T检验及其与方差分析的区别

合集下载

统计学中的方差分析与t检验的比较

统计学中的方差分析与t检验的比较

统计学中的方差分析与t检验的比较统计学是研究收集、整理、分析和解释数据的一门学科。

在统计学中,方差分析和t检验是两种常见的统计方法,用于比较不同样本或处理之间的差异。

本文将对方差分析和t检验进行比较,包括原理、适用场景和统计结果的解释。

一、方差分析方差分析(Analysis of Variance,简称ANOVA)是一种用于比较两个或多个样本均值是否存在显著性差异的方法。

它将总体方差拆解为组内方差和组间方差,然后通过比较组间方差与组内方差的大小来判断样本均值是否存在显著性差异。

方差分析适用于多个组之间的比较。

例如,一个实验研究了三种不同肥料对植物生长的影响,将植物分为三组分别使用不同的肥料,然后通过比较植物生长的指标来确定肥料是否有显著影响。

方差分析的统计结果通常包括F值、P值和自由度。

F值表示组间方差与组内方差的比值,P值则用于判断差异是否显著。

如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,即认为样本均值之间存在显著性差异。

二、t检验t检验(t-test)是一种用于比较两个样本均值是否存在显著性差异的方法。

它通过计算两个样本的均值差异与其标准误差的比值,来判断样本均值之间是否存在统计学上的显著性差异。

t检验适用于两个组之间的比较。

例如,一个实验想要比较男性和女性在某种认知任务上的得分是否存在显著差异,可以使用t检验来进行分析。

与方差分析不同,t检验的统计结果通常包括t值、P值和自由度。

t 值表示样本均值差异与标准误差的比值,P值用于判断差异是否显著。

同样地,如果P值小于设定的显著性水平(通常是0.05),则可以拒绝原假设,认为样本均值之间存在显著性差异。

三、方差分析与t检验的比较方差分析和t检验都是用于比较不同样本或处理之间差异的统计方法,但适用场景和分析过程略有不同。

首先,方差分析适用于多个组之间的比较,而t检验适用于两个组之间的比较。

当只有两个组时,可以选择使用方差分析或t检验,但一般情况下,t检验更常见。

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

sas第九章 t检验和方差分析

sas第九章 t检验和方差分析

第九章 t 检验和方差分析在科研中,我们往往是根据样本之间的差异,去推断其总体之间是否有差异。

样本差异可能是由抽样误差所致,也可能是由本质的不同所致。

应用统计学方法来处理这类问题,称为“差异的显著性检验”。

若已知总体为正态分布,进行差异的显著性检验,称为“参数性检验”,SAS 中MEANS 、TTEST 、ANOVA 、GLM 等均属此类检验;若未知总体分布,进行差异的显著性检验,称为“非参数性检验”,SAS 中采用NPAR1WAY 过程。

第一节 t 检验9.1.1 简介t 检验是用于两组数据均值间差异的显著性检验。

它常用于以下场合:1.样本均值与总体(理论)均值差别的显著性检验检验所测得的一组连续资料是否抽样于均值已知的总体根据大量调查的结果或以往的经验,可得到某事物的平均数(例如生理生化的正常值),以此作总体均值看待。

SAS 中采用MEANS 过程,计算出观察与总体均值的差值,再对该差值的均值进行t 检验。

2.同一批对象实验前后差异的显著性检验(自身对照比较)或配对资料差异的显著性检验(配对比较检验)比如,在医学研究中,我们常常对同一批病人治疗前后的某些生理生化指标(如血压、体温等)进行测量,以观察疗效;或对同一批人群进行预防接种,以观察预防效果;或把实验对象配成对进行测定,比较其实验结果。

SAS 中采用MEANS 过程,计算出两样本观察的差值(如治疗前、后实验数据的差值),再对该差值的均值进行t 检验。

3.两样本均值差异的显著性检验作两样本均值差异比较的两组原始资料各自独立,没有成对关系。

两组样本所包含的个数可以相等,也可以不相等。

每组观测值都是来自正态总体的样本。

设1X 与2X 为两样本的均值,1n 与2n 为两样本数,21s ,22s 为两样本方差,分两种情形,其数学模型为:(1)方差齐(相等)时:)/1/1(21221n n s x x t +-=)2/(])1()1[(212222112-+-+-=n n s n s n s(2)方差不齐时: 22212121//n s n s x x t +-=SAS 中采用TTEST 过程,先作方差齐性检验(F 检验),然后根据方差齐(EQUAL)和方差不齐(UNEQUAL)输出t 值和P 值以及基本统计量。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中时常会用到百般考验,怎么样知讲何时用什么考验呢,根据分离自己的处事去道一道:之阳早格格创做t考验有单样本t考验,配对于t考验战二样本t考验.单样本t考验:是用样本均数代表的已知总体均数战已知总体均数举止比较,去瞅察此组样本与总体的好别性.配对于t考验:是采与配对于安排要领瞅察以下几种情形,1,二个共量受试对于象分别交受二种分歧的处理;2,共一受试对于象交受二种分歧的处理;3,共一受试对于象处理前后.u考验:t考验战便是统计量为t,u的假设考验,二者均是罕睹的假设考验要领.当样本含量n较大时,样本均数切合正态分散,故可用u考验举止分解.当样本含量n小时,若瞅察值x切合正态分散,则用t考验(果此时样本均数切合t 分散),当x为已知分散时应采与秩战考验.F考验又喊圆好齐性考验.正在二样本t考验中要用到F考验.从二钻研总体中随机抽与样本,要对于那二个样本举止比较的时间,最先要估计二总体圆好是可相共,即圆好齐性.若二总体圆好相等,则曲交用t考验,若没有等,可采与t'考验或者变量变更或者秩战考验等要领.其中要估计二总体圆好是可相等,便不妨用F考验.简朴的道便是考验二个样本的圆好是可有隐著性好别那是采用何种T考验(等圆好单样本考验,同圆好单样本考验)的前提条件.正在t考验中,如果是比较大于小于之类的便用单侧考验,等于之类的问题便用单侧考验.卡圆考验是对于二个或者二个以上率(形成比)举止比较的统计要领,正在临床战医教真验中应用格外广大,特天是临床科研中许多资料是记数资料,便需要用到卡圆考验.圆好分解用圆好分解比较多个样本均数,可灵验天统造第一类过失.圆好分解(analysis of variance,ANOVA)由英国统计教家R.A.Fisher最先提出,以F命名其统计量,故圆好分解又称F考验.其手段是估计二组或者多组资料的总体均数是可相共,考验二个或者多个样本均数的好别是可有统计教意思.咱们要教习的主要真量包罗单果素圆好分解即真足随机安排或者成组安排的圆好分解(oneway ANOVA):用途:用于真足随机安排的多个样本均数间的比较,其统计估计是估计百般本所代表的各总体均数是可相等.真足随机安排(completely random design)没有思量个体好别的做用,仅波及一个处理果素,但是不妨有二个或者多个火仄,所以亦称单果素真验安排.正在真验钻研中按随机化准则将受试对于象随机调配到一个处理果素的多个火仄中去,而后瞅察各组的考查效力;正在瞅察钻研(考察)中按某个钻研果素的分歧火仄分组,比较该果素的效力.二果素圆好分解即配伍组安排的圆好分解(twoway ANOVA):用途:用于随机区组安排的多个样本均数比较,其统计估计是估计百般本所代表的各总体均数是可相等.随机区组安排思量了个体好别的做用,可分解处理果素战个体好别对于真验效力的做用,所以又称二果素真验安排,比真足随机安排的考验效用下.该安排是将受试对于象先按配比条件配成配伍组(如动物真验时,可按共窝别、共性别、体沉相近举止配伍),每个配伍组有三个或者三个以上受试对于象,再按随机化准则分别将各配伍组中的受试对于象调配到各个处理组.值得注意的是,共一受试对于象分歧时间(或者部位)沉复多次丈量所得到的资料称为沉复丈量数据(repeated measurement data),对于该类资料没有克没有及应用随机区组安排的二果素圆好分解举止处理,需用沉复丈量数据的圆好分解.圆好分解的条件之一为圆好齐,即各总体圆好相等.果此正在圆好分解之前,应最先考验百般本的圆好是可具备齐性.时常使用圆好齐性考验(test for homogeneity of variance)估计各总体圆好是可相等.本节将介绍多个样本的圆好齐性考验,本法由Bartlett于1937年提出,称Bartlett法.该考验要领所估计的统计量遵循分散.通过圆好分解若中断了考验假设,只可证明多个样本总体均数没有相等或者没有齐相等.若要得到各组均数间更仔细的疑息,应正在圆好分解的前提上举止多个样本均数的二二比较.。

t检验、u检验、卡方检验、F检验、方差分析

t检验、u检验、卡方检验、F检验、方差分析

统计中经常会用到各种检验,如何知道何时用什么检验呢,根据结合自己的工作来说一说:t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

u检验:t检验和就是统计量为t,u的假设检验,两者均是常见的假设检验方法。

当样本含量n较大时,样本均数符合正态分布,故可用u检验进行分析。

当样本含量n小时,若观察值x符合正态分布,则用t检验(因此时样本均数符合t分布),当x为未知分布时应采用秩和检验。

F检验又叫方差齐性检验.在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。

若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验.简单的说就是检验两个样本的方差是否有显著性差异这是选择何种T检验(等方差双样本检验,异方差双样本检验)的前提条件。

在t检验中,如果是比较大于小于之类的就用单侧检验,等于之类的问题就用双侧检验。

卡方检验是对两个或两个以上率(构成比)进行比较的统计方法,在临床和医学实验中应用十分广泛,特别是临床科研中许多资料是记数资料,就需要用到卡方检验。

方差分析用方差分析比较多个样本均数,可有效地控制第一类错误。

方差分析(analysis of variance,ANOVA)由英国统计学家R.A。

Fisher首先提出,以F命名其统计量,故方差分析又称F检验.其目的是推断两组或多组资料的总体均数是否相同,检验两个或多个样本均数的差异是否有统计学意义。

我们要学习的主要内容包括单因素方差分析即完全随机设计或成组设计的方差分析(one-way ANOVA):用途:用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

T检验及单因素方差分析

T检验及单因素方差分析

T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。

本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。

一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。

T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。

T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。

二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。

1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。

2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。

3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。

三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。

1.独立样本T检验:适用于两个独立的样本均值比较。

计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。

2.配对样本T检验:适用于两个相关的样本均值比较。

计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。

四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。

它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。

单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。

五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

医学论文中常见的统计方法误用一、等级资料用卡方检验代替秩和检验卡方检验主要用于计数资料的显著性检验。

SPSS中的卡方检验、t检验和方差分析

SPSS中的卡方检验、t检验和方差分析

SPSS中的卡⽅检验、t检验和⽅差分析
⾸先要明⽩两个概念:
计数资料和计量资料
(1)计数资料⼜称为定性资料:是分类型的,统计每个类型有多少数量。

(2)计量资料⼜称为定量资料:⽐如年龄,是有具体的数值。

根据数据的类型,使⽤不同的⽅法:
(1)对于计量资料。

秩和检验在国内的⽂章中很少见到。

当数据只有两组进⾏对⽐的时候,使⽤t检验和⽅差分析都可以。

但是有两组或者两组以上的时候,使⽤⽅差检验。

(2)对于计数资料,使⽤卡⽅分析,卡⽅分析⽤于⽐较,不同组之间,不同数量是否有差异。

⽐如,⽐较两组,男⽣⼈数和⼥⽣⼈数是否有差距。

独⽴样本t检验:两独⽴样本t检验就是根据样本数据对两个样本来⾃的两独⽴总体的均值是否有显著差异进⾏推断;进⾏两独⽴样本t检验的条件是,两样本的总体相互独⽴且符合正态分布;
⽐如:A组和B组,⽐较A组⼈的⾝⾼和B组⼈的⾝⾼是否有差异。

配对样本t检验-:配对样本是指对同⼀样本进⾏两次测试所获得的两组数据,或对两个完全的样本在不同条件下进⾏测试所得到的两组数据;两独⽴样本t检验就是根据样本数据对两个配对样本来⾃的两配对总体的均值是否有显著差异进⾏推断;两配对样本t检验的前提条件:两样本是配对的(数量⼀样,顺序不能变),服从正态分布。

⽐如:实验组A组中,实验前后,变化的对⽐。

t检验与方差分析

t检验与方差分析
• 主效应(main effect) • 交互效应(interaction)
• 注意
• 主效应显著,而交互作用不显著。交互作用显著, 而主效应不显著都是正常的。
• 避免只有统计的显著性而没有实用的显著性
– 解释量或效应量effect size, ajusted R2
• 因变量由自变量解释的百分比,6%,16%
几种方差分析的区别
• 组间,被试间
– ANOVA
• 单因素方差分析,如只有两个水平也可以做t检验
-Univariate
• 单因素或多因素方差分析 • 如交互作用显著,做简单效应比较
• 组内(被试内)混合实验设计
– Repeated measures
Post hoc
• 当某个因素的水平多于2个时,做事后多重 比较
– 季节对植物生长率的影响
• Test of sphericity(球形检验)
– Assumed: tests of within-subjects effects
– Not assumed: tests of within-subjects effects greenhouse or mutivariate(多元分析)
结果描述
• 对射击成绩进行2(枪支类型,手枪与步枪)*2 (靶子类型,移动靶与固定靶)两因素重复测量 方差分析。
• 结果发现:枪支类型主效应显著, F(1,29)=592.173, p= <0.001,步枪射击成绩显著 高于手枪射击成绩。靶子类型主效应显著, F(1,29)=69.781, p <0.001 ,移动靶的成绩显著 高于固定靶的成绩。两因素交互作用不显著, F(1,29)=1.384,p=0.249。
3步

方差分析和T检验在统计学中的差异

方差分析和T检验在统计学中的差异

方差分析和T检验在统计学中的差异统计学是一门研究数据收集、整理、分析和解释的学科。

在实际应用中,方差分析和T检验是常用的两种统计技术,它们被广泛运用于数据的比较和推断。

尽管它们都属于参数假设检验的方法,但方差分析和T检验在统计学中有着一些差异。

一、概念和应用领域差异方差分析是一种用于比较两个或多个样本均值是否存在显著差异的统计方法。

通常情况下,方差分析用于比较不同处理组之间的均值差异,例如比较不同药物对疾病的治疗效果或者不同肥料对植物生长的影响等。

方差分析可以通过计算组间方差和组内方差之比来进行推断。

T检验是一种用于比较两个样本均值是否存在显著差异的统计方法。

相对于方差分析,T检验通常用于比较两个处理组之间的均值差异,例如比较不同性别、不同学历或不同药物剂量对某个指标的影响等。

T检验可以通过计算T值,并与设定的显著性水平进行比较,来进行推断。

二、假设和前提条件差异方差分析的主要假设是各组之间的方差相等和服从正态分布。

在使用方差分析前需要检验这些假设是否成立。

同时,在进行方差分析时,还需要注意样本之间的独立性以及误差项的独立性。

T检验的主要假设是样本来自两个独立的总体,且总体满足正态分布。

在使用T检验前需要检验这些假设是否成立。

同时,在进行T检验时,还需要注意两个样本之间的独立性以及误差项的独立性。

三、分析结果和解释方法差异方差分析的分析结果主要包括F值和P值。

F值用于判断组间的平均差异是否显著,P值则表示这种差异的概率。

当P值小于设定的显著性水平时,我们可以拒绝原假设,认为组间存在显著差异。

T检验的分析结果主要包括T值和P值。

T值用于判断两个样本均值之间的差异是否显著,P值则表示这种差异的概率。

当P值小于设定的显著性水平时,我们可以拒绝原假设,认为两个样本均值存在显著差异。

四、数据类型和样本容量差异方差分析适用于连续型变量,并且要求样本容量相等或相近。

同时,方差分析也可以处理多个分类因素的情况,通过拆分方差和互作用效应来分析各因素对均值差异的贡献。

T检验和方差分析的差别

T检验和方差分析的差别

T检验和方差分析的差别用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

t检验和方差分析的前提条件及应用误区选摘自《医学统计应用错误的诊断与释疑》,军事医学科学出版社,主编:胡良平用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

第5章-SPSS均值比较、T检验和方差分析

第5章-SPSS均值比较、T检验和方差分析
Groups
本例中大于相伴概率0.461,大于显著水 平0.05,不能拒绝方差相等的假设,可 以认为两个学校学生数学成绩方差无显 著差异;
在方差相等时看T检验结果,T检验值等 于相伴概率0.423,大于显著水平0.05,不 能拒绝T检验的零假设,可以认为两个学 校学生数学平均成绩无显著差异。
多重比较
3个组之间的相伴概率都小于显著水平0.05, 说明3个组之间都存在显著差别
作业3 方差分析
某百货公司的营销部根据不同家庭的价 值观细分了女性服装市场,分为保守型 、传统型和潮流型,另外调查了不同类 型家庭收入,见下表(单位:千元)。 能否推断出不同类型的家庭的收入是否 存在明显不同?
保守型家庭收入
一、Means过程
Means过程是按用户指定条件,对样本进 行分组计算均值和标准差。
计算公式:
n
x1i
x1
i 1
n
例1
以下是某个班同学的数学成绩,比较不同性别 同学的数学成绩平均值和方差。
性别 male female
数学 99 79 59 89 79 89 99 88 54 56 23 70 80 67
作业
一家企业生产某种产品,随机抽取50 名工人,分成两个组,每组25名工人, 用A方法生产所需时间:
6.8
5
7.9
5.2
7.6
6.1
6.2
7.1
4.6
6
6.4
6.1
6.6
7.7
6.4
5
5.9
5.2
6.5
7.4
7.1
6.1
5
6.3
7
作业
用B方法生产所需时间:
5.2
6.7

07t检验--方差分析(医学统计学)

07t检验--方差分析(医学统计学)
? 0
• 例1(P60例7-1) 以往通过大规模调查已知某地新生 儿出生体重为3.30kg.从该地难产儿中随机抽取35 名新生儿作为研究样本,平均出生体重为3.42kg,标 准差为0.40kg,问该地难产儿出生体重是否与一般 新生儿体重不同?
例题里涉及两个总体:
• 一般新生儿出生体重(已知总体,µ0=3.30kg) • 该地难产儿出生体重(未知总体,µ未知) • 3.42 >3.30既可能是抽样误差所致,或本质上不同
(n1
1)S12
(n2
1)S
2 2
n1 n2 2
若n1=n2时:
S X1X 2
S2 S2 X1 X2
S12
n1
S
2 2
n2
例3 测得14名慢性支气管炎病人与11名健
康人的尿中17酮类固醇(mol/24h)排出量 如下,试比较两组人的尿中17酮类固醇的 排出量有无不同。
• 原始调查数据如下:
t | 1.33 | 0.58 7.91 12
• (3)确定P值,作出推断结论 自由度=n-1=12-1=11,查附表2,t界值表,得
单侧t0.05,11=1.796,t=0.58<t0.05,11=1.796,故P > 0.05。 按α=0.05水准,不拒绝H0, 差异无统计学意义。
• 结论:故尚不能认为该减肥药有减肥效果。
t ' 10.38 6.62 2.0639 6.322 2.162 14 16
v 15.6447 16,
查 t 界 值 表 , t t0 . 0 5 / 2=(21.61)1 9 。 P > , 不 拒 绝 H0, 尚 不 能 认 为 两 种 药 的 疗 效 不 等 。
三、t检验与Z检验

求方差分析与两样本T检验区别

求方差分析与两样本T检验区别

求⽅差分析与两样本T检验区别⽅差分析与两样本T检验。

1。

⾸先可以看到⽅差分析(ANOVA)包含两样本T检验,把两样本T检验作为⾃⼰的特例。

因为ANOVA可以⽐较多个总体的均值,当然包含两个总体作为特例。

实际上,T的平⽅就是F统计量(m个⾃由度的T分布之平⽅恰为⾃由度为(1,m)的F 分布。

因此,这时候⼆者检验效果完全相同。

T 检验和 ANOVA 检验对于所要求的条件也相同:1)各个组的样本数据内部要相互独⽴,2)各组皆要正态分布3)各总体的⽅差相等。

上述这3个条件完全相同。

2。

如果说要指出差别,则区别仅在下列⼀点上:⽤ANOVA检验两总体均值相等性时,只限于这样的双侧检验问题,即:H0:mu1=MU2 <-> Ha:mu1 not= mu2⽽两样本的T检验则可以⽐上述情况更⼴泛,对⽴假设可以是下⾯3种中的任何⼀种.Ha:mu1 > mu2Ha:mu1 < mu2Ha:mu1 not= mu2这样说来,两样本均值相等性检验虽然可以⽤ANOVA做, 但这没有任何好处,反⽽使得对⽴假设受到限制,因⽽还是T检验更好。

其他表述:t检验与⽅差分析,主要差异在于,t检验⼀般使⽤在单样本或双样本的检验,⽅差分析⽤于2个样本以上的总体均值的检验.同样,双样本也可以使⽤⽅差分析, 多样本也可以使⽤t检验,不过,t检验只能是所有总体两两检验⽽已.两种⽅法与样本量没有直接关系,⽽是与数据的分布有关系,如果数据是正态分布的,那不管是⼩样本或⼤样本,利⽤莱维-林德伯格中⼼极限定理的原理,都是可以⽤的,如果数据⾮正态分布,那只能使⽤⼤样本利⽤李雅普诺夫中⼼极限定理的原理进⾏2t检验,此时不能利⽤⽅差分析,因为⽅差分析三个条件之⼀就是正态分布.。

统计分析方法(t检验、单因素方差分析和多因素方差分析)

统计分析方法(t检验、单因素方差分析和多因素方差分析)
两组独立样本的比较:独立样本t检验 多组独立样本之间的比较:单因素方差分析
两组独立样本的比较:独立样本t检验 在变量视图中填入变量:这里的X为需分析数据,G代表分组
在数据视图中录入数据: G下方的数据1、2为分组 X下方的数据为相应的分组 对应的需要分析的数据
在工具栏里选择分析——描述统计——探索
将X选入因变量列表,G选入因子列表, 然后单击绘制

勾选带检验的正态图,其余的 可按照默认值 单击继续
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明该 组数据属于正态性数据,可以继续进行独立样本的t检验;如果 有任何一组P值小于0.05,则需改用非参数检验
数据符合正态时,在工具栏中选 择分析,在下拉菜单中选择比较 均值,再选择独立样本T检验
将X选入检验变量,G选入分组变 量,然后点击定义组,组1后填 入1,组2后填入2,继续——确定
在输出页面中找到上述表格,如果sig即P值,大于0.05,说明两组数据方差齐,则 看第一行数据,如果小于0.05,说明两组数据方差不齐,则看第二行数据;sig的 值即为最终所需P值。
单因素方差分析
数据录入后,进行正态性检验,方法 见4、5、6页PPT。检验结果需要全部 正态才能进行单因素方差分析,否则 需要用非参数检验,但非参数检验没 有两两比较。
分析——比较均值——单因素ANOVA 将X选入因变量列表,G选入因子列表 中,单击两两比较,选择LSD,继续, 单击选项,选择方差同质性检验,继 续——确定
方差齐性检验结果显著性大于0.05, 说明方差齐,可以进行单因素方差分 析,如果显著性小于0.05,则说明方 差不齐,则不能进行单因素方差分析
该表为总体的显著性
该表为两两比较的结果 1 2 为1组与2组比较

T检验及其与方差分析的区别

T检验及其与方差分析的区别

T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。

t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等•根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验•又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。

•已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。

•单样t检验的应用条件是总体标准s未知的小样本资料( 如n<50),且服从正态分布。

(2)配对样本均数t检验•配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

•配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

•应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。

•配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例5.2资料;③自身对比(self-contrast)。

即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。

(3)两独立样本t检验两独立样本t 检验(two independent samples t-test),又称成组t 检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T检验及其与方差分析的
区别
Last revision on 21 December 2020
T检验及其与方差分析的区别
假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。

t 检验:1.单因素设计的小样本(n<50)计量资料
2.样本来自正态分布总体
3.总体标准差未知
4.两样本均数比较时,要求两样本相应的总体方差相等
•根据研究设计t检验可由三种形式:
–单个样本的t检验
–配对样本均数t检验(非独立两样本均数t检验)
–两个独立样本均数t检验
(1)单个样本t检验
•又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差
别。

•已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。

•单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。

(2)配对样本均数t检验
•配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。

•配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。

•应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。

•配对设计处理分配方式主要有三种情况:
①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;
②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例资料;
③自身对比(self-contrast)。

即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。

(3)两独立样本t检验
两独立样本t 检验(two independent samples t-test),又称成组t 检验。

•适用于完全随机设计的两样本均数的比较,其目的是检验两样本所来自总体的均数是否相等。

•完全随机设计是将受试对象随机地分配到两组中,每组对象分别接受不同的处理,分析比较处理的效应。

或分别从不同总体中随机抽样进行研究。

•两独立样本t检验要求两样本所代表的总体服从正态分布N(μ1,σ12)和N(μ2,σ
2),且两总体方差σ12、σ22相等,即方差齐性(homogeneity of variance,
2
homoscedasticity)。

•若两总体方差不等,即方差不齐,可采用t’检验,或进行变量变换,或用秩和检验方法处理。

t 检验中的注意事项
1.假设检验结论正确的前提作假设检验用的样本资料,必须能代表相应的总
体,同时各对比组具有良好的组间均衡性,才能得出有意义的统计结论和有价值的专业结论。

这要求有严密的实验设计和抽样设计,如样本是从同质总体中抽取的一个随机样本,试验单位在干预前随机分组,有足够的样本量等。

2.检验方法的选用及其适用条件,应根据分析目的、研究设计、资料类型、样本
量大小等选用适当的检验方法。

t 检验是以正态分布为基础的,资料的正态性可用正态性检验方法检验予以判断。

若资料为非正态分布,可采用数据变换的方法,尝试将资料变换成正态分布资料后进行分析。

3.双侧检验与单侧检验的选择需根据研究目的和专业知识予以选择。

单侧检
验和双侧检验中的t值计算过程相同,只是t界值不同,对同一资料作单侧检验更容易获得显着的结果。

单双侧检验的选择,应在统计分析工作开始之前就决定,若缺乏这方面的依据,一般应选用双侧检验。

4.假设检验的结论不能绝对化假设检验统计结论的正确性是以概率作保证
的,作统计结论时不能绝对化。

在报告结论时,最好列出概率P 的确切数值或给出P值的范围,如写成<P<,同时应注明采用的是单侧检验还是双侧检验,以便读者与同类研究进行比较。

当P 接近临界值时,下结论应慎重。

5.正确理解P值的统计意义P是指在无效假设H0 的总体中进行随机抽样,所观察到的等于或大于现有统计量值的概率。

其推断的基础是小概率事件的原理,即概率很小的事件在一次抽样研究中几乎是不可能发生的,如发生则拒绝H0。

因此,只能说明统计学意义的“显着”。

6.假设检验和可信区间的关系假设检验用以推断总体均数间是否相同,而可信区间则用于估计总体均数所在的范围,两者既有联系又有区别。

T检验属于均值分析,它是用来检验两类母体均值是否相等。

均值分析是来考察不同样本之间是否存在差异,而方差分析则是评估不同样本之间的差异是否由某个因素起主要作用。

相关文档
最新文档