高一数学《简单的线性规划问题(1)》(课件)
合集下载
高一数学《简单的线性规划问题》课件
x y 4 0 例2、已知变量x, y满足 x y 0 , x 1 y 求 的取值范围. x
y B A
C
x
y B A
C
x
方法小结
非线性目标函数的最值问题的求解 ① 分析目标函数的几何意义 ② 将目标函数化归成具有明显几何 意义的函数
考点讲解
三、含参变量线性规划问题的求解
y
B
A
C
x
方法小结
简单线性规划求解的步骤:
①画 ②作 ③移 ④求
画可行域 作线性目标函数 平移线性目标函数 求目标函数的最值
方法小结
简单线性规划求解需要注意的问题:
① 可行域是否包含边界 ② 目标函数最值与直线截距之间的关系 ③ 目标函数对应直线的斜率与边界线 斜率之间的关系
考点讲解
二、非线性目标函数的最值问题
小结提升
简单的线性规划问题求解的步骤:
画
作
移
求
简单的线性规划的作用:
二元函数的最值问题
简单的线性规划的基本思想:
数形结合
课后作业
作业手册:P263
x y 4 0 例3、已知变量x, y满足 x y 0 , x 1 z -kx y在点 1,3 取得最大值,求 k的取值范围.
考点讲解
四、线性规划的应用
例5、在平面直角坐标系xOy中,已知平 面区域A= ( x, y ) x y 0, 且x 2, y 0, 则平面区域B ( x, y) ( x y, x y) A 的面积为 ___________ .
简单的线性规划问题
考点分析
线性规划是优化的具体模型之一.考纲要 求 学生能够体会线性规划的基本思想,并能
3.3.3简单的线性规划问题(1)
我的记录空间:
3.3.3简单的线性规划问题(1)
一、学习目标
1.理解线性规划的基本思想;
2.掌握根据约束条件求目标函数的最值。
教学重点、难点:根据约束条件求目标函数的最值
二、课前自学
1. 在生活、生产中,经常会遇到资源利用、人力调配、生产安排的等问题,本节课就学习此方面的应用。
2.问题:在约束条件410432000
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
分析:(1)作出约束条件所表示的平面区域-----可行域
(2)分析目标函数2P x y =+的几何意义。
(3)求出目标函数2P x y =+的最大值-----线性规划问题
三、问题探究
例1.设,x y 满足约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩
(1)求当,x y 分别为多少时,目标函数2z x y =-取得最值,并求出最值;
(2)求22z x y =+的最大值。
我的记录空间: 归纳:求z ax by =+22(0)a b +≠的最值方法。
例2.已知变量,x y 满足约束条件1422
x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数
(0)z ax y a =+>仅在点(3,1)处取得最大值,求a 的取值范围;
变题:若目标函数(0)z ax y a =+>取得最大值的点有无数个,求a 的取值
范围;
四、反馈小结
反馈:必修五P83 练习1,2,3
小结:。
高中数学人教A版必修简单的线性规划问题PPT精品课件
普通高中课程标准实验教科书 (人民教育出版社)A版
必修5第三章《不等式》
3.3.2简单的线性规划问题
3.3.2简单的线性规划问题
学习目标: 1.理解线性规划有关概念(约束条件、目规划问题.
位于新疆克拉玛依市的中国石油公司为开 拓市场,深度开发原油,计划生产甲、乙两 种产品.这两种产品都需要两种石油原料, 生产甲产品1工时需要A种原料3kg,B种原料 1kg;生产乙产品1工时需要A种原料2kg,B种 原料2kg.现有A种原料1200kg,B种原料800kg. 生产甲产品每工时的利润是30元,生产乙产 品每工时的平均利润是40元.
z 302 402
最优解所对应 的点就是在可 行域内到直线 距离最大的点.
【问题】表示平面区域内任意一点P(x,y)到直 线30x+40y=0的距离d .
在线性约束条件下,求线性目标函数的最大值或 最小值的问题,称为线性规划问题.
数形 结合
与直线在y轴上的截 距的联系,平移直线.
与点到直线的距离 的联系,运动点.
设工厂生产优质套装x件,生产精品套装y件,
获得利润为Z,则Z = 2x + 3y,求Z的最大值.
x
0
(4
0
) 尝
…
试
1
解 答
…
1
3
4
4
y
Z=2x+3y
1
3
2
6
…
…
0
2
…
…
2
12
1
11
2
14
y 2 x z ,表 示 k 2 ,b z 的 直 线 .
33
33
(4 )
平 行 移 动 直 线 y2x. 3
必修5第三章《不等式》
3.3.2简单的线性规划问题
3.3.2简单的线性规划问题
学习目标: 1.理解线性规划有关概念(约束条件、目规划问题.
位于新疆克拉玛依市的中国石油公司为开 拓市场,深度开发原油,计划生产甲、乙两 种产品.这两种产品都需要两种石油原料, 生产甲产品1工时需要A种原料3kg,B种原料 1kg;生产乙产品1工时需要A种原料2kg,B种 原料2kg.现有A种原料1200kg,B种原料800kg. 生产甲产品每工时的利润是30元,生产乙产 品每工时的平均利润是40元.
z 302 402
最优解所对应 的点就是在可 行域内到直线 距离最大的点.
【问题】表示平面区域内任意一点P(x,y)到直 线30x+40y=0的距离d .
在线性约束条件下,求线性目标函数的最大值或 最小值的问题,称为线性规划问题.
数形 结合
与直线在y轴上的截 距的联系,平移直线.
与点到直线的距离 的联系,运动点.
设工厂生产优质套装x件,生产精品套装y件,
获得利润为Z,则Z = 2x + 3y,求Z的最大值.
x
0
(4
0
) 尝
…
试
1
解 答
…
1
3
4
4
y
Z=2x+3y
1
3
2
6
…
…
0
2
…
…
2
12
1
11
2
14
y 2 x z ,表 示 k 2 ,b z 的 直 线 .
33
33
(4 )
平 行 移 动 直 线 y2x. 3
简单的线性规划问题(第1课时)课件2
x+2y 8
x 2 y 8
4 4y x
16 12
x y
4 3
x 0
x
0
y 0
y 0
将上述不等式组表示成平面上的区域,图中的阴影部 分中的整点(坐标为整数)就代表所有可能的日生产安排。
若生产一件甲产品获利2万元,生产一件乙产品获 利3万元,采用那种生产安排利润最大?
0.06 0.06
174xx174
y y
6 6
x 0
x 0
y 0
y 0
目标函数为:z=28x+21y
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为 y 4 x z
它表示斜率为 4
3 28
3
随z变化的一组平行直
线系
6/7 y
z 28 是直线在y轴上 5/7 M
为它是关于变量x、y的一次解析式,又称线性目标函数。
在线性约束条件下求线性目标函数的最大值或最小值
问题,统称为线性规划问题。y
满足线性约可束行的域解 4 3
最优解
(x,y)叫做可行解。
由所有可可行行解解组成
的集合叫做可行域。
o
4
8x
使目标函数取得最大值或最小值的可行解叫
做这个问题的最优解。
三、例题
设工厂获得的利润为z,则z=2x+3y
把z=2x+3y变形为
y
y 2 x z
4
3
3
3
它表示斜率为
2 3
的
M
直线系,z与这条直线
的截距有关。
o
4
8x
如图可见,当直线经过可行域上的点M时,截距
最大,即z最大。
3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,
高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件
3.3.2 简单线性规划问题
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内
求
z 的最值 3
求
z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y
16, 12,
3
x
0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内
求
z 的最值 3
求
z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y
16, 12,
3
x
0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
0051数学课件:简单的线性规划
坐标即为最优整解.
2.调整优解法:即先求非整数条件下的最优解,
调整Z的值使不定方程Ax+By=Z存在最大(小) 的整点值,最后筛选出整点最优解.
巩固练习一
设每天应配制甲种饮料x杯,乙种饮料y杯,则
咖啡馆配制两种饮料.甲种饮料每杯含奶粉9g 、咖啡4g、糖 9 x 4 y 3600 4 x 5 y 2000 3g,乙种饮料每杯含奶粉4g 、咖啡5g、糖10g.已知每天原料 的使用限额为奶粉3600g ,咖啡2000g 糖3000g,如果甲种饮 3x 10 y 3000 料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料 x 0 的使用限额内饮料能全部售出,每天应配制两种饮料各多少 目标函数为:z =0.7x +1.2y y 0 杯能获利最大? 练习一.gsp 解:将已知数据列为下表:
直线x+y=12经过的整点是B(3,9)和C(4,8),它们是最优解. 答(略) 你能否猜测一下Z的最小值可能是多少?
3.最优解的几何意义是什么 (最优解可以转化为什么几何意义)?
结论2:
线性规划求最优整数解的一般方法:
1.平移找解法: 即先打网格,描出可行域内的
整点,平移直线,最先经过或最后经过的整点
9 x + 4 y = 3600 _
得点C的坐标为(200,240)
小结
答:每天配制甲种饮料200杯,乙种饮料240杯可获取最大利润.
巩固练习 二
某货运公司拟用集装箱托运甲.乙两种货物,一个大集装箱所装托 3 运货物的总体积不能超过24 m ,总重量不能超过1500kg,甲.乙 两种货物每袋的体积.重量和可获得的利润,列表如下:
原 料 奶粉(g) 咖啡(g) 糖(g) 利 润(元) 每配制1杯饮料消耗的原料 甲种饮料 x 乙种饮料 y 9 4 3 0.7 4 5 10 1.2 原 料限 额 3600 2000 3000
【湖南师大内部资料】高中数学精美可编辑课件:高一数学(简单的线性规划问题(1))
x+2y=8
2 3 x
经过对应的平面区域,并平行移动.
探究新知
6.从图形来看,当直线l运动到什么位 置时,它在y轴上的截距取最大值?
y
经过点M(4,2) M
O y=3 x x+2y=8
x=4
探究新知
7. 工厂应采用哪种生产安排才能使 利润最大?其最大利润为多少? y
y=3
M(4,2)
x
O x=4
课堂小结
2.对于直线l:z=Ax+By,若B>0, 则当直线l在y轴上的截距最大(小)时, z取最大(小)值;若B<0,则当直线l 在y轴上的截距最大(小)时,z取最小 (大)值.
布置作业
P91练习:1,2.
(4)作答。
典例讲评
例2
求z=2x+y的最大值.
ìy £ x ï ï ï ï ïx + y 已知x、y满足:í ï ï ï y ? 3x ï ï î
y 2x+y=0
2 6
y=x
M
最优解(3,3), 最大值9.
O
x
x+y=2
y=3x-6
课堂小结
1.在线性约束条件下求目标函数的最 大值或最小值,是一种数形结合的数 学思想,它将目标函数的最值问题转 化为动直线在y轴上的截距的最值问 题来解决.
探究新知
1.设每天分别生产甲、乙两种产品x、 y件,则该厂所有可能的日生产安排 应满足的基本条件是什么?
x 2y 8 4 x 16 4 y 12 x 0 y 0
x 2y 8 即 0 x 4 0 y 3
探究新知
采用哪种生产安排利润最大?
探究新知
4.将z=2x+3y看作是直线l 的方程, 那么z有什么几何意义? 直线l在y轴上的截距的三倍.
高中数学《简单的线性规划问题 》课件
11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升 解线性规划问题的关键是准确地作出可行域,正确理解 z 的几何意义,对一个封闭图形而言,最优解一般在可行域 的边界线交点处或边界线上取得.在解题中也可由此快速找 到最大值点或最小值点.
12
课前自主预习
课堂互动探究
随堂达标自测
27
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
x≥0,
【跟踪训练 3】 记不等式组x+3y≥4, 3x+y≤4
所表示的平
面区域为 D,若直线 y=a(x+1)与区域 D 有公共点,则 a 的 取值范围是___12_,__4_ _.
28
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
24
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
探究3 已知目标函数的最值求参数 例 3 已知变量 x,y 满足约束条件 1≤x+y≤4,-2≤x -y≤2.若目标函数 z=ax+y(其中 a>0)仅在点(3,1)处取得最 大值,则 a 的取值范围为__a_>_1____.
解析 由约束条件画出可行域(如图). 点 C 的坐标为(3,1),z 最大时,即平移 y=-ax 时,使 直线在 y 轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)(教材改编 P89 例 6)某公司招收男职员 x 名,女职员 y
5x-11y≥-22, 名,x 和 y 需满足约束条件22xx≤+131y≥,9,
简单的线性规划最新课件
几个结论:
1、线性目标函数的最大(小)值一般 在可行域的顶点处取得,也可能在边界 处取得。
2、求线性目标函数的最优解,要注意 分析线性目标函数所表示的几何意义 ——在y轴上的截距或其相反数。
简单的线性规划最新课件
在关数据列表如下:
A种原料 B种原料
甲种产品
4
12
乙种产品
1
9
现有库存 10
60
利润 2 1
x
-
5y
3
5x 3y 15
求z=3x+5y的最大值和最小值。
简单的线性规划最新课件
5x+3y=15 y
5
y=x+1
B(3/2,5/2)
1
O1
5
-1
A(-2,-1)
X-5y=3 x
Zma x1;7 Zmi简 n 单的 线1 性规划最1新课件
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共 点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。
x 4 y 3
设z=2x+y,求满足
3
x
5
y
25
最优解
x 1
任何一个满足
时,求z的最大值和最小值.
不等式组的 (x,y)
线性规 划问题
可行域 所有的 可行解
简单的线性规划最新课件
有关概念
由x,y 的不等式(或方程)组成的不等式组称为x, y 的约束条件。关于x,y 的一次不等式或方程组 成的不等式组称为x,y 的线性约束条件。欲达到
1,求由三直线x-y=0;x+2y-4=0及y+2=0 所围成的平面区域所表示的不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
域,如图中△ABC内部且包括边界,点(0,0)
不在这个三角形
y
x 1
区域内,当z=0 时,点(0,0)在直 线l0: 2x+y=0上.
4C
l0
2
B
O
2
x4y30
A
3x5y2 50
4 6x
示例
作一组和l0平行的直线l:2x+y=z,z∈R.
y
x 1
4C
l0
2
B
O
2
x4y30
A
3x5y2 50
4 6x
B
大值时,z的值最大. O 2
x4y30
A
3x5y2 50
4 6x
在经过不等式组(1)表示的三角形区域内的点且
平行于l的直线中,
以经过点A(5,2)的直线 l2 所对应的z最大, 以经过点B(1,1)的直线 l1 所对应的z最小.
所以,
y
x 1
zmax=2×5+2=12, zmin=2×1+1=3.
x y1
解:先作出可行域,见图中△ABC表示的 区域, 且求得 A(1,1)、 B(1,1)、 C(2,1).
22
y
O
1
B(1,1)
11 A( , )
22
1x
C(2, 1)
解:先作出可行域,见图中△ABC表示的
区域, 且求得 A(1,1)、 B(1,1)、 C(2,1).
22
作出直线l0:2x+y=0,再将直线平移,当l0
设生产甲产品x件,乙产品y件时,工厂获得的 利润为z,则z=2x+3y.上述问题就转化为:
当x、y满足不等式※并且为非负整数时,z的 最大值是多少?
基本概念
1.上述问题中,不等式组是一组对变量 x、y的
约束条件,这组约束条件都是关于x、y的一次
不等式,所以又叫线性约束条件.
x 2 y 8,
由于 z=2x+y又是x、y的一次解析式,所 以又叫线性目标函数.
基本概念
3.一般地,求线性目标函数在线性约束条件 下的最大值或最小值的问题,统称为线性 规划问题. 4.满足线性约束条件的解(x,y)叫做可行解. 5.由所有可行解组成的集合叫做可行域. 6.使目标函数取得最大值或最小值的可行 解,它们都叫做这个问题的最优解.
l1 4
C
l2
x4y30
2
B
O
2
A
3x5y2 50
4 6x
动手提高
[练习] 解下列线性规划问题:
求z=2x+y的最大值和最小值,使式中的x、
y满足约束条件
y x
x
y
1.
y 1
解:先作出可行域,见图中△ABC表示的 区域, 且求得
y x
x
y 1.
y 1
y
y x
OA
y 1 1
B
1x C
示例
作一组和l0平行的直线l:2x+y=z,z∈R.
y
x 1
4C
l0
2
B
O
2
x4y30
A
3x5y2 50
4 6x
示例
作一组和l0平行的直线l:2x+y=z,z∈R.
考虑z=2x+y,将它变形为y=-2x+z,
这是斜率为-2、
y
x 1
随z变化的一族平
行直线. z是直线
4C
在y轴上的截距, l0
2
所以当截距取最
平移到直线l1过B点时,可使
z=2x+y达到最小值,当l0 l0 y
平移到直线l2过C点时, 可使z=2x+y达到最大值.
l1
O
1
11 A( , )
22
1x
zmin=2×(1)+(1)=3, B(1,1) zmax=2×2+(1)=3.
C(2, 1)
l2
解线性规划问题的步骤:
第一步:根据约束条件画出可行域; 第二步:令z=0,画直线l0; 第三步、乙两种产品分别生产x、y件,由已知条件 可得二元一次不等式组:
x 2 y 8,
4 4
x y
16, 12,
(※)
x
0,
y 0 .
引入新课
1.某工厂用A、B两种配件生产甲、乙两种产品, 每生产一件甲产品使用4个A配件耗时1h,每生 产一件乙产品使用4个B配件耗时2h,该厂最多 可从配件厂获得16个A配件和12个B配件,按每 天工作8h计算,该厂所有的日生产安排是什么?
4 4
x y
16, 12,
(※)
y3
x
0,
y 0 .
8
x
x2y8
引入新课
(3)若生产一件甲产品获利2万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
设生产甲产品x件,乙产品y件时,工厂获得的 利润为z,则z=2x+3y.上述问题就转化为:
引入新课
(3)若生产一件甲产品获利2万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
4 4
x y
16, 12,
(※)
x
0,
y 0 .
基本概念
1.上述问题中,不等式组是一组对变量 x、y的 约束条件,这组约束条件都是关于x、y的一次 不等式,所以又叫线性约束条件.
线性约束条件除了用一次不等式表示外,有 时也用一次方程表示.
基本概念 2.欲求最大值或最小值的函数z=2x+3y叫 做目标函数.
示例
[例1] 设 z=2x+y,式中变量x、 y满足
下列条件:
x 4y 3, 3x 5y 25,
(1)
x 1,
求z的最大值和最小值.
示例
x 4 y 3, 3 x 5 y 25, x 1,
(1)
y
x 1
4C
x4y30
2
B
O
2
A
3x5y2 50
4 6x
示例
我们先画出不等式组(1)表示的平面区
小结
解线性规划问题的步骤: 第一步:根据约束条件画出可行域; 第二步:令z=0,画直线l0; 第三步:观察,分析,平移直线l0,
(1) 设甲、乙两种产品分别生产x、y件,由已 知条件可得二元一次不等式组: (2)将上述不等式组表示成平面上的区域,
图中的阴影部分中的整点(坐标为整数的点)
就代表所有可能的日生产安排,即当点P(x,y)在
上述平面区域中时,所安排的生产任务x,y才有
意义. y
4 2
O
2
x4
x 2 y 8,
简单的线性规划问题(1)
引入新课
1.某工厂用A、B两种配件生产甲、乙两种产品, 每生产一件甲产品使用4个A配件耗时1h,每生 产一件乙产品使用4个B配件耗时2h,该厂最多 可从配件厂获得16个A配件和12个B配件,按每 天工作8h计算,该厂所有的日生产安排是什么?
(1) 设甲、乙两种产品分别生产x、y件,由已 知条件可得二元一次不等式组:
从而找到最优解; 第四步:求出目标函数的最大值或最
小值.
示例
[例2] 求 z=x-y的取值范围,使式中变量x、 y满足约束条件:
x2y2 0
x
2
0
y 1 0
示例
[例3] 求 z=x-y的最大值和最小值,使式中 变量x、 y满足约束条件:
x 2 y 7 0,
4
x
3
y
12
0
,
x 2 y 3 0 .