必修3 1.1算法与程序框图教案
人教版数学高一A版必修3 1.1算法与程序框图(第1课时)
课堂探究1.理解算法的概念剖析:(1)算法可以理解为按照一定规则解决某一类问题所构成的完整的解题步骤,或看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.(2)展现方式:算法常用下列方式来表示:第一步,……第二步,……第三步,…………(3)描述算法可以有不同的方式:文字、图形、符号.(4)算法是机械的,有时要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”,其最大优点是可以让计算机来完成.(5)求解某一个问题的算法不一定只有唯一的一个,可能有不同的算法.知识拓展算法的特征2.剖析:比较计算机和人类解决问题的区别:人类解决问题具有灵活性,同一个问题针对不同的情况,人类可以采取不同的解决方案.例如,通过爬梯子到房顶上,如果“梯子”的某一节已经损坏了,人类能想方设法越过这一节继续爬梯子.如果在爬梯子的过程中,感觉累了,人类就能想到先休息一会儿再上.与人类不同,计算机没有人类的这种主观能动性.解决问题时,计算机只能一节一节地“爬梯子”来执行,即按事先设计好的步骤来执行.如果“梯子”的某一节已经损坏了,也就是某个步骤设计不正确,那么计算机就不再往下执行了.计算机没有“累”的时候,总是勇往直前地继续下去,因此计算机解决问题的方式即算法必须有步骤,且这些步骤必须是明确的、有效的,而且能够在有限步之内完成.因此在设计算法时,要把人类解决问题的思维方式变为计算机解决问题的方式,即必须按步骤来解决问题,把所要解决的问题分解为有限个明确的、有效的步骤来完成,这就是算法.题型一 设计仅含有依次执行步骤的算法【例题1】已知一个长方体的长,宽,高分别为3,4,5,设计一个算法求其体积.分析:利用公式V 长方体=长×宽×高写出算法.解:算法如下:第一步,输入长方体的长a ,宽b ,高h .第二步,计算V =abh .第三步,输出V .反思 (1)设计一个具体问题的算法,通常按以下步骤:①认真分析问题,找出解决此题的一般数学方法;②借助有关变量或参数对算法加以表述;③将解决问题的过程划分为若干步骤;④用简练的语言将各个步骤表示出来.(2)仅含有依次执行步骤的算法是较简单的算法,特别地,若有公式可以套用,通常选择公式作为解决问题的算法.题型二 设计含有判断条件的算法【例题2】已知函数y =⎩⎪⎨⎪⎧2x +1,x >1,-x -1,x ≤1,设计一个算法,输入自变量x 的值,输出对应的函数值.分析:由于x在(-∞,1]和(1,+∞)上时,y有不同的对应法则,所以首先判断x与1的大小.解:算法如下:第一步,输入自变量x的值.第二步,判断x>1是否成立,若成立,则计算y=2x+1;否则计算y=-x-1.第三步,输出y.反思设计含有判断条件的算法时,往往是先判断条件,再根据条件是否成立,设计不同的步骤.题型三设计含有重复步骤的算法【例题3】写出求1×2×3×4×5×6的算法.分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可以设计作重复乘法运算的步骤.算法1:第一步,计算1×2得到2.第二步,将第一步的运算结果2乘3,得到6.第三步,将第二步的运算结果6乘4,得到24.第四步,将第三步的运算结果24乘5,得到120.第五步,将第四步的运算结果120乘6,得到720.算法2:第一步,输入n的值6.第二步,令i=1,S=1.第三步,判断“i≤n”是否成立,若不成立,输出S,结束算法;若成立,执行下一步.第四步,令S的值乘i,仍用S表示,令i的值增加1,仍用i表示,返回第三步.反思设计此类问题的算法,通常有两种.一种称为累乘法,将步骤一直写下去,便得到任意有限个数相乘的算法.另一种具有代表性,是对一类问题的机械的、统一的求解方法.。
人教新课标版(A)高一必修三1.1算法与程序框图导学案
人教新课标版(A)必修三 1.1算法的概念与程序框图导学案一、学习目标知道算法的思想内容和含义,能判断一些语句是否为算法;理解程序框图的三种基本逻辑结构,能读懂程序框图所表示的算法二、知识梳理1.算法的概念(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.(2)在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(3)常见的程序框、流程线及各自表示的功能(1)顺序结构:由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构.结构形式(2)条件结构:在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.条件结构的两种形式(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤称为循环体.常见的两种循环结构1.下列关于程序框图的说法正确的是( )A.程序框图是描述算法的语言B.程序框图中可以没有输出框,但必须要有输入框给变量赋值C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是一个概念2.尽管算法千差万别,但程序框图按其逻辑结构分类共有( )A.2类 B.3类 C.4类 D.5类3.对终端框叙述正确的是( ) A .表示一个算法的起始和结束,程序框是B .表示一个算法输入和输出的信息,程序框是C .表示一个算法的起始和结束,程序框是D .表示一个算法输入和输出的信息,程序框是 4.给出下列程序框图:若输出的结果为2,则①处的执行框内应填的是( )A .x =2B .b =2C .x =1D .a =5 四、 探究,合作,展示 1、对算法的理解1.下列各式中T 的值不能用算法求解的是( ) A .T =12+22+32+42+…+1002B .T =12+13+14+15+…+150C .T =1+2+3+4+5+…D .T =1-2+3-4+5-6+…+99-100 2.关于一元二次方程x2-5x +6=0的求根问题,下列说法正确的是( ) A .只能设计一种算法 B .可以设计两种算法 C .不能设计算法 D .不能根据解题过程设计算法 2、顺序结构3、图中所示的是一个算法的流程图,已知31=a ,输出的7b =,则2a 的值是____________ 3、条件结构4.如下图所示的程序框图,其功能是( )A .输入a ,b 的值,按从小到大的顺序输出它们的值B .输入a ,b 的值,按从大到小的顺序输出它们的值C .求a ,b 的最大值D .求a ,b 的最小值 4、循环结构5.阅读右边的程序框图,运行相应的程序,则输出s 的值为( )A .-1B .0C .1D .3五、归纳总结,反思感悟 (1)知识与方法方面: (2)数学思想方法方面: 六、课后作业1.在如图的程序框图中,输出结果是________.3.如图是一个算法的程序框图,该算法所输出的结果是( )A .1+12+13+…+110B .1+13+15+…+119C.12+14+16+…+120D.12+122+123+…+1210 10.画出计算函数y =|x -1|的函数值的程序框图(x 由键盘输入). 11.设计一个算法,求表达式12+22+32+…+102的值,画出程序框图.。
人教B版高中数学必修三《1.1算法与程序框图1.1.2程序框图》0
1.1.2程序框图[教课目的]:掌握程序框图的观点;会用通用的图形符号表示算法,掌握算法的三个基本逻辑构造;掌握画程序框图的基本规则,能正确画出程序框图。
经过模拟、操作、研究,经历经过设计程序框图表达解决问题的过程;学会灵巧、正确地画程序框图。
经过本节的学习,使我们对程序框图有一个基本的认识;掌握算法语言的三种基本逻辑构造,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
[教课重难点]:教课要点:程序框图的基本观点、基本图形符号和3种基本逻辑构造。
教课难点:能综合运用这些知识正确地画出程序框图。
[教课过程]:一、.创建情境:[问题情境]我们都喜爱旅行,进入景区大门后,我们第一看到的是景点线路图,经过观看景点线路图能直观、快速、正确的知道景区有哪几个景点,各景点之间按如何的路径走,进而防止迷途或许遗漏景点的事情发生.二.新课研究:(1).右侧的程序框图(如下图),能判断随意输入的数x的奇偶性,请大家参照书籍第六页的表格,填下表:(2).你能用语言描绘一下框图的基本构造特点吗?程序框名称功能三、基本观点:(1)起止框图:起止框是任何流程图都不行缺乏的,它表示程序的开始和结束,因此一个完好的流程图的首末两头一定是起止框。
(2)输入、输出框:表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的地点。
(3)办理框:它是采纳来赋值、履行计算语句、传递运算结果的图形符号。
(4)判断框:判断框一般有一个进口和两个出口,有时也有多个出口,它是唯一的拥有两个或两个以上出口的符号,在只有两个出口的情况中,往常都分红“是”与“否”(也可用“Y”与“N”)两个分支。
四、算法的基本逻辑构造(1)次序构造:次序构造描绘的是是最简单的算法构造,语句与语句之间,框与框之间是按从上到下的次序进行的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
人教版高中数学必修三(教案)1.1 算法与程序框图(3课时)
第一课时 1.1.1 算法的概念教学要求:了解算法的含义,体会算法的思想;能够用自然语言叙述算法;掌握正确的算法应满足的要求;会写出解线性方程(组)的算法、判断一个数为质数的算法、用二分法求方程近似根的算法.教学重点:解二元一次方程组等几个典型的的算法设计.教学难点:算法的含义、把自然语言转化为算法语言.教学过程:一、复习准备:1. 提问:我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2. 提问:①小学四则运算的规则?(先乘除,后加减) ②初中解二元一次方程组的方法?(消元法) ③高中二分法求方程近似解的步骤? (给定精度ε,二分法求方程根近似值步骤如下:A .确定区间[,]a b ,验证()()0f a f b <g ,给定精度ε;B. 求区间(,)a b 的中点1x ;C. 计算1()f x : 若1()0f x =,则1x 就是函数的零点; 若1()()0f a f x <g ,则令1b x =(此时零点01(,)x a x ∈); 若1()()0f x f b <g ,则令1a x =(此时零点01(,)x x b ∈);D. 判断是否达到精度ε;即若||a b ε-<,则得到零点零点值a (或b );否则重复步骤2~4.二、讲授新课:1. 教学算法的含义:① 出示例:写出解二元一次方程组22(1)24(2)x y x y -=⎧⎨+=⎩的具体步骤. 先具体解方程组,学生说解答,教师写解法 → 针对解答过程分析具体步骤,构成其算法第一步:②-①×2,得5y =0 ③; 第二步:解③得y =0; 第三步:将y =0代入①,得x =2.② 理解算法: 12世纪时,指用阿拉伯数字进行算术运算的过程. 现代意义上的算法是可以用计算机来解决的某一类问题的程序或步骤,程序和步骤必须是明确和有效的,且能在有限步完成. 广义的算法是指做某一件事的步骤或程序. 算法特点:确定性;有限性;顺序性;正确性;普遍性.举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河问题.③ 练习:写出解方程组()1111221222(1)0(2)a x b y c a b a b a x b y c +=⎧-≠⎨+=⎩的算法.2. 教学几个典型的算法:① 出示例1:任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判断.提问:什么叫质数?如何判断一个数是否质数? → 写出算法.分析:此算法是用自然语言的形式描述的. 设计算法要求:写出的算法必须能解决一类问题,并且能够重复使用. 要使算法尽量简单、步骤尽量少. 要保证算法正确,且计算机能够执行.② 出示例2:用二分法设计一个求方程230x -=的近似根的算法.提问:二分法的思想及步骤?如何求方程近似解 →写出算法.③ 练习:举例更多的算法例子; → 对比一般解决问题的过程,讨论算法的主要特征.3. 小结:算法含义与特征;两类算法问题(数值型、非数值型);算法的自然语言表示.三、巩固练习:1. 写出下列算法:解方程x2-2x-3=0;求1×3×5×7×9×11的值2. 有蓝和黑两个墨水瓶,但现在却错把蓝墨水装在了黑墨水瓶中,黑墨水错装在了蓝墨水瓶中,要求将其互换,请你设计算法解决这一问题.3. 根据教材P6 的框图表示,使用程序框表示以上算法.4. 作业:教材P4 1、2题.第二课时 1.1.2 程序框图(一)教学要求:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图. 通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图.教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构.教学难点:综合运用框图知识正确地画出程序框图教学过程:一、复习准备:1. 写出算法:给定一个正整数n,判定n是否偶数.2. 用二分法设计一个求方程320x-=的近似根的算法.二、讲授新课:1. 教学程序框图的认识:①讨论:如何形象直观的表示算法?→图形方法.教师给出一个流程图(上面1题),学生说说理解的算法步骤.②定义程序框图:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形.③④阅读教材P5的程序框图. →讨论:输入35后,框图的运行流程,讨论:最大的I值.2. 教学算法的基本逻辑结构:①讨论:P5的程序框图,感觉上可以如何大致分块?流程再现出一些什么结构特征?→教师指出:顺序结构、条件结构、循环结构.②试用一般的框图表示三种逻辑结构. (见下图)③出示例3:已知一个三角形的三边分别为4,5,6,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图. (学生用自然语言表示算法→师生共写程序框图→讨论:结构特征)④出示例4:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在.画出这个算法的程序框图. (学生分析算法→写出程序框图→试验结果→讨论结构)⑤出示例5:设计一个计算1+2+3+…+1000的值的算法,并画出程序框图. (学生分析算法→写出程序框图→给出另一种循环结构的框图→对比两种循环结构)3. 小结:程序框图的基本知识;三种基本逻辑结构;画程序框图要注意:流程线的前头;判断框后边的流程线应根据情况标注“是”或“否”;循环结构中要设计合理的计数或累加变量等.三、巩固练习:1.练习:把复习准备题②的算法写成框图. 2. 作业:P12 A组1、2题.第三课时 1.1.2 程序框图(二)教学要求:更进一步理解算法,掌握算法的三个基本逻辑结构. 掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图.教学重点:灵活、正确地画程序框图.教学难点:运用程序框图解决实际问题.教学过程:一、复习准备:1. 说出下列程序框的名称和所实现功能.2. 算法有哪三种逻辑结构?并写出相应框图顺序结构条件结构循环结构程序框图结构说明按照语句的先后顺序,从上而下依次执行这些语句. 不具备控制流程的作用. 是任何一个算法都离不开的基本结构根据某种条件是否满足来选择程序的走向.当条件满足时,运行“是”的分支,不满足时,运行“否”的分支.从某处开始,按照一定的条件,反复执行某一处理步骤的情况. 用来处理一些反复进行操作的问题二、讲授新课:1. 教学程序框图①出示例1:任意给定3个正实数,判断其是否构成三角形,若构成三角形,则根据海伦公式计算其面积. 画出解答此问题算法的程序框图.(学生试写→共同订正→对比教材P7 例3、4 →试验结果)②设计一个计算2+4+6+…+100的值的算法,并画出程序框图.(学生试写→共同订正→对比教材P9 例5 →另一种循环结构)③循环语句的两种类型:当型和直到型.当型循环语句先对条件判断,根据结果决定是否执行循环体;直到型循环语句先执行一次循环体,再对一些条件进行判断,决定是否继续执行循环体. 两种循环语句的语句结构及框图如右.说明:“循环体”是由语句组成的程序段,能够完成一项工作.注意两种循环语句的区别及循环内部改变循环的条件.④练习:用两种循环结构,写出求100所有正约数的算法程序框图.2. 教学“鸡兔同笼”趣题:①“鸡兔同笼”,我国古代著名数学趣题之一,大约在1500年以前,《孙子算经》中记载了这个有趣的问题,书中描述为:今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?②学生分析其数学解法. (“站立法”,命令所有的兔子都站起来;或用二元一次方程组解答.)③欣赏古代解法:“砍足法”,假如砍去每只鸡、每只兔一半的脚,则“独脚鸡”,“双脚兔”. 则脚的总数47只;与总头数35的差,就是兔子的只数,即47-35=12(只).鸡35-12=23(只).④试用算法的程序框图解答此经典问题. (算法:鸡的头数为x,则兔的头数为35-x,结合循环语句与条件语句,判断鸡兔脚数2x+4(35-x)是否等于94.)三、巩固练习:1. 练习:100个和尚吃100个馒头,大和尚一人吃3个,小和尚3人吃一个,求大、小和尚各多少个?分析其算法,写出程序框图. 2. 作业:教材P12 A组1题.。
人教B版高中数学必修三《第一章 算法初步 1.1 算法与程序框图 1.1.1 算法的概念》_1
(2)、根据主持人的回答确定价格区间:
①若报价低了,则商品的价格区间为(P1,1000)
②若报价高了,则商品的价格区间为(0, P1 )
③若报价等于商品价格,则游戏结束。
(3)、如果游戏没有结束,则报出上面确定的价格区间的中点 P2;
按上述方法,继续判断,直到游戏结束。
像这样的一系列步骤叫做解决这个问题的算法。
成计算机程序,让电脑来处理繁杂的计算,问题就变得相当简单了。)
案例2 : 用二分法求方程x3 x 1 0在区间 [1,1.5]内的一个近似解(误差不超过0.001).
(说明:这个问题可以用二分法来解决,但当精确度要求很高的时候,计算量 非常大。但如果将算法翻译成计算机程序,让电脑来处理繁杂的计算,问 题就变得相当简单了。)
通过对本 节知识点 的回顾, 形成知识 体系。并 留下思考 空间,保 持学生的 学习兴 趣。
教学反思
让学生在 操作实践 中体会算 法的思 想,并鼓 励学生对 同一问题 尝试多种 算法。并 对通过对 比,指出 算法有优 劣之分。
过河去?请写出一个渡河方案。
五、课堂小结 1、算法:就是解决问题的一系列步骤。 2、算法特征:分步 用算法“分步”的思想去解决问题,往往会使事情更条理、更容易解决。 六、作业:课本 P15 2
设计意图
1、 同学们,平时有没喝茶的习惯呢? 那么要泡出一壶热茶,我们要完成哪些步骤呢?
(倘若把泡茶分成以下一些步骤:洗茶具、冲茶、浇开水,那么我们可以 怎样完成这件事呢?)
学生回答: 2、电视娱乐节目“幸运 52”中,有一种有趣的“猜数”游戏:竞猜者如在规 定的时间内猜出某种商品的价格,就可获得该件商品。
算法的基本思想 教案
教学目标:了解算法的含义,了解算法的思想。
高中数学必修3:1.1 算法与程序框图课件
现代算法 通常可以编成_计__算__机__程__序___,让计算机执行并解决 问题
注意:(1)组成算法的每个步骤是明确的和有效的.例如:把
一堆球分成两类,步骤“先把较轻的挑出来”是不确定的、无
效的.(2)组成算法的所有步骤是有限的.例如:将 2表示成小数,
其不能在有限步骤内完成,故不能称为一个算法.
[方法·规律·小结] 1.算法是在有限步骤内求解某一问题所使用的一组定义明 确的规则.通俗地说,就是计算机解题的过程.在这个过程中,无 论是形成解题思路还是编写程序,都是在实施某种算法,前者 是推理实现的算法,后者是操作实现的算法. 2.算法的基本思想就是探求解决问题的一般方法,并将解 决问题的步骤用具体化、程序化的语言加以表述.
3.算法的特征. (1)概括性:写出的算法,必须能解决某一类问题,并且能 重复使用. (2)逻辑性:算法从初始步骤开始,分为若干个明确的步骤, 前一步是后一步的前提,只有执行完前一步才能进行下一步, 而且每一步都是正确无误的,从而组成一个有着很强逻辑性的 步骤排列.
方法二:第一步,计算方程的判别式,
Δ=22+4×3=16>0.
第二步,将 a=1,b=-2,c=-3 代入求根公式.
x=-b±
b2-4ac,解得 2a
x=3,或
x=-1.
方法三:第一步,将方程左边因式分解,得 (x-3)(x+1)=0. ① 第二步,由①,得 x-3=0 或 x+1=0. ② 第三步,解②,得 x=3 或 x=-1.
答案:第一步,由①,得 x=2y-1. 第二步,将 x=2y-1 代入②式,得 y=35. 第三步,将 y=35代入 x=2y-1,得 x=15. 第四步,得到方程组的解为yx==1535, .
题型 1 算法的概念 【例 1】 下列关于算法的理解,不正确的是( ) A.一个问题只能有唯一的算法 B.算法包含的步骤是有限的 C.算法中每一步骤应当明确有效,并得到确定的结果 D.一个算法中的某一步骤可以执行多次 思维突破:根据算法的概念判断,检查其是否满足有限性、 明确性、不唯一性以及顺序性. 答案:A
人教B版高中数学必修三《 1.1 算法与程序框图 1.1.1 算法的概念》_3
1.1.1算法的概念1. 知识与技能:(1)了解算法的含义,体会算法的思想。
(2)能够用自然语言叙述算法。
(3)掌握正确的算法应满足的要求。
(4)会写出解线性方程(组)的算法。
(5)会写出一个判断任意的正整数是否为质数的算法。
2. 过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。
由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个判断任意的正整数是否为质数的算法。
3. 情感、态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的有力工具,进一步提高探索、认识世界的能力。
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
三 教学过程:1. 创设情境师:空间向量的学习我们暂时告以段落,从今天这节课开始,我们来学习算法这一章, 投影上打出的是教材上的章头图,图中有算盘、算筹、计算机,是什么把它们联系到一起? 是算法。
我国古代数学中蕴含着丰富的数学思想,现代的计算机与算法更是密不可分,那么究竟什么是算法?今天这节课,我们就一起来认识它。
引例(课件演示):(1)把大象放冰箱需要几步?(2)猜价格问题(3)狼、兔、蔬菜过河问题(4)解二元一次方程组: ⎩⎨⎧=+-=-②y x ①y x 1212 分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步:② - ①×2,得: 5y=3; ③第二步:解③得 53=y ; 第三步:将53=y 代入①,得 51=x . 学生探究:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善?老师评析:本题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法。
(完整版)人教版高中数学必修3教材全套教案
第一章 算法初步1.1 算法与程序框图 1.1.1 算法的概念授课时间:第 周 年 月 日(星期 )教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步? 答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题 (1)解二元一次方程组有几种方法?(2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行. (7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i 表示2—(n-1)中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n,得到余数r.判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i 除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i 表示. 第五步,判断“i >(n-1)”是否成立.若是,则n 是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x 2-2=0 (x>0)的近似解的算法.分析:令f(x)=x 2-2,则方程x 2-2=0 (x>0)的解就是函数f(x)的零点. “二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b ](满足f(a)·f(b)<0)“一分为二”,得到[a,m ]和[m,b ].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m ]或[m,b ],仍记为[a,b ].对所得的区间[a,b ]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.当d=0.005时,按照以上算法,可以得到下表..实际上,上述步骤也是求2的近似值的一个算法.例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.强调:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.强调:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t (分钟),通话费用y (元),如何设计一个程序,计算通话的费用. 解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.1.1.2 程序框图与算法的基本逻辑结构整体设计授课时间:第周年月日(星期)三维目标1.熟悉各种程序框及流程线的功能和作用.2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程.在具体问题的解决过程中,理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构.3.通过比较体会程序框图的直观性、准确性.重点难点数学重点:程序框图的画法.数学难点:程序框图的画法.教学过程第1课时程序框图及顺序结构导入新课思路1(情境导入)我们都喜欢外出旅游,优美的风景美不胜收,如果迷了路就不好玩了,问路有时还听不明白,真是急死人,有的同学说买张旅游图不就好了吗,所以外出旅游先要准备好旅游图.旅游图看起来直观、准确,本节将探究使算法表达得更加直观、准确的方法.今天我们开始学习程序框图.思路2(直接导入)用自然语言表示的算法步骤有明确的顺序性,但是对于在一定条件下才会被执行的步骤,以及在一定条件下会被重复执行的步骤,自然语言的表示就显得困难,而且不直观、不准确.因此,本节有必要探究使算法表达得更加直观、准确的方法.今天开始学习程序框图.推进新课新知探究提出问题(1)什么是程序框图?(2)说出终端框(起止框)的图形符号与功能.(3)说出输入、输出框的图形符号与功能.(4)说出处理框(执行框)的图形符号与功能.(5)说出判断框的图形符号与功能.(6)说出流程线的图形符号与功能.(7)说出连接点的图形符号与功能.(8)总结几个基本的程序框、流程线和它们表示的功能.(9)什么是顺序结构?讨论结果:(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序.(2)椭圆形框:表示程序的开始和结束,称为终端框(起止框).表示开始时只有一个出口;表示结束时只有一个入口.(3)平行四边形框:表示一个算法输入和输出的信息,又称为输入、输出框,它有一个入口和一个出口.(4)矩形框:表示计算、赋值等处理操作,又称为处理框(执行框),它有一个入口和一个出口.(5)菱形框:是用来判断给出的条件是否成立,根据判断结果来决定程序的流向,称为判断框,它有一个入口和两个出口.(6)流程线:表示程序的流向.(7)圆圈:连接点.表示相关两框的连接处,圆圈内的数字相同的含义表示相连接在一起. 图形符号名称 功能终端框(起止框) 表示一个算法的起始和结束 输入、输出框 表示一个算法输入和输出的信息处理框(执行框)赋值、计算判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”流程线连接程序框连接点连接程序框图的两部分. 三种逻辑结构可以用如下程序框图表示:顺序结构 条件结构 循环结构 应用示例例1 请用程序框图表示前面讲过的“判断整数n(n>2)是否为质数”的算法.解:程序框图如下:强调:程序框图是用图形的方式表达算法,使算法的结构更清楚,步骤更直观也更精确.这里只是让同学们初步了解程序框图的特点,感受它的优点,暂不要求掌握它的画法.变式训练观察下面的程序框图,指出该算法解决的问题.解:这是一个累加求和问题,共99项相加,该算法是求100991431321211⨯++⨯+⨯+⨯Λ的值.例2 已知一个三角形三条边的边长分别为a ,b ,c ,利用海伦—秦九韶公式设计一个计算三角形面积的算法,并画出程序框图表示.(已知三角形三边边长分别为a,b,c ,则三角形的面积为S=))()((c p b p a p p ---),其中p=2cb a ++.这个公式被称为海伦—秦九韶公式) 算法分析:这是一个简单的问题,只需先算出p 的值,再将它代入分式,最后输出结果.因此只用顺序结构应能表达出算法.算法步骤如下:第一步,输入三角形三条边的边长a,b,c. 第二步,计算p=2cb a ++. 第三步,计算S=))()((c p b p a p p ---.第四步,输出S. 程序框图如下:强调:很明显,顺序结构是由若干个依次执行的步骤组成的,它是最简单的逻辑结构,它是任何一个算法都离不开的基本结构. 变式训练下图所示的是一个算法的流程图,已知a 1=3,输出的b=7, 求a 2的值. 解:根据题意221a a +=7, ∵a 1=3,∴a 2=11.即a 2的值为11. 知能训练有关专家建议,在未来几年内,中国的通货膨胀率保持在3%左右,这将对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2004年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格. 解:用P 表示钢琴的价格,不难看出如下算法步骤: 2005年P=10 000×(1+3%)=10 300; 2006年P=10 300×(1+3%)=10 609; 2007年P=10 609×(1+3%)=10 927.27; 2008年P=10 927.27×(1+3%)=11 255.09; 年份 2004 2005 2006 2007 2008 钢琴的价格10 00010 30010 60910 927.2711 255.09程序框图如下: 强调:顺序结构只需严格按照传统的解决数学问题的解题思路,将问题解决掉.最后将解题步骤 “细化”就可以.“细化”指的是写出算法步骤、画出程序框图. 拓展提升如上给出的是计算201614121++++Λ的值的一个流程图,其中判断框内应填入的条件是______________.答案:i>10.课堂小结(1)掌握程序框的画法和功能.(2)了解什么是程序框图,知道学习程序框图的意义.(3)掌握顺序结构的应用,并能解决与顺序结构有关的程序框图的画法. 作业习题1.1A 1.第2课时条件结构导入新课思路1(情境导入)我们以前听过这样一个故事,野兽与鸟发生了一场战争,蝙蝠来了,野兽们喊道:你有牙齿是我们一伙的,鸟们喊道:你有翅膀是我们一伙的,蝙蝠一时没了主意.过了一会儿蝙蝠有了一个好办法,如果野兽赢了,就加入野兽这一伙,否则加入另一伙,事实上蝙蝠用了分类讨论思想,在算法和程序框图中也经常用到这一思想方法,今天我们开始学习新的逻辑结构——条件结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像是一条没有分支的河流,奔流到海不复回,事实上多数河流是有分支的,今天我们开始学习有分支的逻辑结构——条件结构.提出问题(1)举例说明什么是分类讨论思想?(2)什么是条件结构?(3)试用程序框图表示条件结构.(4)指出条件结构的两种形式的区别.讨论结果:(1)例如解不等式ax>8(a≠0),不等式两边需要同除a,需要明确知道a的符号,但条件没有给出,因此需要进行分类讨论,这就是分类讨论思想.(2)在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.(3)用程序框图表示条件结构如下.条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构(或分支结构),如图1所示.执行过程如下:条件成立,则执行A框;不成立,则执行B框.图1 图2注:无论条件是否成立,只能执行A、B之一,不可能两个框都执行.A、B两个框中,可以有一个是空的,即不执行任何操作,如图2.(4)一种是在两个“分支”中均包含算法的步骤,符合条件就执行“步骤A”,否则执行“步骤B”;另一种是在一个“分支”中均包含算法的步骤A,而在另一个“分支”上不包含算法的任何步骤,符合条件就执行“步骤A”,否则执行这个条件结构后的步骤.应用示例例1 任意给定3个正实数,设计一个算法,判断以这3个正实数为三边边长的三角形是否存在,并画出这个算法的程序框图.算法分析:判断以3个任意给定的正实数为三条边边长的三角形是否存在,只需验证这3个数中任意两个数的和是否大于第3个数.这个验证需要用到条件结构.算法步骤如下:第一步,输入3个正实数a,b,c.第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.程序框图如右图:强调:根据构成三角形的条件,判断是否满足任意两边之和大于第三边,如果满足则存在这样的三角形,如果不满足则不存在这样的三角形.这种分类讨论思想是高中的重点,在画程序框图时,常常遇到需要讨论的问题,这时要用到条件结构.例2 设计一个求解一元二次方程ax 2+bx+c=0的算法,并画出程序框图表示. 算法分析:我们知道,若判别式Δ=b 2-4ac>0,则原方程有两个不相等的实数根 x 1=ab 2∆+-,x 2=a b 2∆--;若Δ=0,则原方程有两个相等的实数根x 1=x 2=ab2-; 若Δ<0,则原方程没有实数根.也就是说,在求解方程之前,可以先判断判别式的符号,根据判断的结果执行不同的步骤,这个过程可以用条件结构实现.又因为方程的两个根有相同的部分,为了避免重复计算,可以在计算x 1和x 2之前,先计算p=ab2-,q=a 2∆.解决这一问题的算法步骤如下: 第一步,输入3个系数a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则计算p=ab2-,q=a 2∆;否则,输出“方程没有实数根”,结束算法.第四步,判断Δ=0是否成立.若是,则输出x 1=x 2=p ;否则,计算x 1=p+q ,x 2=p-q ,并输出x 1,x 2.程序框图如下:例3 设计算法判断一元二次方程ax 2+bx+c=0是否有实数根,并画出相应的程序框图. 解:算法步骤如下:第一步,输入3个系数:a ,b ,c. 第二步,计算Δ=b 2-4ac.第三步,判断Δ≥0是否成立.若是,则输出“方程有实根”;否则,输出“方程无实根”.结束算法. 相应的程序框图如右:强调:根据一元二次方程的意义,需要计算判别式Δ=b 2-4ac 的值.再分成两种情况处理:(1)当Δ≥0时,一元二次方程有实数根;(2)当Δ<0时,一元二次方程无实数根.该问题实际上是一个分类讨论问题,根据一元二次方程系数的不同情况,最后结果就不同.因而当给出一个一元二次方程时,必须先确定判别式的值,然后再用判别式的值的取值情况确定方程是否有解.该例仅用顺序结构是办不到的,要对判别式的值进行判断,需要用到条件结构.例4 (1)设计算法,求ax+b=0的解,并画出流程图. 解:对于方程ax+b=0来讲,应该分情况讨论方程的解.我们要对一次项系数a 和常数项b 的取值情况进行分类,分类如下: (1)当a≠0时,方程有唯一的实数解是ab -; (2)当a=0,b=0时,全体实数都是方程的解; (3)当a=0,b≠0时,方程无解.联想数学中的分类讨论的处理方式,可得如下算法步骤: 第一步,判断a≠0是否成立.若成立,输出结果“解为ab -”. 第二步,判断a=0,b=0是否同时成立.若成立,输出结果“解集为R ”.第三步,判断a=0,b≠0是否同时成立.若成立,输出结果“方程无解”,结束算法. 程序框图如右:强调:这是条件结构叠加问题,条件结构叠加,程序执行时需依次对“条件1”“条件2”“条件3”……都进行判断,只有遇到能满足的条件才执行该条件对应的操作. 知能训练设计算法,找出输入的三个不相等实数a 、b 、c 中的最大值,并画出流程图. 解:算法步骤:第一步,输入a ,b ,c 的值.第二步,判断a>b 是否成立,若成立,则执行第三步;否则执行第四步.第三步,判断a>c 是否成立,若成立,则输出a ,并结束;否则输出c ,并结束. 第四步,判断b>c 是否成立,若成立,则输出b ,并结束;否则输出c ,并结束. 程序框图如右:例 5 “特快专递”是目前人们经常使用的异地邮寄信函或托运物品的一种快捷方式.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算: f=⎩⎨⎧>⨯-+⨯≤).50(,85.0)50(53.050),50(,53.0ωωωω其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克). 试画出计算费用f 的程序框图.分析:这是一个实际问题,根据数学模型可知,求费用f 的计算公式随物品重量ω的变化而有所不同,因此计算时先看物品的重量,在不同的条件下,执行不同的指令,这是条件结构的运用,是二分支条件结构.其中,物品的重量通过输入的方式给出.解:算法程序框图如右图: 拓展提升有一城市,市区为半径为15 km 的圆形区域,近郊区为距中心15—25 km 的范围内的环形地带,距中心25 km 以外的为远郊区,如右图所示.市区地价每公顷100万元,近郊区地价每公顷60万元,远郊区地价为每公顷20万元,输入某一点的坐标为(x,y),求该点的地价.分析:由该点坐标(x ,y),求其与市中心的距离r=22y x +,确定是市区、近郊区,还是远郊区,进而确定地价p .由题意知,p=⎪⎩⎪⎨⎧>≤<≤<.25,20,2515,60,150,100r r r解:程序框图如下: 课堂小结(1)理解两种条件结构的特点和区别.(2)能用学过的两种条件结构解决常见的算法问题. 作业习题1.1A 组3.3课时循环结构授课时间:第周年月日(星期)导入新课思路1(情境导入)我们都想生活在一个优美的环境中,希望看到的是碧水蓝天,大家知道工厂的污水是怎样处理的吗?污水进入处理装置后进行第一次处理,如果达不到排放标准,则需要再进入处理装置进行处理,直到达到排放标准.污水处理装置是一个循环系统,对于处理需要反复操作的事情有很大的优势.我们数学中有很多问题需要反复操作,今天我们学习能够反复操作的逻辑结构——循环结构.思路2(直接导入)前面我们学习了顺序结构,顺序结构像一条没有分支的河流,奔流到海不复回;上一节我们学习了条件结构,条件结构像有分支的河流最后归入大海;事实上很多水系是循环往复的,今天我们开始学习循环往复的逻辑结构——循环结构.提出问题(1)请大家举出一些常见的需要反复计算的例子.(2)什么是循环结构、循环体?(3)试用程序框图表示循环结构.(4)指出两种循环结构的相同点和不同点.讨论结果:(1)例如用二分法求方程的近似解、数列求和等.(2)在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.(3)在一些算法中要求重复执行同一操作的结构称为循环结构.即从算法某处开始,按照一定条件重复执行某一处理的过程.重复执行的处理步骤称为循环体.循环结构有两种形式:当型循环结构和直到型循环结构.1°当型循环结构,如图(1)所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,返回来再判断条件P是否成立,如果仍然成立,返回来再执行A框,如此反复执行A框,直到某一次返回来判断条件P不成立时为止,此时不再执行A框,离开循环结构.继续执行下面的框图.2°直到型循环结构,如图(2)所示,它的功能是先执行重复执行的A框,然后判断给定的条件P是否成立,如果P仍然不成立,则返回来继续执行A框,再判断条件P是否成立.继续重复操作,直到某一次给定的判断条件P 时成立为止,此时不再返回来执行A框,离开循环结构.继续执行下面的框图.见示意图:当型循环结构直到型循环结构(4)两种循环结构的不同点:直到型循环结构是程序先进入循环体,然后对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构是在每次执行循环体前,先对条件进行判断,当条件满足时,执行循环体,否则终止循环.两种循环结构的相同点: 两种不同形式的循环结构可以看出,循环结构中一定包含条件结构,用于确定何时终止执行循环体.应用示例思路1例1 设计一个计算1+2+……+100的值的算法,并画出程序框图.。
必修3 1.1算法与程序框图教案-推荐下载
本章教材分析
算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学
的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.
通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,
增强进行实践的能力等,都有很大的帮助.
c1, c2
b1c2 a2b1 a2c1 a2b1
(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使 用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.
在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题. (6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是 可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从
(2)结合教材实例 2x y 1,
(3)结合教材实例 2x y 1,
x 2 y 1,(1)
x 2 y 1,(1)
(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果: (1)代入消元法和加减消元法. (2)回顾二元一次方程组
发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教
学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.
三维目标
1.正确理解算法的概念,掌握算法的基本特点.
2.通过例题教学,使学生体会设计算法的基本思路.
3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.
人教版高中数学必修3第一章算法同步-《1.1算法与程序框图》教案
算法与程序框图.1请.从下面具体的例子中说明几个基本的程序框和它们各自表示的功能,并把它填在相应的括号内2. 下面程序框图输出的S表示什么?虚线框表示什么结构?3. 下面是描述求一元二次方程ax2+bx+c=0的根的过程的程序框图,请问虚线框内是什么结构?4. 下面循环结构的程序框图中,哪一个是当型循环的程序框图?哪一个是直到型循环的程序框图?(1)(2):5. 某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:f=⎩⎨⎧>⨯-+⨯50≤).50(85.0)50(53.050),(53.0ωωωω其中f(单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f算法,并画出相应的程序框图.6. 如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.7. 火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x元的车票退掉后,返还的金额y元的算法的程序框图.8. 画出解不等式ax+b>0(b≠0)的程序框图.参考答案1.一般画成圆角矩形 一般画成画成带箭头的流线处理框(执行框):赋值、计算2. 求半径为5的圆的面积的算法的程序框图,虚线框是一个顺序结构.3. 虚线框内是一个条件结构.4. (1)当型循环的程序框图(2)直到型循环的程序框图5 . 解:算法:第一步:输入物品重量ω;第二步:如果ω≤50,那么f =0.53ω,否则,f = 50×0.53+(ω-50)×0.85;第三步:输出物品重量ω和托运费f..相应的程序框图.6. 解:. 7. 解:8. 解:。
海南省白沙中学2016-2017学年高中数学3教案:第一章1.1算法与程序框图共四课时
【提示】y=错误!错误!2.设计上述问题的算法时,应注意什么?【提示】注意判断购买的件数对购物费用的影响.3.上述问题若画程序框图,只用顺序结构能完成吗?【提示】不能.算法的流程根据条件是否成立有不同的流向,处理这种过程的结构就是条件结构.目标引领把学习目标板在黑板的右上角,并对目标进行解读.活动导学双条件结构单条件结构例1:画出计算函数y =|x-1|的函数值的程序框图.【思路探究】输入x→判断条件→对y赋值→输出y 【自主解答】算法如下:第一步,输入x.第二步,若x≥1,则y =x-1;否则y=1-x。
第三步,输出y.程序框图:例2已知分段函数f(x)=错误!设计一个算法,对输入的x的值,输出相应的函数值,并画出程序框图.【解】算法步骤如下:第一步,输入x.第二步,若x≥2,则y =x2-x+1;否则y=x+1.第三步,输出y.程序框图:当堂评价1如图1-1-8所示,若输入x=-1,则输出y=________.图1-1-8板书设计1.1。
2 程序框图与算法的基本逻辑结构1导入新课2讲解新课3例题分析4课堂练习教学反思活动导学直到型循环当型循环例1:设计一个算法,求13+23+…+993+1003的值,并画出程序框图.【思路探究】确定计数变量、累计变量和循环体后利用循环结构画出框图.【自主解答】算法如下:第一步,令S=0。
第二步,令I=1。
第三步,S=S+I3。
第四步,I=I+1。
第五步,若I≤100,则返回第三步;先执行循环体,后判断条件,若条件不满足,继续执行循环体,直到条件满足终止循环先判断条件,若条件满足,则执行循环体,否则终止循环否则,输出S,算法结束.程序框图如图所示.例2:设计一个算法,计算1×2×3×…×100的值,并画出程序框图.【解】算法如下:第一步,令i=1,S=1.第二步,i=i+1.第三步,S=S×i.第四步,判断i≥100是否成立,若成立,则输出S;否则执行第二步.第五步,输出S。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
高中数学 1.1算法与程序框图教学设计 新人教A版必修3
2015高中数学 1.1算法与程序框图教学设计 新人教A 版必修3一. 引入:以同学们耳熟能详的鸡兔同笼问题引入:“一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?”让学生体会到算法并不陌生,通过算术两种不同的方法,让学生体会算法的不唯一性.进而引出求解二元一次方程组的算法.引例:解二元一次方程组: ⎩⎨⎧=+-=-②y x ①y x 1212 分析:解二元一次方程组的主要思想是消元的思想,有代入消元和加减消元两种消元的方法,下面用加减消元法写出它的求解过程.解:第一步:② - ①×2,得: 5y=3; ③第二步:解③得 53=y ; 第三步:将53=y 代入①,得 51=x . 评注:1.以上求解的步骤就是解二元一次方程组的算法.2.本题的算法是由加减消元法与带入消元求解的,这个算法也适合一般的二元一次方程组的解法.引例:写出求方程组()01221222111≠-⎩⎨⎧=+=+b a b a ②c y b x a ①c y b x a 的解的算法.(可以让学生上台演板)解:第一步:②×a 1 - ①×a 2,得:()12211221c a c a y b a b a -=- ③第二步:解③得 12211221b a b a c a c a y --=; 第三步:将12211221b a b a c a c a y --=代入①,得12212112b a b a c b c b x --=. 也可以只用加减消元法来解决(步骤略).二.概念:在数学中,数学通常是指按照一定的规则解决某一类问题的明确和有限的步骤.现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.说明:1.“算法”没有一个精确化的定义,教科书只对它作了描述性的说明.2. 算法的特点:(1)有序性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的后继步骤,只有执行完前一步才能进入到后一步,并且每一步都要准确无误.(2)明确性:算法中的每一个步骤都是确切的,且能有效的执行且得到确定的结果.(3)有限性: 一个算法的步骤是有限的,它应在有限步操作之后停止,而不能是无限的执行下去.(4)不唯一性:求解某一个问题的算法不一定是唯一的,对于同一个问题可以有不同的算法.(5)问题指向性:算法指向解决一类问题,泛泛谈算法没有意义.三.例题讲评:例1. (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.(3)设计一个算法,判断1999是否为质数.(4)设计一个算法,判断整数n(n为任意给定的大于2的整数)是否为质数.分析:(1)质数是只能被1和自身整除的大于1的整数.(2)首先考虑判断一个具体的数是否是质数的方法,以7,35和1999为例.(3)要判断一个大于2的整数n是否为质数,只要根据质数的定义,用比这个整数小的数去除n,如果它只能被1和本身整除,而不能被其它整数整除,则这个数便是质数.解:(1)第一步用2除7,得到余数1,所以2不能整除7第二步用3除7,得到余数1,所以3不能整除7第三步用4除7,得到余数3,所以4不能整除7第四步用5除7,得到余数2,所以5不能整除7第五步用6除7,得到余数1,所以6不能整除7,因此,7是质数.(2)类似的写出判断35是否为质数的算法:第一步用2除35,得到余数1,所以2不能整除7第二步用3除35,得到余数2,所以3不能整除7第三步 用4除35,得到余数3,所以4不能整除7第四步 用5除35,得到余数0,所以5能整除35,因此,35不是质数.(4)第一步 令i=2 .第二步 用i 除n ,得到余数r .第三步 判断“r=0”是否成立.若是则n 不是质数,结束算法;否则将 i 的值增加1,仍用 i 表示.第四步 判断 “i >1998” 是否成立.若是,则n 是质数,结束算法;否则,返回第三步.(4)根据以上分析,对于任意大于2的正整数n ,判断它是否为质数的算法如下:第一步 给出大于2的正整数.第二步 令i=2 .第三步 用i 除n ,得到余数r .第四步 判断“r=0”是否成立.若是则n 不是质数,结束算法;否则将 i 的值增加1,仍用 i 表示.第五步 判断 “i >(n -1)” 是否成立.若是,则n 是质数,结束算法;否则,返回第三步.(设计意图:通过这个例子从特殊到一般的过程,使学生进一步体会到算法概括性,逻辑性有限性,练习把自然语言转化成规范的算法语言)说明:本算法是用自然语言的形式描述的.设计算法一定要做到以下要求:(1)写出的算法必须能解决一类问题,并且能够重复使用.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法正确,且计算机能够执行.例2.用二分法设计一个求方程022=-x 的近似根的算法. 分析:该算法实质是求2的近似值的一个最基本的方法.解:设所求近似根与精确解的差的绝对值不超过0.005,算法:第一步:令()22-=x x f .因为()()02,01><f f ,所以设x 1=1,x 2=2.第二步:令221x x m +=,判断f (m )是否为0.若是,则m 为所求;若否,则继续判断()()m f x f ⋅1大于0还是小于0.第三步:若()()01>⋅m f x f ,则x 1=m ;否则,令x 2=m .第四步:判断005.021<-x x 是否成立?若是,则x 1、x 2之间的任意值均为满足条件的近似根;若否,则返回第二步.说明:按以上步骤,我们将依次得到课本第4页的表1-1和图1.1-1.于是,开区间(1.4140625,1.41796875)中的实数都满足假设条件的原方程是近似根.四.练习:让学生举出一些算法的例子,老师再选出一个简单的具有代表性的例子.如:1.写出解方程0322=--x x 的一个算法.分析:本题是求一元二次方程的解的问题,方法很多,下面分别用配方法、判别式法写出这个问题的两个算法.解:算法1:第一步:移项,得:322=-x x ; ①第二步:①式两边同加1并配方,得:()412=-x ② 第三步:②式两边开方得: x -1=±2 ③第四步:解③得: x =3或x =-1.算法2:第一步:计算方程的判别式并判断其符号: ∆=22+4×3=16>0; 第二步:将a =1,b =-2,c =-3代入求根公式aac b b x 242-±-=.得: x 1=3,x 2=-1. 说明:给出此题的目的是使学生加深对算法概念的理解. (老师辅导学生完成)五.小结:算法的概念及其特点.六.作业: (课本第四页练习)1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:算法步骤:第一步:输入任意一个正实数r ;第二步:计算以r 为半径的圆的面积:2r S ⋅=π;第三步:输出圆的面积S.2.任意给定一个大于1的正整数n,设计一个算法求出n的所有因数.解:算法步骤:第一步:依次以2~(n-1)为除数去除n,检查余数是否为0.若是,则是n的因数;若不是,则不是n的因数;第二步:在n的因数中加入1和n;第三步:输出n的所有因数.。
人教A版必修三1.1算法与程序框图
顺序结构可以用程序 框图表示为
步骤n
步骤n+1
已知三角形三边长分别为a,b,c,则三角 形的面积为
S p( p a)( p b)( p c)
其中
p
a
b 2
c
这个公式被称为海伦—秦九韶公式.
例3、已知一个三角形的三边边长分别为2,3,4, 利用海伦-秦九韶公式设计一个算法,求出它的 面积,画出算法的程序框图. 算法分析: 第一步:计算p的值.
第三步:输出应交纳的水费y.
1.1.2 程序框图
学习目标:(1)在具体问题的解决过程中,掌握基本 的程序框图的画法,理解程序框图的三种基本逻辑 结构---顺序结构、条件结构、循环结构。
(2)通过模仿、操作、探索,经历通过设计程序框 图表达解决问题的算法的过程。
学习重点:通过模仿、操作、探索,经历通过设计 程序框图表达求解问题的过程,在具体问题解决 过程中,理解程序框图的三种基本逻辑结构.
算法学的发展
随着科学技术的日新月异,算法学也得到 了前所未有的发展,现在已经发展到了各个领 域.有遗传算法,排序算法,加密算法,蚁群算法 等,与生物学,计算机科学等有着很广泛的联系, 尤其是在现在的航空航天中,更是有着更广泛 的应用.
很多复杂的运算都是借助计算机和算法 来完成的,在高端科学技术中有着很重要的地 位.
i=i+1
i≥n或r=0?
是
r=0?
是
n不是质数
否 否
n是质数
循环结构 条件结构
结束
2、算法的基本逻辑结构:
程序框图的三种基本的逻辑结构
顺序结构 条件结构 循环结构
人教B版高中数学必修三《第一章 算法初步 1.1 算法与程序框图 1.1.1 算法的概念》_15
算法的概念(教学设计)一、教材依据人教A版数学必修3第1章第1节第1课时二、设计思路学生在以前的学习和生活中已经接触过大量的算法实例,除了本节课中提到的典型案例之外,在初中阶段的解方程、方程组问题和小学阶段的四则运算法则乃至其它学科的应用中都蕴含着丰富的算法思想。
本节课就是在此基础上提出这个学生“接触已久”却依然全新的概念。
虽然他们此时已经具备了相当的概括和归纳能力,但是要提炼出“算法”这一比较抽象的概念还是颇有一定难度的。
为了突破这一难点,在课堂设计时,需要搭建台阶逐渐完善概念的形成。
首先,从学生熟悉的案例出发,充分调动学生观察、归纳、概括等各方面的能力,促使学生通过已知构建新知,从而形成对概念的初步认识;接下来,在对具体案例的分析中,逐步加深对概念的认知,形成完整的算法概念;最后,通过设计算法来深化对算法概念的理解。
除此之外,由于不了解信息科学及计算机语言,学生在依据概念设计算法时会存在一定的困难。
他们可能只能简单的模仿,而这必然导致思维受阻,特别是对于算法擅长处理的条件结构和循环结构,学生原来极少有机会体会。
因此,我选择按照从具体到抽象、从特殊到一般的过程,耐心点拨指导,从思路、方向、技能等诸方面给予提示,促使学生关注到算法中存在的逻辑结构,逐步分散难点,各个击破。
三、教材背景分析《算法的概念》是全日制普通高级中学教科书人教A版必修3第一章《算法初步》的第一节内容,《算法初步》是课程标准的新增内容,它是数学及其应用的重要组成部分,算法思想应该是公民必备的科学素养之一。
而《算法的概念》则是《算法初步》的奠基石,新教材的编写特别强调了知识的螺旋形上升,在前面的学习中,已经让学生积累了大量的算法的实际经验,这个重要的数学概念其实早已存在于学生的意识之中,而且在不同场合都已经不自觉的“实际使用”,只是没有明朗化。
此时引入算法概念可以说是水到渠成,教师的责任就是为学生建立概念修通渠道。
让学生借助他们已有的大量经验抽象出算法的概念并认识其特点;再依据算法的概念和特点来设计一个具体的算法,进一步深化对概念的认知;最后通过典型解题步骤提炼算法的过程,使算法思想进一步得到升华。
人教B版高中数学必修三《1.1算法与程序框图1.1.3算法的三种基本逻辑结构和框图表示》1
程序框图与算法的基本逻辑构造(1)教课目的:1.知识与技术:1)掌握程序框图的观点;会用通用的图形符号表示算法,掌握算法的两个基本逻辑构造;2)掌握画程序框图的基本规则,能正确画出程序框图;3)经过模拟、操作、探究,经历经过设计程序框图表达解决问题的过程.2.过程与方法:在我们描绘算法或画程序框图时,一定按照必定的逻辑构造,事实证明,不论怎样复杂的问题,我们在设计它们的算法时,只要用次序构造、条件构造和循环构造这三种基本逻辑就能够,所以我们一定掌握并正确地运用这三种基本逻辑构造.3.神态与价值:经过本节的学习,使我们对程序框图有一个基本的认识;掌握算法语言的两种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路.培育学生独立思虑、合作沟通的意识;加强学生算法意识,理解算法思想.教课要点:程序框图的基本观点、基本图形符号和两各种基本逻辑构造.教课难点:能综合运用这些知识正确地画出程序框图.教课过程:一.复习引入什么是算法?有哪些特色?“判断整数n(n>2)能否为质数”的算法步骤怎样?有其他形式表示吗?一张旅行导向图引入新课.用框图表示.上述表示算法的图形称为算法的程序框图又称流程图,此中的多边形叫做程序框,带方向箭头的线叫做流程线.思虑:经过上述算法的两种不一样表达方式的比较,你感觉用程序框图来表达算法有哪些特色?二.新课解说程序框图是一种用程序框、流程线及文字说明来表示算法的图形.(简称框图)程序框图是算法的一种表现形式,也就是说,一个算法能够用算法的步骤表示,也能够用程序框图表示,所以,往常是先写出算法的步骤,而后再转变为对应的程序框图.算法的表示(自然语言和框图)基本的程序框和它们各自表示的功能(表格)画程序框图的规则以下:(1)使用标准的图形符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大部分流程图符号只有一个进入点和一个退出点.判断框拥有超出一个退出点的独一符号;(4)判断框分两大类,一类判断框“是”与“否”两分支的判断,并且有且仅有两个结果;另一类是多分支判断,有几种不一样的结果.(5)在图形符号内描绘的语言要特别精练清楚.依据图形剖析程序框图的构造特色:三种基本逻辑构造算法的三种基本逻辑构造次序构造、条件构造、循环构造.(1)次序构造(2)条件构造在算法中,经过对某个条件的判断,依据条件能否建立选择不一样流向的算法构造称为条件结思虑:关于条件构造的理解?想想:条件构造中的判断框有两个出口,由此说明条件构造履行的结果不独一,对吗?不对.判断框固然有两个出口,但依据条件能否建立,选择的出口是确立的,故履行结果也是独一的.练习:察看所给程序框图,说出它所表示的函数.小结:设计一个算法的程序框图的基本思路三.讲堂练习随意给定一个正实数,设计一个算法求以这个数为半径的圆的面积,并画出程序框图表示.设计一个求随意数的绝对值的算法,并画出程序框图.四.讲堂小结1.理解程序框图的含义;掌握各样程序框的画法和功能;能够读懂次序构造、条件构造的程序框图.五.课后作业学习课本P11例5;习题1.1A组1,3题写在作业本上;预习循环构造,并总结出三种构造的差别与联系.六.课后反省。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助.本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.1.1 算法与程序框图1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固.三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣.重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法.课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课 新知探究 提出问题(1)解二元一次方程组有几种方法? (2)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用加减消元法解二元一次方程组的步骤.(3)结合教材实例⎩⎨⎧=+-=-)2(,12)1(,12y x y x 总结用代入消元法解二元一次方程组的步骤.(4)请写出解一般二元一次方程组的步骤.(5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的求解过程,我们可以归纳出以下步骤: 第一步,①+②×2,得5x=1.③ 第二步,解③,得x=51. 第三步,②-①×2,得5y=3.④ 第四步,解④,得y=53.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(3)用代入消元法解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 我们可以归纳出以下步骤: 第一步,由①得x=2y -1.③第二步,把③代入②,得2(2y -1)+y=1.④ 第三步,解④得y=53.⑤ 第四步,把⑤代入③,得x=2×53-1=51. 第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧==.53,51y x(4)对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤: 第一步,①×b 2-②×b 1,得 (a 1b 2-a 2b 1)x=b 2c 1-b 1c 2.③ 第二步,解③,得x=12212112b a b a c b c b --.第三步,②×a 1-①×a 2,得(a 1b 2-a 2b 1)y=a 1c 2-a 2c 1.④ 第四步,解④,得y=12211221b a b a c a c a --.第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.应用示例思路1例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7.第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7.第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7.第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35.第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤.变式训练请写出判断n(n>2)是否为质数的算法.分析:对于任意的整数n(n>2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止.算法如下:第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x>0)的近似解的算法.分析:令f(x)=x2-2,则方程x2-2=0 (x>0)的解就是函数f(x)的零点.“二分法”的基本思想是:把函数f(x)的零点所在的区间[a,b](满足f(a)·f(b)<0)“一分为二”,得到[a,m]和[m,b].根据“f(a)·f(m)<0”是否成立,取出零点所在的区间[a,m]或[m,b],仍记为[a,b].对所得的区间[a,b]重复上述步骤,直到包含零点的区间[a,b]“足够小”,则[a,b]内的数可以作为方程的近似解.解:第一步,令f(x)=x2-2,给定精确度d.第二步,确定区间[a,b],满足f(a)·f(b)<0.第三步,取区间中点m=2ba.第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b].第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续……思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势.解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回.第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回.第四步:人带一只羊过河,自己返回.第五步:人带两只狼过河.点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶.第二步,烧水.第三步,洗刷茶具.第四步,沏茶.算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具.第三步,沏茶.点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段AB一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务.解:算法分析:第一步,从已知线段的左端点A出发,任意作一条与AB不平行的射线AP.第二步,在射线上任取一个不同于端点A的点C,得到线段AC.第三步,在射线上沿AC的方向截取线段CE=AC.第四步,在射线上沿AC的方向截取线段EF=AC.第五步,在射线上沿AC的方向截取线段FG=AC.第六步,在射线上沿AC的方向截取线段GD=AC,那么线段AD=5AC.第七步,连结DB.第八步,过C作BD的平行线,交线段AB于M,这样点M就是线段AB的一个5等分点. 点评:用算法解决几何问题能很好地训练学生的思维能力,并能帮助我们得到解决几何问题的一般方法,可谓一举多得,应多加训练.知能训练设计算法判断一元二次方程ax2+bx+c=0是否有实数根.解:算法步骤如下:第一步,输入一元二次方程的系数:a,b,c.第二步,计算Δ=b2-4ac的值.第三步,判断Δ≥0是否成立.若Δ≥0成立,输出“方程有实根”;否则输出“方程无实根”,结束算法.点评:用算法解决问题的特点是:具有很好的程序性,是一种通法.并且具有确定性、逻辑性、有穷性.让我们结合例题仔细体会算法的特点.拓展提升中国网通规定:拨打市内电话时,如果不超过3分钟,则收取话费0.22元;如果通话时间超过3分钟,则超出部分按每分钟0.1元收取通话费,不足一分钟按一分钟计算.设通话时间为t(分钟),通话费用y(元),如何设计一个程序,计算通话的费用.解:算法分析:数学模型实际上为:y 关于t 的分段函数. 关系式如下:y=⎪⎩⎪⎨⎧∉>+-+∈>-+≤<).,3(),1]3([1.022.0),,3(),3(1.022.0),30(,22.0Z t T T Z t t t t 其中[t -3]表示取不大于t -3的整数部分. 算法步骤如下:第一步,输入通话时间t.第二步,如果t≤3,那么y=0.22;否则判断t ∈Z 是否成立,若成立执行 y=0.2+0.1×(t -3);否则执行y=0.2+0.1×([t -3]+1). 第三步,输出通话费用c. 课堂小结(1)正确理解算法这一概念.(2)结合例题掌握算法的特点,能够写出常见问题的算法. 作业课本本节练习1、2.设计感想本节的引入精彩独特,让学生在感兴趣的故事里进入本节的学习.算法是本章的重点也是本章的基础,是一个较难理解的概念.为了让学生正确理解这一概念,本节设置了大量学生熟悉的事例,让学生仔细体会反复训练.本节的事例有古老的经典算法,有几何算法等,因此这是一节很好的课例.。