高斯光束和准直器简介ppt课件
合集下载
高斯光束聚焦和准直ppt课件
l
F
l F F 2 l F 2 f
2
F
l F F 2
l
F
2
02
'02
F
02 F 2
l 2
f
2
02 F 2
F
l 2
02
2
五、高斯束的自再现变换与稳定球面腔
12
1、意义-获得腔稳定条件
02
2
q0= if f = w02/
qc lc l l q0
10
F
1 2
l 1
02 l
2
或 Rl 2F
物高斯束在透镜表表面上的等相面的曲率半径
四、球面反射镜对高斯光束的自再现变换
l f
(3) 取 l 0 ,并设法满足条件 f F 。
二、高斯光束的准直
1、核心问题:减小发散角,提高方向性。
01
e2
lim
z
2 z
z
2
0
途径:提高光束束腰半径
'02
F
02F 2
l
2
02
2
选择 0 F、l 取值
R 2B D A
B
4 1 A D2
4
公式讨论(见书上)
要存在真实的高斯模,必须ω为实数。则:
A
D
2
1
2
第4章 高斯光束 PPT
z
1
(
02 z
)2
Z=0(束腰处) R(z) → ∞ (束腰处等相面为平面)
z
2 0
| z | 02
| z | 02
Z=± ∞
| R(z) | 2 02 (极小值)
|
R(z)
| 逐渐减小,曲率中心在
(,
02
u0 R
exp i
k(z
x2 y2 2R
)
0
可将基模高斯光束看作具有复数波面曲率半径的球面波光束
11
i
q(z) R(z) 2(z)
光腰处:
1
1
R(z)
Re
q(z)
1
2 (z)
第四章:高 斯 光 束
高斯光束:所有可能存在的激光波型的概称。 理论和实践已证明,在可能存在的激光束形式中,最重要且 最具典型意义的就是基模高斯光束。
无论是方形镜腔还是圆形镜腔,基模在横截面上的光强 分布为一圆斑,中心处光强最强,向边缘方向光强逐渐减弱, 呈高斯型分布。因此,将基模激光束称为“高斯光束”。
(3)经过球面镜反射
R2
AR1 CR1
B D
A C
B D
f
总结: 基模高斯光束特点
光波面
(z)
F
0
B
0
z
0
F
高斯光束 非均匀球面波
高斯光束与准直器简介
Z A 2p
N0
1.5868
8.14 103
2
A
0.3238
5.364103
2
2.626104
4
• 其中p为透镜周期,透射端与反射端的G-lens周期p分别为 0.23与0.25
基模高斯光束q参数
• q参数 描述高斯光束传播至Z轴某一坐标时的性质
R
典型光学系统的传输矩阵
准直器传输矩阵
C-lens系统等于上页所举三个系统的组合,那么它的传输矩阵M等 于三个系统各自矩阵的乘积。
M
1 1
n
R
n0 10
L1 10
0 1
n
AC CC
BC
DC
G-lens由于具有渐变的折射率分布,传输矩阵比C-lens复杂 可以在供应商的网站上查到各型号G-lens对应的传输矩阵
Re
1 q3
0
对于结构确定的lens与pigtail来说,左式中只 有z1与z2变量,则最终将得到一个
z2 f (z1)
的关系式,由此得出一条工作距离与后截距的 曲线。
准直器出射光束腰和工作距离
另外,由上方程组计算可得:
出射光束腰w02与 后截距z1的关系
02 01
高斯光束与准直器简介
(2011年3月)
编写: 豆西博
摘要
• 高斯光束 • 准直器传输矩阵 • q参数 • 准直器模型与系统结构模拟 • 高斯光束耦合 • 插损、回损的测试
• 高斯光学,也称近轴光学,是指只考虑与轴紧邻的那 些点和光线,在计 算中略去离轴距里或者光线和轴的
优选高斯光束和准直器简介
典型光学系统的变换矩阵
q参数的变换规律—ABCD公式
• 基模高斯光束经过任意光学系统服从所谓的ABCD公 式:
q2
(z)
Aq1 (z) Cq1 (z)
B D
其中 CADB 为光学系统对伴轴光线的变换矩阵。
高斯光束的准直
高斯光束的准直—准直器简介
• 直接从普通单模光纤出射的高斯光束,由于其束腰太 小,因此瑞利距离太短,发散角太大,在应用中,我 们通常需要将其准直。
• 可通过调节准直器的后截距调节准直器的工作距离和束腰大小。
– 目前准直器的调节方法可分为master法和反射法; – 反射法对准直器的束腰控制方法有两种:单点反射和两点反射;
高斯光束耦合
两种光无源器件的制作工艺
公司目前存在两种无源器件的制作工艺,一种是焊接工 艺,另一种是全胶工艺。这两种工艺最直观的区别是所 用的调节架是不一样的,注意观察一下,主要有两个区 别:
1、全胶用的调节架是三维的,焊接用的调节架是五维的 ; 2、全胶用的调节架调节精度是0.5um的,焊接用的是 10um
为什么会有这些区别? 需要从基模高斯光束的耦合来解释。
高斯光束的四种耦合失配及其效率
q2
q3
w02
z2
参数说明: q0 – 光纤端面q值;q1 – c-lens平面前表面q值; q2 – c-lens球面后表面q值;q3 –出射光束腰处q值; W01 /w02 – 入/出射光束腰; L – c-lens 的长度; R – c-lens 的曲率半径;n – c-lens的折射率; 取原点在光纤端面,光传输方向为正方向; 准直器的工作距离为2z2。
无源器件上。
基模高斯光束的一般表达式
Z轴方向传播的基模高斯光束均可表示为如下的一般形式:
《高斯光束》PPT课件
W02
3.光斑半径:
Lin W(o) z0
W01W z0221/2W0
即:光斑半径等于束腰半径
4.横截面光强分布: 在束腰处(即z=0)基尔霍夫公式变为:
E (x ,y ,0 ) W A 0 0e x W r 0 2 2 p ex i( k p 0 0 ) i0 W A 0 0e x W r 0 2 2 p
W 0 2 2(R l2) 1 /4
( 2 6 )
即,已知激光器腔参数R、l可求得膜参数W0
例,设λ=0.6328×10-3mm,R=500 mm,l=250 mm,
则 W 0 (0 .63 21 2 3 0 )8 2(50 205 202 5 ) 1 /0 40 .2m 24m
* 基模发散角(远场发散角)——半角
( 28)
当ρ(通光孔径)=W(z),1.5W(z),2W(z),2.5W
(z),3W(z),∝时,N(ρ)值如下表:
ρ W ( z )1 .5 W ( z ) 2 W ( z ) 2 .5 W ( z ) ∝ ρ N ( )0 .8 6 4 0 .9 8 8 0 .9 9 7 0 .9 9 9 9 9 1
p()k A0 2
W 2(z)
oexW p2 2(rz2)2r.dr
图-2-5 在 r = ∝时,高斯光束的全部光强P(∝)
P( )kW A 20 (2z)o exW p2 2(rz2)2r.dr
设
p
k
N(P)P() o
P( ) k
o
e ex xW W p p2 2 2 2((rrzz2 2))2 2 rr..d d rr1expW 22 (2 z)
即,当限制孔径为计算出的高斯光斑半径2.5倍时其通过的能
高斯光束的聚焦和准直课件
高斯光束的参数如束腰半径、波长等 也会影响准直效果。
光学元件质量
透镜、反射镜等光学元件的质量对准 直效果有重要影响,如光学元件的加 工精度、表面质量等。
04
高斯光束聚焦和准直的应用
光学通信
总结词
高斯光束的聚焦和准直技术在光学通信领域具有广泛应用,能够实现高速、高效 、远距离的光信号传输。
详细描述
实时处理能力
对于动态变化的光束,需要具备实 时处理能力,以便快速响应和调整 。
研究方向
新型光学元件研究
研究新型的光学元件,以提高光 束的聚焦和准直精度。
光束质量提升技术
研究提高光束质量的方法和技术 ,以满足各种应用需求。
实时控制系统
研究实时的光学控制系统,以快 速响应和调整光束。
发展前景
应用领域拓展
比较不同聚焦透镜和不同输入光束参 数对聚焦效果的影响,得出结论和建 议。
06
高斯光束聚焦和准直的未来 发展
技术挑战
高精度控制
高斯光束的聚焦和准直需要高精 度的光学元件和控制系统,以实
现光束的稳定和精确控制。
光束质量提高
目前的高斯光束聚焦和准直技术受 到光束质量的限制,如何提高光束 质量是未来的一个重要挑战。
减小。
高斯光束的应用
1 2
3
激光加工
高斯光束可被用于激光切割、打标和焊接等加工领域。
光学测量
高斯光束可被用于光学测量领域,如干涉仪、光谱仪和全息 术等。
光学通信
高斯光束在光纤通信中用作信号传输的光源,具有传输损耗 低、信号稳定等优点。
02
高斯光束的聚焦
聚焦原理
高斯光束的聚焦是指将发散的高 斯光束通过透镜或反射镜系统, 使其在空间上形成一个能量集中
【精品】课件---04-高斯光束
r2
w2 z
exp
i
kz
arctan( z w02
)
exp[i
r2 ] 2R(z)
2.基模高斯光束的相移和等相位面分布
基模高斯光束的相移特性由相位因子决定
x,
y,
z
k
z
r2 2R(z)
arctan
z w02
它描述高斯光束在点(r,z)处相对于原点(0,0)处的相位滞后
R(z) 符号意义为:如果R>0,则球面轴线上的半径方向为z正方向; 如果R<0,则为z负方向。
3
u0
x,
y, z
w0
wz
exp
r2
w2 z
exp i
kz
z arctan( w02
) exp[i
r2 ]
2R(z)
式中:
wz w0
1
z w02
2
w0
1
z z0
2
与轴线交于z点 的等相位面上 的光斑半径
11
二、高阶高斯光束
一)在直角坐标系下的场分布(方形孔径)
高阶高斯光束场的形式:由厄米多项式与高斯函数乘积描述
umn
x,
y,
z
Cmn
w0
wz
Hm
2x
w(
z)
Hn
2y
w(z)
exp
r2
w2
z
exp
i
kz
(1
m
n)
arctan
z w02
exp
i
r2 2R(z)
w0
2
1
z zR
4. 远场发散角
第7讲 高斯光束的聚焦和准直[优质PPT]
例题
出射高斯光束束腰位置位于
空气中z=z’处,此处q参数
为q0’
q0
'
i
0
'2
该高斯光束经过距离l’=l2-z’的自由空间传输到达z=l2处的q参数为:
q2 ' q0 ' l2 z '
q2 ' q2
0 '2 02
0 ' 0
0
'
qC
lC
F
l(F l) (F l)2
2 0
2 0
2 2
i
(F
F
2
2 0
l
)2
2 0
L
0
0'
A BC
l
lC
q(0) q(A) q(B) q(C)
•当C面取在像方束腰处,此时 的方程联立可以求出:
1 1 1 l' l F
几何光学薄透 镜成像公式
束腰半径
1
'
2 0
1
2 0
1
l F
2
1 0 2 F 2
'0 F l ' k 0 l F l
几何光学薄透 镜成像垂轴放
大率公式
7.1 高斯光束通过薄透镜的变换
•
7.1 高斯光束通过薄透镜的变换
F
)2
2 0
/
高斯光束-聚焦与准直
2 2
高斯光束的聚焦
F f
ω0 ' ω0
(2)F< f
ω0 ' ω0
1 F f
1
f 1+ ( F ) 2
2
1
有:
ω0' =1 ω0
ω0
0
F− F − f2
F
F+ F2 −f 2
l
结论: ①若F< f,总有聚焦作用 ②若F > f,只有
l < F − F2 − f 2
1
f 1+( F) 2
证:令 ω
'
(2)
① ②
+ z2 =1 f
1 1 1 1− i 1 1 1 λ (= )= = = − i (= − ) q z + if 1+ i 2 2 2 R πω 2 2λ 1 λ 1 1 ω= = = π πω 2 2 R 2
R = 2m
=
2 × 3 .14 × 10 − 6 = 1 .414 mm 3 .14
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
λ z2 (f + ) π f
2 2
R( z ) = z +
高斯光束的聚焦
F f
ω0 ' ω0
(2)F< f
ω0 ' ω0
1 F f
1
f 1+ ( F ) 2
2
1
有:
ω0' =1 ω0
ω0
0
F− F − f2
F
F+ F2 −f 2
l
结论: ①若F< f,总有聚焦作用 ②若F > f,只有
l < F − F2 − f 2
1
f 1+( F) 2
证:令 ω
'
(2)
① ②
+ z2 =1 f
1 1 1 1− i 1 1 1 λ (= )= = = − i (= − ) q z + if 1+ i 2 2 2 R πω 2 2λ 1 λ 1 1 ω= = = π πω 2 2 R 2
R = 2m
=
2 × 3 .14 × 10 − 6 = 1 .414 mm 3 .14
ω0' 有极大值 ω0
ω0' = ω0
1 1 + ( )2 f
F =l+
f2 l
高斯光束的聚焦 将 F =l+
代入
ω0' = ω0
ω0' = ω0
f 2 l2 + f 2 = l l F (l − F ) 2 + f 2
2 2
(3) F = R(l ) = (l + (4)F →∞时,
l + f l f4 + f l2
λ z2 (f + ) π f
2 2
R( z ) = z +
3.14 高斯光束的聚焦与准直
1
2 F1条件下)
01 2 2 ,02 F1 (在l1 02 (l1 )
F2 3 ,03 02 , 03 f2 2
2 02 ( f2 )
F2 02
(l2 F2情况)
二、高斯光束的准直
3. l1>>F1时,利用望远镜准直高斯光束
F1 02 , l1 ' F1 F1 2 f1 2 1 ( ) 1 ( ) f1 F1
01
(短焦距)
l2=F2时,
F2 F2 F2 03 02 1 f2 02 01
f1 2 F1
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束 望远镜对高斯光束的准直倍率为:
一、高斯光束的聚焦
② 当 l >>F 时,有:
02 F 02 F F 0 ' 2 2 2 f (l ) 0 (l ) l 2 l f (l ) f 0 1 ( ) f
lF 2 l' F 2 F 2 l f
0 F
02 F
式中ω(l)为入射光束在透镜处的光斑尺寸, 在l>>F 情况下,焦斑半径与波长与透镜焦距成正 比,而与透镜处的光斑尺寸成反比。
(2)F越大, ' 越小; (3)0 越小, ' 越小;
二、高斯光束的准直
(4)一个启示:
如果预先用一个短焦距的透镜将高斯光束聚焦,
得到一个小的腰斑,然后再用一个长焦距透镜来改
善其方向性,就可以得到很好的准直效果。
二、高斯光束的准直
二、高斯光束的准直
2. l1=0情况下,利用望远镜准直高斯光束
可见,当l=0时, ω0’总比ω0小,因而不论透镜焦 距F多大,它都有一定的聚焦作用,并且像方腰 斑位置处在前焦点以内。
高斯光束的聚焦和准直
0 F1 f
八、高斯光束的自再现变换与稳定球面腔
• 利用透镜实现自再现变换
当透镜的焦距等于高斯光束入射在透镜表面上的波 面曲率半径的一半时,透镜对该高斯光束作自再现 变换。
• 球面反射镜对高斯光束的自再现变换
当球面镜的曲率半径与高斯光束入射在球面镜表面 上的波前曲率半径相等时,球面镜对该高斯光束作 自再现变换。
基模高斯光束的特征参数 用参数0(或f)及束腰位置表征高斯光束 用参数(z)和R(z)表征高斯光束 高斯光束的q参数 • 高阶高斯光束(厄米特-高斯光束和拉盖尔高 斯光束,存在于什么腔型中?)
六、高斯光束q参数变换规律
• 高斯光束的q参数与点光源发出光波的等 相位面半径R在光学系统中的变换规律相 A B 同。当高斯光束经过一个变换矩阵为 C D 的光学系统时,若入射及出射的q参数分 别为q1和q2,则遵循以下变换规律
主要内容: • 概述-光腔理论的一般问题 • 共轴球面腔的稳定性条件 • 开腔模式和衍射理论分析方法 • 稳定球面腔中的模结构 • 高斯光束的基本性质及特征参数 • 高斯光束q参数变换规律 • 高斯光束的聚焦和准直 • 高斯光束的自再现变换与稳定球面腔 • 光束衍射倍率因子M2 • 非稳腔
本章总结
2
2 0 (F l) ( )2 2
2 F 2 0
(1)若F一定, 当l<F时, 0随l的减小而减小; 当l=0时, 0达到最小值;当l>F时, 0随l的 增大而减小; 当l时, 00, l F ;当 l= F时, 0达到极大值, 0=(F/0)。
d1 d2
R1=∞
F
R2=∞
第二章作业(二) • 基本题:书本98-100页10、15、17、23、 27 • 附加题: 26、24(主镜口径改为10cm)
八、高斯光束的自再现变换与稳定球面腔
• 利用透镜实现自再现变换
当透镜的焦距等于高斯光束入射在透镜表面上的波 面曲率半径的一半时,透镜对该高斯光束作自再现 变换。
• 球面反射镜对高斯光束的自再现变换
当球面镜的曲率半径与高斯光束入射在球面镜表面 上的波前曲率半径相等时,球面镜对该高斯光束作 自再现变换。
基模高斯光束的特征参数 用参数0(或f)及束腰位置表征高斯光束 用参数(z)和R(z)表征高斯光束 高斯光束的q参数 • 高阶高斯光束(厄米特-高斯光束和拉盖尔高 斯光束,存在于什么腔型中?)
六、高斯光束q参数变换规律
• 高斯光束的q参数与点光源发出光波的等 相位面半径R在光学系统中的变换规律相 A B 同。当高斯光束经过一个变换矩阵为 C D 的光学系统时,若入射及出射的q参数分 别为q1和q2,则遵循以下变换规律
主要内容: • 概述-光腔理论的一般问题 • 共轴球面腔的稳定性条件 • 开腔模式和衍射理论分析方法 • 稳定球面腔中的模结构 • 高斯光束的基本性质及特征参数 • 高斯光束q参数变换规律 • 高斯光束的聚焦和准直 • 高斯光束的自再现变换与稳定球面腔 • 光束衍射倍率因子M2 • 非稳腔
本章总结
2
2 0 (F l) ( )2 2
2 F 2 0
(1)若F一定, 当l<F时, 0随l的减小而减小; 当l=0时, 0达到最小值;当l>F时, 0随l的 增大而减小; 当l时, 00, l F ;当 l= F时, 0达到极大值, 0=(F/0)。
d1 d2
R1=∞
F
R2=∞
第二章作业(二) • 基本题:书本98-100页10、15、17、23、 27 • 附加题: 26、24(主镜口径改为10cm)
第7讲 高斯光束的聚焦和准直(PPT文档)
f F2
0 F
2
C
0
F
7.2 高斯光束的聚焦
– 高斯光束的聚焦,指的是通过适当的光学系统 减小像方高斯光束的束腰半径,从而达到对其 进行聚焦的目的。
– 1、F一定时,ω’0随着l变化的情况 我们将通过前面得到的高斯光束通过薄透镜变 换时束腰半径变换规律研究其规律:
激光原理与技术·原理部分
第7讲 高斯光束的聚焦、准直
7.1 高斯光束通过薄透镜的变换
– 已知入射高斯光束束腰半径为ω0,束腰位置
与透镜的距离为l,透镜的焦距为F,各参数相
互关系如下图,则有:
L
–
z=0处,q(0)
q0
i
2 0
/
0
0 ' C
– 在A面处:q(A) q0 l
–
在B面处:q(1B)
0
2
1 F2
0
2
1
l
2 0
2
2 F 2
2
2(l
)
'0
(l)
F
此时
l'
F
(l
(l F)2
F )F 2
2 0
/ 2
lF F
0
F
7.2 高斯光束的聚焦
若同时满足
l
f
2
a ib
其中:
f
2 0
F 2(F l)
a
(F
高斯光束的基本性质及特征参数PPT课件
§2.8 高斯光束的自再现变换
自再现变换:如果一个高斯光束通过透镜后其结构不发生变化,即参数0或f不变,
或同时满足0 = 0、 l=l。
•利 用 透 镜 实 现 自 再 现 变 换 :
令 •当 透 镜 的 焦 距 等 于 高 斯 光 束 入 射 在 透 镜 表 面
该高斯光束
l F
作
自(l
(l F
• 参数q将(z)和R(z)统一在一个表达式中,知道了高斯光束在某位置处的q参数值, 可由下式求出该位置处(z)和R(z)的数值
1 Re[ 1 ]
R(z)
q(z)
1 2 (z)
Im[ 1 ] q(z)
用q0=q(0)表示z=0处 的参数值(purely
imaginary),得出
1 q0
1 q(0)
如果知道了某给定位置处的(z)和R(z),可决
定高斯光束腰斑的大小0和位置z
00
(高x, y斯, z)光 束c 的exqp参{i数k r2
(z)
2
[
1 R(z)
i
2 (
z)
]
}ex
p
[i(kz
arctg
z f
)]
引入一个新的参数q(z),定义为
1 q(z)
1 R(z)
i
2 (z)
第6页/共40页
0 >>f
F ,l
0
l F
不l=论F,l的值0为达多到大极,大只值要,F<f满足,就能,实现一定 的且聚焦作用,。仅当F<f时,透镜才有聚焦作用。
第20页/共40页
l 确定, 0随F变化情况
当 F R(l) 2 ,透镜才能对高斯光束起聚焦作用。F 愈小,聚集效果愈好
高斯光束和准直器简介.ppt
r
M r'
'
称矩阵M为介质的光线变换矩阵。
r'' C AD B r
M C AD B
伴轴子午光学系统的变换矩阵
• 若光线连续通过变换矩阵为M1,M2…Mn的光学系统
r00 M 1 M 2 M nrnn
则,
rnnMnM2M1r00
即整个光学系统的变换矩阵M=Mn*…M2*M1
z
1
2
1
z
2
2 0
Lateral shift misalignment
e
r 0
2
r
Waist mismatch misalignment
41222 12 22
2
光无源器件中高斯光束耦合损耗分析
LOS1 Sl0og
• 各种耦合失配一般是同时发生的;例如振动,冲击,受潮…
• 调节过程中常出现的失配现象;
准直器的q传输计算实例(c-lens)
通过q传输理论,我们可以简单的得到准直器的出射光束腰大小及工作距 离与输入光束腰,位置的关系。选择合适的准直器工作距离和束腰是器件 设计的一项重要工作。
根据q传输ABCD公式,有
q0
i
2 01
q1 q 0 z1
q2
Aq Cq
1 1
B D
q3 q2 z2
SMF28 光纤,L3.85*R1.8 c-lens
如何控制准直器的出射光束腰大小,位置?
• 准直器的设计决定了出射光束腰大小,位置的可调节范围。
– 增大/减小入射光束腰w01, 出射光束腰减小/增大,工作距离可调范 围减小/增大;增大/减小c-lens的曲率半径R,出射光束腰增大/减小, 工作距离可调范围增大/减小;可通过设计透镜长度控制后截距的大 小,适应不同器件的需要;改变透镜的折射率特性可改变出射光的 特性,目前c-lens的材料业界已基本统一为SF11。
7-高斯光束-扩束准直
过第一个透镜有
ω0,f,θ ω0′,f′,θ′
ω '=
F
ω
0 (l − F )2 + f 2 0
l'= l(l − F) + f 2 F (l − F )2 + f 2
l>>F1 F1 F2
S
当 l >> F1时
ω '=
Fω 10
≈
0
(l − F )2 + f 21Fω 10来自l2 + f 2
l′
=
l(l− F 1
ω '=
ω 0
0
∴
1 + ( f )2 F
1
l′
=
F2 1
f2 +
f
2
F 1
=
1+
1
⎜⎛
F 1
⎟⎞2
F 1
≈
F 1
(∵F1 << f )
⎝f⎠
经过第二个透镜:
ω0''=
(l1
F2 −F2)2
+
f
'2
ω0'
当l1 = F2时,
l2'=
l1(l1 − F2 ) + (l1 − F2 )2 +
f '2 f '2
F
ω0
ω ′0
Z
l
ω0'=
(l
−
F F)2
+
f
2
ω0
l'=
l(l −F) (l −F)2
+ +
f f
2 2
F
ω0,f,θ ω0′,f′,θ′
ω '=
F
ω
0 (l − F )2 + f 2 0
l'= l(l − F) + f 2 F (l − F )2 + f 2
l>>F1 F1 F2
S
当 l >> F1时
ω '=
Fω 10
≈
0
(l − F )2 + f 21Fω 10来自l2 + f 2
l′
=
l(l− F 1
ω '=
ω 0
0
∴
1 + ( f )2 F
1
l′
=
F2 1
f2 +
f
2
F 1
=
1+
1
⎜⎛
F 1
⎟⎞2
F 1
≈
F 1
(∵F1 << f )
⎝f⎠
经过第二个透镜:
ω0''=
(l1
F2 −F2)2
+
f
'2
ω0'
当l1 = F2时,
l2'=
l1(l1 − F2 ) + (l1 − F2 )2 +
f '2 f '2
F
ω0
ω ′0
Z
l
ω0'=
(l
−
F F)2
+
f
2
ω0
l'=
l(l −F) (l −F)2
+ +
f f
2 2
F
第四讲-高斯光束
18
二、共焦腔中的高斯光束
2.3 高斯光束的发散角
dW ( z ) 2z 2 W02 2 2 2 2 [z ( ) ] dz W0
1
19
二、共焦腔中的高斯光束
光束的发散角在z=0处为0,光斑半径W(z0)最小,称之为高斯光束的 腰,又叫腰粗。 W(z)随z值的增大而增大,这表示光束逐渐发散. 当z →∞时,
内容目录
一、激光器及光学谐振腔概述 二、共焦腔中的高斯光束 三 高斯光束的扩束准直 三、高斯光束的扩束准直 四、高斯光束的应用——超小光纤探针
2
一、激光器及光学谐振腔概述
1.1 激光器的基本组成
激励能源
方向性好、亮度高 单色性好、相干性好
工作物质 全反射镜 激光输出 部分反射镜
L
光学谐振腔
Light Amplification by Stimulated Emission of Radiation 受激辐射式光频放大器
例如,
共焦腔CO2激光器,波长λ=10.6μm,腔长L=1m,计算得远场半发散角为
3rad θ=2.59 2 59×10-3 d。
共焦腔He-Ne激光器,波长λ=0.6328μm,腔长L=30cm,可计算得到 θ=1.15 =1 15×10-3rad 可见,共焦腔基模半发散角具有毫弧度数量级,具有优良的方向性。
W02 通常称z=0到z=f=
20
二、共焦腔中的高斯光束
w(z) w0 θ0 O
R(f) )=2 2f
w(z)
2W0
R(z)
z
f
计算表明: 2 0 内含86.5%的光束总功率
21
二、共焦腔中的高斯光束
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准直器的q传输计算实例(c-lens)
通过q传输理论,我们可以简单的得到准直器的出射光束腰大小及工作距 离与输入光束腰,位置的关系。选择合适的准直器工作距离和束腰是器件 设计的一项重要工作。
根据q传输ABCD公式,有
q0
i
2 01
q1 q0 z1
q2
Aq1 Cq1
B D
q3 q2 z2
Re
SMF28 光纤,L3.85*R1.8 c-lens
如何控制准直器的出射光束腰大小,位置?
• 准直器的设计决定了出射光束腰大小,位置的可调节范围。
– 增大/减小入射光束腰w01, 出射光束腰减小/增大,工作距离可调范 围减小/增大;增大/减小c-lens的曲率半径R,出射光束腰增大/减小, 工作距离可调范围增大/减小;可通过设计透镜长度控制后截距的大 小,适应不同器件的需要;改变透镜的折射率特性可改变出射光的 特性,目前c-lens的材料业界已基本统一为SF11。
1 q3
0
*C-lens 的变换矩阵M
M
1
1
n
R
0 n
1 0
L 1
1 0
0 1
n
准直器出射光束腰,工作距离通用公式
简单计算可得:
02 01
AD BC (Cz1 D)2 (Cz0 )2
2z2
2
( Az1 B)(Cz1 D) ACz02 (Cz1 D)2 (Cz0 )2
典型的准直器z2-z1,w02-z1计算曲线
z
1
2
1
z
2
2 0
Lateral shift misalignment
e
r 0
2
r
Waist mismatch misalignment
41222 12 22
2
光无源器件中高斯光束耦合损耗分析
LOSS 10log
• 各种耦合失配一般是同时发生的;例如振动,冲击,受潮…
无源器件上。
基模高斯光束的一般表达式
Z轴方向传播的基模高斯光束均可表示为如下的一般形式:
其中,
(r,2
(z
)
i
k
z
2
r2 R(z)
arctg
z z0
(z)
k 2
z0
2 0
2
(z) 0
1
z z0
R(z) z z02 z
基模高斯光束示意图
高斯光束应用中的几个重要的参数
q2
q3
w02
z2
参数说明: q0 – 光纤端面q值;q1 – c-lens平面前表面q值; q2 – c-lens球面后表面q值;q3 –出射光束腰处q值; W01 /w02 – 入/出射光束腰; L – c-lens 的长度; R – c-lens 的曲率半径;n – c-lens的折射率; 取原点在光纤端面,光传输方向为正方向; 准直器的工作距离为2z2。
• 可通过调节准直器的后截距调节准直器的工作距离和束腰大小。
– 目前准直器的调节方法可分为master法和反射法; – 反射法对准直器的束腰控制方法有两种:单点反射和两点反射;
高斯光束耦合
两种光无源器件的制作工艺
公司目前存在两种无源器件的制作工艺,一种是焊接工 艺,另一种是全胶工艺。这两种工艺最直观的区别是所 用的调节架是不一样的,注意观察一下,主要有两个区 别:
1 R(z)
Re q(1z )
1 2 (z)
Im q(1z )
特别地,
q(0)
i
2 0
iz0
高斯光束传输
伴轴子午光学系统的变换矩阵
• 任一伴轴子午光线可由两个坐标参数表征为矢量 r 一个是光线离轴线的距离r, 另一个是光线与轴线的夹角theta,我们规定光线出射方向在轴线上方时 ,theta为正,反之为负。
1、全胶用的调节架是三维的,焊接用的调节架是五维的 ; 2、全胶用的调节架调节精度是0.5um的,焊接用的是 10um
为什么会有这些区别? 需要从基模高斯光束的耦合来解释。
高斯光束的四种耦合失配及其效率
Angular misalignment
e
2
Displacement misalignment
基模高斯光束和准直器简介
摘要
• 基模高斯光束 • 高斯光束传输(准直器) • 高斯光束的准直 • 高斯光束耦合
基模高斯光束
为什么是基模高斯光束?
• 从单模光纤中出来的光场我们可以近似认为是基模高 斯光束,束腰的位位置在光纤端面。
光传输方向
w01 w02
z1
z2
• 经过准直器后出来的光场也是基模高斯光束。 • 基模高斯光束分析方法可以应用到几乎所有的单模光
典型光学系统的变换矩阵
q参数的变换规律—ABCD公式
• 基模高斯光束经过任意光学系统服从所谓的ABCD公 式:
q2
(z)
Aq1 (z) Cq1 (z)
B D
其中 CADB 为光学系统对伴轴光线的变换矩阵。
高斯光束的准直
高斯光束的准直—准直器简介
• 直接从普通单模光纤出射的高斯光束,由于其束腰太 小,因此瑞利距离太短,发散角太大,在应用中,我 们通常需要将其准直。
• 远场发散角束腰theta,当Z远大于Z0时,W(z)近似线性的增加,我们可以得到,
lim (z) z z w
0
• 瑞利长度Z0
z0
2 0
基模高斯光束的几个重要的参数
• q参数 主要用来研究高斯光束传输
1 q(z)
1 R(z)
i
2 (z)
很显然,知道q(z)后,可相应得到R(z)和W(z),
• 束腰W0,指的是高斯光束的最小光斑(1/e^2,即13.5% 光强 处,半径),一旦高斯
光束的束腰的大小和位置确定下来后,整个高斯光束的结构也就确定下来了。 通常情况下,我们在实际应用中更多的需要考虑的是1%光斑大小,
(1%) 1.5270
例如,如何确定光学零件的有效通光孔径要求? 反射镜或者棱镜的大小等等。
lim (z) z z w
0
• 目前主要采用的准直方法为加透镜,主要有C-lens, G-lens。
• 高斯光束的准直可用q传输理论进行简单的分析,理 论与实验测量的结果吻合的很好。
• 将以c-lens为例,简单介绍准直器的原理。
准直器的q传输图示(c-lens)
q0
q1
w01 z1
光传输方向
r
M r'
'
称矩阵M为介质的光线变换矩阵。
r' '
A C
B D
r
M CADB
伴轴子午光学系统的变换矩阵
• 若光线连续通过变换矩阵为M1,M2…Mn的光学系统 r00 M1 M 2 Mn rnn
则,
rnn Mn M 2 M1 r00
即整个光学系统的变换矩阵M=Mn*…M2*M1