蜗壳的水力计算

合集下载

蜗壳计算讲解

蜗壳计算讲解

第五章 蜗壳 88第五章 蜗壳45 蜗壳形式与其主要尺寸的选择现代的中型及大型水轮机都是用蜗壳引导进水的。

各种水力实验中所进行的试验指出,设计合理的蜗壳,它的引水能力及效率与小型水轮机所采用的明槽式装置及罐式机壳相比较并无明显的降低。

蜗壳的优点是可以大大缩短机组之间的距离,这在选择电站厂房的大小时,有着很大的意义。

从蜗壳的研究当中,可以确定各种不同水头下蜗壳内的最佳水流速度,最合理的蜗壳形式,经及制造它的材料。

大部分的转桨式及螺桨式水轮机都采用梯形截面的混凝土蜗壳。

目前设计混凝土蜗壳的最高水头是30~35公尺。

然而,有很多大型水电站,在水头低于35公尺时还应用金属蜗壳。

轴向辐流式水轮机通常采用金属蜗壳,按照水头及功率的不同,金属蜗壳可由铸铁或铸钢浇铸(图62),焊接(图63)或铆接而成。

图64所示是根据水轮机的水头及功率,对于各种不同型式蜗壳通常所建议采用的范围。

蜗壳的大小决定了它的进水截面,而进水截面是与所采取的进水速度有关的。

最通用的进水速度与水头之间的关系,对于12~15公尺以下的水头来说如下式所示:H k v v c = (84)式中 c v —蜗壳中的进水速度;H —有效水头;v k —速度系数,约为1.0。

中水头或高水头则常应用下列关系:30v c H k v = (85)如果把列宁格勒斯大林金属工厂和其它制造厂所出品的中水头及高水头水轮机的现有蜗壳进水速度画在圆上,那么对于水头超过12~15公尺时,我们可得符合下式的曲线:30c H v 5.1=然而,有许多由列宁格勒斯大林金属工厂及外国厂家制造的良好的蜗壳,进水速度大大超过了所示的数值。

图65所示为根据有效水头选择蜗壳进水速度用的诺模图,此图是根据上述的公式而做成的。

46 蜗壳的水力计算当工质—水,流经水轮机的运动机构—转轮时,由于运动量的变化而产生流体能量的转变。

这可用水轮机的基本方程式来表示:gh ηu v u v r u u 2211=-由蜗壳所产生的环流(旋转)及速度v u1只与当时一瞬间的流量Q 和蜗壳尺寸有关。

蜗壳的作用、型式、主要尺寸的选择与计算

蜗壳的作用、型式、主要尺寸的选择与计算
2、蜗壳的断面形式
➢混凝土蜗壳:梯形断面
➢m≥n:减低厂房高度, 缩短主轴长度
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
• 混凝土蜗壳进口断面形状选择:
(1)δ一般为20°~30°, 常取δ=30°;
(2)当n=0时,γ=10°~15°,
b/a=1.5~1.7,可达 2.0;
2、金属蜗壳的水力计算
通过任一断面i 的流量为: Qi Qmaxi / 360
( i :从蜗壳鼻端至断面i 的包角)
又 Vu C Vc 的假定
∴断面半径
i
Qi
Vc
Qmax i 360Vc
断面中心矩: ai ra i 断面外半径:Ri ra 2i
对进口断面,将 i 代入0 公式
Q0 , ,0 , a即0和得R0。值
面和断面单线图。
已知条件:Hr、Qmax、b0、 Da、Db,蜗壳类型,
0、Vc 。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
1、蜗壳中的水流运动 V Vr Vu
(1)径向分速度 V:r
Vr
Qmax
Dab0
constant
(水流必须均匀地、 轴对称地进入导水机构)
(3)当m>n时,γ=10°~20°,
(b-n)/a=1.2~1.7,可达1.85;
(4)当m≤n时,γ=25°~35°,
(b-m)/a=1.2~1.7,可达1.85;
中间断面形状的确定: 直线过渡或抛物线过渡。
第 一 第节二蜗章壳水的轮型机式的蜗及壳其、主尾要水参管和数气选蚀择
3、蜗壳的包角 0:从蜗壳鼻端至蜗壳进口断面
可求出对应每一个Ri中间断面的尺寸 ai ,ni ,mi及

蜗壳计算

蜗壳计算

第二节 蜗壳计算一、 蜗壳形式、进口断面参数选择1、蜗壳形式选择由于应力强度的限制,钢筋混凝土的蜗壳只能在40m 水头以下的电站中采用,而对于40m 以上水头的电站来说,只能采用金属蜗壳。

根据原始资料,本次设计电站的最大水头为95m ,故应选择金属蜗壳。

2、蜗壳进口断面参数选择 (1) 包角ϕ的选择混凝土蜗壳包角ϕ通常选择在270~180之间,而金属蜗壳的包角通常在350~340之间,故选取包角345ϕ︒=。

(2) 选择进口断面平均流速0v进口断面平均流速v-可以选择大一些,这样可以减小蜗壳尺寸,但过大的增加0v 又会增加损失从而降低水轮机效率,减少水轮机的输出功率,故应尽量合理选择。

v-==0.86⨯81=7.74(m/s ) 参【1】P119K 为蜗壳的流速系数,与水头有关,查得0.86 参【2】P120 图(5-14) H 为水轮机设计水头。

(3) 确定进口断面的流量0Q 计算公式如下:000111360360T QQ Q D ϕϕ==限=⨯3603451.247⨯4.52⨯81 =217.8 m 3/m 参考【2】P 124ϕ0为进口断面的包角。

(4)计算进口断面面积0F 计算公式如下: 000v Q F ==74.78.217=28.14 ㎡/s (5)计算进口断面半径0ρ计算公式如下: πρ00F ==π14.28=3 m 参考【2】P 124(6)确定座环内外径D a 、D bmr m K m D mD b a 4.015.0615.7==== 参考【2】P 128表2-16(7) 确定碟形边锥角α由座环工艺决定,一般取55α︒=。

(8)计算碟形边高度h 计算公式如下:202sin 22b h ktg r αα=++ =1.26/2+0.15255sin15.0255tg 2⨯⨯+⨯ =0.9mb 010b ⨯=D =4.5⨯0.28=1.26 m(9)计算碟形边半径0r计算公式如下: k D r a+=20=7.15/2+0.15=3.72 m 固定导叶外切圆半径r a = D a /2=7.15/2=3.58 m(10)确定进口断面的中心距α0 计算公式如下: 22000h r a -+=ρ =22.90372.3-+=6.55 m(11) 计算进口断面的外半径0R 计算公式如下:000ρ+=a R =6.55+3=9.55 m(12)计算蜗壳系数C 计算公式如下:202000ρϕ--=a a C 参考【2】P 124公式2-5。

金属蜗壳水力计算和尾水管设计

金属蜗壳水力计算和尾水管设计

金属蜗壳的水力计算在选定包角ϕ0及进口断面平均流速v 0后,根据设计流量Q r ,即可求出进口断面面积F 0。

由于要求水流沿圆周均匀地进入导水机构,蜗壳任一断面ϕi 通过的流量Q ϕ应为 Q Q ir ϕϕ=360(7—6)于是,蜗壳进口断面的流量为 Q Q r 00360=ϕ(7—7)进口断面的面积为F Q v Qv r 00000360==ϕ (7—8) 圆形断面蜗壳的进口断面半径为 ρπϕπmax ==F Q v r00360 (7—9)采用等速度矩方法计算蜗壳内其它断面的参数。

取蜗壳中的任一断面,其包角为ϕi ,如图7—15所示,通过该断面的流量为Q v bdr u r R aiϕ=⎰(7—10)因v r K u =,则v K r u =/,代入式(7—10)得: Q Kbrdr r R aiϕ=⎰(7—11) 式中:r a ──座环固定导叶的外切圆 半径;R i ──蜗壳断面外缘到水轮机轴线半径;r ──任一断面上微小面积到水轮机轴线的半径: b ──任一断面上微小面积的高度。

一、圆形断面蜗壳的主要参数计算对圆形断面的蜗壳,断面参数b 从图7—15中的几何关系可得b r a i i =--222ρ() (7—12) 式中:ρi ──蜗壳任一断面的半径;a i ──任一断面中心到水轮机轴线距离。

图7—15 金属蜗壳的平面图和断面图水轮机轴r aa ir R id rρibv uv rviϕ将式(7—12)代入式(7—11),并进行积分得:Q K a a i i i ϕπρ=--222() (7—13) 由式(7—6)与式(6-13)得ϕπρi r i i i KQ a a =--72022 () (7—14) 令C KQ r=720 π,称为蜗壳系数,则有ϕρi i i i C a a =--()22 (7—15)或 ρϕϕi i ii a C C =-⎛⎝ ⎫⎭⎪22(7—16)以上两式中的蜗壳系数C 可由进口断面作为边界条件求得。

水电站课程设计计算说明书.

水电站课程设计计算说明书.

水电站厂房设计说明书(MY 水电站)1.绘制蜗壳单线图1.1蜗壳的型式水轮机的设计头头H p =46.2m>40m ,水轮机的型式为HL220-LJ-225,可知本水电站采用混流式水轮机,转轮型号为220,立轴,金属蜗壳,标称直径D 1=225cm=2.25m 。

1.2蜗壳主要参数的选择[1]金属蜗壳为圆断面,由于其过流量较小,蜗壳的外形尺寸对水电站厂房的尺寸和造价影响不大,因此为了获得良好的水力性能一般采用0ϕ= 340°~350°。

本设计采用0ϕ = 345°,通过计算得出通过蜗壳进口断面的流量Q c ,计算如下:①单机容量:60000KW15000KW 4N f ==,选取发电机效率为f η=0.96,这样可求得 水轮机的额定出力:1500015625KW 0.96N fN r fη=== ②设计水头:H p =H r =46.2m ,D 1=2.25m 由此查表得:η= 0.91131150L/s 1.15m /s 1Q ==水轮机以额定出力工作时的最大单位流量: 15625131.11 1.15m /s 1max33229.819.812.2546.20.91221N rQ D H r η===<⨯⨯⨯③水轮机最大引用流量:1231.112.2538.2m /s max 1max 1Q Q D ==⨯= ④蜗壳进口断面流量:3453max 38.236.61m /s 0360360Q Q c ϕ==⨯= 根据《水力机械》第二版中图4-30可查得设计水头为46.2m<60m 时蜗壳断面平均流速为V c =5.6 m/s 。

由附表5可查得:座环外直径D a =3850mm ,内直径D b =3250mm ,;座环外半径r a =1925mm ,座环内半径r b =1625mm 。

座环示意图如图一所示:1.3蜗壳的水力计算1.3.1对于蜗壳进口断面 断面的面积:20max m 537.63606.53452.38360=︒⨯︒⨯=︒==c c c c V Q V Q F ϕ 断面的半径:m 443.16.53603452.383600max max =⨯⨯︒︒⨯===︒ππϕπρccV Q F从轴中心线到蜗壳外缘的半径:2 1.9252 1.443 4.811m max max R r a ρ=+=+⨯=1.3.2对于中间任一断面设i ϕ为从蜗壳鼻端起算至计算面i 处的包角,则该断面处max 360ii Q Q ϕ=,max360i c Q V ρπ=,2i a i R r ρ=+其中:3max 38.2m /s Q =, 5.6m /s c V =,1925mm 1.925m a r ==。

第3章 水轮机结构(蜗壳及尾水管)课件

第3章  水轮机结构(蜗壳及尾水管)课件
B5很大时,加隔墩d5=(0.1~0.15) B5
顶板 α=10°~13°,底板水平。
4.尾水管的高度与水平长度
尾水管的总高度和总长度是影响尾水管性能的重要 因素。
H=h1+h2+h3+h4 h1,h2由转轮结构确定; h4为肘管 高度,不易变动。 H取决于h3(直锥段长度)。h3大→开挖加大,工程 投资增大; L:机组中心到尾水管出口,L大→F出大→V出小 →ηw大→hf大→厂房尺寸加大,一般L=( 3.5~4.5) D1。 5.推荐尾水管尺寸:表4-15。
参数:座环外径、内
径、导叶高度、蜗壳
断面半径、蜗壳外缘
半径。
混凝土蜗壳:“T”形。 (1) m=n时:称为对称型式 (2) m>n:下伸式 (3) m<n:上伸式
(4) n=0:平顶蜗壳
中间断面:
蜗壳顶点、底角点的变化规律按直线或抛物线确 定。
蜗壳中间断面
金属蜗壳
混凝土蜗壳
2. 蜗壳包角
蜗壳末端(鼻端)到蜗壳进口断面之间的中心角φ0 (1) 金属蜗壳:φ0=340°~350°,常取345° (2) 混凝土蜗壳:φ0=180°~270°,一般取180°,一 大部分水流直接进入导叶,为非对称入流,对转轮 不利)
断面半径:
max

Fc


Qmax 0 3600 VC
从轴心线到蜗壳外缘半径:
Rmax ra 2 max
(ii) 中间断面( i )
Qi
i
i
360
Q max 0
Qi Qmaxi Fi Vu 3600Vc
Q max i 360 0 VC
板衬砌防渗(H 最大达Leabharlann 80m)2. 金属蜗壳

水电站厂房课程设计计算说明书概要

水电站厂房课程设计计算说明书概要

水电站厂房课程设计计算书学院:水利与环境学院指导老师:殷德胜学号:2008101440§1 绘制蜗壳单线图一、蜗壳的型式:水轮机的设计头头 46.240p H m m =>, 采用金属蜗壳。

另外, 由水轮机的型式为 HL220— LJ — 225,可知本水电站采用金属蜗壳。

二、蜗壳主要参数的选择 (参考《水力机械》金属蜗壳的断面形状为圆形为了良好的水力性能一般蜗壳的包角取 0345ϕ= 查表得 (P160:3max 38.9/Q m s = 蜗壳进口断面流量 max360c Q Q ϕ=334538.937.3/360c Q m s =⨯=, 蜗壳进口断面平均流速 c V 由图 4— 30查得, 5.8/c V m s =。

由附录二表5(P162查得:3250, 3850b a D mm D mm ==,则 1625, 1925b a r mm r mm ==其中:b D —座环内径; a D —座环外径; b r —座环内半径; a r —座环外半径。

座环示意图如下图所示座环尺寸(mm比例:1:100三、蜗壳的水力计算1、对于蜗壳进口断面(P100断面面积 20max 34538.96.4273603605.8c c c c Q Q F m V V ϕ⨯====⨯断面的半径max 1.430m ρ====。

从轴中心线到蜗壳外缘的半径:max max 21.92521.4314.786a R r mρ=+=+⨯=。

2、对于断面形状为圆形的任一断面的计算设 i ϕ为从蜗壳鼻端起算至计算面 i 处的包角,则该计算断面处的 max 360ii Q Q ϕ=,i ρ=2i a i R r ρ=+。

其中:3max 38.9/Q m s =, 5.8/c V m s =, 19251.925a r mm m ==。

表 1—1根据计算结果表1-1,画蜗壳单线图,如下图所示,比例为 1:80,单位为 mm 。

蜗壳计算讲解教学提纲

蜗壳计算讲解教学提纲
大部分的转桨式及螺桨式水轮机都采用梯形截面的混凝土蜗壳。目前设计混凝土蜗壳的最高水头是30~35公尺。然而,有很多大型水电站,在水头低于35公尺时还应用金属蜗壳。
轴向辐流式水轮机通常采用金属蜗壳,按照水头及功率的不同,金属蜗壳可由铸铁或铸钢浇铸(图62),焊接(图63)或铆接而成。图64所示是根据水轮机的水头及功率,对于各种不同型式蜗壳通常所建议采用的范围。
图解计算法
首先,从结构上着眼定出蜗壳截面形状,此截面形状常常决定于水电站的形式。选择进水速度值及进水截面尺寸,然后用下列方法求出蜗壳的常数。
经过进水截面F1(图67)的流量为:
(87)
式中Q—流经水轮机总流量;θ—蜗壳的总包圆角。
以 及 代入积分式中,我们得 (88)
并且 可用圆解总和法求得。
其次,应该注意的是流经每一蜗壳截面的流量Qφ应该与
这个积分式可用图解法或分析法来计算。
下面我们来进行分析计算法。
将蜗壳截面分成数段,每一段的高度b可用某一定变化规律来表示。
在我们的情况中(图70),第一段b1=常数;第二段b2=m+nr;第三段b3=m1+n1r及第四段b0=常数。
因此:
=b1(LnR-LnR1)+m(LnR1-LnR2)+n(R1-R2)+m1(LnR2-Lnr1)+n1(R2-r1)+b0Ln
用图解法求出进水截面的 值(图68)后,按照公式88我们可得k的数值。
在本题中 =3.07;那么,k=16.9/3.07=5.5公尺2/秒。
为了要求出蜗壳其余的截面,并在平面上做出它,我们画出两辅助截面(见虚线),用图解法根据已求得的常数,求出流经此辅助截面的流量(表9),并按照这几点做出流经蜗壳的流量曲线。

水电站厂房课程设计计算说明书

水电站厂房课程设计计算说明书

外婆大寿祝福语1、亲爱的外婆,您尊敬的形象,就像一座巨大的丰碑,永远矗立在我们的心灵深处!2、您正是一位不断掘取生活乐趣的老人,是我们人生的榜样,真心祝福您在生活的乐趣中,越活越年轻!外婆,生日快乐。

3、满脸皱纹,双手粗茧,岁月记载着您的辛劳,人们想念着您的善良;在这个特殊的日子里,祝您福同海阔、寿比南山,愿健康与快乐永远伴随着您!4、让我的祝福,像那悦耳的铃声,飘进你的耳畔,留驻您的心间,祝您生日快乐!5、今天是个喜庆的日子,外婆,在您辛劳了六十年的今天,子孙欢聚一堂,同享天伦之乐,祝您寿与天齐,并祝美好明天!6、甜甜的蛋糕,甜甜的祝福,柔柔的烛光,深深的祝福。

今天是您生日,愿所有的快乐、所有的幸福、所有的温馨、所有的好运围绕在您身边。

外婆祝您生日快乐!7、献上天天都属于您的赤诚和爱心,寄上声声都祝福您的亲情,亲爱的外婆,祝您生日快乐,永远快乐,福如东海!8、岁月飞逝,青春易去心难老;仙福永享,寿比南山不老松。

年年有今日,岁岁有今朝,愿您万寿无疆,福禄天齐。

9、外婆,你给我的回忆,是我童年里,最温暖的那一抹色彩!希望你今天是最快乐的一天!真心祝你,健康长寿!10、亲爱的外婆,今天是您的七十岁大寿,希望您在100岁大寿的时候,比现在还要精神百倍!我们永远爱您的!11、外婆的心,是最温暖的春风;外婆的手,是最灵巧的画家;外婆的笑容,是世界上最温暖的彩虹!亲爱的外婆,祝您年年有今日,岁岁有今朝!12、亲爱的外婆,您养育子孙的恩典,真是深如东海、重如泰山!在您生日的今天,祝愿您生日快乐,外婆,生日快乐。

13、在外婆生日到来的今天,愿所有的欢乐和喜悦,不断涌向您的窗前,愿你生日快乐。

14、外婆,你给我的回想,是我童年里,最热和的那一抹色彩!希看你今天是最快乐的一天!真心祝你,健康长寿!15、外婆愿你今天的回忆温馨,愿你今天的梦甜在心,愿你这一年欢欢喜喜,祝你生日美好无比!16、安逸静谧的晚年,是一种休息,是一种愉悦,是一种至高的享受!在这个特殊的日子里,祝您福如东海长流水、寿比南山不老松,健康与快乐永远伴随您!17、亲爱的外婆,真心祝你福寿康宁!希望你永远都健康长寿,我们永远爱你!18、亲爱的外婆,健康就是幸福,祝您乐观长寿,祝您生日快乐。

水电站-蜗壳

水电站-蜗壳
(1)金属蜗壳:圆形。结构参数:Da 、Db、b0、ρi、Ri
(2)混凝土蜗壳:“T”形。有四种型式:
混凝土蜗壳进口断面形状的选择
① δ=20°~30°,常取δ=30 °。 ②当n=0,γ=10°~15°,b/a=1.5~1.7,可达2.0。 ③当m>n,γ=10°~20°, (b-n)/a=1.2~1.7 ,可达 1.85。 ④当m<n,γ=20°~35°,(b-m)/a=1.2~1.7,可达 1.85。
2、金属蜗壳水力计算
( 1 ) 断 面 流 量 :Qi
Qmax 360
i
断面半径: i
Qm ax i 3600VC
断面中心距: ai ra i
断面外半径: Ri ra 2i
蜗壳水力计算
(2)进口断面(φi= φ0 )
断面流量:
Q0
Qmax 360
0
断面半径:
0
Qmax0 3600VC
(2)混凝土蜗壳:
Q大,允许流速小,尺寸大,为减小平面 尺寸,φ0=180°~270°,一般取180°,一部分 水流直接进入座环和导叶,为非对称入流, 对转轮不利。
3、蜗壳进口断面平均流速:
Vc↑→Fc↓→hw↑; Vc↓→Fc↑→hw↓; 一般由Hr—Vc曲线确定VC。
Qc
Qmax 360
0
V c c Hr
一、蜗壳的功用及设计基本要求
设计要求: (1)过水表面应光滑、平顺。 (2)保证水流均匀、轴对称地进入导水机构。 (3)保证水流在进入导水机构前具有一定的环
量。 (4)具有合理的断面形状和尺寸。 (5)具有必要的强度和合适的材料。
二、型式
1、混凝土蜗壳:H≤40m。用于低水头大流 量的电站。节约钢材,钢筋混凝土浇筑, “T”形断面。

基于CFD计算的水轮机蜗壳改型水力设计

基于CFD计算的水轮机蜗壳改型水力设计

基于CFD计算的水轮机蜗壳改型水力设计针对某水电站项目,水轮机原蜗壳模型参数需进行改型设计。

本文研究了蜗壳水力设计三种方法的内在联系,结合该项目技术要求,分别应用等周向平均速度法和给定面积变化规律法对原蜗壳进行改型水力设计,采用CFD方法对原模型蜗壳与改型设计蜗壳对应的三种水轮机全流道进行数值计算,比较了原模型蜗壳与改型蜗壳的计算结果。

结果表明:两种方法所设计的蜗壳水力损失小,水轮机水力效率高,都优于原蜗壳,且满足水轮机技术性能保证要求,给定面积变化规律法设计的蜗壳水力性能更优秀。

标签:水轮机;蜗壳水力设计;水力效率;CFD分析1、引言蜗壳是水轮机的重要过流部件,在水轮机水力设计中有着重要地位,其作用是引导水流沿圆周方向均匀进入导水机构,并具有一定量的圆周速度。

本文结合某水电站项目,水轮机蜗壳按模型相似换算后蜗壳进口直径Φ1482mm,因水轮机结构设计限制,蜗壳进口直径需增大至Φ1700mm,在其它过流部件不改变前提下,仅对蜗壳进行改型设计,因而蜗壳各壳节断面的几何参数需重新进行水力设计。

基于计算流体动力学(CFD)方法对所设计的蜗壳与原蜗壳的水轮机全流道进行数值计算,针对蜗壳的改型设计,使设计的蜗壳水力损失小,水轮机水力性能优良,满足水轮机技术性能保证要求。

2、水轮机蜗壳水力设计方法本文为蜗壳改型水力设计,前提条件:蜗壳为圆形断面的完全蜗壳,参数、、、已知。

为蜗壳包角,蜗壳进口半径,为蜗壳壳节与座环搭接点到导水机构水平中心线的距离,为壳节与座环搭接点到转轮中心线距离;蜗壳第i断面几何参数:壳节半径,壳节圆心到机组中心的距离,如图1所示,为第i断面蜗壳包角,第i断面面积。

并假设蜗壳内流动为平面定常流动,蜗壳出流量周向均匀。

水轮机蜗壳水力设计常用四种设计方法,针对本电站的蜗壳改型设计,四种设计方法笔者都进行了尝试。

①等速度矩法:假定蜗壳中的水流按等速度矩()规律分布,在对蜗壳尾部断面参数计算时,得出的蜗壳尾部断面半径过小,因本电站为低比转数混流式水轮机组,壳节断面半径尤为减小,采用该方法设计的蜗壳多有以涡对形式出现的二次流动,且蜗壳尾部水力损失大。

02__水轮机及其选择分析讲解

02__水轮机及其选择分析讲解

第二章水轮机及其选择水力机械❑水轮机+发电机:水轮发电机组❑功能:发电❑水泵+电动机:水泵抽水机组。

❑功能:输水❑水泵+水轮机:抽水蓄能机组。

❑功能:抽水蓄能水轮机水轮机是将水能转变为旋转机械能,从而带动发电机发出电能的一种机械,是水电站动力设备之一。

2.1 水轮机的类型和构造()()()()()()()()()()()()()()⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧ 双击式 斜击式 切击式水斗式冲击式贯流调桨式贯流定桨式贯流转桨式贯流式 斜流式 轴流调桨式 轴流定桨式 轴流转桨式轴流式 混流式反击式水轮机SJ XJ CJ GT GD GZ GL XL ZT ZD ZZ ZL HL一、反击式水轮机❑定义:利用水流的势能和动能做功的水轮机称为反击式水轮机。

❑特征:转轮的叶片为空间扭曲面,流过转轮的水流是连续的,而且在同一时间内,所有转轮叶片之间的流道都有水流通过,即水流充满转轮室。

反击式水轮机类型❑1.混流式:水流径向流入转轮,轴向流出。

适用范围:H=30-700 m , 单机容量:几万kW-几十万kW适用于高水头小流量电站。

三峡水电站水轮机转轮❑2. 轴流式:水流沿转轮轴向流入,轴向流出,水流方向始终平行于主轴。

轴流定浆式:叶片不能随工况的变化而转动。

轴流转浆式:叶片能随工况的变化而转动,进行双重调节(导叶开度、叶片角度)。

3. 斜流式:水流经过转轮时是斜向的。

转轮叶片随工况变化而转动,高效率区广。

常用于抽水蓄能水电站。

反击式水轮机类型4. 贯流式:水轮机的主轴装置成水平或倾斜。

不设蜗壳,水流直贯转轮。

水流由管道进口到尾水管出口都是轴向的。

适用于低水头、大流量的河床式和潮汐水电站。

二、冲击式水轮机❑定义:利用水流的动能来做功的水轮机为冲击式水轮机。

❑特征:由喷管和转轮组成。

水流以自由水流的形式(P=Pa)冲击转轮,利用水流动能(V方向、大小改变)产生旋转力矩使转轮转动。

第二章 水轮机的蜗壳、尾水管及气蚀

第二章 水轮机的蜗壳、尾水管及气蚀
背面一直下降至最低点K点处(pk),然后回升至出口p2
如果K点的压力降 低至汽化压力,则 将发生翼型气蚀
K点的最低压力pk 是研究翼型气蚀的 控制参数
对K点的压力进行 研究
通过研究叶片上的压力分布情况,得 到叶片上压力最低点(一般为叶片背面 靠近转轮叶片出口处)K点的压力为:
pk


蜗壳单线图,为厂房设计提供依据。
已知:
H r ,Qm ax, b0 , Da , Db ,0 ,Vc
1.水流在蜗壳中的运动规律
水流进入蜗壳后,形成一种旋转运动(环流),之 后进入导叶,水流速度分解为径向分速Vr、圆周分 速Vu。
进入座环时,按照均匀轴 对称入流的要求,Vr=常数。
Vr

Qm a x
pa


Hs

(Wk2 W22 2g
第二章 水轮机的蜗壳、尾水管及气蚀
§2.1 蜗壳的型式及主要参数选择
一、蜗壳设计的要求
蜗壳是反击式水轮机的重要引水部件,对水轮机的效率及 运行安全稳定性有很大影响,通常对蜗壳设计提出如下要求:
(1)过水表面应光滑、平顺,水力损失小; (2)保证水流均匀、轴对称地进入导水机构; (3)水流进入导水机构前应具有一定的环量; (4)具有合理的断面形状和尺寸; (5)具有必要的强度及合格的材料。
转轮获得能量:
EA

E1
E2A

H1
(H2
2V22 )
2g
2.
设尾水管时: E1 (H1
pa )

E2B

H2

p2


2V22
2g
根据2-2至5-5断面能量方程:

蜗壳的水力计算

蜗壳的水力计算

蜗壳的水力计算蜗壳水力计算的目的是要确定在中间不同包角i ϕ时蜗壳断面的形状和尺寸。

计算是在给定的水轮机设计水头r H 、最大引流量max Q 、导叶高度0b 、座环尺寸(外径a D 、内径b D 等)和选择的蜗壳断面形式、包角0ϕ、进口平均流速c V 的情祝下进行的.水流在进入蜗壳后,其流速可分解为园周速度u V 和径向速度r V ,在进入导叶时,按照均匀轴对称的入流要求,则r V 应为—常数;其值为r V =max 0a Q Db π 对于圆周速度u V 的变化规律,计算时有不同的假定,一般常用的有下列两种假定:(一)速度矩u V r=C(C 为一常数)假定蜗壳中的水流是一种轴对称的有势流动,并忽略其内摩擦力,这样就可以近似的认为水流除了绕轴的旋转外,没有任何外力作用在水流上并使其能量发生变化,即()u d mV r dt=0 则 u mV r = C u V r = C上式说明蜗壳中距水轮机轴线半径r 相同的各点上,其水流的园周速度是相同的,u V 随着半径r 的增大而减小。

(二)圆周速度u V =C此假定即认为蜗壳各断面的圆周速度u V 不变,且等于蜗壳进口断面的平均流速c V 。

这样使得在蜗壳尾部的流速较以u V r=C 所得出的流速为小,得出的断面尺寸较大,从而减小了水力损失并便于加工制造.按照这种假定计算蜗壳的尺寸,方法简单,所得出的结果与前一种假定的结果也很近似。

以下仅介绍按照假定u V =c V =C 的计算方法,对于按照假定u V r=C 的计算可参考其他有关书籍。

1.金属蜗壳的水力计算1)对于进口断面断面的面积0F =0c Q V =max 0360c Q V ϕ︒断面的半径max ρ=从轴中心线到蜗壳边缘的半径max R =a r +2max ρ2)对中间任一断面i Q =max 360iQ ϕ︒i ρi R =a r +2i ρ式中 a r ——座环外半径;i ϕ——从蜗壳鼻端起算至计算断面的角度;i Q 、i ρ、i R ——分别为计算断面i ϕ处的流量、断面半径及边缘半径。

蜗壳断面设计公式及说明

蜗壳断面设计公式及说明

第三节:反击式水轮机的引水室一、简介一般混流式水轮机的引水室和压力水管联接部分还装有阀门,小型水轮机为闸阀或球阀,大型多为碟阀。

阀的作用式在停机时止水,机组检修时或机组紧急事故时导叶又不能关闭时使用,绝不能用来调节流量水轮机引水室的作用:1.保证导水机构周围的进水量均匀,水流呈轴对称,使转轮四周受水流的作用力均匀,以便提高运行的稳定性。

2.水流进入导水机构签应具有一定的旋转(环量),以保证在水轮机的主要工况下导叶处在不大的冲角下被绕流。

二、引水室引水室的应用范围1.开敞式引水室2.罐式引水室3.蜗壳式引水室混凝土蜗壳一般用于水头在40M以下的机组。

由于混凝土结构不能承受过大水压力,故在40M以上采用金属蜗壳或金属钢板与混凝土联合作用的蜗壳蜗壳自鼻端至入口断面所包围的角度称为蜗壳的包角蜗壳包角图金属蜗壳的包角340度到350度三、金属蜗壳和混凝土蜗壳的形状及参数1.蜗壳的型式水轮机蜗壳可分为金属蜗壳和混凝土蜗壳当水头小于40M时采用钢筋混凝土浇制的蜗壳,简称混凝土蜗壳;一般用于大、中型低水头水电站。

当水头大于40M时,由于混凝土不能承受过大的内水压力,常采用钢板焊接或铸钢蜗壳,统称为金属蜗壳。

蜗壳应力分布图椭圆断面应力分析图金属蜗壳按制造方法有焊接铸焊和铸造三种。

,尺寸较大的中、低水头混流一般采用钢板焊接,其中铸造和铸焊适用于尺寸不大的高水头混流水轮机2.蜗壳的断面形状金属蜗壳的断面常作成圆形,以改善其受力条件,当蜗壳尾部用圆断面不能和座环蝶形边相接时,采用椭圆断面。

金属蜗壳与有蝶形边座环的连接图金属蜗壳的断面形状图混凝土蜗壳的断面常做成梯形,以便于施工和减小其径向尺寸、降低厂房的土建投资混凝土蜗壳断面形状图当蜗壳的进口断面的形状确定后,其中间断面形状可由各断面的顶角点的变化规律来决定,有直线变化和向内弯曲的抛物线变化规律混凝土蜗壳的断面变化规律3.蜗壳的包角对于金属蜗壳,其过流量较小,允许的流速较大因此其外形尺寸对厂房造价影响较小,为获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般对于混凝土蜗壳其过流量较大,允许的流量较小,因此其外形尺寸常成为厂房大小的控制尺寸,直接影响厂房的土建投资,一般4.蜗壳的进口流速当蜗壳断面形状及包角确定后,蜗壳进口断面平均流速是决定蜗壳尺寸的主要参数。

高清图文+水轮机蜗壳的型式及主要参数选择

高清图文+水轮机蜗壳的型式及主要参数选择
进入座环时,按照均匀轴对称入流的要求,
Vr=常数。
Vr

Q max
D ab0
圆周流速Vu的变化规律,有两种基本假 定:
(1) 速度矩Vur= C 假定蜗壳中的水流是一种轴对称有势流,忽 略粘 性及摩擦力,Vu会随r的增加而减 小。
(2) 圆周流速Vu=C:即假定Vu=VC=C
2. 蜗壳的水力计算按(Vu=VC=C)
水轮机蜗壳的型式及主要参数选择
一、蜗壳的功用及型式
(一) 功用 蜗壳是水轮机的进水部件,把水流以较小的水
头损失,均匀对称地引向导水机构,进入转轮。 设置在尾水管末端。
(二) 型式
1. 混凝土蜗壳 适用于低水头大流量的 水轮机。 H≦40m, 钢筋混凝土 浇筑,“T”形断面。 当H>40m时,可用钢 板衬砌防渗(H 达80m)
Qmax
Fi
Qi Vu
Qmaxi
3600Vc
i
Qmaxi 3600VC
Ri ra 2i
由此可以绘出蜗壳平面图单线图。其步骤为:
(a) 确定φ0 和VC ; (b) 求Fc、ρmax、Rmax; (c) 由φi确定Fi、ρi、Ri。
混凝土蜗壳的水力计算(半解析法)
(1) 按求进口断面积;
混凝土蜗壳:“T”形。
(1) m=n时:称为对称型 式
(2) m>n:下伸式 (3) m<n :上伸式 (4) n=0:平顶蜗壳 中间断面:
蜗壳顶点、底角点的变 化规律按直线或抛物线 确定。
2.蜗壳包角
蜗壳末端(鼻端)到蜗壳0°,常取345°
(2) 混凝土蜗壳: φ0=180°~270°,一般取 180°,一大部分水流直接 进入导叶,为非对称入流, 对转轮不利)

不同蜗壳断面水力计算的数学解法

不同蜗壳断面水力计算的数学解法

不同蜗壳断面水力计算的数学解法
彭辉;张振华;刘德富
【期刊名称】《三峡大学学报(自然科学版)》
【年(卷),期】2004(026)001
【摘要】通过简单明了的数学推导,阐述了不同类型蜗壳断面水力计算的数学解法,不仅有利于设计人员的参考引用,也有利于高校教学.
【总页数】3页(P1-3)
【作者】彭辉;张振华;刘德富
【作者单位】三峡大学,土木水电学院,湖北,宜昌,443002;三峡大学,土木水电学院,湖北,宜昌,443002;三峡大学,土木水电学院,湖北,宜昌,443002
【正文语种】中文
【中图分类】TV734
【相关文献】
1.水轮机混凝土蜗壳水力计算及绘图 [J], 吴刚
2.蜗壳水力计算论述的又一途径 [J], 尹致和
3.混凝土蜗壳水力计算的数解法 [J], 王湘生
4.不同断面型式蜗壳对离心泵性能影响的数值模拟 [J], 郭鹏程;罗兴锜;周鹏;丁况
5.蜗壳断面形状及叶轮位置对蜗壳式轴流泵性能的影响 [J], 王党雄;曹卫东;张忆宁;刘晓娟;马金星
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蜗壳的水力计算
蜗壳水力计算的目的是要确定在中间不同包角i ϕ时蜗壳断面的形状和尺寸。

计算是在给定的水轮机设计水头r H 、最大引流量max Q 、导叶高度0b 、座环尺寸(外径a D 、内径b D 等)和选择的蜗壳断面形式、包角0ϕ、进口平均流速c V 的情祝下进行的.
水流在进入蜗壳后,其流速可分解为园周速度u V 和径向速度r V ,在进入导叶时,按照均匀轴对称的入流要求,则r V 应为—常数;其值为
r V =max 0
a Q D
b π 对于圆周速度u V 的变化规律,计算时有不同的假定,一般常用的有下列两种假定:
(一)速度矩u V r=C(C 为一常数)
假定蜗壳中的水流是一种轴对称的有势流动,并忽略其内摩擦力,这样就可以近似的认为水流除了绕轴的旋转外,没有任何外力作用在水流上并使其能量发生变化,即
()u d mV r dt
=0 则 u mV r = C u V r = C
上式说明蜗壳中距水轮机轴线半径r 相同的各点上,其水流的园周速度是相同的,u V 随着半径r 的增大而减小。

(二)圆周速度u V =C
此假定即认为蜗壳各断面的圆周速度u V 不变,且等于蜗壳进口断面的平均流速c V 。

这样使得在蜗壳尾部的流速较以u V r=C 所得出的流速为小,得出的断面尺寸较大,从而减小了水力损失并便于加工制造.按照这种假定计算蜗壳的尺寸,方法简单,所得出的结果与前一种假定的结果也很近似。

以下仅介绍按照假定u V =c V =C 的计算方法,对于按照假定u V r=C 的计算可参考其他有关书籍。

1.金属蜗壳的水力计算
1)对于进口断面
断面的面积
0F =0c Q V =max 0360c Q V ϕ︒
断面的半径
max ρ
=从轴中心线到蜗壳边缘的半径
max R =a r +2max ρ
2)对中间任一断面
i Q =max 360i
Q ϕ︒
i ρ
i R =a r +2i ρ
式中 a r ——座环外半径;
i ϕ——从蜗壳鼻端起算至计算断面的角度;
i Q 、i ρ、i R ——分别为计算断面i ϕ处的流量、断面半径及边缘半径。

由此便可绘制出蜗壳断面和平面的单线图。

2.混凝土蜗壳的水力计算
混凝土蜗壳的水力计算采用半图解法极为方便,如下图所示,现将其计算方法及步骤分述如下:
1)按下式计算蜗壳进口断面的面积
c F =max 0360c
Q V ϕ︒ 2)根据水电站的具体情况选择断面形式,并规划进口断面的尺寸使其包括的面积符合c F 的要求,然后将进口断面画在图的右上方;
3)选择顶角和底角的变化规律(图中选择的是直线变化规律),以虚线表示,并画出若干个中间断面(如图上1、2、3、……断面);
4)计算各断面的面积,并在断面图的下面对应地绘制出F=f(R)的关系曲线;
5)按下列关系式在左下方并列绘制出F=f(ϕ)的直线,
i F =max 360i c
Q V ϕ︒ 6)根据所需要的角度i ϕ在图上便可查得该i ϕ处蜗壳断面面积i F 及其相应的外半径i R 和断面尺寸,由此便可绘制出蜗壳断面和平面的单线图(如下图所示)。

相关文档
最新文档