12min ,I 号无人机比II 号无人机高28米.【点睛】本题考查了一次函数的实际应用,涉及到了求一次函数的表达式,两个一次函数值之间的比较等内容,解决本题的关键是读懂题意,与图形建立关联,能建立高度的表达式等,本题着重于对函数概念的理解与应用,考查了学生的基本功.24.(2022年浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).x 0 0.5 1 1.5 2 y 11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),ky x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析 (2)4小时 【解析】 【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.(1)(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∵y =x +1(0≤x ≤5).(2)当y =5时,x +1=5, ∵x =4.答:当水位高度达到5米时,进水用时x 为4小时. 【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键. 25.(浙江杭州2021年)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-, ∵求1k ,2k 的值.∵当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)∵12k =,22k =;∵1x >;(2)0 【解析】 【分析】(1)∵根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;∵观察图象可解题; (2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)∵由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A , 所以12k =, 同理22k =.∵由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方, 即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -, 所以100k x y =,300k x y =-,所以310k k +=. 【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(浙江宁波2021年)某通讯公司就手机流量套餐推出三种方案,如下表:A 方案B 方案C 方案 每月基本费用(元)2056 266 每月免费使用流量(兆) 1024 m 无限 超出后每兆收费(元) nnA ,B ,C 三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系如图所示. (1)请直接写出m ,n 的值.(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【答案】(1)3072,0.3m n ==;(2)()0.3287.21024y x x =-≥;(3)当每月使用的流量超过3772兆时,选择C 方案最划算 【解析】 【分析】(1)m 的值可以从图象上直接读取,n 的值可以根据方案A 和方案B 的费用差和流量差相除求得; (2)直接运用待定系数法求解即可;(3)计算出方案C 的图象与方案B 的图象的交点表示的数值即可求解. 【详解】解:(1)3072,m = 56200.311441024n -==-.(2)设函数表达式为(0)y kx b k =+≠, 把()1024,20,()1144,56代入y kx b =+,得201024561144k bk b=+⎧⎨=+⎩, 解得0.3287.2k b =⎧⎨=-⎩,∵y 关于x 的函数表达式()0.3287.21024y x x =-≥. (注:x 的取值范围对考生不作要求) (3)307226656)0.37(372+-÷=(兆).由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.27.(浙江温州2021年)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装1千克45元。
2022年全国中考数学真题分类汇编专题6:一次函数
B 地路程 y(米)与时间 x(分钟)之间的函数图象.
请解答下列问题:
(1)填空:甲的速度为
米/分钟,乙的速度为
米/分钟;
(2)求图象中线段 FG 所在直线表示的 y(米)与时间 x(分钟)之间的函数解析式,并
写出自变量 x 的取值范围;
(3)出发多少分钟后,甲乙两人之间的路程相距 600 米?请直接写出答案.
续驶向景点,乙大巴全程匀速驶向景点.两辆大巴的行程 s(km)随时间 t(h)变化的
图象(全程)如图所示.依据图中信息,下列说法错误的是( )
A.甲大巴比乙大巴先到达景点 B.甲大巴中途停留了 0.5h C.甲大巴停留后用 1.5h 追上乙大巴 D.甲大巴停留前的平均速度是 60km/h 16.龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次 赛跑的过程(x 表示兔子和乌龟从起点出发所走的时间,y1,y2 分别表示兔子与乌龟所走 的路程).下列说法错误的是( )
其中 P0 为青海湖水面大气压强,k 为常数且 k≠0.根据图中信息分析(结果保留一位小
数),下列结论正确的是( )
A.青海湖水深 16.4m 处的压强为 188.6cmHg
第 2 页 共 17 页
B.青海湖水面大气压强为 76.0cmHg C.函数解析式 P=kh+P0 中自变量 h 的取值范围是 h≥0 D.P 与 h 的函数解析式为 P=9.8×105h+76 9.如图,在同一平面直角坐标系中,一次函数 y=k1x+b1 与 y=k2x+b2 的图象分别为直线 l1 和直线 l2,下列结论正确的是( )
A.若 x1x2>0,则 y1y3>0
B.若 x1x3<0,则 y1y2>0
函数:一次函数(题目版)
2021全国中考真题分类汇编(函数)----一次函数一、选择题1. (2021·安徽省)某品牌鞋子的长度y cm 与鞋子的“码”数x 之间满足一次函数关系.若22码鞋子的长度为16cm ,44码鞋子的长度为27cm ,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm2. (2021•甘肃省定西市)将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A .y =5x ﹣2B .y =5x +2C .y =5(x +2)D .y =5(x ﹣2)3. (2021•湖北省武汉市)一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变(单位:km )与慢车行驶时间t (单位:h )的函数关系如图, 两车先后两次相遇的间隔时间是( )A .hB .hC .hD .h4. (2021•长沙市)下列函数图象中,表示直线21y x =+的是( ) A. B. C. D.5. (2021•江苏省苏州市)已知点A (,m ),B (,n )在一次函数y =2x +1的图象上,则m 与n 的大小关系是( )A .m >nB .m =nC .m <nD .无法确定6. (2021•江苏省扬州)如图,一次函数2y x =+的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30交x 轴于点C ,则线段AC 长为( )A. 62+B. 32C. 23+D. 32+7. (2021•陕西省)在平面直角坐标系中,若将一次函数y =2x +m ﹣1的图象向左平移3个单位后,得到一个正比例函数的图象( )A .﹣5B .5C .﹣6D .68. (2021•上海市)已知函数y kx =经过二、四象限,且函数不经过(1,1)-,请写出一个符合条件的函数解析式_________.9. (2021•四川省乐山市)如图,已知直线1:24l y x =-+与坐标轴分别交于A 、B 两点,那么过原点O 且将AOB 的面积平分的直线2l 的解析式为( )A. 12y x =B. y x =C. 32y x =D. 2y x =10. (2021•重庆市A )甲无人机从地面起飞,乙无人机从距离地面20m 高的楼顶起飞,两架无人机同时匀速上升10s .甲、乙两架无人机所在的位置距离地面的高度y (单位:m )与无人机上升的时间x (单位:s )之间的关系如图所示.下列说法正确的是( )A. 5s 时,两架无人机都上升了40mB. 10s 时,两架无人机的高度差为20mC. 乙无人机上升的速度为8m /sD. 10s 时,甲无人机距离地面的高度是60m11. (2021•呼和浩特市)在平面直角坐标系中,点()3,0A ,()0,4B .以AB 为一边在第一象限作正方形ABCD ,则对角线BD 所在直线的解析式为( )AA .147y x =-+B .144y x =-+C .142y x =-+D .4y =12. (2021•贵州省贵阳市)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y =k n x +b n (n =1,2,3,4,5,6,7),其中k 1=k 2,b 3=b 4=b 5,则他探究这7条直线的交点个数最多是( )A .17个B .18个C .19个D .21个13. (2021•广西来宾市)一次函数21y x =+的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二.填空题1. (2021•四川省成都市)在正比例函数y =kx 中,y 的值随着x 值的增大而增大,则点P (3,k )在第 象限.2.(2021•四川省眉山市)一次函数y =(2a +3)x +2的值随x 值的增大而减少,则常数a的取值范围是 .3. (2021•四川省自贡市)当自变量13x -≤≤时,函数y x k =-(k 为常数)的最小值为3k +,则满足条件的k 的值为_________.4. (2021•天津市)将直线6y x =-向下平移2个单位长度,平移后直线的解析式为_____.5. (2021•湖北省黄石市)将直线1y x =-+向左平移m (0m >)个单位后,经过点(1,−3),则m 的值为______.三、解答题1. (2021•甘肃省定西市)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y (m )与他所用的时间x (min )的函数关系如图2所示.(1)小刚家与学校的距离为 m ,小刚骑自行车的速度为 m /min ;(2)求小刚从图书馆返回家的过程中,y 与x 的函数表达式;(3)小刚出发35分钟时,他离家有多远?2. (2021•江苏省南京市)甲、乙两人沿同一直道从A 地去B 地,甲比乙早1min 出发,乙的速度是甲的2倍.在整个行程中,甲离A 地的距离1y (单位:m )与时间x (单位:min )之间的函数关系如图所示.(1)在图中画出乙离A地的距离2y(单位:m)与时间x之间的函数图;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.3. (2021•陕西省))在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.4.(2021•浙江省绍兴市)Ⅰ号无人机从海拔10m处出发,以10m/min的速度匀速上升,Ⅱ号无人机从海拔30m处同时出发(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m)(m)与时间x(min)的关系如图.两架无人机都上升了15min.(1)求b的值及Ⅱ号无人机海拔高度y(m)与时间x(min)的关系式;(2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.5.(2021•北京市)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.6.(2021•呼和浩特市)下面图片是七年级教科书中“实际问题与一元一次方程”的探究3.探究3电话计费问题月使用费/元主叫限定时间/min主叫超时费/(元/min)被叫方式一58 150 0.25 免费方式二88 350 019 免费月使用费固定收:主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费。
一次函数-三年中考数学真题分项汇编(原卷版)
一次函数一、单选题1.(2020年浙江舟山)一次函数21y x =-的图象大致是( )A .B .C .D .2.(2022年浙江绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >3.(2020年浙江杭州)在平面直角坐标系中,已知函数y =ax +a (a ≠0)的图象过点P (1,2),则该函数的图象可能是( )A .B .C .D .4.(2022年浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A .B .C .D .5.(浙江衢州2021年)已知A ,B 两地相距60km ,甲、乙两人沿同一条公路从A 地出发到B 地,甲骑自行车匀速行驶3h 到达,乙骑摩托车.比甲迟1h 出发,行至30km 处追上甲,停留半小时后继续以原速行驶.他们离开A 地的路程y 与甲行驶时间x 的函数图象如图所示.当乙再次追上甲时距离B 地( )A .15kmB .16kmC .44kmD .45km6.(浙江嘉兴2021年)已知点(),P a b 在直线34y x =--上,且250a b -≤,则下列不等式一定成立的是( ) A .52a b ≤ B .52a b ≥ C .25b a ≥ D .25b a ≤ 7.(2022·浙江金华)如图是城某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超B .医院C .体育场D .学校8.(2020年浙江湖州)已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y 2+2C .y =4x +2D .y 23x +2 9.(2022年浙江舟山)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .110.(2020年浙江台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( )A .B .C .D .11.(2022·浙江台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A .B .C .D .12.(2022年浙江杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在13M ⎛⎫ ⎪ ⎪⎝⎭,()23,1M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M二、填空题 13.(2020年浙江金华、丽水)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可)______. 14.(2022年浙江杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________. 15.(2022年浙江丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(3,3),则A 点的坐标是___________.16.(浙江宁波2021年中考数学试卷)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y,我们把点11,Bx y⎛⎫⎪⎝⎭称为点A的“倒数点”.如图,矩形OCDE的顶点C为()3,0,顶点E在y轴上,函数()2=>y xx的图象与DE交于点A.若点B是点A的“倒数点”,且点B在矩形OCDE的一边上,则OBC的面积为_________.三、解答题(共0分)17.(浙江嘉兴2021年)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”(m/s)与路程()mx之间的观测数据(1)y是关于x的函数吗?为什么?(2)“加速期”结束时,小斌的速度为多少?(3)根据如图提供的信息,给小斌提一条训练建议.18.(2022年浙江丽水)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?19.(浙江丽水2021年)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计.当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?20.(2022年浙江湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.21.(浙江台州2021年)电子体重科读数直观又便于携带,为人们带来了方便.某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1,R1与踏板上人的质量m之间的函数关系式为R1=km+b(其中k,b为常数,0≤m≤120),其图象如图1所示;图2的电路中,电源电压恒为8伏,定值电阻R0的阻值为30欧,接通开关,人站上踏板,电压表显示的读数为U0 ,该读数可以换算为人的质量m,温馨提示:①导体两端的电压U,导体的电阻R,通过导体的电流I,满足关系式I=UR;①串联电路中电流处处相等,各电阻两端的电压之和等于总电压.(1)求k,b的值;(2)求R1关于U0的函数解析式;(3)用含U0的代数式表示m;(4)若电压表量程为0~6伏,为保护电压表,请确定该电子体重秤可称的最大质量.22.(浙江衢州2020年)2020年5月16日,“钱塘江诗路”航道全线开通,一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?23.(浙江绍兴2021年)I 号无人机从海拔10m 处出发,以10m/min 的速度匀速上升,II 号无人机从海拔30m 处同时出发,以a (m/min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min .(1)求b 的值及II 号无人机海拔高度y (m )与时间x (min )的关系式.(2)问无人机上升了多少时间,I 号无人机比II 号无人机高28米.24.(2022年浙江绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y1 1.52 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x =(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .25.(浙江杭州2021年)在直角坐标系中,设函数11k y x =(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.①当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.26.(浙江宁波2021年)某通讯公司就手机流量套餐推出三种方案,如下表:A方案B方案C方案每月基本费用(元)2056266每月免费使用流量(兆)1024m无限超出后每兆收费(元)n nA,B,C三种方案每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系如图所示.(1)请直接写出m,n的值.(2)在A方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y(元)与每月使用的流量x(兆)之间的函数关系式.(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C方案最划算?27.(浙江温州2021年)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成分每千克含铁42毫克配料表原料每千克含铁甲食材50毫克乙食材10毫克规格每包食材含量每包单价A包装1千克45元B包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?①已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?28.(2020年浙江宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?29.(2020年浙江绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?30.(浙江衢州2020年)如图1,在平面直角坐标系中,①ABC的顶点A,C分别是直线y=﹣83x+4与坐标轴的交点,点B的坐标为(﹣2,0),点D是边AC上的一点,DE①BC于点E,点F在边AB上,且D,F 两点关于y轴上的某点成中心对称,连结DF,EF.设点D的横坐标为m,EF2为l,请探究:①线段EF长度是否有最小值.①①BEF能否成为直角三角形.小明尝试用“观察﹣猜想﹣验证﹣应用”的方法进行探究,请你一起来解决问题.(1)小明利用“几何画板”软件进行观察,测量,得到l随m变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图2).请你在图2中连线,观察图象特征并猜想l与m可能满足的函数类别.(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出l关于m的函数表达式及自变量的取值范围,并求出线段EF长度的最小值.(3)小明通过观察,推理,发现①BEF能成为直角三角形,请你求出当①BEF为直角三角形时m的值.31.(浙江金华2021年)在平面直角坐标系中,点A 的坐标为(73,0),点B 在直线8:3l y x =上,过点B作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C . (1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA BO =,求证:CD CO =.①若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.32.(2020年浙江温州)某经销商3月份用18000元购进一批T 恤衫售完后,4月份用39000元购进单批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元. (1)4月份进了这批T 恤衫多少件?(2)4月份,经销商将这批T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a 件,然后将b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同. ①用含a 的代数式表示b ;①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.33.(2020年浙江金华、丽水)某地区山峰的高度每增加1百米,气温大约降低0.6①.气温T(①)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温.(2)求T关于h的函数表达式.(3)测得山顶的气温为6①,求该山峰的高度.34.(2022年浙江舟山)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象. ①观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少? (2)数学思考:请结合函数图象,写出该函数的两条性质或结论. (3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?35.(浙江衢州2021年)如图1,点C 是半圆O 的直径AB 上一动点(不包括端点),6cm AB =,过点C 作CD AB ⊥交半圆于点D ,连结AD ,过点C 作//CE AD 交半圆于点E ,连结EB .牛牛想探究在点C 运动过程中EC 与EB 的大小关系.他根据学习函数的经验,记cm AC x =,1cm EC y =,2cm EB y =.请你一起参与探究函数1y 、2y 随自变量x 变化的规律.通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象. x ... 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60 (1)y ... 2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38 (2)y … 5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10 …(1)当3x =时,1y = .(2)在图2中画出函数2y 的图象,并结合图象判断函数值1y 与2y 的大小关系.(3)由(2)知“AC 取某值时,有EC EB =”.如图3,牛牛连结了OE ,尝试通过计算EC ,EB 的长来验证这一结论,请你完成计算过程.。
中考数学试题分类汇编(一次函数)
中考数学试题分类汇编(一次函数)一、选择题1、(2007福建福州)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )AA .1a >B .1a <C .0a >D .0a <2、(2007上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b < 3、(2007陕西)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+ C .2y x =-D .2y x =--4、(2007浙江湖州)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。
CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2)(C)x l =1,x 2=-2 (D)x l =2,x 2=-1 6、(2007四川乐山)已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<< C.2y <- D.4y <-7、(2007浙江金华)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、(2007福建晋江)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。
x 2-2、(2007广西南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降, 即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、(2007湖北孝感)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <2三、解答题1、(2007甘肃白银等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;x (元) 15 20 25 … y (件)252015…xyO3 2y x a =+1y kx b =+第7题(第3题图)图1 Oxy图(6)0 2 -4 x yOxy A B1- y x =-2图2(2)求销售价定为30元时,每日的销售利润. 解:(1)设此一次函数解析式为.y kx b =+则1525,2020.k b k b +=⎧⎨+=⎩解得k =-1,b =40.即一次函数解析式为40y x =-+.(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元2、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题: (1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?解:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩ ,解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+. (2)当4711x =+=时, 1.511 4.521y =⨯+=. 即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .4、(2007浙江温州)为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B 公司每月1600元基本工资,另加销售额的4%作为奖金。
专题四函数与一次函数(共27题)-中考数学真题分项汇编 (江苏专用)(原卷版)
2022年中考数学真题分项汇编(江苏专用)专题04函数与一次函数一.选择题(共8小题)1.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2022•常州)某城市市区人口x万人,市区绿地面积50万平方米,平均每人拥有绿地y平方米,则y 与x之间的函数表达式为()A.y=x+50B.y=50x C.y=D.y=3.(2022•连云港)函数y=中自变量x的取值范围是()A.x≥1B.x≥0C.x≤0D.x≤14.(2022•无锡)函数y=中自变量x的取值范围是()A.x>4B.x<4C.x≥4D.x≤45.(2022•南通)根据图象,可得关于x的不等式kx>﹣x+3的解集是()A.x<2B.x>2C.x<1D.x>16.(2022•无锡)一次函数y=mx+n的图象与反比例函数y=的图象交于点A、B,其中点A、B的坐标为A(﹣,﹣2m)、B(m,1),则△OAB的面积是()A.3B.C.D.7.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.48.(2022•扬州)某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁二.填空题(共10小题)9.(2022•无锡)请写出一个函数的表达式,使其图象分别与x轴的负半轴、y轴的正半轴相交:.10.(2022•泰州)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值范围是.11.(2022•盐城)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=x+1与y 轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n﹣1A n﹣1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为.12.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图象经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.13.(2022•苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为.14.(2022•扬州)如图,函数y=kx+b(k<0)的图象经过点P,则关于x的不等式kx+b>3的解集为.15.(2022•淮安)在平面直角坐标系中,将点A(2,3)向下平移5个单位长度得到点B,若点B恰好在反比例函数y=的图象上,则k的值是.16.(2022•镇江)反比例函数y=(k≠0)的图象经过A(x1,y1)、B(x2,y2)两点,当x1<0<x2时,y1>y2,写出符合条件的k的值(答案不唯一,写出一个即可).17.(2022•南通)平面直角坐标系xOy中,已知点A(m,6m),B(3m,2n),C(﹣3m,﹣2n)是函数y =(k≠0)图象上的三点.若S△ABC=2,则k的值为.18.(2022•盐城)已知反比例函数的图象经过点(2,3),则该函数表达式为.三.解答题(共9小题)19.(2022•盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发.两人离甲地的距离y(m)与出发时间x(min)之间的函数关系如图所示.(1)小丽步行的速度为m/min;(2)当两人相遇时,求他们到甲地的距离.20.(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B 表示的实际意义;(2)分别求甲、乙两种苹果销售额y (单位:元)与销售量x (单位:kg )之间的函数解析式,并写出x 的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg 时,它们的利润和为1500元,求a 的值.21.(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x ﹣1的“组合函数”,并说明理由;(2)设函数y 1=x ﹣p ﹣2与y 2=﹣x +3p 的图象相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图象的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图象经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.22.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次 甲种水果质量(单位:千克)乙种水果质量 (单位:千克) 总费用 (单位:元) 第一次60 40 1520 第二次 30 50 1360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m 千克甲种水果和3m 千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m 的最大值.23.(2022•徐州)如图,一次函数y =kx +b (k >0)的图象与反比例函数y =(x >0)的图象交于点A ,与x 轴交于点B ,与y 轴交于点C ,AD ⊥x 轴于点D ,CB =CD ,点C 关于直线AD的对称点为点E .(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.24.(2022•镇江)如图,一次函数y=2x+b与反比例函数y=(k≠0)的图象交于点A(1,4),与y轴交于点B.(1)k=,b=;(2)连接并延长AO,与反比例函数y=(k≠0)的图象交于点C,点D在y轴上,若以O、C、D为顶点的三角形与△AOB相似,求点D的坐标.25.(2022•常州)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图象分别与x轴、y轴交于点A、B,与反比例函数y=(x>0)的图象交于点C,连接OC.已知点B(0,4),△BOC的面积是2.(1)求b、k的值;(2)求△AOC的面积.26.(2022•苏州)如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=(m≠0,x>0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(﹣4,0).(1)求k与m的值;(2)P(a,0)为x轴上的一动点,当△APB的面积为时,求a的值.27.(2022•连云港)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.。
中考数学高频考点《一次函数》专项测试卷-附答案
中考数学高频考点《一次函数》专项测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.(10分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.2.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A 种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.3.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)4.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.6.(9分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?7.(9分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.按买3个A种魔方和买4个B种魔方钱数相同解答8.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(9分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.10.(9分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.11.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.12.(9分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?13.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?参考答案1.【答案】解:(1)选择活动一更合算.理由如下:选择活动一需付款:450×0.8=360(元)选择活动二需付款:450﹣80=370(元)∵360<370∴选择活动一更合算;(2)设一件这种健身器材的原价为x元当0<x<300时,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;当300≤x<500时,由题意,得∴0.8x=x﹣80解得x=400答:一件这种健身器材的原价是400元;当300≤a<600时,a﹣80<0.8a解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a解得a<800;∴600≤a<800;综上所述,300≤a<400或600≤a<800.2.【答案】解:(1)设菜苗基地每捆A种菜苗的价格是x元根据题意得:=+3解得x=20经检验,x=20是原方程的解,且符合题意.答:菜苗基地每捆A种菜苗的价格是20元;设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆∵A种菜苗的捆数不超过B种菜苗的捆数∴m≤100﹣m解得m≤50设本次购买花费w元∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700∵﹣9<0∴w随m的增大而减小∴m=50时,w取最小值w最小=-9×50+2700=2250(元)答:本次购买最少花费2250元.3.【答案】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个由题意,得40x+30(30﹣x)=1100解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a)解得a≤10由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵k=1>0∴y随a的增大而增大.∴当a=10时,y最大=460元.∴此时B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%第二次的利润率=×100%=46%∵46%>42.7%∴对于小李来说第二次的进货方案更合算.4.【答案】解:(1)∵y1=k1x+b的图象过点(0,30)与(10,180)∴,解得k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元(2)b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(3)由题意可得,打折前的每次健身费用为15÷0.6=25(元)则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时选择方案一所需费用:y1=15×8+30=150(元)选择方案二所需费用:y2=20×8=160(元)∵150<160∴选择方案一所需费用更少.5.【答案】解:(1)设A的单价为x元,B的单价为y元根据题意,得,解得答:A的单价30元,B的单价15元;(2)设购买A奖品m个,则购买B奖品为(30﹣m)个,购买奖品的花费为W元由题意可知,m≥(30﹣m)∴m≥,且m为正整数.∴W=30m+15(30﹣m)=15m+450∵15>0∴当m=8时,W有最小值答:购买A奖品8个,购买B奖品22个,花费最少.6.【答案】解:(1)设y关于x的函数解析式为y=kx+b,得即y关于x的函数解析式是y=﹣5x+600当x=115时,y=﹣5×115+600=25即m的值是25;(2)设成本为a元/个当x=85时,875=175×(85﹣a),得a=80w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000∴当x=100时,w取得最大值,此时w=2000(3)设科技创新后成本为b元当x=90时,(﹣5×90+600)(90﹣b)≥3750解得b≤65答:该产品的成本单价应不超过65元.7.【答案】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:活动一w=20m×0.8+15(100﹣m)×0.4=10m+600;活动二w=20m+15(100﹣m﹣m)=-10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500解得:45<m≤50.综上所述:当0<m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300解得:m<50;当w活动一=w活动二时,有15.6m+520=1300解得:m=50;当w活动一>w活动二时,有15.6m+520>1300不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.8.【答案】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元根据题意,得:,解得:答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元由题意m≤3(50-m)解得:m≤37.5,且m为正整数根据题意,得:W=5m+7(50-m)=-2m+350∵﹣2<0∴W随m的增大而减小∴当m=37时,W最小=﹣2×37+350=276此时50﹣37=13答:当购买A型灯37只,B型灯13只时,最省钱.9.【答案】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x解得:x=15,则y=300∴B(15,300)当y=10x+150,x=0时,y=150∴A(0,150)当y=10x+150=600解得:x=45,则y=600∴C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.10.【答案】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=-50x+15000②据题意得,100﹣x≤2x解得x≥33,且x为正整数.∵-50<0∴y随x的增大而减小∵x为正整数∴当x=34时,y取最大值,则100﹣x=66即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),=(m﹣50)x+15000(33≤x≤70且x为正整数)①当0<m<50时m﹣50<0,y随x的增大而减小∴当x=34时,y取最大值即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时m﹣50>0,y随x的增大而增大∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.11.【答案】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元根据题意得,,解得:答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:①当0≤x≤5时,y2=32x②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48综上所述:y1=24xy2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,即购买30个计算器时,两种品牌都一样;当y1>y2时,24x>22.4x+48,解得x>30,即购买超过30个计算器时,B品牌更合算;当y1<y2时,24x<22.4x+48,解得x<30,即购买不足30个且大于5个计算器时,A品牌更合算.12.【答案】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)---------------------------②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.13.解:(1)设选用A 种食品x 包,B 种食品y 包根据题意得:7009004600101570x y x y +=⎧⎨+=⎩解得:42x y =⎧⎨=⎩. 答:应选用A 种食品4包,B 种食品2包;(2)设选用A 种食品m 包,则选用B 种食品(7)m -包根据题意得:1015(7)90m m +-解得:3m .设每份午餐的总热量为w kJ ,则700900(7)w m m =+-即2006300w m =-+2000-<w ∴随m 的增大而减小∴当3m =时,w 取得最小值,此时7734m -=-=.答:应选用A 种食品3包,B 种食品4包.。
中考数学真题汇编一次函数含答案
中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D3.在平面直角坐标系中,过点(1,2)作直线l,若直线l及两坐标轴围成的三角形面积为4,则满意条件的直线l的条数是()。
A.5B.4C.3D.2【答案】C4.假如规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点动身沿方向运动至点停顿,动点以2厘米/秒的速度自点动身沿折线运动至点停顿若点同时动身运动了秒,记的面积为,下面图象中能表示及之间的函数关系的是( )A. B.C. D.【答案】D7.如图,直线都及直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A及点N重合为止,记点C平移的间隔为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D9.一次函数和反比例函数在同始终角坐标系中大致图像是()A.B.C.D.【答案】A10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点动身向轴正方向运动,同时,点从点动身向点运动,当点到达点时,点、同时停顿运动,若点及点的速度之比为,则下列说法正确的是( )A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不行能始终经过某肯定点【答案】B11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)及上网时间x(h)的函数关系如图所示,则下列推断错误的是()A. 每月上网时间缺乏25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【答案】D二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.【答案】13.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1及y2的大小关系为________.【答案】y1>y214.已知点是直线上一点,其横坐标为.若点及点关于轴对称,则点的坐标为________.【答案】(,)15.星期天,小明上午8:00从家里动身,骑车到图书馆去借书,再骑车回到家,他离家的间隔y(千米)刚好间t(分钟)的关系如图所示,则上午8:45小明离家的间隔是________千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学真题汇编-一次函数-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。
A.5B.4C.3D.24.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B. C. D.7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是( )10题 11题A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不可能始终经过某一定点11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.13.已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.14.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y (千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
16.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。
16题 17题 18题 19题17.如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.18.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm,现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过定点A的三条棱长分别是10cm,10cm,ycm(y<15),当铁块的顶部高出水面2cm时,x,y满足的关系式是________。
19.如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .20.如图,一次函数与的图象相交于点,则关于的不等式组的解集为________.20题 21题三、解答题21.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y(升)关于加满油后已行驶的路程x(千米)的函数图象。
(1)根据图像,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量。
(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程。
22.如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点. (1)求直线的解析式;(2)直线与交于点,将直线沿方向平移,平移到经过点的位置结束,求直线在平移过程中与轴交点的横坐标的取值范围.23.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价(单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元24.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为(为正整数).(1)根据题意,填写下表:游泳次数10 15 20 …方式一的总费用(元)150 175 ________ …________方式二的总费用(元)90 135 ________ …________(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当时,小明选择哪种付费方式更合算?并说明理由.25.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.中考数学真题汇编:一次函数一、选择题1.给出下列函数:①y=﹣3x+2;②y= ;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A. ①③B. ③④C. ②④D. ②③【答案】B2.把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B. C. D.【答案】D3.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。
A.5B.4C.3D.2【答案】C4.如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A. B.C. D.【答案】A5.如图,函数和( 是常数,且)在同一平面直角坐标系的图象可能是()A. B. C. D.【答案】B6.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.【答案】D7.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A8.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.【答案】D9.一次函数和反比例函数在同一直角坐标系中大致图像是()A. B. C. D.【答案】A10.如图,平面直角坐标系中,点的坐标为,轴,垂足为,点从原点出发向轴正方向运动,同时,点从点出发向点运动,当点到达点时,点、同时停止运动,若点与点的速度之比为,则下列说法正确的是( )A. 线段始终经过点B. 线段始终经过点C. 线段始终经过点D. 线段不可能始终经过某一定点【答案】B11.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A. 每月上网时间不足25 h时,选择A方式最省钱B. 每月上网费用为60元时,B方式可上网的时间比A方式多C. 每月上网时间为35h时,选择B方式最省钱D. 每月上网时间超过70h时,选择C方式最省钱【答案】D二、填空题12.将直线向上平移2个单位长度,平移后直线的解析式为________.【答案】13.已知点A(x1, y1)、B(x2, y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为________.【答案】y1>y214.已知点是直线上一点,其横坐标为.若点与点关于轴对称,则点的坐标为________.【答案】(,)15.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y (千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是________千米。
【答案】1.516.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是________。
【答案】60≤v≤8017.如图,直线与轴、轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】18.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为xcm,现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过定点A的三条棱长分别是10cm,10cm,ycm(y<15),当铁块的顶部高出水面2cm时,x,y满足的关系式是________。