BP神经网络的设计实例MATLAB编程

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

BP神经网络整定的PID算法-matlab源程序

BP神经网络整定的PID算法-matlab源程序

BP神经网络整定的PID控制算法matlab源程序,系统为二阶闭环系统。

%BP based PID Controlclear all;close all;xite=0.28;alfa=0.001;IN=4;H=5;Out=3;%NN Structurewi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=0。

50*rands(Out,H);wo_1=wo;wo_2=wo;wo_3=wo;x=[0,0,0];u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;y_1=0;y_2=0;y_3=0;Oh=zeros(H,1); %Output from NN middle layerI=Oh; %Input to NN middle layererror_2=0;error_1=0;ts=0.01;sys=tf(2。

6126,[1,3。

201,2.7225]);%建立被控对象传递函数dsys=c2d(sys,ts,’z’); %把传递函数离散化[num,den]=tfdata(dsys,'v’);%离散化后提取分子、分母for k=1:1:2000time(k)=k*ts;rin(k)=40;yout(k)=—den(2)*y_1-den(3)*y_2+num(2)*u_2+num(3)*u_3;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)—error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi’;for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j)));%Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l)));%Getting kp,ki,kd endkp(k)=K(1);ki(k)=K(2);kd(k)=K(3);Kpid=[kp(k),ki(k),kd(k)];du(k)=Kpid*epid;u(k)=u_1+du(k);if u(k)〉=45 %Restricting the output of controlleru(k)=45;endif u(k)〈=-45u(k)=-45;enddyu(k)=sign((yout(k)—y_1)/(u(k)-u_1+0。

用matlab编BP神经网络预测程序

用matlab编BP神经网络预测程序

求用matlab编BP神经网络预测程序求一用matlab编的程序P=[。

];输入T=[。

];输出% 创建一个新的前向神经网络net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net_1.IW{1,1}inputbias=net_1.b{1}% 当前网络层权值和阈值layerWeights=net_1.LW{2,1}layerbias=net_1.b{2}% 设置训练参数net_1.trainParam.show = 50;net_1.trainParam.lr = 0.05;net_1.trainParam.mc = 0.9;net_1.trainParam.epochs = 10000;net_1.trainParam.goal = 1e-3;% 调用TRAINGDM 算法训练BP 网络[net_1,tr]=train(net_1,P,T);% 对BP 网络进行仿真A = sim(net_1,P);% 计算仿真误差E = T - A;MSE=mse(E)x=[。

]';%测试sim(net_1,x) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%不可能啊我200928对初学神经网络者的小提示第二步:掌握如下算法:2.最小均方误差,这个原理是下面提到的神经网络学习算法的理论核心,入门者要先看《高等数学》(高等教育出版社,同济大学版)第8章的第十节:“最小二乘法”。

3.在第2步的基础上看Hebb学习算法、SOM和K-近邻算法,上述算法都是在最小均方误差基础上的改进算法,参考书籍是《神经网络原理》(机械工业出版社,Simon Haykin著,中英文都有)、《人工神经网络与模拟进化计算》(清华大学出版社,阎平凡,张长水著)、《模式分类》(机械工业出版社,Richard O. Duda等著,中英文都有)、《神经网络设计》(机械工业出版社,Martin T. Hargan等著,中英文都有)。

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码

BP神经网络预测的matlab代码附录5:BP神经网络预测的matlab代码: P=[ 00.13860.21970.27730.32190.35840.38920.41590.43940.46050.47960.49700.52780.55450.59910.60890.61820.62710.63560.64380.65160.65920.66640.67350.72220.72750.73270.73780.74270.74750.75220.75680.76130.76570.7700]T=[0.4455 0.323 0.4116 0.3255 0.4486 0.2999 0.4926 0.2249 0.48930.2357 0.4866 0.22490.4819 0.2217 0.4997 0.2269 0.5027 0.217 0.5155 0.1918 0.5058 0.2395 0.4541 0.2408 0.4054 0.2701 0.3942 0.3316 0.2197 0.2963 0.5576 0.1061 0.4956 0.267 0.5126 0.2238 0.5314 0.2083 0.5191 0.208 0.5133 0.18480.5089 0.242 0.4812 0.2129 0.4927 0.287 0.4832 0.2742 0.5969 0.24030.5056 0.2173 0.5364 0.1994 0.5278 0.2015 0.5164 0.2239 0.4489 0.2404 0.4869 0.2963 0.4898 0.1987 0.5075 0.2917 0.4943 0.2902 ]threshold=[0 1]net=newff(threshold,[11,2],{'tansig','logsig'},'trainlm');net.trainParam.epochs=6000net.trainParam.goal=0.01LP.lr=0.1;net=train(net,P',T')P_test=[ 0.77420.77840.78240.78640.79020.7941 ] out=sim(net,P_test')友情提示:以上面0.7742为例0.7742=ln(47+1)/5因为网络输入有一个元素,对应的是测试时间,所以P只有一列,Pi=log(t+1)/10,这样做的目的是使得这些数据的范围处在[0 1]区间之内,但是事实上对于logsin命令而言输入参数是正负区间的任意值,而将输出值限定于0到1之间。

标准的BP神经网络算法程序MATLAB

标准的BP神经网络算法程序MATLAB

count=1;
while (count<=maxcount) %结束条件1迭代1000次
c=1;
while (c<=samplenum)
for k=1:outputNums
d(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内 的值
end
break;
end
count=count+1;%训练次数加1
end%第一个while结束
error(maxcount+1)=error(maxcount);
p=1:count;
pp=p/50;
plot(pp,error(p),"-"); %显示误差
deltv(i,j)=alpha*yitay(j)*x(i); %同上deltw
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);
dv(i,j)=deltv(i,j);
end
end
c=c+1;
end%第二个while结束;表示一次BP训练结束
double tmp;
for i=1:inputNums
x(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量
字串4
end
%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);
dw=zeros(hideNums,outputNums); %10*3

PSO优化的BP神经网络(Matlab版)

PSO优化的BP神经网络(Matlab版)

PSO优化的BP神经⽹络(Matlab版)前⾔:最近接触到⼀些神经⽹络的东西,看到很多⼈使⽤PSO(粒⼦群优化算法)优化BP神经⽹络中的权值和偏置,经过⼀段时间的研究,写了⼀些代码,能够跑通,嫌弃速度慢的可以改⼀下训练次数或者适应度函数。

在我的理解⾥,PSO优化BP的初始权值w和偏置b,有点像数据迁徙,等于⽤粒⼦去尝试作为⽹络的参数,然后训练⽹络的阈值,所以总是会看到PSO优化了权值和阈值的说法,(⼀开始我是没有想通为什么能够优化阈值的),下⾯是我的代码实现过程,关于BP和PSO的原理就不⼀⼀赘述了,⽹上有很多⼤佬解释的很详细了……⾸先是利⽤BP作为适应度函数function [error] = BP_fit(gbest,input_num,hidden_num,output_num,net,inputn,outputn)%BP_fit 此函数为PSO的适应度函数% gbest:最优粒⼦% input_num:输⼊节点数⽬;% output_num:输出层节点数⽬;% hidden_num:隐含层节点数⽬;% net:⽹络;% inputn:⽹络训练输⼊数据;% outputn:⽹络训练输出数据;% error : ⽹络输出误差,即PSO适应度函数值w1 = gbest(1:input_num * hidden_num);B1 = gbest(input_num * hidden_num + 1:input_num * hidden_num + hidden_num);w2 = gbest(input_num * hidden_num + hidden_num + 1:input_num * hidden_num...+ hidden_num + hidden_num * output_num);B2 = gbest(input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:...input_num * hidden_num + hidden_num + hidden_num * output_num + output_num);net.iw{1,1} = reshape(w1,hidden_num,input_num);net.lw{2,1} = reshape(w2,output_num,hidden_num);net.b{1} = reshape(B1,hidden_num,1);net.b{2} = B2';%建⽴BP⽹络net.trainParam.epochs = 200;net.trainParam.lr = 0.05;net.trainParam.goal = 0.000001;net.trainParam.show = 100;net.trainParam.showWindow = 0;net = train(net,inputn,outputn);ty = sim(net,inputn);error = sum(sum(abs((ty - outputn))));end 然后是PSO部分:%%基于多域PSO_RBF的6R机械臂逆运动学求解的研究clear;close;clc;%定义BP参数:% input_num:输⼊层节点数;% output_num:输出层节点数;% hidden_num:隐含层节点数;% inputn:⽹络输⼊;% outputn:⽹络输出;%定义PSO参数:% max_iters:算法最⼤迭代次数% w:粒⼦更新权值% c1,c2:为粒⼦群更新学习率% m:粒⼦长度,为BP中初始W、b的长度总和% n:粒⼦群规模% gbest:到达最优位置的粒⼦format longinput_num = 3;output_num = 3;hidden_num = 25;max_iters =10;m = 500; %种群规模n = input_num * hidden_num + hidden_num + hidden_num * output_num + output_num; %个体长度w = 0.1;c1 = 2;c2 = 2;%加载⽹络输⼊(空间任意点)和输出(对应关节⾓的值)load('pfile_i2.mat')load('pfile_o2.mat')% inputs_1 = angle_2';inputs_1 = inputs_2';outputs_1 = outputs_2';train_x = inputs_1(:,1:490);% train_y = outputs_1(4:5,1:490);train_y = outputs_1(1:3,1:490);test_x = inputs_1(:,491:500);test_y = outputs_1(1:3,491:500);% test_y = outputs_1(4:5,491:500);[inputn,inputps] = mapminmax(train_x);[outputn,outputps] = mapminmax(train_y);net = newff(inputn,outputn,25);%设置粒⼦的最⼩位置与最⼤位置% w1阈值设定for i = 1:input_num * hidden_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B1阈值设定for i = input_num * hidden_num + 1:input_num * hidden_num + hidden_numMinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end% w2阈值设定for i = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numMinX(i) = -0.01*ones(1);MaxX(i) = 3.8*ones(1);end% B2阈值设定for i = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num MinX(i) = 1*ones(1);MaxX(i) = 8*ones(1);end%%初始化位置参数%产⽣初始粒⼦位置pop = rands(m,n);%初始化速度和适应度函数值V = 0.15 * rands(m,n);BsJ = 0;%对初始粒⼦进⾏限制处理,将粒⼦筛选到⾃定义范围内for i = 1:mfor j = 1:input_num * hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + 1:input_num * hidden_num + hidden_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num + hidden_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_numif pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendfor j = input_num * hidden_num+ hidden_num + hidden_num * output_num + 1:input_num * hidden_num + hidden_num + hidden_num * output_num + output_num if pop(i,j) < MinX(j)pop(i,j) = MinX(j);endif pop(i,j) > MaxX(j)pop(i,j) = MaxX(j);endendend%评估初始粒⼦for s = 1:mindivi = pop(s,:);fitness = BP_fit(indivi,input_num,hidden_num,output_num,net,inputn,outputn);BsJ = fitness; %调⽤适应度函数,更新每个粒⼦当前位置Error(s,:) = BsJ; %储存每个粒⼦的位置,即BP的最终误差end[OderEr,IndexEr] = sort(Error);%将Error数组按升序排列Errorleast = OderEr(1); %记录全局最⼩值for i = 1:m %记录到达当前全局最优位置的粒⼦if Error(i) == Errorleastgbest = pop(i,:);break;endendibest = pop; %当前粒⼦群中最优的个体,因为是初始粒⼦,所以最优个体还是个体本⾝for kg = 1:max_iters %迭代次数for s = 1:m%个体有52%的可能性变异for j = 1:n %粒⼦长度for i = 1:m %种群规模,变异是针对某个粒⼦的某⼀个值的变异if rand(1)<0.04pop(i,j) = rands(1);endendend%r1,r2为粒⼦群算法参数r1 = rand(1);r2 = rand(1);%个体位置和速度更新V(s,:) = w * V(s,:) + c1 * r1 * (ibest(s,:)-pop(s,:)) + c2 * r2 * (gbest(1,:)-pop(s,:));pop(s,:) = pop(s,:) + 0.3 * V(s,:);%对更新的位置进⾏判断,超过设定的范围就处理下。

matlab神经网络

matlab神经网络

Matlab神经网络工具箱2010-7-21今天学的是BP神经网络,首先看的是一个关于非线性函数逼近的例子,最后得出一个心得:在使用newff函数生成一个新的网络时,神经元的层数和每一层的神经元数会对结果造成不小的影响,一般都采用[n,1]的建立方法,其中n为隐层的神经元数,1为输出层的神经元数。

然后是做了一个识别系统,算是一个较大的神经网络,具体的代码解释和分析如下:[alphabet,targets]=prprob;[R,Q]=size(alphabet);[S2,Q]=size(targets);S1=10;[R,Q]=size(alphabet);[S2,Q]=size(targets);P=alphabet;net=newff(minmax(P),[S1,S2],{'logsig','logsig'},'traingdx');net.LW{2,1}=net.LW{2,1}*0.01;net.b{2}=net.b{2}+0.01;其中的proprob是matlab自带的一个生成字母表布尔值的函数。

可以具体查看。

T=targets;net.performFcn='sse';net.trainParam.goal=0.1;net.trainParam.show=20;net.trainParam.epochs=5000;net.trainParam.mc=0.95;[net,tr]=train(net,P,T)接下来首先进行无噪声训练。

netn.trainParam.goal=0.6;netn.trainParam.epochs=300;T=[targets targets targets targets];for pass=1:10P=[alphabet,alphabet,(alphabet+randn(R,Q)*0.1),(alphabet+randn(R,Q)*0.2) ];[netn,tr]=train(net,P,T);end接下来是有噪声训练,采用随机数生成影响输入矩阵的方式。

神经网络作业

神经网络作业

BP神经网络及MATLAB实现实验报告姓名:李英杰学号:123109302专业:机械电子工程2013年6月19日1. BP网络的MATLAB设计MatlabR2012 神经网络工具箱(Neural Network toolbox) 为用户提供了丰富的神经网络设计与分析函数,可是用它们来编程不容易掌握。

我们通过对神经网络工具箱的实践应用研究表明,使用神经网络工具箱中的NNTool对神经网络进行设计和仿真简便易行直观,不需要编程,且设计和仿真的结果证明完全能够满足一般工程设计人员的需要,能够取得事半功倍的效果。

下面我们以一个单隐含层的BP网络设计为例,介绍利用神经网络工具箱中的NNTool对BP网络的设计和分析。

利用NNTool设计一个BP 网络,该网络的输入层和输出层的神经元个数均为1。

训练样本定义如下:输入变量为p =[-1 1 3 1;-1 1 5 -3]目标变量为 t = [-1 2 4 3]打开Matlab 应用软件后,双击Neural Network toolbox 中的NNTool 图标,或在命令窗口键入nntool,即可进入神经络设计主界面,如下图。

图1 NNTool 设计主界面1.训练样本数据的导入点击New按钮,在弹出窗口选择Date选项卡,按如图2,3所示创建输入变量和目标变量。

图2 创建新的输入变量图3 创建新的目标变量2.神经网络的创建点击主界面中点击New按钮,在弹出窗口选择Newwork选项卡,并在对话框中可对网络的名称、类型、结构和训练函数等进行设置,如图4 所示。

图4创建神经元网络界面在上面窗口中对该网络命名为:tracylee;网络类型为:Feed-forward backprop,即前馈BP神经网络;Input ranges :点击Get From Input下拉框选择样本输入变量p加入输入向量;Training function:在下拉列表中选择TRAINGDM训练函数;采用动量梯度下降算法训练 BP 网络。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

MATLAB实例:BP神经网络用于回归任务

MATLAB实例:BP神经网络用于回归任务

MATLAB 实例:BP 神经⽹络⽤于回归任务MATLAB 实例:BP 神经⽹络⽤于回归(⾮线性拟合)任务作者:凯鲁嘎吉 - 博客园问题描述给定多元(多维)数据X ,有真实结果Y ,对这些数据进⾏拟合(回归),得到拟合函数的参数,进⽽得到拟合函数,现在进来⼀些新样本,对这些新样本进⾏预测出相应地Y 值。

通常的最⼩⼆乘法进⾏线性拟合并不适⽤于所有数据,对于⼤多数数据⽽⾔,他们的拟合函数是⾮线性的,⼈为构造拟合函数相当困难,没有⼀定的经验积累很难完美的构造出符合条件的拟合函数。

因此神经⽹络在这⾥被应⽤来做回归(拟合)任务,进⼀步⽤来预测。

神经⽹络是很强⼤的拟合⼯具,虽然数学可解释性差,但拟合效果好,因⽽得到⼴泛应⽤。

BP 神经⽹络是最基础的⽹络结构,输⼊层,隐层,输出层,三层结构。

如下图所⽰。

整体的⽬标函数就是均⽅误差L =||f (X )−Y ||22其中(激活函数可以⾃⾏设定)f (X )=purelin W 2⋅tan sig (W 1⋅X +b 1)+b 2N : 输⼊数据的个数D : 输⼊数据的维度D 1: 隐层节点的个数X : 输⼊数据(D *N )Y : 真实输出(1*N )W 1: 输⼊层到隐层的权值(D 1*D )b 1: 隐层的偏置(D 1*1)W 2: 输⼊层到隐层的权值(1*D 1)b 2: 隐层的偏置(1*1)通过给定训练数据与训练标签来训练⽹络的权值与偏置,进⼀步得到拟合函数f (X )。

这样,来了新数据后,直接将新数据X 代⼊函数f (X ),即可得到预测的结果。

y = tansig(x) = 2/(1+exp(-2*x))-1;y = purelin(x) = x ;()MATLAB程序⽤到的数据为UCI数据库的housing数据:输⼊数据,最后⼀列是真实的输出结果,将数据打乱顺序,95%的作为训练集,剩下的作为测试集。

这⾥隐层节点数为20。

BP_kailugaji.mfunction errorsum=BP_kailugaji(data_load, NodeNum, ratio)% Author:凯鲁嘎吉 https:///kailugaji/% Input:% data_load: 最后⼀列真实输出结果% NodeNum: 隐层节点个数% ratio: 训练集占总体样本的⽐率[Num, ~]=size(data_load);data=data_load(:, 1:end-1);real_label=data_load(:, end);k=rand(1,Num);[~,n]=sort(k);kk=floor(Num*ratio);%找出训练数据和预测数据input_train=data(n(1:kk),:)';output_train=real_label(n(1:kk))';input_test=data(n(kk+1:Num),:)';output_test=real_label(n(kk+1:Num))';%选连样本输⼊输出数据归⼀化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%% BP⽹络训练% %初始化⽹络结构net=newff(inputn, outputn, NodeNum);net.trainParam.epochs=100; % 最⼤迭代次数net.trainParam.lr=0.01; % 步长net.trainParam.goal=1e-5; % 迭代终⽌条件% net.divideFcn = '';%⽹络训练net=train(net,inputn,outputn);W1=net.iw{1, 1};b1=net.b{1};W2=net.lw{2, 1};b2=net.b{2};fun1=yers{1}.transferFcn;fun2=yers{2}.transferFcn;%% BP⽹络预测%预测数据归⼀化inputn_test=mapminmax('apply',input_test,inputps);%⽹络预测输出an=sim(net,inputn_test);%⽹络输出反归⼀化BPoutput=mapminmax('reverse',an,outputps);%% 结果分析figure(1)plot(BPoutput,'-.or')hold onplot(output_test,'-*b');legend('预测输出','期望输出')xlim([1 (Num-kk)]);title('BP⽹络预测输出','fontsize',12)ylabel('函数输出','fontsize',12)xlabel('样本','fontsize',12)saveas(gcf,sprintf('BP⽹络预测输出.jpg'),'bmp');%预测误差error=BPoutput-output_test;errorsum=sum(mse(error));% 保留参数save BP_parameter W1 b1 W2 b2 fun1 fun2 net inputps outputpsdemo.mclear;clc;close alldata_load=dlmread('housing.data');NodeNum=20;ratio=0.95;errorsum=BP_kailugaji(data_load, NodeNum, ratio);fprintf('测试集总体均⽅误差为:%f\n', errorsum);%%% 验证原来的或者预测新的数据num=1; % 验证第num⾏数据load('BP_parameter.mat');data=data_load(:, 1:end-1);real_label=data_load(:, end);X=data(num, :);X=X';Y=real_label(num, :);%% BP⽹络预测%预测数据归⼀化X=mapminmax('apply',X,inputps);%⽹络预测输出Y_pre=sim(net,X);%⽹络输出反归⼀化Y_pre=mapminmax('reverse',Y_pre,outputps);error=Y_pre-Y';errorsum=sum(mse(error));fprintf('第%d⾏数据的均⽅误差为:%f\n', num, errorsum);结果测试集总体均⽅误差为:5.184424第1⾏数据的均⽅误差为:3.258243注意:隐层节点个数,激活函数,迭代终⽌条件等等参数需要根据具体数据进⾏调整。

BP神经网络用于函数拟合与模式识别的Matlab示例程序 - 副本

BP神经网络用于函数拟合与模式识别的Matlab示例程序 - 副本

BP神经网络用于函数拟合与模式识别的Matlab示例程序clcclearclose all%---------------------------------------------------% 产生训练样本与测试样本,每一列为一个样本P1 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];T1 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];P2 = [rand(3,5),rand(3,5)+1,rand(3,5)+2];T2 = [repmat([1;0;0],1,5),repmat([0;1;0],1,5),repmat([0;0;1],1,5)];%---------------------------------------------------% 归一化[PN1,minp,maxp] = premnmx(P1);PN2 = tramnmx(P2,minp,maxp);%---------------------------------------------------% 设置网络参数NodeNum = 10; % 隐层节点数TypeNum = 3; % 输出维数TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'tansig';TF2 = 'tansig';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});%---------------------------------------------------% 指定训练参数% net.trainFcn = 'traingd'; % 梯度下降算法% net.trainFcn = 'traingdm'; % 动量梯度下降算法%% net.trainFcn = 'traingda'; % 变学习率梯度下降算法% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法%% (大型网络的首选算法 - 模式识别)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小%% 共轭梯度算法% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves 修正算法略大% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大% (大型网络的首选算法 - 函数拟合,模式识别)% net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多%% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS 算法小,比共轭梯度算法略大%% (中小型网络的首选算法 - 函数拟合,模式识别)net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快%% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法%% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm' %---------------------%net.trainParam.show = 1; % 训练显示间隔net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdmnet.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdxnet.trainParam.mem_reduc = 10; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt 算法有效)net.trainParam.epochs = 1000; % 最大训练次数net.trainParam.goal = 1e-8; % 最小均方误差net.trainParam.min_grad = 1e-20; % 最小梯度net.trainParam.time = inf; % 最大训练时间%---------------------------------------------------% 训练与测试net = train(net,PN1,T1); % 训练%---------------------------------------------------% 测试Y1 = sim(net,PN1); % 训练样本实际输出Y2 = sim(net,PN2); % 测试样本实际输出Y1 = full(compet(Y1)); % 竞争输出Y2 = full(compet(Y2));%---------------------------------------------------% 结果统计Result = ~sum(abs(T1-Y1)) % 正确分类显示为1Percent1 = sum(Result)/length(Result) % 训练样本正确分类率Result = ~sum(abs(T2-Y2)) % 正确分类显示为1Percent2 = sum(Result)/length(Result) % 测试样本正确分类率******************************************************************% BP 神经网络用于函数拟合% 使用平台 - Matlab6.5% 作者:陆振波,海军工程大学% 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页% 电子邮件:luzhenbo@% 个人主页:clcclearclose all%---------------------------------------------------% 产生训练样本与测试样本P1 = 1:2:200; % 训练样本,每一列为一个样本T1 = sin(P1*0.1); % 训练目标P2 = 2:2:200; % 测试样本,每一列为一个样本T2 = sin(P2*0.1); % 测试目标%---------------------------------------------------% 归一化[PN1,minp,maxp,TN1,mint,maxt] = premnmx(P1,T1);PN2 = tramnmx(P2,minp,maxp);TN2 = tramnmx(T2,mint,maxt);%---------------------------------------------------% 设置网络参数NodeNum = 20; % 隐层节点数TypeNum = 1; % 输出维数TF1 = 'tansig';TF2 = 'purelin'; % 判别函数(缺省值)%TF1 = 'tansig';TF2 = 'logsig';%TF1 = 'logsig';TF2 = 'purelin';%TF1 = 'tansig';TF2 = 'tansig';%TF1 = 'logsig';TF2 = 'logsig';%TF1 = 'purelin';TF2 = 'purelin';net = newff(minmax(PN1),[NodeNum TypeNum],{TF1 TF2});%---------------------------------------------------% 指定训练参数% net.trainFcn = 'traingd'; % 梯度下降算法% net.trainFcn = 'traingdm'; % 动量梯度下降算法%% net.trainFcn = 'traingda'; % 变学习率梯度下降算法% net.trainFcn = 'traingdx'; % 变学习率动量梯度下降算法%% (大型网络的首选算法)% net.trainFcn = 'trainrp'; % RPROP(弹性BP)算法,内存需求最小%% 共轭梯度算法% net.trainFcn = 'traincgf'; % Fletcher-Reeves修正算法% net.trainFcn = 'traincgp'; % Polak-Ribiere修正算法,内存需求比Fletcher-Reeves 修正算法略大% net.trainFcn = 'traincgb'; % Powell-Beal复位算法,内存需求比Polak-Ribiere修正算法略大% (大型网络的首选算法)%net.trainFcn = 'trainscg'; % Scaled Conjugate Gradient算法,内存需求与Fletcher-Reeves修正算法相同,计算量比上面三种算法都小很多%% net.trainFcn = 'trainbfg'; % Quasi-Newton Algorithms - BFGS Algorithm,计算量和内存需求均比共轭梯度算法大,但收敛比较快% net.trainFcn = 'trainoss'; % One Step Secant Algorithm,计算量和内存需求均比BFGS 算法小,比共轭梯度算法略大%% (中型网络的首选算法)net.trainFcn = 'trainlm'; % Levenberg-Marquardt算法,内存需求最大,收敛速度最快%% net.trainFcn = 'trainbr'; % 贝叶斯正则化算法%% 有代表性的五种算法为:'traingdx','trainrp','trainscg','trainoss', 'trainlm' %---------------------%net.trainParam.show = 20; % 训练显示间隔net.trainParam.lr = 0.3; % 学习步长 - traingd,traingdmnet.trainParam.mc = 0.95; % 动量项系数 - traingdm,traingdxnet.trainParam.mem_reduc = 1; % 分块计算Hessian矩阵(仅对Levenberg-Marquardt算法有效)net.trainParam.epochs = 1000; % 最大训练次数net.trainParam.goal = 1e-8; % 最小均方误差net.trainParam.min_grad = 1e-20; % 最小梯度net.trainParam.time = inf; % 最大训练时间%---------------------------------------------------% 训练net = train(net,PN1,TN1); % 训练%---------------------------------------------------% 测试YN1 = sim(net,PN1); % 训练样本实际输出YN2 = sim(net,PN2); % 测试样本实际输出MSE1 = mean((TN1-YN1).^2) % 训练均方误差MSE2 = mean((TN2-YN2).^2) % 测试均方误差%---------------------------------------------------% 反归一化Y2 = postmnmx(YN2,mint,maxt);%---------------------------------------------------% 结果作图plot(1:length(T2),T2,'r+:',1:length(Y2),Y2,'bo:')title('+为真实值,o为预测值')%输入样本点及其相应的类别,其中有一个奇异点P=[-0.5 -0.5 0.3 -0.1 0.2 0.0 0.6 0.8 60;-0.5 0.5 -0.5 1.0 0.5 -0.9 0.8 -0.6 20];T=[1 1 0 1 1 0 1 0 1];%在坐标图上绘出样本点plotpv(P,T);%建立一个感知器网络figure;plotpv(P,T);net=newp([-1 60;1 20],1);handle=plotpc(net.iw{1},net.b{1});%利用样本点训练网络并绘出得到的分类线E=1;while (sse(E)),[net,Y,E]=adapt(net,P,T);handle=plotpc(net.iw{1},net.b{1},handle);end;%局部放大分类线图figure;plotpv(P,T);plotpc(net.iw{1},net.b{1});axis([-2 2 -2 2]);%选择10个点来测试网络testpoints=[-0.5 0.3 -0.9 0.4 -0.1 0.2 -0.6 0.8 0.1 -0.4; -0.3 -0.8 -0.4 -0.7 0.4 -0.6 0.1 -0.5 -0.5 0.3]; a=sim(net,testpoints);%在坐标图上绘出网络的分类结果及分类线figure;plotpv(testpoints,a);plotpc(net.iw{1},net.b{1});%产生指定类别的样本点,并在图中绘出X = [0 1; 0 1]; % 限制类中心的范围clusters = 5; % 指定类别数目points = 10; % 指定每一类的点的数目std_dev = 0.05; % 每一类的标准差P = nngenc(X,clusters,points,std_dev);plot(P(1,:),P(2,:),'+r');title('输入样本向量');xlabel('p(1)');ylabel('p(2)');%建立网络net=newc([0 1;0 1],5,0.1); %设置神经元数目为5 %得到网络权值,并在图上绘出figure;plot(P(1,:),P(2,:),'+r');w=net.iw{1}hold on;plot(w(:,1),w(:,2),'ob');hold off;title('输入样本向量及初始权值');xlabel('p(1)');ylabel('p(2)');figure;plot(P(1,:),P(2,:),'+r');hold on;%训练网络net.trainParam.epochs=7;net=init(net);net=train(net,P);%得到训练后的网络权值,并在图上绘出w=net.iw{1}plot(w(:,1),w(:,2),'ob');hold off;title('输入样本向量及更新后的权值');xlabel('p(1)');ylabel('p(2)');a=0;p = [0.6 ;0.8];a=sim(net,p)%生成一个信号,作为被预测信号Time=0:0.025:5;T=sin(Time*4*pi);Q=length(T);%由信号T生成输入信号PP = zeros(5,Q);P(1,2:Q) = T(1,1:(Q-1));P(2,3:Q) = T(1,1:(Q-2));P(3,4:Q) = T(1,1:(Q-3));P(4,5:Q) = T(1,1:(Q-4));P(5,6:Q) = T(1,1:(Q-5));%绘出信号T的曲线figure;plot(Time,T);title('信号T');xlabel('时间');ylabel('目标信号');%设计网络net=newlind(P,T);%仿真网络a=sim(net,P);%绘出网络预测输出figure;plot(Time,a);title('预测结果');xlabel('时间');ylabel('预测值');%得到误差信号,并绘出其曲线e=T-a;figure;plot(Time,e);title('误差');xlabel('时间');ylabel('误差值');%分别定义两段时间Time1和Time2,对应信号的不同频率时段Time1=0:0.05:4;Time2=4.05:0.024:6;Time=[Time1 Time2];%得到待预测的目标信号T=[cos(Time1*4*pi) cos(Time2*8*pi)];T=con2seq(T);%绘出目标信号的曲线,并指定给输入figure;plot(Time,cat(2,T{:}));xlabel('时间');ylabel('目标');title('待跟踪的目标信号');P=T;%生成线性网络lr=0.1;delays = [1 2 3 4 5];net = newlin(minmax(cat(2,P{:})),1,delays,lr);%对网络进行自适应训练[net,a,e]=adapt(net,P,T);%绘出预测信号、目标信号及误差信号曲线figure;plot(Time,cat(2,a{:}),Time,cat(2,P{:}),'--');xlabel('时间');ylabel('目标、预测值');title('目标信号及预测结果');figure;plot(Time,cat(2,e{:}));xlabel('时间');ylabel('误差');title('误差信号');%定义输入信号并绘出其曲线time=0:0.025:5;X=sin(sin(time).*time*10);plot(time,X);title('输入信号T');xlabel('时间');ylabel('输入信号');figure;%定义系统线性变换函数,绘出系统输出曲线T=X*2+0.8;plot(time,T);title('系统输出T');xlabel('时间');ylabel('系统输出');%定义网络输入Q=size(X,2);P=zeros(3,Q);P(1,1:Q)=X(1,1:Q);P(2,2:Q)=X(1,1:(Q-1));P(3,3:Q)=X(1,1:(Q-2));%建立网络net=newlind(P,T);%测试网络a=sim(net,P);%绘出网络输出a与系统输出Tfigure;plot(time,a,'+',time,T,'--');title('网络输出a与系统输出T'); xlabel('时间');ylabel('系统输出-- 网络输出+');%计算误差,并绘出其曲线e=T-a;figure;plot(time,e);title('输出误差');xlabel('时间');ylabel('误差');%定义输入信号并绘出其曲线time1=0:0.005:4;time2=4.005:0.005:6;time=[time1 time2];X=sin(sin(time*4).*time*8);plot(time,X);title('输入信号X');xlabel('时间');ylabel('输入信号');%定义系统输出,绘出曲线steps1=length(time1);[T1,state]=filter([1 -0.5],1,X(1:steps1));steps2=length(time2);T2=filter([0.9 -0.6],1,X((1:steps2) + steps1),state); T=[T1 T2];figure;plot(time,T);title('系统输出T');xlabel('时间');ylabel('系统输出');%将系统输入和输出转换成序列信号T=con2seq(T);P=con2seq(X);%建立网络lr=0.5;delays=[0 1];net=newlin(minmax(cat(2,P{:})),1,delays,lr);%训练网络[net,a,e]=adapt(net,P,T);%绘出网络输出a与系统输出Tfigure;plot(time,cat(2,a{:}),'+',time,cat(2,T{:}),'--');title('网络输出a与系统输出T');xlabel('时间');ylabel('系统输出-- 网络输出+');%绘出误差曲线figure;plot(time,cat(2,e{:}));title('输出误差');xlabel('时间');ylabel('误差');。

神经网络算法例题(题目和解答以及Matlab代码)

神经网络算法例题(题目和解答以及Matlab代码)

神经⽹络算法例题(题⽬和解答以及Matlab代码)题⽬:采⽤贝叶斯正则化算法提⾼BP⽹络的推⼴能⼒,⽤来训练BP⽹络,使其能够拟合某⼀附加⽩噪声的正弦样本数据。

解答:采⽤贝叶斯正则化算法‘trainbr’训练BP⽹络,⽬标误差goal=1×10^-3,学习率lr=0.05,最⼤迭代次数epochs=500,拟合附加有⽩噪声的正弦样本数据,拟合数据均⽅根误差为0.0054,拟合后的图形⽤以下代码可以得出。

Matalb代码:clear all;%清除所有变量close all;%清图clc;%清屏%定义训练样本⽮量 P为输⼊⽮量P=[-1:0.05:1];%T为⽬标⽮量T=sin(2*pi*P)+0.1*randn(size(P));%绘制样本数据点figureplot(P,T,'+');hold on;plot(P,sin(2*pi*P),':');%绘制不含噪声的正弦曲线net=newff(minmax(P),[20,1],{'tansig','purelin'});%采⽤贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';%设置训练参数net.trainParam.show=50;%显⽰中间结果的周期net.trainParam.lr=0.05;%学习率net.trainParam.epochs=500;%最⼤迭代次数net.trainParam.goal=1e-3;%⽬标误差%⽤相应算法训练BP⽹络[net,tr]=train(net,P,T);%对BP⽹络进⾏仿真A=sim(net,P);%计算仿真误差E=T-A;MSE=mse(E);%绘制匹配结果曲线plot(P,A,P,T,'+',P,sin(2*pi*P),':');legend('样本点','标准正弦曲线','拟合正弦曲线');。

BP神经网络的设计实例(MATLAB编程)

BP神经网络的设计实例(MATLAB编程)

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。

基于BP神经网络的函数逼近实验及MATLAB实现_曹旭帆

基于BP神经网络的函数逼近实验及MATLAB实现_曹旭帆

! ( 3) 由 ymj = F
W y m m- 1 ij i
计算从第一层直至输
i
出层各节点 j的输出 ymj , 其中上标 m 为 BP 网络的层
标号, F 为神经元的激励函数 ymi - 1为 BP网络 m - 1层
的 i节点的输出, Wmij为 m - 1层的 i节点到 m 层的 j节
点的连接权值, M = M, M - 1, ∀, 1。
!mj = !mj +
m j
( 9) 返回 2, 输入下一组数据前重复 ( 2) ∃ ( 8)的
过程。由此可见, BP 算法的主要思路是从后向前逐层
传播输出层的误差, 并用此误差修正前层权值。
对于 BP 神经网络, 有一个重要定理, 对于任何闭
区间内的连续函数, 都可以用一个三层的 BP 网络逼
近, 本文要研究的问题就是 BP 网络的 隐层神经元个
根据上述一系列实验以及各种算法的训练速度计算量及内存需求量我们设计的bp网络net隐层神经元数目定为16输入输出层神经元数目为1隐层输出层传递函数均为tansig训练函数为traingdx用样本训练网络net训练步数为10000步目标误差0000001bp网络net经过训练达到误差精度要求逼近误差e为00044959netiw11表示隐层16个神经元和输入层1神经元之间的连接权值netlw21表示输出层1个神经元和隐层16个神经元之间的连接权值netb1表示隐层16个神经元的阈值netb2表示输出个神经元的阈值bp网络net的各项权值和阈值如下
关键词: BP 神经网络; MATLAB; 函数逼近; 多项式拟合
中图分类号: TP183
文献标识码: A
文章编号: 1006- 7167( 2008) 05- 0034- 05

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。

以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。

程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=[1:19;2:20;3:21;4:22]';YY=[1:4];XX=premnmx(XX);YY=premnmx(YY);YY%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'tra inlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 11],'maxGenTerm',gen,...'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);net.LW{2,1}=W1;net.LW{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数net.trainParam.show=1;net.trainParam.lr=1;net.trainParam.epochs=50;net.trainParam.goal=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值想运行程序,直接在代码窗口输入GABPNET即可。

基于BP神经网络的自整定PID控制的MATLAB程序代码

基于BP神经网络的自整定PID控制的MATLAB程序代码

基于BP神经网络的自整定PID控制仿真在工业控制中,PID控制是工业控制中最常用的方法。

这是因为PID控制器结构简单、实现简单,控制效果良好,已得到广泛应用。

但是,PID具有一定的局限性:被控制对象参数随时间变化时,控制器的参数难以自动调整以适应外界环境的变化。

为了使控制器具有较好的自适应性,实现控制器参数的自动调整,可以采用神经网络控制的方法。

利用人工神经网络的自学习这一特性,并结合传统的PID控制理论,构造神经网络PID控制器,实现控制器参数的自动调整。

基于BP神经网络的PID控制器结构如图1所示。

控制器由两部分组成:一是常规PID 控制器,用以直接对对象进行闭环控制,且三个参数在线整定;二是神经网络NN,根据系统的运行状态,学习调整权系数,从而调整PID参数,达到某种性能指标的最优化。

图1 基于神经网络的PID控制器结构1.设计原理神经网络采用结构为4-5-3型的BP网络,如图2。

图2 BP网络结构其中,输出层激励函数取非负的Sigmoid函数,隐层取正负对称的Sigmoid函数。

被控对象为一时变非线性对象,数学模型可表示为: 2()(1)()(1)1(1)a k y k y k u k y k -=+-+- 式中,系数a(k)是慢时变的,。

为保证控制器有一定的动态跟踪能力,选定神经网络的输入层输入为[(),(1),(2),1]T in X e k e k e k =--网络的学习过程由正向和反向传播两部分组成。

如果输出层不能得到期望输出,那么转入反向传播过程,通过修改各层神经元的权值,使得输出误差信号最小。

输出层节点分别对应三个可调参数(3)1(3)2(3)3p I D O K O K O K ⎫=⎪=⎬⎪=⎭取性能指标函数为: 21()(()())2E k r k y k =-设其中:()()()r k y k e k -=若PID 控制器采用采用增量式数字PID 控制算法,则有(3)1(3)2(3)3()()(1)()()()()2(1)(2)u k e k e k O u k e k O u k e k e k e k O ⎫∂=--⎪∂⎪⎪∂=⎬∂⎪⎪∂=--+-⎪∂⎭2.网络权系数调整网络权系数的修正采用梯度下降法。

数据预测之BP神经网络具体应用以及matlab代码

数据预测之BP神经网络具体应用以及matlab代码

数据预测之BP神经网络具体应用以及matlab代码2013-12-25 17:17 2467人阅读评论(0) 收藏举报1.具体应用实例。

根据表2,预测序号15的跳高成绩。

表2 国内男子跳高运动员各项素质指标4.4 (序号15)跳高成绩预测4.4.1 数据整理1)我们将前14组国内男子跳高运动员各项素质指标作为输入,即(30m行进跑,立定三级跳远,助跑摸高,助跑4-6步跳高,负重深蹲杠铃,杠铃半蹲系数,100m,抓举),将对应的跳高成绩作为输出。

并用matlab自带的premnmx()函数将这些数据归一化处理。

数据集:(注意:每一列是一组输入训练集,行数代表输入层神经元个数,列数输入训练集组数)P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;140 120 140 150 80 130 130 100 130 140 115 80 90 130;2.83.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.74.6;11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;50 70 50 80 50 60 65 40 65 50 50 50 70 70];T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];4.4.2 模型建立4.4.2.1 BP网络模型BP网络(Back-ProPagation Network)又称反向传播神经网络,通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子

第 4 章 神经计算基本方法(BP神经网络MATLAB仿真程序设计)例子
44
BP网络应用实例
x=imread(m,’bmp’); bw=im2bw(x,0.5); 为二值图像 [i,j]=find(bw==0); )的行号和列号 imin=min(i); )的最小行号 imax=max(i); )的最大行号 %读人训练样本图像丈件 %将读人的训练样本图像转换 %寻找二值图像中像素值为0(黑
4
BP网络学习算法
图5.5具有多个极小点的误差曲面
5
BP网络学习算法
另外一种情况是学习过程发生振荡,如图5.6所示 。 误差曲线在m点和n点的梯度大小相同,但方向相反 ,如果第k次学习使误差落在m点,而第k十1次学习 又恰好使误差落在n点。 那么按式(5.2)进行的权值和阈值调整,将在m 点和n点重复进行,从而形成振荡。
图 5.16
待分类模式
20
BP网络应用实例
解(1)问题分析 据图5.16所示两类模式可以看出,分类为简单的非 线性分类。有1个输入向量,包含2个输入元素;两 类模式,1个输出元素即可表示;可以以图5.17所 示两层BP网络来实现分类。
图 5.17
两层BP网络
21
BP网络应用实例
(2)构造训练样本集
6
BP网络学习算法
图5.6学习过程出现振荡的情况
7
BP网络的基本设计方法
BP网络的设计主要包括输人层、隐层、输出层及各 层之间的传输函数几个方面。 1.网络层数 大多数通用的神经网络都预先确定了网络的层数,而 BP网络可以包含不同的隐层。
8
BP网络的基本设计方法
但理论上已经证明,在不限制隐层节点数的情况下 ,两层(只有一个隐层)的BP网络可以实现任意非 线性映射。 在模式样本相对较少的情况下,较少的隐层节点, 可以实现模式样本空间的超平面划分,此时,选择 两层BP网络就可以了;当模式样本数很多时,减小 网络规模,增加一个隐层是必要的,但BP网络隐层 数一般不超过两层。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络的设计实例(MATLAB编程)例1 采用动量梯度下降算法训练BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本P=[-1, -2, 3, 1; -1, 1, 5, -3]; % P 为输入矢量T=[-1, -1, 1, 1]; % T 为目标矢量pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用TRAINGDM 算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高BP 网络的推广能力。

在本例中,我们采用两种训练方法,即L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。

其中,样本数据可以采用如下MATLAB 语句生成:输入矢量:P = [-1:0.05:1];目标矢量:randn(seed,78341223);T = sin(2*pi*P)+0.1*randn(size(P));解:本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223); T = sin(2*pi*P)+0.1*randn(size(P));% 绘制样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':');% 绘制不含噪声的正弦曲线echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,1],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcend% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制匹配结果曲线close all;plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。

图中的实线表示拟合曲线,虚线代表不含白噪声的正弦曲线,+点为含有白噪声的正弦样本数据点。

显然,经trainlm 函数训练后的神经网络对样本数据点实现了过度匹配,而经trainbr 函数训练的神经网络对噪声不敏感,具有较好的推广能力。

值得指出的是,在利用trainbr 函数训练BP 网络时,若训练结果收敛,通常会给出提示信息Maximum MU reached。

此外,用户还可以根据SSE 和SSW 的大小变化情况来判断训练是否收敛:当SSE 和SSW 的值在经过若干步迭代后处于恒值时,则通常说明网络训练收敛,此时可以停止训练。

观察trainbr 函数训练BP 网络的误差变化曲线,可见,当训练迭代至320 步时,网络训练收敛,此时SSE 和SSW 均为恒值,当前有效网络的参数(有效权值和阈值)个数为11.7973。

例3 采用提前停止方法提高BP 网络的推广能力。

对于和例2相同的问题,在本例中我们将采用训练函数traingdx 和提前停止相结合的方法来训练BP 网络,以提高BP 网络的推广能力。

解:在利用提前停止方法时,首先应分别定义训练样本、验证样本或测试样本,其中,验证样本是必不可少的。

在本例中,我们只定义并使用验证样本,即有验证样本输入矢量:val.P = [-0.975:.05:0.975]验证样本目标矢量:val.T = sin(2*pi*val.P)+0.1*randn(size(val.P))值得注意的是,尽管提前停止方法可以和任何一种BP 网络训练函数一起使用,但是不适合同训练速度过快的算法联合使用,比如trainlm 函数,所以本例中我们采用训练速度相对较慢的变学习速率算法traingdx 函数作为训练函数。

本例的MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量P = [-1:0.05:1];% T 为目标矢量randn('seed',78341223);T = sin(2*pi*P)+0.1*randn(size(P));% 绘制训练样本数据点plot(P,T,'+');echo offhold on;plot(P,sin(2*pi*P),':'); % 绘制不含噪声的正弦曲线echo onclcpauseclc% 定义验证样本val.P = [-0.975:0.05:0.975]; % 验证样本的输入矢量val.T = sin(2*pi*val.P)+0.1*randn(size(val.P)); % 验证样本的目标矢量pauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[5,1],{'tansig','purelin'},'traingdx');pauseclc% 设置训练参数net.trainParam.epochs = 500;net = init(net);pauseclc% 训练BP 网络[net,tr]=train(net,P,T,[],[],val);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc% 绘制仿真拟合结果曲线plot(P,A,P,T,'+',P,sin(2*pi*P),':');pause;clcecho off下面给出了网络的某次训练结果,可见,当训练至第136 步时,训练提前停止,此时的网络误差为0.0102565。

给出了训练后的仿真数据拟合曲线,效果是相当满意的。

[net,tr]=train(net,P,T,[],[],val);TRAINGDX, Epoch 0/500, MSE 0.504647/0, Gradient 2.1201/1e-006TRAINGDX, Epoch 25/500, MSE 0.163593/0, Gradient 0.384793/1e-006TRAINGDX, Epoch 50/500, MSE 0.130259/0, Gradient 0.158209/1e-006TRAINGDX, Epoch 75/500, MSE 0.086869/0, Gradient 0.0883479/1e-006TRAINGDX, Epoch 100/500, MSE 0.0492511/0, Gradient 0.0387894/1e-006TRAINGDX, Epoch 125/500, MSE 0.0110016/0, Gradient 0.017242/1e-006TRAINGDX, Epoch 136/500, MSE 0.0102565/0, Gradient 0.01203/1e-006TRAINGDX, Validation stop.例3 用BP网络估计胆固醇含量这是一个将神经网络用于医疗应用的例子。

我们设计一个器械,用于从血样的光谱组成的测量中得到血清的胆固醇含量级别,我们有261个病人的血样值,包括21种波长的谱线的数据,对于这些病人,我们得到了基于光谱分类的胆固醇含量级别hdl,ldl,vldl。

相关文档
最新文档