第二节 自由基链式聚合反应

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节自由基链式聚合反应

一、链式聚合反应概述

⏹ 1. 引言

聚合反应:开环聚合,依条件不同可为逐步或为链式聚合反应。

此类聚合反应则是通过单体和反应活性中心之间的反应来进行,这些活性中心通常并不能由单体直接产生,而需要在聚合体系中加入某种化合物,该化合物在一定条件下生成聚合反应活性中心,再通过反应活性中心与单体加成生成新的反应活性中心,如此反复生成聚合物链。

其中加入的能产生聚合反应活性中心的化合物常称为引发剂。引发剂(或其一部分)在反应后成为所得聚合物分子的组成部分。应需要活性中心。反应中一旦形成单体活性中心,就能很快传递下去,瞬间形成高分子。平均每个大分子的生成时间很短(零点几秒到几秒)。

连锁聚合反应的特征:

聚合过程由链引发、链增长和链终止几步基元反应组成,各步反应速率和活化能差别很大。

反应体系中只存在单体、聚合物和微量引发剂。

进行连锁聚合反应的单体主要是烯类、二烯类化合物。

2.链式聚合反应的分类

根据活性中心不同,连锁聚合反应又分为:

自由基聚合:活性中心为自由基;

阳离子聚合:活性中心为阳离子;

阴离子聚合:活性中心为阴离子;

配位离子聚合:活性中心为配位离子

二、烯类单体的聚合反应性能

主要取决于双键上取代基的电子效应。

1.连锁聚合的单体

连锁聚合的单体包括单烯类、共轭二烯类、炔类、羰基和环状化合物。

不同单体对聚合机理的选择性:

受共价键断裂后的电子结构控制。

2.链式聚合反应的分类

(1) X为给(推)电子基团

H2C CH

X

增大电子云密度,易与阳离子活性种结合

带给电子基团的烯类单体易进行阳离子聚合,如X = -R ,-OR ,-SR ,-NR 2等。

(2) X 为吸电子基团

由于阴离子与自由基都是富电性的活性种,因此带吸电子基团的烯类单体易进行阴离子聚合与自由基,如X = -CN ,-COOR 等

分子中含有吸电子基团,如腈基、羰基(醛、酮、酸、酯)等,碳—碳双键上电子云密度降低,并使形成的阴离子活性种具有共轭稳定作用,因此有利于阴离子聚合进行。

(3) 具有共轭体系的烯类单体 p 电子云流动性大,易诱导极化,可随进攻试剂性质的不同而取不同的电子云流向,可进行多种机理的聚合反应。如苯乙烯、丁二烯等。

三种都可以,阴、阳、自由基

结论:

乙烯基单体对离子聚合有较强的选择性,但对自由基聚合的选择性很小,大部分烯类单体均可进

行自由基聚合。

三、自由基聚合的基元反应

烯类单体的自由基聚合反应一般由链引发、链增长、链终止等基元反应组成。此外,还可能伴有链转移反应。现将各基元反应及其主要特征分述如下。

1链引发反应

链引发反应是形成单体自由基活性种的反应。

引发剂、光能、热能、辐射能等均能使单体生成单体自由基。

链引发反应是形成单体自由基活性种的反应。用引发剂引发时,将由下列两步组成:

(1)引发剂I 分解,形成初级自由基R ∙;

(2)初级自由基与单体加成,形成单体自由基。

单体自由基形成以后,继续与其他单体加聚,而使链增长。

H 2C

R -H

比较上述两步反应,引发剂分解是吸热反应,活化能高,约105~150kJ/mo1,反应速率小,分解速率常数约10-4~10-6s-1。初级自由基与单体结合成单体自由基这一步是放热反应,活化能低,约20~34kJ/mo1,反应速率大,与后继的链增长反应相似。但链引发必须包括这一步,因为一些副反应可以使初级自由基不参与单体自由基的形成,也就无法继续链增长。

有些单体可以用热、光、辐射等能源来直接引发聚合。这方面的研究工作不少,苯乙烯热聚合已工业化;紫外光固化涂料也已大规模使用。

2链增长

在链引发阶段形成的单体自由基,仍具有活性,能打开第二个烯类分子的π键,形成新的自由基。新自由基活性并不衰减,继续和其他单体分子结合成单元更多的链自由基。这个过程称做链增长反应,实际上是加成反应。

为了书写方便,上述链自由基可以简写成,其中锯齿形代表由许多单元组成的碳链骨架,基团所带的独电子系处在碳原子上。

链增长反应有两个特征:一是放热反应,烯类单体聚合热约55~95kJ/mol;二是增长活化能低,约20~34KJ/mol,增长速率极高,在0.01~几秒钟内,就可以便聚合度达到数千,甚至上万。这样高的速率是难以控制的,单体自由基一经形成以后,立刻与其他单体分子加成,增长成活性链,而后终止成大分子。因此,聚合体系内往往由单体和聚合物两部分组成,不存在聚合度递增的一系列中间产物。

对于链增长反应,除了应注意速率问题以外,还须研究对大分子微观结构的影响。在链增长反应中,结构单元间的结合可能存在“头-尾”和“头-头”或“尾-尾”两种形式。经实验证明,主要以头-尾形式连接。这一结果可由电子效应和空间位阻效应得到解释。对一些取代基共轭效应和空间位阻都较小的单体聚合时头-头结构会稍高,如醋酸乙烯酯、偏二氟乙烯等。聚合温度升高时,头-头形式结构将增多。

由于自由基聚合的链增长活性中心—链自由基周围不存在定向因素,因此很难实现定向聚合,即单体与链自由基加成由sp2杂化转变为sp3杂化时,其取代基的空间构型没有选择性,是随机的,得到的常常是无规立构高分子,因此该种聚合物往往是无定型的。

3 链终止

自由基活性高,有相互作用而终止的倾向。终止反应有偶合终止和歧化终止两种方式。

两链自由基的独电子相互结合成共价键的终止反应称做偶合终止。偶合终止结果,大分子的聚合度为链自由基重复单元数的两倍。用引发剂引发并无链转移时,大分子两端均为引发剂残基。

相关文档
最新文档