电磁感应,杆,双杆模型(教师版)
电磁感应中的单双杆模型
电磁感应中的单双杆问题一、单杆问题(一)与动力学相结合的问题1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度?3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd,整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初速度v,试求金属棒的最大速度?(二)与能量相结合的题型1、倾斜轨道与水平面夹角为 ,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时V,且在此过程中电阻上生成的热量为Q。
间后达到最大速度m求:(1)金属杆达到最大速度时安培力的大小(2)磁感应强度B为多少(3)求从静止开始到达到最大速度杆下落的高度2.(20分)如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。
在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。
现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。
已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。
(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h 和R2上的电功率P2。
(3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab 从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。
高二物理人教版选修32电磁感应中的“双杆问题”教案-word
电磁感应中的“双杆问题”重/难点重点:“双杆”类问题分类例析。
难点:“双杆”类问题分类例析。
重/难点分析重点分析:电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
难点分析:“双杆”类问题是电磁感应中常见的题型,也是电磁感应中的一个难道,下面对“双杆”类问题进行分类例析:1、“双杆”在等宽导轨上向相反方向做匀速运动。
当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速,当两杆分别沿相同方向运动时,相当于两个电池反向串联。
3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。
“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。
突破策略1、“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
例1. 两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B =0.2T ,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =0.25Ω,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v =5.0m/s ,如图所示。
不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为: 12E E Bdv == 由闭合电路的欧姆定律,回路中的电流强度大小为:122E E I r +=因拉力与安培力平衡,作用于每根金属杆的拉力的大小为12F F IBd ==。
高中三年级下学期物理《电磁感应双杆问题》教学设计
内容讲解例1、如图所示,间距l=0.4 m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2 T,方向垂直于斜面。
甲、乙两金属杆的电阻R相同、质量均为m=0.02 kg,垂直于导轨放置。
起初,甲金属杆处在磁场的上边界ab 上,乙在甲上方距甲也为l处。
现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5 m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2,则A.每根金属杆的电阻R=0.016 ΩB.甲金属杆在磁场中运动的时间是0.4 sC.甲金属杆在磁场中运动过程中F的功率逐渐增大D.乙金属杆在磁场运动过程中安培力的功率是0.1 W分析:乙杆匀加速a=gsin300=5m/s2两杆有相同的加速度,即相对静止,故:F=F A由运动规律知:甲杆在磁场中运动时间为t=0.4s,速度为v=2m/s随着v↑,E↑,I↑,F A↑,F↑,P F↑乙金属杆进入磁场时匀速:mgsin300=BIL且BLv=I•2R解得R=0.064Ω乙金属杆在磁场运动过程中安培力的功率是P=BIL•v=0.2w例2、如图所示,间距l=0.3m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内,在水平面a1b1b2a2区域内和倾角θ=︒37的斜面c1b1b2c2区域内分别有磁感应强度B 1=0.4T、方向竖直向上和B2=1T、方向垂直于斜面向上的匀强磁场。
电阻R=0.3Ω、质量m1=0.1kg、长为l 的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好。
一端系于K杆中点的轻绳平行于导轨绕过轻质滑轮自然下垂,绳上穿有质量m2=0.05kg的小环。
已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F作用下匀速运动。
高中物理-电磁感应中的“双杆模型”
高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。
(完整版)电磁感应中双杆模型问题答案
电磁感应中双杆模型问题一、 在竖直导轨 上的“双杆滑动”问题1.等间距型如图 1 所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒 导轨紧密接触且可自由滑动,先固定 a ,释放 b ,当 b 速度达到 10m/s 时,再释放 a ,经 1s 时间 a的速度达到 12m/s ,则:A 、 当 va=12m/s 时, vb=18m/sB 、当 va=12m/s 时, vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放 b ,后释放 a ,所以 a 、b 一开始速度是不相等的,而且 b 的速度要大于 a 的速度, 轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判 断所围线框中的感应电流的方向如图所示。
再用左手定则判断两杆所受的安培力, 对两杆进行受力分析如图 1。
开始两 者的速度都增大,因安培力作用使 a 的速度增大的快, b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了 感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作 用下向下做加速度为 g 的匀加速直线运动。
在释放 a 后的 1s 内对 a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的, 设在 1s 内它的冲量大小都为 I ,选向下的方向为正方向。
当 棒先向下运动时, 在 和 以及导轨所组成的闭合回路中产生感应电流, 于是 棒受到向下的安培力, 棒受到向 上的安培力,且二者大小相等。
释放 棒后,经过时间 t ,分别以 和 为研究对象,根据动量定理,则有:对 a 有: ( mg + I ) t ·= m v a0,对 b 有: ( mg - I ) t · = m v b - m v b0 联立二式解得: v b = 18 m/s ,正确答案为: A 、 C 。
电磁感应中的“杆+导轨”模型
电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。
根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。
需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。
举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。
根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。
加速度随速度增大而减小,最终特征为匀速运动。
在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。
需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。
1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。
整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。
重力加速度为g,导轨电阻不计,杆与导轨接触良好。
求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。
高中物理电磁感应双杆模型.docx
电磁感应双杆模型学生姓名:年级:老师:上课日期:时间:课次:磁感力学分析1.受力情况、运情况的分析及思考路体受力运生感→感流→通体受安培力→合力化→加速度化→速度化→感化→⋯周而复始地循,直至最达到定状,此加速度零,而体通加速达到最大速度做匀速直运或通减速达到定速度做匀速直运.2.解决此的基本思路解决磁感中的力学的一般思路是“先后力”.(1) “源”的分析——分离出路中由磁感所生的源,求出源参数 E 和 r ;(2)“路”的分析——分析路构,弄清串、并关系,求出相关部分的流大小,以便求解安培力;(3)“力”的分析——分析研究象( 常是金属杆、体圈等 ) 的受力情况,尤其注意其所受的安培力;(4)“运”状的分析——根据力和运的关系,判断出正确的运模型.3.两种状理(1)体于平衡——静止状或匀速直运状.理方法:根据平衡条件 ( 合外力等于零 ) ,列式分析.(2)体于非平衡——加速度不零.理方法:根据牛第二定律行分析或合功能关系分析.4.磁感中的力学界(1)解决的关是通运状的分析找程中的界状,如由速度、加速度求最大或最小的条件.(2)基本思路注意当体切割磁感运存在界条件:(1)若体初速度等于界速度,体匀速切割磁感;(2)若体初速度大于界速度,体先减速,后匀速运;(3)若导体初速度小于临界速度,导体先加速,后匀速运动.1、【平行等距无水平外力】如所示,两根足的固定的平行金属位于同一水平面内,两的距离L,上面横放着两根体棒ab 和 cd,构成矩形回路,两根体棒的量皆m,阻皆R,回路中其余部分的阻可不.在整个平面内都有直向上的匀磁,磁感度B.两体棒均可沿无摩擦地滑行,开始,棒cd 静止,棒ab 有指向棒cd 的初速度v0,若两体棒在运中始不接触,求:( 1)在运动中产生的焦耳热最多是多少?( 2)当ab 棒的速度变为初速度的3/4时, cd棒的加速度是多少?2、【平行不等间距无水平外力】如图所示,光滑导轨EF、 GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
电磁感应中的“三类模型问题”
第2讲|电磁感应中的“三类模型问题”┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄考法学法电磁感应的动力学和能量问题是历年高考的热点和难点,考查的题型一般包括“单杆”模型、“双杆”模型或“导体框”模型,考查的内容有:①匀变速直线运动规律;②牛顿运动定律;③功能关系;④能量守恒定律;⑤动量守恒定律。
解答这类问题时要注意从动力学和能量角度去分析,根据运动情况和能量变化情况分别列式求解。
用到的思想方法有:①整体法和隔离法;②全程法和分阶段法;③条件判断法;④临界问题的分析方法;⑤守恒思想;⑥分解思想。
模型(一)电磁感应中的“单杆”模型类型1“单杆”——水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒ab的质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时刻测得导体棒ab的速度为v,由牛顿第二定律知导体棒ab的加速度为a=Fm-B2L2vmR,a、v同向,随速度的增加,导体棒ab的加速度a减小,当a=0时,v最大,I=BL v mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化[例1](2018·安徽联考)如图所示,光滑平行金属导轨P Q、MN固定在光滑绝缘水平面上,导轨左端连接有阻值为R的定值电阻,导轨间距为L,有界匀强磁场的磁感应强度大小为B、方向竖直向上,边界ab、cd均垂直于导轨,且间距为s,e、f分别为ac、bd的中点,将一长度为L、质量为m、阻值也为R的金属棒垂直导轨放置在ab左侧12s处。
现给金属棒施加一个大小为F、方向水平向右的恒力,使金属棒从静止开始向右运动,金属棒向右运动过程中始终垂直于导轨并与导轨接触良好。
当金属棒运动到ef位置时,加速度刚好为零,不计其他电阻。
求:(1)金属棒运动到ef 位置时的速度大小;(2)金属棒从初位置运动到ef 位置,通过金属棒的电荷量; (3)金属棒从初位置运动到ef 位置,定值电阻R 上产生的焦耳热。
电磁感应之双杆模型ppt课件
c
2019 -
b
20
等距双棒特点分析
1.电路特点 棒2相当于电源;棒1受安培力而加 速起动,运动后产生反电动势. 2.电流特点
v0 1 2
Blv2 Blv1 Bl( v2 v1 ) I R1 R2 R1 R2
随着棒2的减速、棒1的加速,两棒的相对速 度v2-v1变小,回路中电流也变小。 两 个 极 值
2019 2
一、给某杆初速度条件稳定状态分析 1.平行等间距双杆
2019
-
3
2019
-
4
图像分析:
动量分析:
mv0 2mv
1 1 2 2 Q mv 0 2 mv 2 2
5
能量分析:
2019
2.平行不等间距双杆
2019
-
6
图像分析:
_
动量分析:
2 B I Lt mv1 mv0
2019
-
30
解析:因先释放b,后释放a,所以a、b一开始速度是不 相等的,而且b的速度要大于a的速度,这就使a、b和 导轨所围的线框面积增大,使穿过这个线圈的磁通量 发生变化,使线圈中有感应电流产生,利用楞次定律 和安培定则判断所围线框中的感应电流的方向如图所 示。再用左手定则判断两杆所受的安培力,对两杆进 行受力分析如图1。开始两者的速度都增大,因安培力 作用使a的速度增大的快,b的速度增大的慢,线圈所 围的面积越来越小,在线圈中产生了感应电流;当二 者的速度相等时,没有感应电流产生,此时的安培力 也为零,所以最终它们以相同的速度都在重力作用下 向下做加速度为g的匀加速直线运动。
2019
-
27
解析: (1)ab棒由静止从M滑下到N的过程中,只有重力 做功,机械能守恒,所以到N处速度可求,进而可 求ab棒切割磁感线时产生的感应电动势和回路中 的感应电流。 ab棒由M下滑到N过程中,机械能守恒,故有
电磁感应中的双杆问题
匀速运动,v
m=m
gRsin B2L2
α
(2)双杆模型 ①模型特点 a.一杆切割时,分析同单杆类似。 b.两杆同时切割时,回路中的感应电动势由两杆共同决定,E=ΔΔΦt =Bl(v1-v2)。
a.初速度不为零,不受其他水平外力的作用 光滑的平行导轨
光滑不等距导轨
示意图
质量m1=m2电阻r1=r2长度L1= L2
第四章 电磁感应
电磁感应中的双杆问题
模型一(v0≠0) 模型二(v0=0) 模型三(v0=0) 模型四(v0=0)
示 意 图
单 杆 ab 以 一 定 初速度 v0 在光 滑水平轨道上
轨道水平光 滑,单杆 ab 质 量为 m,电阻
轨道水平光 滑,单杆 ab 质 量为 m,电阻 不计,两导轨
轨道水平光 滑 , 单 杆 aห้องสมุดไป่ตู้ 质量为 m,电 阻不计,两导
E = BLv↑ ⇒ I↑⇒安培力 F 安=BIL↑,由 F -F 安=ma 知 a↓ ,当 a = 0
⇒感应电动势 E=BLv↑, 经过 Δt 速度为 v+Δv,此时 感 应 电 动 势 E′ = BL(v + Δv),Δt 时间内流入电容器的 电荷量 Δq=CΔU=C(E′-
E)=CBLΔv,电流 I=ΔΔqt = CBLΔΔvt =CBLa,安培力 F 安
⑵整个运动过程中感应电流
最多产生了多少热量;
⑶当杆A2与杆A1的速度比为 1∶3时,A2受到的安培力大小。
3.如图所示,两根平行的金属导轨,固定在同一水平面上, 磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导 轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两 根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无 摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆 的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。 现有一与导轨平行、大小为0.20N的恒力F作用于金属杆 甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的 加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?
第四章 电磁感应专题5—电磁感应双杆模型
第四章电磁感应专题(五)—电磁感应双杆模型班级:姓名:1.初速度不为零,不受其他水平外力的作用例1.间距为L=2 m的足够长的金属直角导轨如图3所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m=0.1 kg的金属细杆ab、cd与导轨垂直放置形成闭合回路.细杆与导轨之间的动摩擦因数均为μ=0.5,导轨的电阻不计,细杆ab、cd接入电路的电阻分别为R1=0.6 Ω,R2=0.4 Ω.整个装置处于磁感应强度大小为B=0.50 T、方向竖直向上的匀强磁场中(图中未画出).当ab杆在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动,且t=0时,F=1.5 N.g=10 m/s2.(1)求ab杆的加速度a的大小;(2)求当cd杆达到最大速度时ab杆的速度大小;(3)若从开始到cd杆达到最大速度的过程中拉力F做的功为5.2 J,求该过程中ab杆所产生的焦耳热.例2.如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计。
质量分别为m 和12m 的金属棒b 和c 静止放在水平导轨上,b 、c 两棒均与导轨垂直。
图中de 虚线往右有范围足够大、方向竖直向上的匀强磁场。
质量为m 的绝缘棒a 垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h 。
已知绝缘棒a 滑到水平导轨上与金属棒b 发生弹性正碰,金属棒b 进入磁场后始终未与金属棒c 发生碰撞。
重力加速度为g ,求:(1)绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; (2)金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小;(3)两金属棒b 、c 上最终产生的总焦耳热。
例3.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l 。
导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示。
两根导体棒的质量皆为m ,电阻皆为R ,回路中其它部分的电阻可不计。
(完整版)电磁感应中双杆模型问题答案
电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。
再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。
开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。
在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。
当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。
释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。
在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。
高考物理一轮总复习 第十章 电磁感应 专题强化8 电磁感应中的“杆——轨”模型课件 新人教版
内有垂直于斜面的匀强磁场(图中未画出),磁感应强度大小为B;
在时区间域t变Ⅱ化内的有规垂律直如于图斜乙面所向示下。的t=匀0强时磁刻场在,轨其道磁上感端应的强金度属大细小棒Bab1随从
图示位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd也从
位于区域Ⅰ内的导轨上由静止释放。在ab棒运动到区域Ⅱ的下边界
(3)经分析可知,ab 棒的质量也为 m,ab 棒在区域Ⅱ中运动的整个过程中, 由能量守恒定律有
Q2=mg·2Lsinθ 经分析可知,ab 棒在区域Ⅱ中的运动时间与其进入区域Ⅱ前的运动时间相 同,即 t1=t2=2vLx ,全过程中电流不变,故 ab 棒在进入区域Ⅱ前回路产生的热量 为 Q1=Q2 又 Q=Q1+Q2 联立解得 Q=4mgLsinθ
[解析] (1)由楞次定律可知,ab 棒在区域Ⅱ内运动的过程中,通过 cd 棒的 电流方向由 d→c,由于 cd 棒保持静止,结合左手定则可以判断,区域Ⅰ内磁场 的方向垂直于斜面向上,
F 安=BIL,F 安=mgsinθ 又 P=I2R 解得 P=m2gB2R2Ls2in2θ (2)对 ab 棒,由法拉第电磁感应定律有2Bt-x B·(L×2L)=BLtxgsinθ,ab 棒开 始下滑的位置到区域Ⅱ的上边界的距离为 x1=12gsinθ·t2x,又 x=x1+2L 解得 x=3L
• ①作用于ab的恒力(F)的功率: • P=Fv=0.6×7.5W=4.5W • ②电阻(R+r)产生焦耳热的功率: • P′=I′2(R+r)=1.52×(0.8+0.2)W=2.25W • ③逆时针方向的电流I′,从电池的正极流入,负极流出,电池处于
“充电”状态,吸收能量,以化学能的形式储存起来。电池吸收能 量的功率:P″=I′E=1.5×1.5W=2.25W。 • 答案:(1)6m/s2 3.75m/s (2)0.6N 见解析
高考物理电磁感应双杆模型
⑵求金属杆AB刚滑到上层导轨瞬间,上层导轨和金属杆组成的回路中的电流
⑶问从AB滑到上层导轨到具有最终速度这段时间里上层导轨回路中有多少能量转变为内能?
解:⑴开关闭合后,有电流通过AB棒,在安培力F作用下获得加速度,离开下层
轨道时速度为v0,由动量定理,得 ⑴
AB棒在半圆轨上运动时,机械能守恒,则 ⑵
(1)∵L1与L2串联 ∴流过L2的电流为:I=A ①
L2所受安培力为F′=BdI=0。2N ② m/s2③
评分标准:①②③式每式各2分。
(2)当L2所受安培力F安=F时,棒有最大速度vm,此时电路中电流为Im、则F安=Bd Im④
Im= ⑤F安=F⑥ 由④⑤⑥式得vm=m/s ⑦
评分标准:④⑤⑥式每式1分,⑦式2分。
解析:当两棒的速度稳定时,回路中的感应电流为零,设导体棒
ef的速度减小到v1, 导体棒gh的速度增大到v2,
则有2BLv1—BLv2=0,即v2=2v1。
对导体棒ef由动量定理得:
对导体棒gh由动量定理得:。
由以上各式可得:、
3、磁场方向与导轨平面不垂直
4。如图所示,ab和cd是固定在同一水平面内的足够长平行金属导轨,ae和cf是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。已知磁场的磁感应强度为B,导轨间距为L,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m,电阻均为R。不计导轨电阻和一切摩擦。现用一水平恒力F作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。忽略感应电流之间的作用,试求:
高中物理电磁感应双杆模型 ()
电磁感应双杆模型学生姓名:年级:老师:上课日期:时间:课次:电磁感应动力学分析1.受力情况、运动情况的动态分析及思考路线导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→…周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动.2.解决此类问题的基本思路解决电磁感应中的动力学问题的一般思路是“先电后力”.(1)“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;(2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.3.两种状态处理(1)导体处于平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零),列式分析.(2)导体处于非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.4.电磁感应中的动力学临界问题(1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件.(2)基本思路注意当导体切割磁感线运动存在临界条件时:(1)若导体初速度等于临界速度,导体匀速切割磁感线;(2)若导体初速度大于临界速度,导体先减速,后匀速运动;(3)若导体初速度小于临界速度,导体先加速,后匀速运动.1、【平行等间距无水平外力】如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?2、【平行不等间距无水平外力】如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。
电磁感应之双杆模型
mbv0 (mb mc )v
解得c棒的最大速度为:
v
mb mb mc
v0
1 2
v0
5m
s
B
N M
c
b
5.几种变化:
(1)初速度的提供方式不同 (2)磁场方向与导轨不垂直
m
B
M
m
FB
h
v0
1
2
(3)两棒都有初速度
v1
v2
1
2
(4)两棒位于不同磁场中
e
O1 c
B2 f
v0
B1 O2 d
例2:如图所示,两根间距为l的光滑金属导轨(不计电 阻),由一段圆弧部分与一段无限长的水平段部分组 成.其水平段加有竖直向下方向的匀强磁场,其磁感 应强度为B,导轨水平段上静止放置一金属棒cd,质量 为2m,电阻为2r.另一质量为m,电阻为r的金属棒ab, 从圆弧段M处由静止释放下滑至N处进入水平段,圆 弧段MN半径为R,所对圆心角为60°,求:
R1
Q2 R2
解析:(1)刚开始运动时回路中的感应电流为:
I E Blv0 1 0.510 2.5A
Rb Rc Rb Rc
11
刚开始运动时C棒的加速度最大:
a
BIl mc
1 2.5 0.5 0.1
12.5 m s2
B
N M
c
b
(2)在磁场力的作用下,b棒做减速运动,当两棒速 度相等时,c棒达到最大速度。取两棒为研究对象, 根据动量守恒定律有:
析
加速运动 加速运动
速 度 图 象
解 动量守恒定律, 动量定理,能量 动量定理,能量 动量定理,能
题 能量守恒定律及 守恒定律及电磁 守恒定律及电 量守恒定律及
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章冲刺985深化内容电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型)电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:模型一 单杆+电阻+导轨模型[初建模型][母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
[思路点拨][解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下。
(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+12mv m 2又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θB 4L 4。
[答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2,方向沿导轨平面向下 (2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4[内化模型]单杆+电阻+导轨四种题型剖析杆以速度v 切割图像观点能量观点动能全部转化为内能:Q =12mv 02 F 做的功一部分转化为杆的动能,一部分转化为内能:W F =Q+12mvm 2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:W G =Q +12mv m 2重力做的功(或减少的重力势能)一部分转化为杆的动能,一部分转化为内能:W G =Q +12mv m 2[应用模型][变式] 此题若已知金属杆与导轨之间的动摩擦因数为μ。
现用沿导轨平面向上的恒定外力F 作用在金属杆cd 上,使cd 由静止开始沿导轨向上运动,求cd 的最大加速度和最大速度。
解析:分析金属杆运动时的受力情况可知,金属杆受重力、导轨平面的支持力、拉力、摩擦力和安培力五个力的作用,沿斜面方向由牛顿第二定律有F -mg sin θ-F 安-f =ma又F 安=BIL ,I =ER +R =BLvR +R ,所以F 安=BIL =B 2L 2vR +Rf =μN =μmg cos θ故F -mg sin θ-B 2L 2vR +R-μmg cos θ=ma当速度v =0时,杆的加速度最大,最大加速度a m =Fm -g sin θ-μg cos θ,方向沿导轨平面向上当杆的加速度a =0时,速度最大, v m =F -mg sin θ-μmg cos θ·2RB 2L 2。
答案:见解析模型二 单杆+电容器(或电源)+导轨模型[初建模型][母题] (2017·北京模拟)如图所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。
一质量为m 的导体棒cd 垂直于MN 、PQ 放在轨道上,与轨道接触良好。
轨道和导体棒的电阻均不计。
(1)如图1所示,若轨道左端M 、P 间接一阻值为R 的电阻,导体棒在拉力F 的作用下以速度v 沿轨道做匀速运动。
请通过公式推导证明:在任意一段时间Δt 内,拉力F 所做的功与电路获得的电能相等。
(2)如图2所示,若轨道左端接一电动势为E 、内阻为r 的电源和一阻值未知的电阻,闭合开关S ,导体棒从静止开始运动,经过一段时间后,导体棒达到最大速度v m ,求此时电源的输出功率。
(3)如图3所示,若轨道左端接一电容器,电容器的电容为C ,导体棒在水平拉力的作用下从静止开始向右运动。
电容器两极板间电势差随时间变化的图像如图4所示,已知t 1时刻电容器两极板间的电势差为U 1。
求导体棒运动过程中受到的水平拉力大小。
[思路点拨](1)导体棒匀速运动→受力平衡→求出拉力做的功。
导体棒切割磁感线产生感应电动势→产生感应电流→求出回路的电能。
(2)闭合开关S →导体棒变加速运动→产生的感应电动势不断增大→达到电源的路端电压→棒中没有电流→由此可求出电源与电阻所在回路的电流→电源的输出功率。
(3)导体棒在外力作用下运动→回路中形成充电电流→导体棒还受安培力的作用→由牛顿第二定律列式分析。
[解析] (1)导体棒切割磁感线,E =BLv 导体棒做匀速运动,F =F 安 又F 安=BIL ,其中I =ER在任意一段时间Δt 内,拉力F 所做的功W =Fv Δt =F 安v Δt =B 2L 2v 2R Δt电路获得的电能ΔE =qE =EI Δt =B 2L 2v 2RΔt可见,在任意一段时间Δt 内,拉力F 所做的功与电路获得的电能相等。
(2)导体棒达到最大速度v m 时,棒中没有电流,电源的路端电压U =BLv m 电源与电阻所在回路的电流I =E -Ur电源的输出功率P =UI =EBLv m -B 2L 2v m 2r。
(3)感应电动势与电容器两极板间的电势差相等BLv =U 由电容器的U -t 图可知U =U 1t 1t 导体棒的速度随时间变化的关系为v =U 1BLt 1t可知导体棒做匀加速直线运动,其加速度a =U 1BLt 1由C =Q U 和I =Q t ,得I =CU t =CU 1t 1由牛顿第二定律有F -BIL =ma 可得F =BLCU 1t 1+mU 1BLt 1。
[答案] 见解析[内化模型]单杆+电容器(或电源)+导轨四种题型剖析S 闭合,杆cd 受开始时a =g sin 开始时a =g ,杆F做的功一部分重力做的功一部重力做的功一部[变式]母题第(3)问变成,图3中导体棒在恒定水平外力F作用下,从静止开始运动,导轨与棒间的动摩擦因数为μ,写出导体棒的速度大小随时间变化的关系式。
解析:导体棒由静止开始做加速运动,电容器所带电荷量不断增加,电路中将形成充电电流,设某时刻棒的速度为v,则感应电动势为E=BLv电容器所带电荷量为Q=CE=CBLv再经过很短一段时间Δt,电容器两端电压的增量和电荷量的增量分别为ΔU=ΔE=BLΔvΔQ=CΔU=CBLΔv流过导体棒的电流I=ΔQΔt=CBLΔvΔt=CBLa导体棒受到的安培力f1=BIL=CB2L2a 导体棒所受到的摩擦力f2=μmg由牛顿第二定律得F-f1-f2=ma联立以上各式解得a=F-μmgm+CB2L2显然导体棒做匀加速直线运动,所以导体棒的速度大小随时间变化的关系式为v=F-μmgm+CB2L2t。
答案:v=F-μmgm+CB2L2t模型三双杆+导轨模型[初建模型][母题](1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l,两根质量均为m、电阻均为R的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。
在t=0时刻,两杆都处于静止状态。
现有一与导轨平行,大小恒为F的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。
(2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab和cd,构成矩形回路。
在整个导轨平面内都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。
开始时,棒cd静止,棒ab有指向棒cd的初速度。
若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况。
[思路点拨](1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断。
(2)导体棒ab运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况即可得出结论。
[解析](1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为E=Bl(v1-v2)①感应电流为I=E2R②对甲和乙分别由牛顿第二定律得F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大。
(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流。
ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速。
两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动。
[答案]见解析[内化模型]三大观点透彻解读双杆模型动,最后两棒以相同的速度做匀速直线运动两棒以相同的加速度做匀加速直线运动外力做的功=棒1的动能+棒2的动能+焦耳热[应用模型][变式] 若母题(1)中甲、乙两金属杆受恒力作用情况如图所示,两杆分别在方向相反的恒力作用下运动(两杆不会相撞),试分析这种情况下甲、乙金属杆的收尾运动情况。
解析:设某时刻甲和乙的速度分别为v 1和v 2,加速度分别为a 1和a 2,甲、乙受到的安培力大小均为F 1,则感应电动势为E =Bl (v 1-v 2) ①感应电流为I =E2R②对甲和乙分别应用牛顿第二定律得 F 1-BIl =ma 1,BIl -F 2=ma 2 ③ 当v 1-v 2=定值(非零),即系统以恒定的加速度运动时a 1=a 2 ④ 解得a 1=a 2=F 1-F 22m⑤可见甲、乙两金属杆最终做加速度相同的匀加速运动,速度一直增大。
答案:见解析[提能增分集训] 1.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l =0.5 m ,左端接有阻值R =0.3 Ω的电阻。
一质量m =0.1 kg 、电阻r =0.1 Ω的金属棒MN 放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B =0.4 T 。
棒在水平向右的外力作用下由静止开始以a =2 m/s 2的加速度做匀加速运动,当棒的位移x =9 m 时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q 1∶Q 2=2∶1。