向量法证明三点共线的又一方法及应用 -

合集下载

平面向量的三点共线定理及其应用技巧

平面向量的三点共线定理及其应用技巧

思路探寻在解答平面向量问题时,经常要用到平面向量的运算法则、定理、几何意义、公式等.对于多点在同一直线上的问题,可以利用平面向量的三点共线定理进行求解.如图1,O 为直线外一点,在△OPA 中, AP =OP - OA ,设 OP =λ OA +μ OB ,则AP =λ OA +μ OB - OA =μ OB+(λ-1) OA =m ( OB - OA ),而在△OBA 中, AB = OB -OA ,即 AB =mAP ,所以A 、B 、P 三点共线.在平面中A 、B 、P 三点共线的充要条件是对于平面内任意一点的O ,存在唯一的一对实数x 、y ,使得 OP =x OA +yOB 且x +y =1.这就是平面向量的三点共线定理.该定理常用于判断三点是否共线,证明几个点是否在同一条直线上,求某个向量的表达式,求参数的值等.下面结合实例探讨一下如何运用平面向量三点共线定理解题.例1.已知O 为锐角三角形ABC 的外心,AB =3,AC =6,若 AO =x AB +yAC ,且3x +10y =5,求三角形ABC 的面积.解:由3x +10y =5,得3x 5+2y =1.由题意可得AO =x AB +y AC =3x 5(53 AB )+2y (12AC ),如图2,在直线AB ,AC 上取两点D ,E ,使得 AD =53 AB , AE =12 AC ,则 AO =3x 5 AD +2y AE ,又3x 5+2y =1,所以O ,D ,E 三点共线.因为O 为△ABC 的外心,且|| AE =|| EC ,则DE ⊥AC ,又|| AD =5,||AE =3,可得sin ∠BAC =45,故S △ABC =12×|| AB ×||AC ×sin ∠BAC=12×3×6×45=365.根据向量式的特点以及3x +10y =5联想到要三点共线定理,于是在直线AB 、AC 上取两点D 、E ,证明 AO =3x 5AD +2y AE ,即可根据三点共线定理证明O ,D ,E 三点共线,从而根据三角形外心的性质和面积公式求得问题的答案.例2.如图3所示,在△ABO 中,OC =14 OA , OD =12OB ,AD 与BC 相交于点M .设 OA =a ,OB =b ,试用 a 和 b 来表示向量 OM .解:设 OM =ma +nb ,则 AM = OM - OA =m a +n b - a =(m -1)a +nb ,AD = OD - OA =12 OB - OA =-a +12b ,因为A ,M ,D 三点共线,所以存在实数t ,使得 AM =tAD ,即(m -1)a →+n b →=t (-a →+12b →),所以ìíîïïm -1=-t ,n =t 2,消去t 得m +2n =1,又因为CM = OM - OC =(m -14)a →+n b →, CB = OB - OC =-14a →+b →,且B ,M ,C 三点共线,所以存在实数t 1,使得 CM =t 1CB ,即(m -14)a →+n b →=t 1(-14a →+b →),所以ìíîïïm -14=-14t 1n =t 1,消去t 1得4m +n =1,由上述两式得m =17,n =37,故 OM =17 a +37b .解答本题需抓住A ,M ,D 三点共线和B ,M ,C 三点共线这两个关键点,再将 OA 和OB 作为基底表示出其他向量,利用待定系数法来求参数的值.向量共线定理是平面向量中的一个重要定理.合理运用三点共线定理,往往能起到化繁为简的功效,使问题快速得解.同学们要重视三点共线定理,将其灵活地应用于解题当中.(作者单位:江苏省盐城市龙冈中学)图1图2图348Copyright ©博看网. All Rights Reserved.。

三点共线的证明方法

三点共线的证明方法

向量三点共线定理及其扩展应用详解一、平面向量中三点共线定理的扩展及其应用一、问题的提出及证明。

1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:.O A xO B y O C =+(O为平面内任意一点),其中1x y +=。

那么1x y +<、1x y +>时分别有什么结证?并给予证明。

结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A与O 点在直线BC 同侧,1x y +>时,A 与O 点在直线BC 的异侧,证明如下:设 O A xO B y O C=+且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点设 1O A O Aλ= (λ≠0、λ≠1)A 1与B 、C 共线则 存在两个不全为零的实数m 、n1O A m O B n O C =+ 且1m n +=则 O A m O B nO C λ=+m n O A O B O C λλ⇒=+mx λ∴=、ny λ=1m nx y λλ++==(1)1λ> 则 1x y +< 则111O A O A O Aλ=<∴A与O 点在直线BC 的同侧(如图[1])(2)0λ<,则101x y λ+=<<,此时O A与1O A 反向A 与O 在直线BC 的同侧(如图[2])(3)1oλ<<,则1x y +>此时 111O A O A O A λ=>∴ A 与O 在直线BC 的异侧(如图[3])2、如图[4]过O 作直线 平行AB ,延长BO 、AO 、将AB 的O 侧区域划分为6个部分,并设O P xO A y O B=+,则点P 落在各区域时,x 、y 满足的条件是:(Ⅰ)区:0001x y x y <⎧⎪>⎨⎪<+<⎩ (Ⅱ)区:0001x y x y >⎧⎪>⎨⎪<+<⎩ (Ⅲ)区:0001x y x y >⎧⎪<⎨⎪<+<⎩(Ⅳ)区:0011x y x y >⎧⎪<⎨⎪-<+<⎩(Ⅴ)区:00x y <⎧⎨<⎩ (Ⅵ)区:0010x y x y <⎧⎪>⎨⎪-<+<⎩(证明略)二、用扩展定理解高考题。

(完整版)平面向量中“三点共线定理”妙用

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量中三点共线的证明及其应用

平面向量中三点共线的证明及其应用

平面向量中三点共线的证明及其应用在平面向量中,三点共线说明这三个点满足下面的条件:重合、向垂直、和向平行。

如果三点共线,这意味着他们在同一条线上,且在同一条平面空间内。

三点共线的证明有两种方式-零空间的方法和二维的方法。

在零空间的方法中,每个点的位置可以用三个极坐标系表示,r,θ,φ是相应的极角度和极坐标(或旋转角度)。

用三维立体的形式表示每个点的位置,我们可以使用下面的表达式来表示:其中,x=r*cosθ*sinφ,y=r*cosθ*cosφ,z=r*sinθ由于这三个点共线,它们将在三维中共同满足右边的方程:a*x+b*y+c*z=0可以看出,这个方程具有三个参数-a,b,c,这意味着它可以用来描述和表示任何三点共线的情况。

另一种方法是二维法,它直接使用三点的平面坐标来证明三点共线。

在这里,两个点的坐标用(x1,y1)和(x2,y2)表示,而另一个点的坐标用(x,y)表示。

为了证明三点共线,需要满足方程m*(x1-x2)+n*(y1-y2)=0在这里,m和n是方程的参数。

如果这个方程能够成立,意味着第三个点(x,y)与其余两个点在同一条线上。

三点共线的数学原理在日常生活中得到广泛的应用。

其中最常见的应用是画图和土木计算,通常需要三角测量。

绘图包括绘制几何形状、图像和其他图案,这些图案通常与空间位置有关,因此必须确保三点共线,以便得出正确的结论。

土木计算中也经常会遇到三点共线的问题,例如评估桥梁的结构安全性时,在桥梁的两端设置两个支撑,这就是一个三点共线的示例。

总之,三点共线是一个重要的数学原理,具有重要的应用。

研究人员、土木工程师,甚至是普通的绘图师都会经常使用这个原理。

证明三点共线的方法

证明三点共线的方法

证明三点共线的方法
证明三点共线有以下几种方法:
1. 向量法
对于三个点A(x1,y1),B(x2,y2),C(x3,y3),计算向量AB和向量AC,然后判断这两个向量是否共线。

若AB和AC共线,则证明A、B、C三点共线。

2. 斜率法
如果三个点在同一条直线上,那么它们的斜率必须相等。

在点A(x1, y1)和点B(x2, y2)之间的斜率可表示为(y2-y1)/(x2-x1) 。

如果点C(x3,y3)也在这条直线上,那么斜率AC和斜率AB相等,即
(y3-y1)/(x3-x1) = (y2-y1)/(x2-x1),所以A、B、C三点共线。

3. 面积法
三角形ABC的三角形面积可以用海龙公式求出:SABC =
sqrt[p(p-a)(p-b)(p-c)],其中a、b、c分别为三角形边长,p为半周长。

如果三个点在同一条直线上,那么三角形ABC的面积必定为0。

如果SABC=0,则可以判断A、B、C是否共线。

注意:用面积法进行计算时,需要注意计算量的增大,且容易出现精度问题。

因此,在实际问题中,更常用的方法是向量法和斜率法。

高中数学教学论文 向量法证明三点共线的又一方法及应用

高中数学教学论文 向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线.证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r∴A 、B 、C 三点共线.思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质;3. 特别地,12λμ==时,1()2OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V中线OB 的一个向量公式,应用广泛.应用举例 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. 证明:由已知BD BA BC =+u u u r u u u r u u u r ,又点N 在BD 上,且13BN BD =,得 1111()3333BN BD BA BC BA BC ==+=+u u u r u u u r u u u r u u u r u u u r u u u r 又点M 是AB 的中点, 12BM BA ∴=u u u u r u u u r ,即2BA BM =u u u r u u u u rD A B C M N2133BN BM BC ∴=+u u u r u u u u r u u u r 而21133+= ∴M 、N 、C 三点共线.点评:证明过程比证明MN mMC =u u u u r u u u u r 简洁.例2如图,平行四边形OACB 中,13BD BC =,OD 与AB 相交于E ,求证:. 14BE BA =. 思路分析:可以借助向量知识,只须证明:14BE BA =u u u r u u u r ,而BA BO BC =+u u u r u u u r u u u r ,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且1λμ+=,使BE λBO μBD =+u u u r u u u r u u u r ,从而得到BE u u u r 与BA u u u r 的关系. 证明:由已知条件,BA BO BC =+u u u r u u u r u u u r ,又B 、E 、A 三点共线,可设BE k BA =u u u r u u u r ,则BE k BO k BC =+u u u r u u u r u u u r ①又O 、E 、D 三点共线,则存在唯一实数对λ、μ,使BE λBO μBD =+u u u r u u u r u u u r ,且1λμ+=. 又13BD BC =u u u r u u u r 13BE λBO μBC ∴=+u u u r u u u r u u u r ②根据①、②得 131k λk μλμ=⎧⎪⎪=⎨⎪+=⎪⎩,解得141434k λμ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 14BE BA ∴=u u u r u u u r 14BE BA ∴= 点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁. D O AC E B。

向量三点共线公式

向量三点共线公式

向量三点共线公式向量AB=λ·向量BC其中,λ是一个常数。

为了证明这一公式,我们可以先求得向量AB和向量BC的分量形式,然后根据分量形式进行等式推导。

下面是具体的证明:首先,设向量AB的分量为m1和n1,向量BC的分量为m2和n2,向量AC的分量为m3和n3则有:向量AB=(x2-x1,y2-y1)=(m1,n1)向量BC=(x3-x2,y3-y2)=(m2,n2)向量AC=(x3-x1,y3-y1)=(m3,n3)为了验证向量AB和向量BC共线,我们可以通过计算两个向量的比例来证明。

假设向量AB和向量BC共线,则有:m1/m2=n1/n2=λ同时,根据向量的性质,我们可以得出以下关系:m3=m1+m2n3=n1+n2将m1/m2=n1/n2=λ代入,我们有:m3/m2=n3/n2=λ+1由此可知,向量AB和向量BC共线,且比例关系为λ+1:λ,公式得证。

另外,还可以通过向量的数量积来证明向量三点共线的条件。

设向量AB和向量BC的夹角为θ,若向量AB和向量BC共线,则有:cosθ = 向量AB·向量BC / (,向量AB,·,向量BC,) = 1因此,向量AB·向量BC=,向量AB,·,向量BC将向量AB和向量BC的分量进行代入(m1,n1)·(m2,n2)=√(m1^2+n1^2)·√(m2^2+n2^2)展开计算后得到:m1m2+n1n2=√(m1^2+n1^2)·√(m2^2+n2^2)再次进行平方运算后可得:(m1m2+n1n2)^2=(m1^2+n1^2)·(m2^2+n2^2)将我们之前所得到的向量分量关系进行代入,最终可以化简为:(m1+m2)^2+(n1+n2)^2=m1^2+n1^2+m2^2+n2^2即:m3^2+n3^2=m1^2+n1^2+m2^2+n2^2这个等式也是向量三点共线的另一种表达形式,通过对向量的数量积进行计算而得。

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。

特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

平面向量三点共线定理的推论及空间推广

平面向量三点共线定理的推论及空间推广

平面向量三点共线定理的推论及空间推广三点共线定理,又称三点确定一直线,它是平面几何学中一个基本定理。

它宣称,假设有三个不同的点,它们一定能构成一条直线。

本文主要介绍三点共线定理的推论及平面的推广,并且进一步评论该定理在空间几何中的推广。

一、三点共线定理:1. 定义:三点共线定理,又称三点确定一直线,是指,任意三个不同点,它们一定能构成一条直线。

2. 推论:(1)若由不同的三点确定的直线上含有两点,那么其余一点必然也在这条直线上。

(2)如果有一条直线上含有两点,则另一点也必然在这条直线上。

3. 例子:我们从A、B、C三点可以确定一条直线,若在这条直线上发现了B1点,B1点必然和A、C也在这条直线上。

二、平面推广:1.定理:三点共线定理也同样拓展到了平面中,即:任意三个不同点,必定能构成一个平面或一个平行于某平面的直线。

2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。

(2)如果一个平面上含有两点,则另一点也必定在这个平面上。

3.例子:三个点A、B、C在一个平面上,若在这个平面上发现了B1点,那么A、C也必定在这个平面上,这样就可以确定这个平面。

三、空间推广:1.定理:三点共线定理可以拓展到空间几何中,即:任意三个不同点,必定能构成一个平面或一个空间中的直线。

2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。

(2)如果一个平面上含有两点,则另一点也必定在这个平面上。

3.例子:如果三个点A、B、C全都在空间中,若空间中发现了B1点,那么A、C也必定在平面上,这样就可以确定这个平面。

总结:三点共线定理是一个基本定理,指任意三个不同点,一定能构成一条直线,并且这个定理在平面和空间几何中都能成立,一个平面或一个空中的直线,它的推论雷同,即:若有两点,另一点也在这个平面或这条直线上。

共线向量定理及应用

共线向量定理及应用
3
3.已知向量 a,b 不共线,若向量 m=4a+5b 与 n=2a+λb 共线,则实数λ的
值为(
C
)
A.5
解析
B.3
5
C.
2
D.2
因为向量 m=4a+5b 与 n=2a+λb 共线,所以存在实数 t,使得
t=2,
2t=4,
m=tn,即 4a+5b=t(2a+λb),又向量 a,b 不共线,所以
解得 λ=5.
a b
1.设 a,b 都是非零向量,下列四个条件,使 = 成立的充要条件是(
|a| |b|
A.a=b
B.a=2b
C.a∥b 且|a|=|b|
D.a,b 方向相同
解析
D
)
a
b
a b
表示 a 方向上的单位向量, 表示 b 方向上的单位向量,因此 =
|a|
|b|
|a| |b|
的充要条件是 a 与 b 同向.
2
3
所以 = −
因为 =
2
3

2
9
+

=
1

3
=
1
3(−
3
2
+
9
+
.
2
9
),
所以 = 3 ,即 与 共线,
因为 与 有公共点
,所以
, , 三点共线.
k-2λ=0



5.若OA=2a-b,OB=3a+b,OC=a-3b,求证:A,B,C 三点共线.


证明:∵AB=(3a+b)-(2a-b)=a+2b,BC=(a-3b)-(3a+b)=-2a-4b

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用

平面向量中三点共线定理的推广及应用
三点共线定理是指在平面向量中,三个点A,B,C,如果向
量AB与向量AC的夹角为0°或180°,则三点A,B,C共线。

三点共线定理的推广及应用主要有以下几点:
1. 平面向量中四点共线定理:在平面向量中,如果四个点A,B,C,D满足向量AB与向量AC的夹角为0°或180°,向量BC与向量CD的夹角也为0°或180°,则四点A,B,C,D共线。

2. 平面向量中多点共线定理:在平面向量中,如果n个点A,B,C,D,…,P满足,任意两个相邻的向量的夹角为0°或180°,则n个点共线。

3. 平面向量中两点共线定理:在平面向量中,如果两个点A,B满足向量AB的夹角为0°或180°,则两点A,B共线。

4. 平面向量中多边形共线定理:在平面向量中,如果n边形的每两个相邻边的夹角都为0°或180°,则n边形共线。

5. 平面向量中多角形共线定理:在平面向量中,如果n角形的每两个相邻边的夹角都为0°或180°,则n角形共线。

6. 平面向量中多条直线共线定理:在平面向量中,如果n条直线的每两条直线的夹角都为0°或180°,则n条直线共线。

以上是平面向量中三点共线定理的推广及应用,它们在几何图形中都有广泛的应用,可以帮助我们更好地理解和分析几何图形。

向量求三点共线的方法

向量求三点共线的方法

向量求三点共线的方法
向量求三点共线的方法是通过计算三个点所形成的向量的线性关系,来判断它们是否共线。

具体步骤如下:
1. 确定三个点的坐标,分别为A(x1,y1),B(x2,y2),C(x3,y3)。

2. 计算向量AB:AB = (x2 - x1, y2 - y1)
3. 计算向量AC:AC = (x3 - x1, y3 - y1)
4. 判断向量AB和向量AC的线性关系,如果它们成比例,则说明三点共线。

具体来说,如果存在一个数k,使得AB = k·AC,则说明三个点共线。

这个数k即为向量AB与向量AC的比值,也被称为向量AB在向量AC方向上的投影长度。

通过向量的方法求三点共线,可以避免误差积累和精度问题,是一种精确可靠的方法。

- 1 -。

证明三点共线的向量定理

证明三点共线的向量定理

证明三点共线的向量定理证明三点共线的向量定理1. 引言在几何学中,共线是指多个点在同一条直线上。

证明三点共线的向量定理是一种常用的方法,它利用向量的性质来判断三个点是否在同一条直线上。

本文将深入探讨这个定理,通过提供详细的解释和举例,帮助您全面了解这一概念。

2. 向量的基本概念在开始证明之前,我们先了解一些基本的向量概念。

向量是有大小和方向的量,通常用箭头来表示。

向量可以表示为有序数对 (a, b),其中a 和 b 分别表示向量在水平和垂直方向上的分量。

在这里,我们使用巴斯克定理,这是一个三角学中的基本定理,通过它我们可以找到一个向量的模长和方向。

3. 证明三点共线的向量定理现在我们来证明三个点是否共线的向量定理。

假设有三个点A(x1, y1)、B(x2, y2) 和 C(x3, y3)。

根据向量的定义,我们可以将向量 AB 表示为向量 a = (x2 - x1, y2 - y1),向量 BC 表示为向量 b = (x3 - x2, y3 -y2)。

如果这两个向量是平行的,那么向量 a 和向量 b 的比例关系为 a= k * b,其中 k 是一个常数。

这意味着点 A、B 和 C 共线。

为了证明这一点,我们可以计算向量 a 和向量 b 的比值,如果比值等于常数 k,那么三个点就共线。

具体计算如下:a = (x2 - x1, y2 - y1)b = (x3 - x2, y3 - y2)k = a / b = (x2 - x1) / (x3 - x2) = (y2 - y1) / (y3 - y2)如果比值 k 等于常数,那么三个点 A、B 和 C 就共线。

4. 举例说明为了更好地理解上述证明过程,我们举个例子来计算三个点是否共线。

假设有三个点 A(1, 2)、B(3, 4) 和 C(5, 6)。

我们可以计算向量 a 和向量 b 的比值:a = (3 - 1, 4 - 2) = (2, 2)b = (5 - 3, 6 - 4) = (2, 2)k = a / b = (2 - 1) / (2 - 1) = 1由于比值 k 等于常数 1,所以点 A、B 和 C 是共线的。

三点共线的向量表示方法

三点共线的向量表示方法

三点共线的向量表示方法
向量法是解决几何问题的重要方法,掌握了向量法就可以将平面几何问题和空间几何问题转化为向量问题,通过向量运算得出几何结论,实现几何问题的代数化.本文将针对平面几何中三点共线问题探讨向量法的解决思路和方法。

1.
三点共线的向量表示方法 A
如右图,我们知道平面内三点A、B、C共线
可以用向量表示为(其中O为平面内任意一点)
B
1.
;
2.
; C
3.
O
针对上面三种表示方法,在不同的题目中应选择适当的方法应用,使题目简单易做。

1.
典例剖析
例1 是不共线的非零向量,,判断A、B、C 三点的位置关系.
【分析】判断A、B、C三点是否共线,只需看A、B、C三点是否满足向量关系(或)即可。

【解析】根据向量的加减运算法则有,,,显然,故A、B、C三点共线。

说明:此题用第一种表示方式简洁明了。

例2在ΔOAB中, ,,AD与BC交于点M,设试用表示 .
【分析】此题的解决需注意到点B、M、C三点共线,以及点A、M、D三点共线,故一方面我们将用表示,另一方面,将用表示出来,然后在转化成即可。

【解析】设,又
,于是有:
解之得:
故: .
说明:以上解法运用了第三种表示方式。

另一方面: ,又
,于是有:
解之得:
故: .
说明:以上解法运用了第二种表示方式。

向量几何问题是试卷中常见的考题,在高考中也经常考察,只要能够将几何问题合理地转化为向量问题,掌握三点共线的向量表示方法,并能理解三种表示方法的联系,恰当应用,就可以使此类问题迎刃而解。

向量的三点共线定理

向量的三点共线定理

向量的三点共线定理一、概念向量的三点共线定理,又称之为向量的共线定理,是向量理论中的一个基本定理。

它描述了在三维空间中,如果三个点A、B、C由向量OA、OB、OC表示,并且存在实数λ和μ,使得OC = λOA + μOB,且λ+ μ= 1,则这三个点A、B、C是共线的。

二、定义定义1:共线向量,也称为平行向量,是指方向相同或相反的非零向量。

在平面或空间中,如果两个向量有相同的方向或相反的方向,则这两个向量被称为共线向量。

定义2:如果三个点A、B、C满足OC = λOA + μOB,其中λ和μ是实数,并且λ+ μ= 1,则称这三个点A、B、C是共线的。

三、性质性质1:若三点A、B、C共线,则它们的位置向量之间存在线性关系,即OC = λOA + μOB,且λ+ μ= 1。

性质2:若向量a与向量b共线,则存在唯一实数k,使得a = kb。

特别地,当k = 1时,a与b方向相同;当k = -1时,a与b方向相反。

性质3:共线向量的模长之比等于它们对应分量之比,即若a = kb,则|a|/|b| = |k|。

四、特点特点1:向量的三点共线定理是向量线性组合的一个特殊情况,它揭示了向量之间的线性关系与点的几何位置之间的关系。

特点2:该定理提供了一种通过向量运算判断三点是否共线的方法,为向量在空间中的应用提供了便利。

特点3:向量的三点共线定理与平面几何中的三点共线定理具有类似的性质,但向量的表达方式更具一般性,可以推广到三维空间乃至更高维的向量空间。

五、规律规律1:如果三点A、B、C共线,那么它们的位置向量OA、OB、OC之间存在唯一的线性关系,使得OC = λOA + μOB,且λ+ μ= 1。

这个线性关系中的λ和μ是唯一的,除非A、B、C三点重合。

规律2:在三维空间中,如果三个向量a、b、c满足a = λb + μc,且λ+ μ= 1,则这三个向量是共面的。

特别地,当这三个向量是三个点的位置向量时,这三个点共线。

平面内三点共线的向量表示

平面内三点共线的向量表示

§2. 平面内三点共线的向量表示描述平面内三点共线方法有很多种,其中的向量表示,有以下两种,我们可以把它们作为结论来应用.【结论1】点A 、B 、C 共线的充要条件是存在实数t ,使得t =.【结论2】设O 是平面内任意一点,点A 、B 、C 共线的充要条件是存在实数λ、μ,使得 μλ+=,其中1=+μλ.【结论1】很容易理解,下面我们利用【结论1】来证明【结论2】. 先证明充分性:如果存在实数λ、μ,使得OB OA OCμλ+=,其中1=+μλ,则)1(λλ-+=,将这个式子变形后可得)(-=-λ,即AB BC λ=,所以A 、B 、C 三点共线。

再来证明必要性:如果A 、B 、C 三点共线,则存在实数t ,使得t =.在平面内任取一点O ,则有)(OA OB t OA OC -=-,即OB t OA t OC +-=)1(令t -=1λ,t =μ,则存在实数λ、μ,使得μλ+=,其中1=+μλ.故结论2成立。

【说明】(1)由于结论1和结论2中A 、B 、C 三点地位平等,所以结论可以作相应的改变。

(2)由结论2的证明可以理解,三点共线的这两种向量形式可以互化。

下面我们通过一些例题谈一谈三点共线的这两种向量形式的应用。

【例1】如图,已知34=,31=,用,表示OP ,则=( )O.A OB OA 3431+ .B OB OA 3431+-.C 3431-- .D 3431-【解析】本题根据结论2,不用计算,就能确定答案是.B【例2】在平面直角坐标系中,O 为坐标原点,已知两点A ()1,3,B ()3,1-,若点C 满足βα+=,且1=+βα,则点C 的轨迹方程为( ).A 01023=-+y x .B 4)1()1(22=-+-y x .C052=-+y x .D 052=-+y x【解析】本题根据结论2,易知A 、B 、C 三点共线,故点C 的轨迹是直线AB ,选.D 【例3】如图,已知点G 是ABC ∆的重心,点M 是边AB 的中点。

证明三点共线的方法

证明三点共线的方法

证明三点共线的方法证明三点共线的方法有多种,下面将介绍几种常用的方法。

方法一:向量法证明考虑三个点A、B、C。

若存在一个向量v,满足向量AB与向量AC共线,则可证明点A、B、C共线。

具体步骤如下:1. 假设向量v表示向量AB,向量w表示向量AC。

2. 计算向量v和向量w的比值,即v/w。

若比值为常数k,则说明向量v与向量w共线。

3. 若向量v与向量w共线,则点A、B、C共线。

方法二:斜率法证明考虑三个点A(x1, y1)、B(x2, y2)、C(x3, y3)。

若线段AB的斜率等于线段AC 的斜率,则可证明点A、B、C共线。

具体步骤如下:1. 计算线段AB的斜率k1,即k1=(y2-y1)/(x2-x1)。

2. 计算线段AC的斜率k2,即k2=(y3-y1)/(x3-x1)。

3. 若k1=k2,则说明点A、B、C共线。

方法三:面积法证明考虑三个点A、B、C。

若三角形ABC的面积为0,则可证明点A、B、C共线。

具体步骤如下:1. 计算三角形ABC的面积S,可使用海伦公式或向量叉乘等方法。

2. 若S=0,则说明点A、B、C共线。

方法四:共线定理证明考虑三个点A(x1, y1)、B(x2, y2)、C(x3, y3)。

若存在一个实数k,使得x3=k*x1+(1-k)*x2且y3=k*y1+(1-k)*y2,则可证明点A、B、C共线。

具体步骤如下:1. 将x3=k*x1+(1-k)*x2和y3=k*y1+(1-k)*y2联立,解得k的值。

2. 若存在一个实数k,使得x3=k*x1+(1-k)*x2且y3=k*y1+(1-k)*y2成立,则说明点A、B、C共线。

总结:以上是常用的几种证明三点共线的方法。

不同方法适用的场景略有差异,可以根据具体情况选择合适的方法进行证明。

而如果使用向量法、斜率法或面积法证明时,一般都需要一定的计算过程;而使用共线定理证明时,一般需要解方程来确定实数k的值。

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。

特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

向量三点共线定理证明

向量三点共线定理证明

向量三点共线定理证明向量三点共线定理是线性代数中的一个重要定理,我们可以利用这个定理来判断三个向量是否共线,下面我们将详细阐述证明的步骤。

首先,我们需要了解向量和向量的加减乘运算,即向量的线性运算。

向量加减运算的结果是一个向量,向量乘运算的结果是一个标量。

在进行以下的证明中,我们需要用到向量的线性运算。

假设有三个向量a,b,c,它们的起点都在同一个点O上,我们需要证明它们共线,即证明存在实数k1,k2,使得:c=k1a+k2b我们可以将这个等式拆开来:c=x1+y1a=x2+y2b=x3+y3则:x1=k1x2+k2x3y1=k1y2+k2y3为了方便起见,我们可以将上述等式用矩阵形式来表示:$\begin{pmatrix}x_1\\y_1\\\end{pmatrix}=\begin{pmatrix}x_2&x_3\\y_2&y_3\\\end{pmatrix}\begin{pmatrix}k_1\\k_2\\\end{pmatrix}$那么,我们只需要证明矩阵A的行列式为0,即$|A|=0$,就可以证明三个向量共线了。

接下来,我们来证明$|A|=0$。

我们假设:$A=\begin{pmatrix}x_2&x_3\\y_2&y_3\\\end{pmatrix}$为了让$|A|$等于0,我们将第二行乘上$x_2$再减去第一行乘上$y_2$,得到:$\begin{vmatrix}x_2&x_3\\y_2&y_3\\\end{vmatrix}=\begin{vmatrix}x_2&x_3\\0&y_3-\frac{y_2x_3}{x_2}\\\end{vmatrix}=0$这样,我们就成功地证明了向量三点共线定理。

该定理的证明可用于许多问题的解决,例如在计算机图像处理和计算机视觉中,可以用向量的共线性来判定两条直线是否相交,从而判断图像上的物体是否碰撞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向量法证明三点共线的又一方法及应用
平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.
原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线
思路:通过向量共线(如AB k AC =)得三点共线.
证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+
∴()OB OA μOC OA -=-
∴AB μAC =
∴A 、B 、C 三点共线.
思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;
2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满
足OB λOA μOC =+,且1λμ+=.揭示了三点贡献的又一个性质;
3. 特别地,12λμ==时,1()2OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛.
应用举例
例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13
BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明
BN λBM μBC =+,且1λμ+=.
D A B C M N
例2如图,平行四边形OACB 中,13
BD BC =,OD 与AB 相交于E ,求证:. 1
4BE BA =. 思路分析:可以借助向量知识,只须证明:
1
4BE BA =,而BA BO BC =+,又O 、D 、E 三
点共线,存在唯一实数对λ、μ,且1λμ+=,使
BE λBO μBD =+,从而得到BE 与BA 的关系.
D O A C
E B。

相关文档
最新文档