纯弯梁弯曲的应力分析实验报告精
梁的弯曲正应力实验报告
梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
纯弯曲正应力分布实验报告
纯弯曲正应力分布实验报告篇一:弯曲正应力实验报告一、实验目的1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律;2、验证纯弯曲梁的正应力计算公式。
3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。
二、实验仪器和设备1、多功能组合实验装置一台;2、TS3860型静态数字应变仪一台;3、纯弯曲实验梁一根。
4、温度补偿块一块。
三、实验原理和方法弯曲梁的材料为钢,其弹性模量E=210GPa,泊松比μ=。
用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。
根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:??My Ix式中:M为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
由上式可知,沿横截面高度正应力按线性规律变化。
实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。
当增加压力?P时,梁的四个受力点处分别增加作用力?P/2,如下图所示。
为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。
此外,在梁的上表面和下表面也粘贴了应变片。
如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式??E?,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。
σ实=Eε式中E是梁所用材料的弹性模量。
实图3-16为确定梁在载荷ΔP的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP测定各点相应的应变增量一次,取应变增量的平均值Δε 把Δσ实与理论公式算出的应力??式中的M应按下式计算:实来依次求出各点应力。
??比较,从而验证公式的正确性,上述理论公????四、实验步骤1?Pa (3.16) 21、检查矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a,及各应变片到中性层的距离yi。
纯弯曲梁的正应力实验参考书报告
《纯弯曲梁的正应力实验》实验报告一、实验目的1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力计算公式二、实验仪器设备和工具3.XL3416 纯弯曲试验装置4.力&应变综合参数测试仪5.游标卡尺、钢板尺3、实验原理及方法在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为σ= My / I z式中M为弯矩,I z为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。
为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
实验采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量σ实i=E△ε实i将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。
见附表13.拟订加载方案。
先选取适当的初载荷P0(一般取P0 =10%P max左右),估算P max(该实验载荷范围P max≤4000N),分4~6级加载。
4.根据加载方案,调整好实验加载装置。
5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6.加载。
均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。
实验至少重复两次。
见附表27.作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
附表1 (试件相关数据)附表2 (实验数据)P 50010001500200025003000载荷N △P 500500500500500εP -33-66-99-133-166△εP -33-33-34-334平均值-33.25εP -16-33-50-67-83△εP -17-17-17-162平均值16.75εP 00000△εP 00001平均值0εP 1532476379△εP 171516163平均值16εP 326597130163△εP 33323333 各 测点电阻应变仪读数µε5平均值32.75五、实验结果处理1.实验值计算根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算应变片至中性层距离(mm )梁的尺寸和有关参数Y 1-20宽 度 b = 20 mm Y 2-10高 度 h = 40 mm Y 30跨 度 L = 620mm (新700 mm )Y 410载荷距离 a = 150 mm Y 520弹性模量 E = 210 GPa ( 新206 GPa )泊 松 比 μ= 0.26惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4。
纯弯曲梁正应力实验报告-纯弯曲实验报告思考题
纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题1.试件尺寸和形式对测定弹性模量E有无影响2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量111082.0G Pa 弹性模量11101.2E Pa 泊松比28.0 电阻片号kNPo1.0 kNPn1.1 两次读数平均值两次读数平均值1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
力学实验报告 纯弯曲梁的正应力实验
-2.93
������5
-5.86
3.5 结果分析
实际值 σ 实(MPa) 5.73 2.47 -0.206 -3.21 -5.81
相对误差(%) 2.26% 15.60% — 9.69% 0.85%
通过计算发现,在误差允许的范围内,大部分各数据符合实际要求。通过σ������ − ������������的关系图可以发现,随着与中性轴距离的增大,对应的应力值也增大,二者成 正比关系,符合梁在纯弯曲时横截面上理论分布规律。
σ1 实 = ������ × Δ̅̅̅���̅���1̅ = 5.73 × 106������������
σ2 实 = ������ × Δ̅̅̅���̅���2̅ = 2.47 × 106������������
σ3 实 = ������ × Δ̅̅̅���̅���3̅ = −0.206 × 106������������
六、实验体会
相对于实验一,在进行实验二的时候对于电测法的使用会有一定的了解和熟 悉度,但由于实验是对实验原理依然不是完全理解,所以做实验时还是存在一定 困难,但是所得到的数据和后期的计算结果还是很让人满意的。
5/5
四、实验数据及其处理
1.1 实验试件参数
应变片至中性层距离(mm)
y1
-20
y2
-10
y3
0
y4
10
y5
20
梁的尺寸和有关参数
宽度 b (mm)
20
高度 h (mm)
40
跨度 L(mm)
600
载荷距离 a(mm)
125
弹性模量 E (Gpa)
206
泊松比 μ
0.26
2.2 实验原始数据
实验报告-纯弯曲梁
纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。
梁弯曲正应力实验报告
编号
1
2
3
4
5
6
7
载荷
F(kN)
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
读数
增量
F0=
FБайду номын сангаас=
F2=
F3=
F4=
平均增量
2.数据处理:(将各测点的实测应变换算成应力,与理论值比较)
测点编号
1
2
3
4
5
6
7
实测值
理论值
相对误差
3分别绘制应力、应变分布图。
五、回答思考题
梁弯曲正应力实验报告
学院系专业班试验日期
姓名学号同组者姓名
一、实验目的
二、实验设备
仪器名称及型号精度
纯弯曲正应力实验装置编号
三、试件尺寸及有关数据
试件尺寸:长L=mm,宽b=mm,高h= mm
纯弯曲段弯矩:M= kN·mm
弹性模量:E=GPa
应变片电阻值:R=灵敏系数K=
四、实验数据与整理
1.实测数据:
纯弯曲梁正应力实验报告
纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜ 3y ㎜ 4y ㎜ 5y ㎜ 6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点 2点 3点 4点 5点 6点 F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置 1点 2点 3点 4点 5点 6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上 2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法 1平均法均均oAFE 均均计算过程 2最小二乘法niiniiiE121niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题 1.试件尺寸和形式对测定弹性模量E有无影响 2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量 Pa 弹性模量 Pa 泊松比电阻片号两次读数平均值两次读数平均值 1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题 1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
实验四 纯弯曲梁正应力测定试验
实验四 纯弯曲梁正应力测定试验一、实验目的1. 掌握电测法测定应力的基本原理和电阻应变仪的使用。
2. 验证梁的理论计算中正应力公式的正确性,以及推导该公式时所用假定的合理性。
二、试验原理梁弯曲理论的发展,一直是和实验有着密切的联系。
如在纯弯曲的条件下,根据实验现象,经过判断,推理,提出了如下假设:梁变形前的横截面在变形后仍保持为平面,并且仍然垂直于变形后梁的轴线,只是绕截面内的某一轴旋转了一定角度。
这就是所说的平面假设。
以此假设及单向应力状态假设为基础,推导出直梁在纯弯曲时横截面上任一点的正应力公式为 y I M z=σ (4-1) 式中:M--横截面上的弯矩;I z —横截面轴惯性矩;Y —所求应力点矩中性轴的距离。
整梁弯曲试验采用矩形截面的低炭钢单跨简支梁,梁承受荷载如图4-1所示。
图4-1 整梁弯曲试验装置 在这种载荷的作用下,梁中间段受纯弯曲作用,其弯矩为Fa ,而在两侧长度各为a 的两段内,梁受弯曲和剪切的联合作用,这两段的剪力各为±F 。
实验时,在梁纯弯曲段沿横截面高度自上而下选八个测点,在测点表面沿梁轴方向各粘贴一枚电阻应变片,当对梁施加弯矩M 时,粘贴在各测点的电阻应变片的阻值将发生变化。
从而根据电测法的基本原理,就可测得各测点的线应变值εj (角标j 为测点号,j=1,2,3, …,8)。
由于各点处于单向应力状态,由虎克定律求得各测点实测应力值R 实j ,即 j j E εσ=实梁表面的横向片是用来测量横向应变的,可用纵向应变与横向应变的关系求得横向变形系数μ值。
所谓叠梁,是两根矩形截面梁上下叠放在一起,两界面间加润滑剂,如图3-2所示。
两根梁的材料可相同,也可不同;两根梁的截面高度尺寸可相同,亦可相异。
只要保证在变形时两梁界面不离开即可。
图4-2 所示的叠梁,在弯矩M 的作用下,可以认为两梁界面处的挠度相等,并且挠度远小于梁的跨度;上下梁各自的中性轴,在小变形的前提下,各中性层的曲率近似相等。
梁的弯曲正应力实验报告总结
梁的弯曲正应力实验报告总结
摘要:
本次实验是对梁的弯曲正应力的实验,实验的主要目的是了解梁在不同弯曲载荷下的变形及其变形过程,并通过一定的实验数据和理论计算,计算出该结构弯曲时的正应力,评估该结构弯曲后的承载能力。
实验中,我们使用荷载,以每次10N的加载,获取所有正应力值,然后按照一次函数拟合这些正应力值,最后得到梁的抗弯强度。
通过分析&讨论得出以下结论:
1、当梁受到的外力达到一定的大小时,梁处于弯曲状态;
2、当外荷载的大小比较小的时候,梁的抗弯强度较高;
3、当外荷载的大小比较大的时候,梁的抗弯强度下降,但是仍然可以承受较大的外力;
4、在本次实验中,梁的抗弯强度是17.7 N/mm;
5、实验结果与预计的结果基本一致,说明本次实验是正确的。
总而言之,本次实验为了研究梁的弯曲正应力,通过测定梁的变形,分析得出梁的抗弯强度,实验结果基本符合预期,为今后更好的设计和实际应用提供参考。
- 1 -。
梁的弯曲正应力实验报告总结
梁的弯曲正应力实验报告总结梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
本文将对梁的弯曲正应力实验进行总结。
一、实验原理梁的弯曲正应力实验是通过在梁上施加一定的弯曲力,使梁发生弯曲变形,然后通过测量梁的变形量和力的大小,计算出梁的弯曲正应力。
梁的弯曲正应力可以用公式σ=M*y/I来计算,其中M为弯矩,y为梁上某一点到中性轴的距离,I为梁的截面惯性矩。
二、实验步骤1. 准备工作:将实验室内的环境调整到稳定状态,准备好实验所需的仪器和材料。
2. 实验装置:将梁放置在实验台上,将弯曲力施加在梁的一端,另一端固定在实验台上。
3. 测量变形量:通过测量梁的变形量,确定梁上某一点到中性轴的距离y。
4. 测量力的大小:通过测量施加在梁上的力的大小,确定弯矩M。
5. 计算弯曲正应力:根据公式σ=M*y/I,计算出梁的弯曲正应力。
三、实验结果通过实验,我们得到了梁的弯曲正应力的计算结果。
在实验中,我们可以通过改变施加在梁上的力的大小和位置,来观察梁的弯曲变形规律和弯曲正应力的变化情况。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
四、实验分析通过梁的弯曲正应力实验,我们可以了解到梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,梁的弯曲正应力是一个非常重要的参数,它可以用来评估梁的强度和稳定性。
因此,对于工程师和设计师来说,了解梁的弯曲正应力的计算方法是非常必要的。
五、实验结论通过本次梁的弯曲正应力实验,我们得到了梁的弯曲正应力的计算结果。
实验结果表明,梁的弯曲正应力与施加在梁上的力成正比,与梁的截面惯性矩成反比。
因此,在实际工程中,我们需要根据梁的实际情况来选择合适的材料和截面形状,以保证梁的强度和稳定性。
梁的弯曲正应力实验是力学实验中的一项重要实验,通过该实验可以了解梁的弯曲变形规律和弯曲正应力的计算方法。
在实际工程中,了解梁的弯曲正应力的计算方法是非常必要的,可以帮助我们评估梁的强度和稳定性,从而保证工程的安全和可靠性。
纯弯曲梁的正应力测定的实验报告
贴片位置
b
8
y3
0
h
16
y2(y4)
a
200
y1(y5)
3应变读数记录
读数A
应变片号
载荷
1
2
3
4
A
0
120
567
168
637
92
4500
0
7449
91
4
522
606
4500
7481
8
120
461
184
576
92
4500
0
7510
89
12
399
545
4500
7540
16
120
338
185
514
三.实验原理及方法:
梁受纯弯曲时,根据平面假设和纵向纤维间无挤压的假设,得纯弯曲时正应力公式:
图1
在矩形截面梁纯弯曲部分(见图1,CD段),贴有四个应变片,其中3在中性层上,1,2和4,5分别贴在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出个测量点的纵向应变 ,可确定横截面上正应力分布规律。
2:学习电测法。
主要实验仪器:1:弯曲试验装置。
2:电阻应变仪和预调平衡箱。
主要实验步骤:
一:取一矩形截面的等截面剪支梁AB,其上作用两个对称的集中力P/2,未加载前,在中间CD段表面画些平行于梁轴线的纵向线和垂直于梁轴线的横向线。加载后在梁的AC和DB两段内,各横截面上有不同的剪力和弯矩M。
二;在矩形截面梁弯曲部分,贴有四个应变片,其中3在中性层上,1,2,4,5分别在离中性层为梁高的1/4及上下表面,加载后,梁弯曲变形,由应变仪可测出各测量点的纵向应变,可确定横截面上的应变分布规律。
纯弯梁正应力分布电测实验(精)
纯弯梁正应力分布电测实验(精)实验七纯弯梁正应力分布电测实验实验内容一纯弯梁正应力分布电测实验一、实验目的1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。
2、初步掌握电测方法。
二、实验设备1、弯曲梁实验装置一台(见图7.2)2、YJ-4501A 静态数字电阻应变仪一台3、温度补偿片三、实验原理及方法试件选用矩形截面,荷载及测量点的布置如图7.1。
梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。
梁的正应力公式为y I M Z=σ式中:M --纯弯曲段梁截面上的弯矩Z I --横截面对中性轴的惯性矩y --截面上测点至中性轴的距离。
为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。
此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。
将应力实验值与应力理论值进行比较,可得出测量误差。
式中:ε—各测量点的线应变E —材料的弹性模量σ--相应各测点正应力若由实验,测得的应变片7#和8#的应变7ε和8ε满足μεε=78,则证明验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。
4#图7.1图中:, mm c 150=mm h 40=mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。
四、实验步骤1、检查梁是否安放稳妥2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。
梁的弯曲正应力实验报告
梁的弯曲正应力实验报告
一、实验目的
本实验旨在通过实验手段,探究梁在弯曲状态下的正应力分布情况,验证理论分析结果,加深对梁弯曲正应力的理解。
二、实验原理
梁的弯曲正应力是指梁在弯曲状态下,截面上的正应力分布情况。
根据弹性力学理论,梁的弯曲正应力与截面的几何形状、材料性质以及外力分布等因素有关。
本实验通过测量梁的弯曲正应力,验证相关理论。
三、实验步骤
1. 准备实验器材:包括梁试件、加载装置、应变计、测量仪器等。
2. 安装应变计:在梁试件的指定位置粘贴应变计,确保粘贴牢固。
3. 加载实验:通过加载装置对梁试件施加弯曲力,记录加载过程中的应变数据。
4. 数据处理:对实验数据进行处理,计算梁截面上的正应力分布。
5. 数据分析:将实验结果与理论分析结果进行比较,分析误差原因。
四、实验结果
通过实验测量,得到梁在弯曲状态下的正应力分布数据如下:
五、数据分析与结论
根据实验结果,我们可以看到梁在弯曲状态下,截面上的正应力分布并不均匀。
在靠近加载点的位置,正应力较大;而在远离加载点的位置,正应力逐渐减小。
这与理论分析结果一致。
同时,实验结果与理论分析结果的误差也在可接受范围内。
通过本实验,我们验证了梁在弯曲状态下的正应力分布规律,加深了对梁弯曲正应力的理解。
同时,实验结果也为我们提供了实际工程中设计梁结构的重要依据。
纯弯曲梁的正应力实验报告
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
梁弯曲正应力测定实验报告
梁弯曲正应力测定实验报告1. 实验背景嘿,大家好,今天咱们要聊聊一个很酷的实验——梁弯曲正应力测定。
说到这个,很多人可能会皱眉头,觉得这听起来像个高大上的课题,其实不然,咱们就像聊家常一样,轻松又愉快地来探讨一下这个话题。
1.1 梁的定义首先,什么是梁呢?梁就是一种承重的结构,通常用在建筑、桥梁、机器等地方,能帮助咱们支撑起各种重量。
想象一下,如果没有梁,咱们的家岂不是随时可能塌掉?所以,梁在工程中可是个大明星,绝对是重要角色。
1.2 为什么要测定正应力那正应力又是什么呢?简单来说,就是当梁承受外力时,内部的应力分布。
测定正应力的目的,就是为了确保梁在承重的时候不会“出岔子”,说白了,就是避免它“脆弱得像豆腐”!如果我们能测得这些数据,就能更好地设计和优化梁的结构,避免“翻车”事故,嘿嘿,谁也不想看见自己的作品变成废铁。
2. 实验设备与步骤接下来,咱们聊聊实验的设备和步骤。
别担心,这些都是一些常见的玩意儿,听我慢慢说来。
2.1 实验设备在这个实验中,我们需要用到一些小工具。
首先是“弯曲试验机”,这是个庞然大物,看起来就像个肌肉男,能施加超大的力量,逼得梁在它面前“屈服”。
然后还有一些传感器,用来测量梁在受力时的变形,最后还有称重工具,确保我们施加的力是精确的,绝对不能让“公说公有理,婆说婆有理”!2.2 实验步骤实验步骤可简单了。
首先,我们把梁放在试验机上,调整好位置。
接着,慢慢施加外力,看着梁在我们面前“挣扎”。
这个过程就像看一场精彩的比赛,心里不禁替梁捏了一把汗。
最后,记录下数据,回头分析一下,看看梁的表现如何,真是一场精彩的“较量”啊!3. 数据分析与结果好了,实验做完了,接下来就是重头戏——数据分析。
大家准备好了吗?让我们看看梁的表现吧!3.1 数据记录通过实验,我们得到了很多数据,比如梁在不同力下的变形量和应力值。
这些数据就像小精灵,带着我们去揭示梁的“秘密”。
看着这些数字,心里真是五味杂陈,既兴奋又紧张。
纯弯曲梁正应力实验报告-纯弯曲实验报告思考题
纯弯曲梁正应力实验报告材料力学课程实验报告纯弯曲梁正应力实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理梁试件的弹性模量11101.2EPa 梁试件的横截面尺寸h ㎜b ㎜支座到集中力作用点的距离d ㎜各测点到中性层的位置1y ㎜2y ㎜3y ㎜4y ㎜5y ㎜6y ㎜材料力学课程实验报告载荷N 静态电子应变仪读数106 1点2点3点4点5点6点F F 读数1 增量1 读数2 增量2 读数3 增量3 读数4 增量4 读数5 增量5 读数6 增量6 F 1 2 3 4 5 6 应变片位置1点2点3点4点5点6点实验应力值/MPa 理论应力值/MPa 相对误差/ 泊松比值注表中读数1、2、3、4、5、6为两次实验所得读数的平均值。
F为荷载增量的平均值。
1、2、3、4、5、6为各点应变增量的平均值材料力学课程实验报告四、应力分布图理论和实验的应力分布图画在同一图上五、思考题1.为什么要把温度补偿片贴在与构件相同的材料上2.影响实验结果的主要因素是什么材料力学课程实验报告测定材料E、实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理板试件尺寸试件截面宽b ㎜高h ㎜截面积oA mm2 NF oAFMPa 纵向应变106 横向应变106 1r 2r 3r 1r 2r 3r 材料力学课程实验报告数据处理方法1平均法均均oAFE 均均计算过程2最小二乘法niiniiiE121 niiniii121 计算过程材料力学课程实验报告四、画出关系图理论和实验的关系图画在同一图上平均法理论和实验的关系图最小二乘法理论和实验的关系图五、思考题1.试件尺寸和形式对测定弹性模量E有无影响2.影响实验结果的因素有那些为何要用等量增载法进行实验材料力学课程实验报告圆管扭转应力试验实验报告学院系班级实验组别实验人员姓名实验日期年月日一、实验目的二、实验设备静态电阻应变仪型号实验装置名称型号量具名称精度㎜三、实验数据及处理薄壁圆管尺寸外径D ㎜内径d ㎜加力臂长度L ㎜切变模量111082.0G Pa 弹性模量11101.2E Pa 泊松比28.0 电阻片号kNPo1.0 kNPn1.1 两次读数平均值两次读数平均值1 2 3 4 5 6 注由于纯扭实验中004545故045采用1、4、3、6的绝对值加以平均表中电阻号1、4相对于45°应变片3、6相对于-45°应变片2、5相对于0°应变片材料力学课程实验报告四、计算B、D点实测时的主应力和主方向五、计算B、D点理论主应力和主方向六、思考题1.求出实测主应力、主方向与理论主应力、主方向的相对误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30
yp 应力分布曲线
20 10 0 10 -20 -30
应力b
七、思考题
1•为什么要把温度补偿片贴在与构件相同的材料上 ?
答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补 偿片贴在与构件相同的材料上,来消除温度带来的应变。
2•影响实验结果的主要因素是什么?
答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。
一、 实验目的和要求:
1)
2)用电测法测定纯弯曲梁受弯曲时
(或 )截面各点的正应力值,与理
论计算值进行比较。
了解电阻应变仪的基本原理和操作方法
二、 实验设备
CM-1C 型静态电阻应变仪,纯弯曲梁实验装置
三、 弯曲梁简图:
—0理 亠b 宝
J/2 J/2
| / [11 I 丄丄. ___ JULlllx
|
图5-1 已知:
、 、
、
、c h 『6、I : 200GPa
(或
)截面处粘贴七片电阻片,即 R1、R2、R3、R4、R5、R6、
在梁的纯弯曲段内
R7。
R4贴在中性层处,实验时依次测出1、2、3、4、5、6、7点的应变,计算 出应
力。
四、测量电桥原理 构件的应变值一般均很小,所以,应变片电阻变化率也很小,需用专门仪器进行 测量,测量应变片的电阻变化率的仪器称为电阻应变仪,其测量电路为惠斯顿电 桥,如图所示。
如图所示,电桥四个桥臂的电阻分别为 R1、R2
、R3和R4,在设
A 、C 端接电源,
B 、D 端为输出端
W
-1
A
B
L
22
fn/2
A、B和
B、C以上为全桥测量的读数,如果是半桥测量,则读数为半桥测量是将应变片R3和R4放入仪器内部,R1和R2测量片接入电桥,接入组成半桥测量。
五、理论和实验计算理论计算
、
扰I?实验值计算:
A
O _
D
二
4Ji
D 门
电桥,当构件受力后,设上述应变片感受到的应变分别为[、2、3、4相应的电阻改变量分别为、、和,应变仪的读数为
d 4 U 1 2 34KU
4 U 1 2KU:
3.5bh2M cl 4 (JWZ l/.6bh3> 2.6M c2 1Z、d半所谓
上式代表电桥的输出电压与各臂电阻改变量的一般关系。
在进行电测实验时,有时将粘贴在构件上的四个相同规格的应变片同时接入测量。