第五章 摩擦(H)

合集下载

工程力学 第五章 摩擦详解

工程力学 第五章 摩擦详解
➢自锁条件
§5-3 考虑摩擦时的平衡问题
两种运动趋势与临界运动状态
滑动(slip) 推力大于摩擦力
翻 倒(tip over) 当力的作用点不合适时
两类摩擦平衡问题
第一类问题
F < F max,,物体处于静止状态,
已知主动力求约束力,与一般平衡问题 无异。 第二类问题
平衡问题—临界运动趋势 不平衡问题—滑动或翻倒
第五章 摩擦
工程中的摩擦问题
梯子的角度应该多大,才能保证人在攀爬 时不滑倒?这就是一个摩擦问题。
用克丝钳剪断钢丝,如果钳子的 角度太大的话,钢丝就会滑出去, 这也是一个摩擦问题。
挂扫把的简单装置,也是 利用摩擦。
攀崖时什么角度,用多大的力,踩在什么地 方,都是从摩擦力的角度来考虑的。
传递转动
(1)取木箱为研究对象,受力如图
X 0
Fs F cos 0
Y 0
FN P F sin 0
M A(F) 0
hF
cos
P
a 2
FN d
0


求解以方程,得
Fs 866 N FN 4500 N d 0.17m
木箱与地面间最大摩擦力
Fmax f s FN 1800 N
Fs Fmax 木箱不会滑动;又 d 0 木箱不会翻倒。 木箱保持平衡。
X 0 P sin 30 F cos30 Fs 0
Y 0 P cos30 F sin 30 FN 0 Fs 403 .6 N FN 1499 N 摩擦力方向与所设的相反
Fmax f s FN 299 .8 N
Fs Fmax 物块将向下滑动
Fd fFN 269 .8 N
例2 均质木箱重P=5KN ,其与地面间的静摩擦系 数fs=0.4 。图中h=2a=2m ,=30 。求:(1) 当D处的拉力F=1KN ,木箱是否平衡?(2)保持 木箱平衡的最大拉力。

第五章 摩擦(H)

第五章 摩擦(H)

Qmin
Qmax P tan( f )
Qmin P tan( f )
P tan( f ) Q P tan( f )
第五章 摩擦
例 题 9
用几何法求解例4
a极限
A
b d
f C f
解: 由图示几何关系得
B
F
O
a
d d (a极限 ) tan f (a极限 ) tan f b 2 2
已知:fs,b 。
A
B b
d
求:a为多大,推杆才不致被卡。
解:取推杆为研究对象
Fx 0, FNA FNB 0 Fy 0, FA FB F 0 d d M D ( F ) 0, Fa FNB b FB FA 0 2 2
考虑平衡的临界情况,可得补充方程
P
F12 Ff s1 , F 100 N
第五章 摩擦
Fmin 100N
(3)取书2为研究对象
F12 ′
2
Fy 0, F12 F23 P 0 F23 0 N
FN1 ′
P
F23 FN2
思考题
1
有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。
如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书
f
★ 如果作用于物块的全部主动力的合
力的作用线在摩擦角之内,则无论这 个力怎样大,物块必保持平衡。
FR
A

FRA
第五章 摩擦
f
FR
A
(2)非自锁现象
★ 如果作用于物块的全部主动力的合力 的作用线在摩擦角之外,则无论这个力怎 样小,物块一定会滑动。

初二物理人教版下册一至八章所有计算公式和知识点

初二物理人教版下册一至八章所有计算公式和知识点

初二物理人教版下册一至八章所有计算公式和知识点. 求计算公式的整
理.各条公式的原型及变形公式.
本文主要给出了初二物理人教版下册一至八章中的所有计算公式及知识点,文章也列出所有公式的原型及变形公式,以此作为整理的参考。

题记:初二物理下册计算公式及知识点整理。

第一章静力学:
1. 平衡定律:F₁+F₂=0 或m•g=F₁=F₂
2. 合力定律:F=F₁+F₂
3. 动力定律:结论F=m•a
第二章动量定理:
1. 初始动量定理:p=m•v
2. 终点动量定理:p=p₁+p₂
3. 等量动量定理:Δp=Δm•v
第三章动能定理:
1. 初始动能定理:K=m•v²/2
2. 终点动能定理:K=K₁+K₂
3. 等量动能定理:ΔK=Δm•(v²-u²)/2
第四章牛顿第二定律:
1. 途经力定律:F=m•a
2. 周期运动:T=2π•√m/F
第五章摩擦:
1. 垂直摩擦力:F₁⊥=μ•N
2. 水平摩擦力:F₂∥=μ•N
第六章势能:
1. 弹簧势能:U=1/2 kx²
2. 重力势能:U=m•g•h
第七章交互作用力:
1. 普通匀强直线电场:E=F/q,F=q•E
2. 普朗克定律:F=K•Q₁•Q₂/r²
第八章小结:
1. 动量守恒定律:p=p₁+p₂=p₃
2. 动能守恒定律:K=K₁+K₂=K₃
3. 电子动量定理:p₁+p₂=p₃+p₄
4. 电子动能定理:K₁+K₂=K₃+K₄。

第五章+等截面摩擦管流 气体动力学,流体力学,航空飞行原理

第五章+等截面摩擦管流              气体动力学,流体力学,航空飞行原理

第5.1节 摩擦对气体参数的影响
5.1.3 范诺线 给定总焓和密流下的 1节 摩擦对气体参数的影响
由图看出: 当Ma<1时,dh与ds异号,在h-s图上斜率为 负值 当Ma>1时,dh与ds同号,斜率为正值 Ma=1时,熵最大 单纯的摩擦作用不能使亚音速气流变为超音速 气流 单纯的摩擦作用也不能使超音速气流变为亚音 速气流
第5.2节 摩擦壅塞
当Lc>Lb >La时,随管道的增加,正激波位置向上游 移动,当管长增加到Lc时,正激波位置刚好出现在 摩擦管进口上 使正激波恰好在进口时的管长Lc:
• • • • 由面积比公式求拉瓦尔喷管出口处的气流马赫数Mae 利用正激波表求激波后速度系数λ1 求与进口速度系数λ1对应的最大管长Lmax 当L>Lmax时,激波向拉瓦尔喷管扩张段移动。继续增 加,则正激波移到喉部而消失。此时只有喉部和出口界 面上出现音速,其余均为亚音速
作业
4, 空气在直径为0.1米的绝热管内流动,质量流量为 0.1Kg/s,总温为295K,管道平均摩擦系数为0.002, 管道进口处气流的静压为0.014MPa,求: (1)计算进口处的马赫数、速度和总压。 (2)计算无激波时对应的最大管长和相应的出口静压 (3)在(2)中计算的长度下,为了在进口处形成一道 正激波,在出口截面处的静压必须为多大?
气体动力学
发动机教研室 曲春刚
第五章 等截面摩擦管流
假设: 流动是一维定常的 气体流动过程中与外界没有机械功的交换 管道是等截面的 气体为定比热的完全气体 管道短,流速大时为一维定常绝热摩擦管流 管道长,流速慢时为一维定常等温摩擦管流
第五章 等截面摩擦管流
第5.1节 摩擦对气体参数的影响
5.1.1 基本方程 连续方程、动量方程、能量方程、状态方 程、马赫数方程、总压方程、熵方程、冲 量方程

理论力学第五章 摩擦(Y)

理论力学第五章 摩擦(Y)

0 Fs Fs,max
——平衡
0 f
f Fs Fs ,max ——临界平衡状态 摩擦角 f —— 物体处于临界平衡状态时全反力与
法线之间的夹角。
tan f
Fs ,max FN
f s FN fs FN
摩擦角的正切等于静滑动摩擦系数——几何意义。
当物体平衡时(包括平衡的临界状态)全约束反力 的作用线一定在摩擦角之内
摩擦轮传动——将左边轴的转动传给右边的轴
摩擦的分类:
摩擦


滑动摩擦
滚动摩擦

静滑动摩擦 ——仅有相对运动趋势 动滑动摩擦 ——已有相对运动 静滚动摩擦 动滚动摩擦
干摩擦 ——由于接触表面之间没有液体时产生的摩擦。 湿摩擦 ——由于物体接触面之间有液体。
摩擦
一、滑动摩擦
研究滑动摩擦规律的实验:
MB 0
l sin 30 0 M P cos 30 0 FND l cos 30 0 0 FSD 2
3 P 3l
(1 FSD
FSD f s FND
3 2 3 M M min Pl 8
(1)当M较大时,BD杆逆时针转动。 分别以OA、 BD杆为研究对象, 画受力图。 l 0 FND l cos 30 P 0 对于OA杆: M O 0 2
Y 0
Fs,max f s FN
(库仑摩擦定律)
(2)最大静摩擦力的方向:沿接触处的公切线,与相对 滑动趋势反向;
Fs,max f s FN f s ——静滑动摩擦系数——静摩擦系数
与两接触物体表面情况(粗糙度,干湿度,温度等) 和材料有关,与两物体接触面的面积无关。

摩擦学第五章磨损ppt课件

摩擦学第五章磨损ppt课件
5、其他。包括侵蚀磨损或冲蚀磨损 (Erosive wear) 和微动磨损 (Fretting wear)等。
实际的磨损现象大都是多种类型磨损同时存在;或磨损状态随工 况条件的变化而转化。
摩擦学第五章磨损
9
第二节 粘着磨损
一、定义及其过程
1、定义:
(1) 在摩擦副中,相对运动的摩擦表面之间,由于粘着现象产生材料转移
此外,磨损率与滑动速度无关。
摩擦学第五章磨损
22
金属的粘着磨损的磨损系数
润滑状况 相同 无润滑 15X10-4
金属/金属
相容
部分相容和 部分不相容
不相容
金属/ 非金属
5X10-4
1X10-4 0.15X10-4 1.7X10-6
润滑不良 30X10-5 10X10-5
润滑良好 润滑极好
30X10-6 10X10-7
假定磨屑半径 ,产生磨屑的概率 ,则滑动 距离磨损体积:
摩擦学第五章磨损
21
分析
粘着磨损的体积磨损率与法向载荷N (或正压力p)成正比,而与软金属材 料的屈服强度(或布氏硬度HB值)成反比。
当正压力
时,会使磨损加剧,产生胶合或咬死。
因此,在设计时应保证正压力不超过材料的布氏硬度的三分之一。
体积磨损率随着粘着磨损的磨损系数的增大而增大,而后者主要取决于摩 擦表面的润滑状况和两滑动金属相互牢固地粘着的趋向。
相溶性好的材料 材料塑性越高,粘着磨损越严重
脆性材料的抗粘着能力比塑性材料高 脆性材料:正应力引起,最大正应力在表面,损伤浅, 磨屑也易脱落,不堆积在表面。 塑性材料:剪应力引起,最大剪应力离表面某一深度, 损伤深。
摩擦学第五章磨损
25
三、防止和减轻粘着磨损的措施

第五章 工程力学摩擦li

第五章 工程力学摩擦li

F1max
sin f s cos P cos f s sin
PAG 15
Northeastern University
§4-3
考虑摩擦时物体的平衡问题
y
(二)下滑 (1)取物体为研究对象
(2) 受力分析
(3) 建坐标系,列平衡方程
' 0 Fx 0, F1 cos P sin Fmax
PAG 21
③ M max与滚子半径无关;
Northeastern University
§4-4
滚动摩阻的概念
4.滚动摩擦系数 的说明 ①有长度量纲,单位一般用mm,cm; ②与滚子和支承面的材料的硬度和温度有关; ③ 的物理意义见图示。
根据力线平移定理
R
' N
P F
A
R
Fs A
§4-1 2、状态
P
Fs
FN
滑动 摩擦实验
滑动摩擦 ①静止: (静摩擦力)
FT
Fs FT (FT Fs 不固定值)
②临界:(将滑未滑)(最大静摩擦力)
力 静摩擦因数
Fx 0, FT FS 0 FS FT
法线间夹角的最大值
tan f Fmax f s FN fs FN FN
Fmax Fs
摩擦角的正切=静摩擦系数
PAG 9
Northeastern University
§4-2
摩擦角和自锁现象
二、自锁现象
①如果作用于物体的主动力合力的作用线在摩擦 锥内,则不论这个力多大,物体总能平衡。
PAG 17
Northeastern University

第五章-减摩、耐磨及摩阻材料课件

第五章-减摩、耐磨及摩阻材料课件

自润滑性能与环境条件密切相关,在潮湿大气中, 能吸附空气中的水蒸汽, 降低摩擦系数,在干燥 条件下,减磨性能较差, 不适宜用作真空或干燥 条件下工作的减摩材料。
导电、导热和热稳定性很好,用作高温润滑剂及 电接触材料。
PPT 课件
24
b.二硫化钼:
层状结构的六方晶体, 晶体内两层硫原子中间夹 一层钼原子, 层内原子以共价键结合,层层间以范 德华键结合,易发生层间滑动。
硫原子与金属表面的粘着结合力相当强,能形 成一层牢固的润滑薄膜, 承载能力大于石墨。
在潮湿环境中表面化学活性易发生变化,在晶 体表面形成无定形硫,同时在晶体活性棱面上形成 氢键,阻碍晶体发生滑动,增加摩擦系数。因此, 二硫化钼在干燥条件下,具有优良的减摩性。
PPT课件
25
四、摩阻材料
1、定义:
摩阻材料又称制动材料或刹车材料, 是用于各种运输工具及各种机器设备 的制动器、离合器和摩擦传动装置上, 摩阻材料的性能直接关系到部件的工 作能力和可靠性。
(4)足够的强度;
(5)导热性好、热膨胀系数小、抗腐蚀好,与油膜 的吸附能力强。
PPT课件
15
2、常用的金属减摩材料
(1) 巴氏合金:
巴氏合金是最早应用于滑动轴承上的减摩材料, 它是以锡或铅为基体的软合金,因主要用于轴瓦, 也 称轴承合金。按组成的主要元素分,有锡基和铅基两 类。
a.锡基轴承合金: 锡基合金的硬度较低(HB13-32),熔点也较低(240
在耐磨粒磨损方面使用的低合金钢有中碳铬 锰硅钢和高碳铬锰硅钢,其化学成分一般为
Cr 1-3%, Mn 1%, Si 1-3%。
PPT课件
11
(3) 石墨钢 石墨钢综合了钢和铸铁的优点, 既有良好的耐

理论力学 第五章 桁架和摩擦

理论力学  第五章 桁架和摩擦

理想桁架 工程实际中计算桁架受力情况时,常 作如下简化: (1) 构成桁架的杆件都是直杆; (2) 杆件两端都用光滑铰链连接; (3) 所有外力(主动力及支座反力) 都作用在节点上; (4) 杆件自重略去不计。
这种桁架称为理想桁架。
平面桁架各杆内力
1.节点法 2.截面法
汇交力系 平面一般力系
已知平面桁架尺寸、载荷。求:各杆内力。
3 因 0 Fs Fmax ,问题的解有时在一个范围内.
考虑摩擦的平衡问题
(1)判断物体是否平衡,并求滑动摩擦力。
先假设物体处于平衡,根据平衡方程求出物体平衡时需 要的摩擦力以及相应接触面间的正压力。再根据摩擦定 律求出相应于正压力的最大静摩擦力并与之比较。若满
足F≤Fmax这一关系,说明物体接触面能提供足够的摩擦
当仅有滑动趋势时,产生的摩擦力,称为静滑动摩擦力
静滑动摩擦力性质
1)静滑动摩擦力FS 的方向与滑动趋势相反,大小由平衡
条件确定;
0≤FS ≤Fmax (物体平衡范围)
2)只有当物体处于将动未动的平衡临界状态时,静滑动摩
擦力FS 达到最大值,即 FS =Fmax=f FN
f — 静滑动摩擦系数;
FN— 法向反力(一般也由平衡条件决定)。
摩擦角和自锁现象
1 摩擦角
FRA ---全约束力
物体处于临界平衡状态时,全约束 力和法线间的夹角---摩擦角
tan f
Fmax FN

fs FN FN
fs
全约束力和法线间的夹角的正切等于静 滑动摩擦系数.
摩擦锥
0 f
2 自锁现象
摩擦自锁的实例
1.粗糙斜面。当 a<m时,
不论W多大,物块A均保持 平衡--摩擦自锁。

第五章 减摩、耐磨及摩阻材料

第五章 减摩、耐磨及摩阻材料

b. 体积磨损率 V :单位滑动距离摩擦表面体积的减少 体积磨损率K 磨损体积V表示磨损率, 表示磨损率 量。用磨损体积 表示磨损率,即:
;单位为m2 单位为
c. 重量磨损率 G :单位滑动距离上,每单位面积摩擦 重量磨损率K 单位滑动距离上, 表面重量的减少量。用磨损的重量 表示磨损率 重量G表示磨损率, 表面重量的减少量。用磨损的重量 表示磨损率,即: 单位为kg/(m2s2),式中 a为名义接触面积。 单位为 ,式中A 为名义接触面积。 d. 质量磨损率 m :单位滑动距离上,每单位面积摩擦 质量磨损率K 单位滑动距离上, 表面质量的减少量。 磨损的质量m表示磨损率 表示磨损率, 表面质量的减少量。用磨损的质量 表示磨损率,
对于以粘着磨损为主的零件 其主要选用原则为: 粘着磨损为主的零件, ④ 对于以粘着磨损为主的零件,其主要选用原则为: a.材料的脆性特征: a.材料的脆性特征: 材料的脆性特征 脆性材料比塑性材料的抗粘着能力高。 脆性材料比塑性材料的抗粘着能力高。塑性材料粘着点的 破坏发生在表层深处,磨损颗粒大。 破坏发生在表层深处,磨损颗粒大。脆性材料粘着点的破 坏主要是剥落,发生在表层浅处,磨损颗粒小。 坏主要是剥落,发生在表层浅处,磨损颗粒小。 b.材料的不互溶性特征 材料的不互溶性特征: b.材料的不互溶性特征: 异种金属或冶金相溶性小的材料摩擦副抗粘着磨损能力较 异种金属或冶金相溶性小的材料摩擦副抗粘着磨损能力较 金属与非金属摩擦副抗粘着磨损能力高于异种金属摩 高。金属与非金属摩擦副抗粘着磨损能力高于异种金属摩 擦副。 擦副。 c.材料的组织不连续特征 材料的组织不连续特征: c.材料的组织不连续特征: 材料的粘着性在很大程度上与金属间的吸附有关。由于多 材料的粘着性在很大程度上与金属间的吸附有关。由于多 相金属(如在金属中添加第三相)的组织不连续, 相金属(如在金属中添加第三相)的组织不连续,相互吸附 力小,有利于控制粘着磨损的发生和扩展,故多相金属比 力小,有利于控制粘着磨损的发生和扩展, 单相金属的抗粘着磨损能力高。 单相金属的抗粘着磨损能力高。

摩擦角

摩擦角

A
(F ) 0 FDsin60 0.7l G 0.5l 0
y A FN
Fs
FD
C 60 D B
联立求解,可得
FN 0.4124G
x
Fs 0.2857G
G
Fsmax FN fs 0.08248G
杆端不可能产生保持静止所需的摩擦力值0.2857G。假设不成立,故 A 端向下滑动。
【例5-5】如图所示的均质木箱重量P=5kN,它和地面间的摩擦系数fs=0.4,图 中h=2a=2m,θ=30o,求: (1) 当B处的拉力F=1kN时,木箱是否平衡?(2) 能保持平衡的最大拉力。 解:(1) 木箱在力F的作用下有三 种可能发生的情况:木箱处于平 衡状态,木箱滑动或翻倒。
F
y
a
C
面向上,物块受力分析如图所示。根据平衡条件可列静力平衡方程:
F
x
0
Qmin cos Fsmax Psin 0
F
y
0
Qminsin FN Pcos 0
临界状态时,最大静滑动摩擦力为 Fsmax fs FN 。联立求解,可得
Qmin
sin fs cos P Ptan( m ) cos fs sin
物体不至于上滑所充许Q的最大值为
Qmax
sin f s cos P Ptan( m ) cos fssin
sin fs cos P cos fs sin
因此,要维持物体平衡,力Q的值必须满足以下条件
sin fs cos P ≤ cos fs sin
通过分析可知,放在斜面上的物块在重力作用下不至于产生滑动的条件 是斜面的倾角小于或等于摩擦角,即斜面自锁条件为

工程力学第五章 摩擦(H)

工程力学第五章 摩擦(H)

Q
30°
FBA=2Q
(2) 取物块A为研究对象 ① 处于滑动的临界平衡状态时
Fx 0, FBA cos30 Fmax 0 Fy 0, FN P FBA sin 30 0 Fmax f s FN
B
FBC Q
FBA
FBA ′
FN
A
fs Q1max P 429.03N 3 fs
第 5 章
※ 滑动摩擦


※ 考虑摩擦时物体的平衡 ※ 摩擦角与自锁现象
※ 滚动摩阻
※ 结论与讨论
第五章 摩擦

摩擦的分类

按两物体的 相对运动形式 分,有滑动摩擦和滚动摩阻。
按两物体间 是否有良好的润滑,滑动摩擦又可分为干摩擦和 湿摩擦。
摩擦的机理
1. 接触表面的粗糙性 2. 分子间的引力
摩擦的利弊
P
Fmin 100N
F12 Ffs1 , F 100N
第五章 摩擦
(3)取书2为研究对象
F12 ′
2
Fy 0, F12 F23 P 0 F23 0N
FN1 ′
P
F23 FN2
思考题
1
有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。
如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书
Qmax
f
FR
f -


P FR
FR
f+
P
FR
f
P
P
Qmax
Qmin
Qmax P tan( f )
Qmin P tan( f )

第五章 减摩、耐磨及摩阻材料解读

第五章 减摩、耐磨及摩阻材料解读
;单位为kg/m3
(3) 耐磨性E:耐磨性E为磨损率的倒数。 对于线磨损率,耐磨性表示为: 对于体积磨损率,耐磨性表示为: 对于重量磨损率,耐磨性表示为: (4) 相对耐磨系数ε: 在同一试验条件下,标准材料试样的体积或线磨 损量hs (或磨损率) 与被测材料试样的体积或线磨损 量h (或磨损率) 之比:
(2) 低合金耐磨钢 高锰钢在冲击载荷不大的情况下,由于其加 工硬化不够,耐磨性并不高。而低合金钢在这种 情况下,显示出更高的耐磨性。 低合金钢具有仅次于高锰钢的高韧性,如果 合理选择合金成分和热处理方法,能够获得比高 锰钢还高的强度和比较深的表面硬化层,其适用 范围较广泛。 在耐磨粒磨损方面使用的低合金钢有中碳铬 锰硅钢和高碳铬锰硅钢,其化学成分一般为 Cr 1-3%, Mn 1%, Si 1-3%。
在农业机械、工程机械、矿山设备,摩擦副材 料应有高的耐磨性。
各类轴承、齿轮、蜗轮运动副、机床导轨等要 求摩擦副材料有低的摩擦系数和高的耐磨性。
运输和工程机械(如汽车、火车、拖拉机、飞机、 起重机、提升和卷扬机等),制动摩擦副材料应 有高而稳定的摩擦系数和耐磨性。
二、耐磨材料
1、材料耐磨性的定义 材料的耐磨性通常是指在一定的工况条件下,摩擦副材 料在摩擦过程中抵抗磨损的能力。 材料的耐磨性离不开工况条件(速度、载荷、温度、介 质等)。同一种材料,在不同的工况条件下其耐磨性相 差很大。 如,高锰钢。 高硬度的材料具有好的抗磨料磨损性能,而在交变 接触应力作用下抗疲劳磨损的能力却不好。 材料的配对、摩擦副的结构形状、磨损的形式、维护条 件等的不同,其耐磨性也不相同。 **因此,可以说并不存在一种材料,它在各种情况下都是耐 磨(或减摩)的。材料的耐磨性是有条件的,也是相对的。

理论力学习题集昆明理工大学工程力学系

理论力学习题集昆明理工大学工程力学系

第一章 静力学公理和物体的受力分析一、是非判断题1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ) 1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( ) 1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( ) 1.4 力的可传性只适用于刚体,不适用于变形体。

( ) 1.5 两点受力的构件都是二力杆。

( ) 1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( ) 1.7 力的平行四边形法则只适用于刚体。

( ) 1.8 凡矢量都可以应用平行四边形法则合成。

( ) 1.9 只要物体平衡,都能应用加减平衡力系公理。

( ) 1.10 凡是平衡力系,它的作用效果都等于零。

( ) 1.11 合力总是比分力大。

( ) 1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( ) 1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ) 1.14 当软绳受两个等值反向的压力时,可以平衡。

( ) 1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ) 1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

1.17 凡是两端用铰链连接的直杆都是二力杆。

( )1.18 如图所示三铰拱,受力F ,F 1作用, 其中F 作用于铰C 的销子上,则AC 、 BC 构件都不是二力构件。

( )二、填空题 1.1 力对物体的作用效应一般分为 效应和 效应。

1.2 对非自由体的运动所预加的限制条件称为 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 ;约束力由 力引起,且随 力的改变而改变。

1.3 图示三铰拱架中,若将作用于构件AC 上的力偶M处的约束力 。

A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。

三、受力图1-1 画出各物体的受力图。

理论力学习题册答案精品

理论力学习题册答案精品

【关键字】活动、情况、方法、条件、动力、空间、质量、地方、问题、系统、密切、主动、整体、平衡、保持、提升、合力、规律、位置、支撑、作用、结构、水平、速度、关系、分析、简化、倾斜、满足、带动、支持、方向、推动、推进、中心第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

a(球A )b(杆AB)d(杆AB、CD、整体)c(杆AB、CD、整体)f(杆AC、CD、整体)e(杆AC、CB、整体)四.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

a(球A、球B、整体)b(杆BC、杆AC、整体)第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重,所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体 )c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体 )e (杆CE 、AH 、整体)f (杆AD 、杆DB 、整体 )g (杆AB 带轮及较A 、整体)h (杆AB 、AC 、AD 、整体 第二章 平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F = - F ’,所以力偶的合力等于零。

( )2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。

(完整版)工程力学(静力学与材料力学)第四版习题答案

(完整版)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故: 22161.2R RX RY F F F N =+=1(,)arccos 2944RY R R F F P F '∠==o v v2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故: 223R RX RY F F F KN =+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=o0Y =∑ cos300AC F W -=o0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=o0Y =∑ sin 700AB F W -=o1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=o o0Y =∑ sin 30sin 600AB AC F F W +-=o o0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=o o0Y =∑ cos30cos300AB AC F F W +-=o o0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑ 22cos 45042RA F P -=+o15.8RA F KN ∴= 由0Y =∑ 22sin 45042RA RB F F P +-=+o7.1RB F KN ∴=(b)解:受力分析如图所示:由 0x =∑ cos 45cos 45010RA RB F F P --=o o0Y =∑sin 45sin 45010RA RB F F P -=o o联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CB RA F F '-=o o 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联立后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=⋅oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N NDADP F F F KN '∴===⋅=o o o o o2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH部分,对H点列平衡x=∑05RD REF F'=Y=∑05RDF Q-=联立方程后解得:5RDF Q=2REF Q'=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

摩擦学原理(第5章磨损规律)

摩擦学原理(第5章磨损规律)
最优粗糙度的存在表明:磨 损过程是摩擦副表面之间机 械的和分子的联合作用。当 表面粗糙度小于最优粗糙度 时,磨损加剧是由表面分子 作用造成的。而当表面粗糙 度大于最优值时,磨损主要 是由表面机械作用产生的。 图5.10 粗糙度与磨损量
5.2.3 表面品质与磨损
• 摩擦副所处的工况条件不同,最优粗 糙度也不同。在繁重工况条件下,由 于摩擦副的磨损严重,因而最优粗糙
度也相应增大。如图5.11所示,工况
条件包含摩擦副的载荷、滑动速度的 大小、环境温度和润滑状况等。
HR0
图5.11 不同工况
HR 的值 0
5.2.3 表面品质与磨损
• 图5.12说明:不同粗糙度的表面在磨合过程中粗糙度的变化。在一定的 工况条件下,不论原有的粗糙度如何,经磨合后都会达到与工况相适应 的最优粗糙度。此后,表面粗糙度稳定在最优粗糙度下持续工作。
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。 • 不同摩擦副结构和性质以及不同磨合工况,其磨合磨损机理的构成都不 一样。
1.表面形貌与性能的变化
Ra
磨合过程中粗糙度Ra 值的变化
1.表面形貌与性能的变化
图5.4表示较硬摩擦副 表面磨合前后表面形 貌变化。磨合使接触 面积显著地增加和峰 顶半径增大。

理论力学训练题集(终)

理论力学训练题集(终)

第一章 静力学公理和物体的受力分析一、选择题1、三力平衡定理是﹍﹍﹍﹍。

①共面不平行的三个力互相平衡必汇交于一点; ②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

2、三力平衡汇交定理所给的条件是﹍﹍﹍﹍。

①汇交力系平衡的充要条件; ②平面汇交力系平衡的充要条件; ③不平行的三个力平衡的必要条件; ④不平行的三个力平衡的充分条件;3、图示系统只受F作用而平衡。

欲使A支座约束力的作用线与AB成30°角,则斜面的倾角应为﹍﹍﹍﹍。

①0° ②30° ③45° ④60°4、作用在一个刚体上的两个力A F 、B F ,满足A F =-B F的条件,则该二力可能是﹍﹍﹍﹍。

①作用力和反作用或是一对平衡的力;②一对平衡的力或一个力偶;③一对平衡的力或一个力和一个力偶; ④作用力和反作用力或一个力偶。

二、填空题1、已知力F沿直线AB作用,其中一个分力的作用线与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为﹍﹍﹍﹍﹍﹍﹍﹍度。

2、作用在刚体上的两个力等效的条件是﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍。

3、将力F 沿X、Y方向分解,已知F=100N,F在X轴上的投影为86.6N,而沿X方向的分力的大小为115.47N,则F的Y的方向分量与X轴的夹角 为﹍﹍﹍﹍,F在Y轴上的投影为﹍﹍﹍﹍。

4、若不计各物体重量,试分别画出各构杆和结构整体的受力图。

B第二章 平面汇交力系和平面力偶系一、选择题1、已知1F 、2F 、3F 、4F为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此可知﹍﹍﹍﹍﹍﹍﹍。

(1)力系可合成为一个力偶; (2)力系可合成为一个力;(3)力系简化为一个力和一个力偶; (4)力系的合力为零,力系平衡。

2、汇交于O点的平面汇交力系,其平衡方程式可表示为二力矩形式。

即∑A m (1F )=0,∑B m (1F )=0,但必须﹍﹍﹍﹍﹍﹍﹍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 摩擦
Fmin = 47.81N
֠ 思考题
2 的小球A 用一不计重量的杆连结。 重量均为 P 的小球 、B用一不计重量的杆连结。放置在水 用一不计重量的杆连结 平桌面上, 一水平力F 平桌面上,球与桌面间摩擦系数为 fs ,一水平力F 作用于 A球,系统平衡时 Fmax 。
A
B
30°
F
第五章
B
FNC FAy
A C
FC
FB
补充方程: 补充方程: FD = FDmax = fDFND 解得: 解得:FD= FC =25.86N ,F = 47.81N FC ′
FAx F′ FNC ′ F
o
P FD D FND
′ 而此时 FC = 25.86N < FCmax = fC FNC = 40N
故上述假定正确
摩擦的机理
1. 接触表面的粗糙性 2. 分子间的引力
摩擦的利弊
第五章 摩擦
几个有意义的实际问题
赛 车 起 跑
为什么赛车运动员起跑前要将车轮与 地面摩擦生烟? 地面摩擦生烟?
第五章 摩擦
几个有意义的实际问题 赛车结构
Fw
ma
F FN
为什么赛车结构前细后粗;车轮前小后大? 为什么赛车结构前细后粗;车轮前小后大?
Fs=20N
PPPP F12 FN1
Fs ≤ Ffs2 , F ≥ 80N
F (2)取书 为研究对象 )取书1为研究对象
Fs
1
∑ Fy = 0, Fs − P − F = 0 12 F =10N 12
P
F ≤ Ffs1, F ≥100N 12
第五章 摩擦
Fmin =100N
(3)取书 为研究对象 )取书2为研究对象
o o
FN Q Fs
α
解得
Fs = −403.6N, FN =1499N
P
Fmax = fs FN = 299.8N
因为 Fs > Fmax
物块不可能静止,而是向下滑动。 物块不可能静止,而是向下滑动。
此时的摩擦力应为动滑动摩擦力,方向沿斜面向下, 此时的摩擦力应为动滑动摩擦力,方向沿斜面向下,大小为
P
FN Qmax
Fmax
得:
Qmax
sin α + fs cosα =P cosα − fs sin α
α
P
第五章
摩擦
(2)求其最小值。 )求其最小值。
∑ Fx = 0, Qmin cosα − Psin α + Fmax = 0 ∑ Fy = 0, FN − Pcosα −Qmin sin α = 0 Fmax = fs FN
★ 静滑动摩擦力的大小必须由平衡方程确定
第五章 摩擦
2. 最大静滑动摩擦力
FN 静摩擦定律: 静摩擦定律:最大静摩擦力的大小与两物体 间的正压力成正比 Fs P F
Fmax = fs FN
fs →静摩擦系数
0 ≤ Fs ≤ Fmax
3. 动滑动摩擦力
Fd = fFN
第五章 摩擦
f →动摩擦系数, f < fs 且 动摩擦系数,
F
2 x= l 2 Fmax = ( 2 −1)mgfs
第五章 摩擦
§5 - 3
1. 摩擦角
FRA FRA
摩擦角和自锁现象
ϕf
FRA FN
ϕf
ϕ
FN Fmax
A
ϕf
A
FN
Fs
A
FRA=FN+FS
全约束反力
★ 摩擦角——全约束反力与法线间夹角的最大值 ϕf
Fmax fs FN tan ϕ f = = = fs FN FN
F12 ′ FN1 ′
2
∑ Fy = 0, F′ + F23 − P = 0 12 F23 = 0N
F23 FN2
P
֠ 思考题
1 有人想水平地执持一迭书,他用手在这迭书的两端加一压力 有人想水平地执持一迭书,他用手在这迭书的两端加一压力225N。 。 如每本书的质量为0.95kg,手与书间的摩擦系数为0.45,书与书 ,手与书间的摩擦系数为 如每本书的质量为 , 间的摩擦系数为0.40。求可能执书的最大数目。 。 间的摩擦系数为
第五章
摩擦
几个有意义的实际问题
台式风扇放在光滑的桌面上,风扇工作时将 台式风扇放在光滑的桌面上, 会发生什么现象? 会发生什么现象? 落地扇工作时又会发生什么现象? 落地扇工作时又会发生什么现象?
第五章 摩擦
几个有意义的实际问题
采用什么办法,可以将左边轴的转动 采用什么办法, 传给右边的轴? 传给右边的轴?
§5-2 考虑摩擦时物体的平衡问题
考虑摩擦的系统平衡问题的特点
1. 平衡方程式中除主动、约束力外还出现了摩擦力,因而未知 平衡方程式中除主动、约束力外还出现了摩擦力, 数增多。 数增多。 2. 除平衡方程外还可补充关于摩擦力的物理方程 Fs≤fsFN 。 3. 除为避免解不等式,可以解临界情况,即补充方程 除为避免解不等式,可以解临界情况, Fmax = fsFN 。 检验物体是否平衡; ● 检验物体是否平衡; 临界平衡问题; ● 临界平衡问题; 求平衡范围问题。 ● 求平衡范围问题。
第五章 摩擦
常见的问题有
例 题 1
已知: 已知:Q=400N,P=1500N,fs=0.2,f = 0.18。 , , ,
问:物块是否静止,并求此时摩擦力的大小和方向。 物块是否静止,并求此时摩擦力的大小和方向。 解:取物块为研究对象,并假定其平衡。 取物块为研究对象,并假定其平衡。
∑ Fx = 0, Qcos 30o − Psin 30o − Fs = 0 ∑ Fy = 0, FN − Pcos 30 − Qsin 30 = 0
第 5 章
※ 滑动摩擦


※ 考虑摩擦时物体的平衡 ※ 摩擦角与自锁现象 ※ 滚动摩阻 ※ 结论与讨论
第五章 摩擦

摩擦的分类

有滑动摩擦和滚动摩阻。 按两物体的 相对运动形式 分,有滑动摩擦和滚动摩阻。 是否有良好的润滑, 按两物体间 是否有良好的润滑,滑动摩擦又可分为干摩擦和 湿摩擦。 湿摩擦。
第五章
摩擦
例 题 3
已知: , 已知:P,α,fs 的大小。 求:平衡时水平力 Q 的大小。 Q
α
解:取物块为研究对象,先求其最大值。 取物块为研究对象,先求其最大值。
∑ Fx = 0, Qmax cosα − Psin α − Fmax = 0 ∑ Fy = 0, FN − Pcosα −Qmax sin α = 0 Fmax = fs FN
摩擦
解答 解:(1)取小球 A 为研究对象 :( )
A B
30° F
FSA ≤ Pfs
(2)取小球 B 为研究对象 ) FSA
A
FA
FSB ≤ Pfs
Fmax = (FSA + FSB ) cos 30 = 3Pfs
第五章 摩擦
o
FSB
Fmax FSA
解答
O
解:取杆 AB 为研究对象
A
x l
B
mgfs mgfs ∑ Fy = 0, F − x+ (l − x) = 0 l l mgfs x2 mgfs (l − x)2 ∑MO (F) = 0, F ⋅ x − − =0 2l 2l
Fd = f FN = 269.8N
第五章 摩擦
例 题 2
已知: 已知: P=10N, fs1 =0.1, fs2 = 0.25。 Fs , , F
1 2 3 4Fs F Nhomakorabea问:要提起这四本书需加的最小压力。 要提起这四本书需加的最小压力。 解:(1)取整体为研究对象 :( )
∑ Fy = 0, 2Fs − 4P = 0
第五章 摩擦
ϕf
FN Qmin
α
Fmax
P
得:
sin α − fs cosα Qmin = P cosα + fs sin α
sin α − fs cosα sin α + fs cosα P ≤Q≤ P cosα + fs sin α cosα − fs sin α
第五章 摩擦
例 题 4
已知: 已知:fs,b 。
a AD B
M
e
FA = fs FNA FB = fs FNB
第五章 摩擦
b a极限 = 2 fs
FA FNB
FNA FB
F
O
例 题 5
已知: 已知: P=1000N, fs =0.52 ,
C B 5cm 10cm A
求:不致破坏系统平衡时的Qmax 不致破坏系统平衡时的 取销钉B为研究对象 解: (1) 取销钉 为研究对象 ∑Fy = 0, FBA ⋅ sin 30o −Q = 0 FBA=2Q (2) 取物块 为研究对象 取物块A为研究对象 ① 处于滑动的临界平衡状态时
l ∑MA (F) = 0, FNC − FBl = 0 2
A C
B
FB
o
F P
α
D
B
处达到临界状态,则有: 设 C 处达到临界状态,则有:
FB FNC FAy
A C
FC
FC = FCmax = fC FNC
解得: 解得:FNC=100N, FC=40N
第五章 摩擦
FAx
(2) 取轮为研究对象
′ ∑MO (F) = 0, FCr − FDr = 0 ′ ′ ∑ Fx = 0, FNC ⋅ sin 60o − FC ⋅ cos 60o − F − FD = 0 ′ ′ ∑ Fy = 0 − FNC cos 60o − FC sin 60o − P + FND = 0
相关文档
最新文档